华师大版七年级上册数学知识点定稿版

合集下载

初一数学上册知识点华师版[精选5篇]

初一数学上册知识点华师版[精选5篇]

初一数学上册知识点华师版[精选5篇]第一篇:初一数学上册知识点华师版伟大的成绩和辛勤劳动是成正比例的,有一分劳动就有一分收获,积累,从少到多,奇迹就可以创造出来。

学习也是一样的,需要积累,从少变多。

下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。

初一下册数学《三角形》知识点一、目标与要求1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。

2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。

3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。

4.三角形的内角和定理,能用平行线的性质推出这一定理。

5.能应用三角形内角和定理解决一些简单的实际问题。

二、重点三角形内角和定理;对三角形有关概念的了解,能用符号语言表示三条形。

三、难点三角形内角和定理的推理的过程;在具体的图形中不重复,且不遗漏地识别所有三角形;用三角形三边不等关系判定三条线段可否组成三角形。

四、知识框架五、知识点、概念总结1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7.高线、中线、角平分线的意义和做法8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9.三角形内角和定理:三角形三个内角的和等于180°推论1直角三角形的两个锐角互余;推论2三角形的一个外角等于和它不相邻的两个内角和;推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半。

华师版七年级上册数学知识点

华师版七年级上册数学知识点

华师版七年级上册数学知识点目录七年级上册数学知识点苏教版七年级上册数学知识点七年级数学知识点七年级上册数学知识点第一章有理数(一)正负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整数之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

)2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。

(四)有理数的加减法1.先定符号,再算绝对值。

2.加法运算法则:同号相加,取相同符号,并把绝对值相加。

异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数同0相加减,仍得这个数。

3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5. ab = a +(b) 减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

2.乘积是1的两个数互为倒数。

3.乘法交换律:ab= ba4.乘法结合律:(ab)c = a (b c)5.乘法分配律:a(b +c)= a b+ ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。

七年级上册数学知识点归纳华师大版

七年级上册数学知识点归纳华师大版

七年级上册数学知识点归纳华师大版七年级上册数学知识点归纳(华师大版)数学是一门重要的学科,它不仅培养了我们的逻辑思维能力,还帮助我们解决实际生活中的问题。

在七年级上册的数学课程中,我们学习了许多重要的知识点。

下面,我将对这些知识点进行归纳总结。

首先,我们学习了整数的概念和运算。

整数包括正整数、负整数和零。

我们学会了整数的加法、减法、乘法和除法运算规则。

在运算中,我们需要注意正负数的加减法规则,以及乘法和除法的特殊性质。

此外,我们还学习了整数的绝对值和相反数的概念,以及它们在实际问题中的应用。

其次,我们学习了分数的概念和运算。

分数由分子和分母组成,分子表示被分成的份数,分母表示总份数。

我们学会了分数的加法、减法、乘法和除法运算规则。

在运算中,我们需要注意分数的通分和约分,以及分数与整数的转化。

此外,我们还学习了分数在实际问题中的应用,如比例、百分数和利润等。

第三,我们学习了代数式的概念和运算。

代数式由字母和数字组成,表示数的关系。

我们学会了代数式的加法、减法、乘法和除法运算规则。

在运算中,我们需要注意同类项的合并和分配律的运用。

此外,我们还学习了代数式在实际问题中的应用,如代数式的建立和解方程等。

第四,我们学习了平面图形的概念和性质。

平面图形包括点、线、线段、射线、角、三角形、四边形、多边形和圆等。

我们学会了平面图形的命名和性质,如线段的长短比较、角的分类和三角形的分类等。

在学习中,我们需要注意图形的基本要素和基本性质,以及它们在实际问题中的应用。

最后,我们学习了数据的概念和统计方法。

数据是描述事物特征的信息,可以用表格、图表和图形等形式表示。

我们学会了数据的收集、整理、分析和表示方法。

在学习中,我们需要注意数据的分类和统计方法的运用,以及它们在实际问题中的应用。

通过对七年级上册数学知识点的归纳总结,我们可以看到数学知识的广度和深度。

这些知识点不仅帮助我们提高了数学能力,还培养了我们的逻辑思维和问题解决能力。

初一数学上册知识点华师版

初一数学上册知识点华师版

初一数学上册知识点华师版一、目标与要求1.熟悉三角形,了解三角形的意义,熟悉三角形的边、内角、顶点,能用符号语言表示三角形。

2.经受度量三角形边长的实践活动中,理解三角形三边不等的关系。

3.懂得推断三条线段可否构成一个三角形的(方法),并能运用它解决有关的问题。

4.三角形的内角和定理,能用平行线的性质推出这肯定理。

5.能应用三角形内角和定理解决一些简洁的实际问题。

二、重点三角形内角和定理;对三角形有关概念的了解,能用符号语言表示三条形。

三、难点三角形内角和定理的推理的过程;在详细的图形中不重复,且不遗漏地识别全部三角形;用三角形三边不等关系判定三条线段可否组成三角形。

四、学问框架五、学问点、概念(总结)1.三角形:由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7.高线、中线、角平分线的意义和做法8.三角形的稳定性:三角形的外形是固定的,三角形的这共性质叫三角形的稳定性。

9.三角形内角和定理:三角形三个内角的和等于180°推论1直角三角形的两个锐角互余;推论2三角形的一个外角等于和它不相邻的两个内角和;推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半。

10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

11.三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360°。

华师大版七年级上册数学知识点

华师大版七年级上册数学知识点

华师大版七年级上册数学知识点(总7页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第1章 走进数学世界1.在n ·n 的正方形方格中,有2.幻方: 三阶幻方:四阶幻方: 第2章 有理数定义:像﹣2、﹣2.5、﹣237、﹣0.7这样的数是负数,像13、3.5、500、1.2这样的数是正数.(正数前面有时也可以放上一个“+”<读作“正”>号)注意:零既不是正数,也不是负数.分类:方法1:整、分法方法2:正、零、负法162 3 13 511 10 8 97 6 12 4 14 15 1有理数整数 分数正整数 负整数 零 正分数 负分数数集的定义:把这些数(指上文提到的有理数)放在一起,就组成一个数的集合,简称数集.上文有理数组成的数集叫做有理数集.定义:规定了原点、正方向和单位长度的直线叫做数轴.方法:在数轴上表示的两个数,右边的数总比左边的数大.正数都大于零,负数都小于零,正数都大于负数.2.3相反数几何定义:1.在