北师大版,初一数学公式大全资料讲解

合集下载

北师大版七年级(下册)数学知识点总结

北师大版七年级(下册)数学知识点总结

北师大版数学七年级下册知识点总结第一章 整式的乘除1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意:底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+•+5、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==6、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-7、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。

如:3334)()()(b a ab ab ab ==÷8、零指数和负指数;10=a ,(ɑ≠0)即任何不等于零的数的零次方等于1。

p p aa 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。

9、科学记数法:如:0.00000721=6-1021.7⨯(第一个非零数字前零的个数)10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

七年级上册数学公式北师大版

七年级上册数学公式北师大版

七年级上册数学公式北师大版
以下是七年级上册数学公式北师大版:
1. 平方差公式:(a+b)(a-b)= a^2-b^2,两个数的和与这两个数的差的积等于这两个数的平方差。

2. 完全平方公式:
(a+b)^2=a^2+2ab+b^2,两个数和的平方,等于它们的平方和,加上它们的积的2倍。

(a-b)^2=a^2-2ab+b^2,两个数差的平方,等于它们的平方和,减去它们的积的2倍。

(a+b-c)^2=a^2+b^2+c^2+2ab-2ac-2bc。

3. 配方:
若二次三项式x^2+px+q是完全平方式,则有关系式:
x^2+px+q=(x+a)^2,其中a是某个实数。

二次三项式ax^2+bx+c经过配方,总可以变为a(x-h)^2+k的形式。

当x=h时,可求出ax^2+bx+c的最大(或最小)值k。

以上是七年级上册数学公式北师大版,希望对您有所帮助。

北师大版七年级初一上册 第一单元 1.6.1《完全平方公式》课件

北师大版七年级初一上册  第一单元 1.6.1《完全平方公式》课件

知3-练
10 利用完全平方公式计算: (1)(x+y)2-4(x+y)(x-y)+4(x-y)2;
解:(1)原式=x2+2xy+y2-4(x2-y2)+4(x2-2xy+y2) =x2-6xy+9y2.
知3-练
(2)
60
1 60
2
;
(3)2 0162-4 032×2 015+2 0152.
解:(2)原式=
知2-练
知2-练
4 【2017·台州】下列计算正确的是( D ) A.(a+2)(a-2)=a2-2 B.(a+1)(a-2)=a2+a-2 C.(a+b)2=a2+b2 D.(a-b)2=a2-2ab+b2
知识点 3 完全平方公式的应用
知3-讲
例5 已知a2+b2=13,ab=6,求(a+b)2,(a-b)2的值. 导引:将两数的和(差)的平方式展开,产生两数的平
(3) (x+5)2-(x-2) (x-3) = x2+10x+25-(x2-5x+6)
= x2+10x+25-x2+5x-6
= 15x+19 .
总结
知2-讲
本题运用了整体思想求解.对于平方式中若底数是三 项式,通过添括号将其中任意两项视为一个整体,就 符合完全平方公式特点;对于两个三项式或四项式相 乘的式子,可将相同的项及互为相反数的项分别添括 号视为一个整体,转化成平方差公式的形式,通过平 方差公式展开再利用完全平方公式展开,最后合并可 得结果.
9
总结
知1-讲
在应用公式 (a±b)2=a2±2ab+b2 时关键是弄清题目 中哪一个相当于公式中的a,哪一个相当于公式中的b, 同时还要确定用两数和的完全平方公式还是两数差的 完全平方公式;解(1)(2)时还用到了互为相反数的两 数的平方相等.

北师大版初一数学知识点总结

北师大版初一数学知识点总结

北师大版初一数学知识点总结1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式。

注意:用字母表示数有一定的限制;首先字母所取得数应保证它所在的式子有意义;其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。

2.列代数式的几个注意事项:;a 23应写成211×a 如;要把带分数改成假分数形式;带分数与字母相乘时)1( 的形式;a3写成a ÷3如;除式和除式联系一般用分数线将被;在代数式中出现除法运算时)2( 3.几个重要的代数式:(m 、n 表示整数)(1)a 与b 的平方差是: a 2-b 2 ; a 与b 差的平方是:(a-b )2 ; (2)若a 、b 、c 是正整数;则两位整数是: 10a+b ,则三位整数是:100a+10b+c ;(3)若m 、n 是整数;则被5除商m 余n 的数是: 5m+n ;偶数是:2n ;奇数是:2n+1;三个连续整数是: n-1、n 、n+1 ;4.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数;都是有理数。

π不是有理数。

(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中;1、0、-1是三个特殊的数。

(4)自然数包括:0和正整数。

5.绝对值:(1)正数的绝对值是其本身;0的绝对值是0;负数的绝对值是它的相反数;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;(3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数;即|a|≥0;注意:|a|·|b|=|a ·b|,b a b a=。

北师大版初中数学公式

北师大版初中数学公式

北师大版初中数学公式1过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等等角对等边35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于n-2×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=a ×b÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=a+b÷2 S=L×h83 1比例的基本性质如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d84 2合比性质如果a/b=c/d,那么a±b/b=c±d/d85 3等比性质如果a/b=c/d=…=m/n其中,b+d+…+n≠0,那么a+c+…+m/b+d+…+n=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边或两边的延长线,所得的对应线段成比例88 定理如果一条直线截三角形的两边或两边的延长线所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边或两边的延长线相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似ASA92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似SAS94 判定定理3 三边对应成比例,两三角形相似SSS95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1①平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交 d<r②直线L和⊙O相切 d=r③直线L和⊙O相离 d>r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离 d>R+r②两圆外切 d=R+r③两圆相交 R-r<d<R+rR>r④两圆内切 d=R-rR>r⑤两圆内含d<R-rR>r136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成nn≥3:⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于n-2×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×n-2180°/n=360°化为n-2k-2=4142内公切线长= d-R-r 外公切线长= d-R+r143面积公式:①S正Δ=- -×边长②S平行四边形=底×高.③S菱形=底×高=- -×对角线的积 -④S圆=πR2.⑤C圆周长=2πR.⑥弧长L=- ⑦S扇形=- -=- -LR.⑧S 圆柱侧=底面周长×高.-⑨S圆锥侧=- -×底面周长×母线=πrR,并且-2πr。

北师大版初中数学公式大全

北师大版初中数学公式大全

1北师大版初中数学公式大全1过两点有且只有一条直线过两点有且只有一条直线2两点之间线段最短两点之间线段最短3同角或等角的补角相等同角或等角的补角相等4同角或等角的余角相等同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行如果两条直线都和第三条直线平行,这两条直线也互相平行 9同位角相等,两直线平行同位角相等,两直线平行10内错角相等,两直线平行内错角相等,两直线平行11同旁内角互补,两直线平行同旁内角互补,两直线平行12两直线平行,同位角相等两直线平行,同位角相等13两直线平行,内错角相等两直线平行,内错角相等 14两直线平行,同旁内角互补两直线平行,同旁内角互补15定理三角形两边的和大于第三边定理三角形两边的和大于第三边16推论三角形两边的差小于第三边推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°180°18推论1直角三角形的两个锐角互余直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等边角边公理有两边和它们的夹角对应相等的两个三角形全等23角边角公理有两角和它们的夹边对应相等的两个三角形全等角边角公理有两角和它们的夹边对应相等的两个三角形全等24推论有两角和其中一角的对边对应相等的两个三角形全等推论有两角和其中一角的对边对应相等的两个三角形全等 25边边边公理有三边对应相等的两个三角形全等边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等 27定理1在角的平分线上的点到这个角的两边的距离相等在角的平分线上的点到这个角的两边的距离相等28定理2在角的内部,到一个角的两边的距离相等的点,在这个角的平分线上在角的内部,到一个角的两边的距离相等的点,在这个角的平分线上 29等腰三角形的性质定理等腰三角形的两个底角相等等腰三角形的性质定理等腰三角形的两个底角相等30推论1等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形顶角的平分线平分底边并且垂直于底边31等腰三角形的顶角平分线、底边上的中线和高互相重合等腰三角形的顶角平分线、底边上的中线和高互相重合32推论3等边三角形的各角都相等,并且每一个角都等于60°60°33等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)角对等边)34推论1三个角都相等的三角形是等边三角形三个角都相等的三角形是等边三角形 35推论2有一个角等于60°的等腰三角形是等边三角形60°的等腰三角形是等边三角形36在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半30°那么它所对的直角边等于斜边的一半 37直角三角形斜边上的中线等于斜边上的一半直角三角形斜边上的中线等于斜边上的一半38定理线段垂直平分线上的点到这条线段两个端点的距离相等定理线段垂直平分线上的点到这条线段两个端点的距离相等39逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上 40定理1关于某条直线对称的两个图形是全等形关于某条直线对称的两个图形是全等形41定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线42定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上43逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称对称44勾股定理直角三角形两直角边a 、b 的平方和、等于斜边c 的平方的平方45勾股定理的逆定理如果三角形的三边长a 、b 、c 有关系,那么这个三角形是直角三角形有关系,那么这个三角形是直角三角形 46定理四边形的内角和等于360°360° 47四边形的外角和等于360°360°48多边形内角和定理n 边形的内角的和等于(边形的内角的和等于(n-2n-2n-2)×180°)×180°)×180°49推论任意多边的外角和等于360°360°50平行四边形性质定理1平行四边形的两组对角分别相等平行四边形的两组对角分别相等51平行四边形性质定理2平行四边形的两组对边分别相等平行四边形的两组对边分别相等52推论夹在两条平行线间的平行线段相等推论夹在两条平行线间的平行线段相等53平行四边形性质定理3平行四边形的对角线互相平分平行四边形的对角线互相平分54平行四边形判定定理1两组对边分别平行的四边形是平行四边形两组对边分别平行的四边形是平行四边形55平行四边形判定定理2两组对边分别相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形56平行四边形判定定理3对角线互相平分的四边形是平行四边形对角线互相平分的四边形是平行四边形57平行四边形判定定理4一组对边平行相等的四边形是平行四边形一组对边平行相等的四边形是平行四边形58矩形性质定理1矩形的四个角都是直角矩形的四个角都是直角59矩形性质定理2矩形的对角线相等矩形的对角线相等60矩形判定定理1有三个角是直角的四边形是矩形有三个角是直角的四边形是矩形61矩形判定定理2对角线相等的平行四边形是矩形对角线相等的平行四边形是矩形62菱形性质定理1菱形的四条边都相等菱形的四条边都相等 63菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形的对角线互相垂直,并且每一条对角线平分一组对角64菱形面积菱形面积==对角线乘积的一半,即S=S=(a×b)÷2(a×b)÷2(a×b)÷265菱形判定定理1四边都相等的四边形是菱形四边都相等的四边形是菱形66菱形判定定理2对角线互相垂直的平行四边形是菱形对角线互相垂直的平行四边形是菱形67正方形性质定理1正方形的四个角都是直角,四条边都相等正方形的四个角都是直角,四条边都相等68正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角69定理1关于中心对称的两个图形是全等的关于中心对称的两个图形是全等的70定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 71逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称于这一点对称 72等腰梯形性质定理等腰梯形在同一底上的两个角相等等腰梯形性质定理等腰梯形在同一底上的两个角相等73等腰梯形的两条对角线相等等腰梯形的两条对角线相等74等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形75对角线相等的梯形是等腰梯形(梯形知识点了解即可)对角线相等的梯形是等腰梯形(梯形知识点了解即可)76平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截那么在其他直线上截得的线段也相等得的线段也相等77推论1经过梯形一腰的中点与底平行的直线,必平分另一腰经过梯形一腰的中点与底平行的直线,必平分另一腰78推论2经过三角形一边的中点与另一边平行的直线,必平分第三边经过三角形一边的中点与另一边平行的直线,必平分第三边79三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半80梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b a+b))÷2S=L×h83(1)比例的基本性质如果a:b=c:d,a:b=c:d,那么那么ad=bc ad=bc。

(完整版)北师大版初一数学知识点梳理

(完整版)北师大版初一数学知识点梳理

侧面是曲面底面是圆面圆柱,:⎩⎨⎧侧面是正方形或长方形底面是多边形棱体柱体,:侧面是曲面底面是圆面圆锥,:⎩⎨⎧侧面都是三角形底面是多边形棱锥锥体,:⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数北师大版初一数学定理知识点汇总[七年级上册]第一章 丰富的图形世界¤1.¤2.¤3. 球体:由球面围成的(球面是曲面)¤4. 几何图形是由点、线、面构成的。

①几何体与外界的接触面或我们能看到的外表就是几何体的表面。

几何的表面有平面和曲面;②面与面相交得到线;③线与线相交得到点。

※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱.。

※6. 侧棱:相邻两个侧面的交线叫做侧棱..,所有侧棱长都相等。

¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。

¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形……¤9. 长方体和正方体都是四棱柱。

¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。

※12. 设一个多边形的边数为n(n≥3,且n 为整数),从一个顶点出发的对角线有(n-3)条;可以把n 边形成(n-2)个三角形;这个n 边形共有2)3(-n n 条对角线。

◎13. 圆上两点之间的部分叫做弧.,弧是一条曲线。

◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。

¤15. 凸多边形和凹多边形都属于多边形。

有弧或不封闭图形都不是多边形。

第二章 有理数及其运算 ※※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!

北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!

北师大版七年级下册数学《第一章整式的乘除--完全平方公式》知识点讲解!1.完全平方公式:(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

2.派生公式:(a+b)2-2ab=a2+b2(a-b)2+2ab=a2+b2(a-b)2+(a+b)2=2(a2+b2) (a+b)2-(a-b)2=4ab考点解析完全平方公式是进行代数运算与变形的重要知识基础。

该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解)。

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。

为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

理解公式左右边特征(一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;(二)学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.(三)这两个公式的结构特征是:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一:因为所以两个公式实际上可以看成一个公式:两数和的完全平方公式。

这样可以既可以防止公式的混淆又杜绝了运算符号的出错。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数——比较:a=0,|a|=0 a>0,|a|=a a<0,|a|=-a
|a|>|b|,a<0,b<0,则a<b
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
减法法则:a-b=a+(-b)
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
除法法则:a÷b=a(1÷b)【b≠0】
角与线——对顶角相等
同一平面内,有且只有一条直线与已知直线垂直。

同一平面内,经过直线外一点,有且只有一条直线与已知直线平行。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

垂直于同一直线的两条直线互相平行。

同位角相等/内错角相等/同旁内角互补:两直线平行
两直线平行:同位角相等/内错角相等/同旁内角互补。

直角=90°,180°<优角<360°,平角=180°,周角=360°
90°<钝角<180°,0°<锐角<90°
【初一下册】
方程及不等式——解方程的两种基本方法: 1.代入消元法 2.加减消元法
如果a>b,则a+c>b+c,a-c>b-c
如果a>b,c>0,则ac>bc
如果a>b,c<0,则ac<bc
三角形及正多边形——外角+相邻内角=180°
1.三角形的一个外角等于与它不相邻的两个内角的和。

2.三角形的一个外角大于任何一个与它不相邻的内角。

3.三角形具有稳定性。

4.三角形任意两边之和大于第三边,两边之差小于第三边。

【n=多边形的边数】(n>0)
多边形的外角和:180°
多边形的内角和:180°*(n-2)
多边形的边数:n边
多边形对角线的条数:n(n-3)÷2
正多边形的各个内角:180°-360°÷n。

相关文档
最新文档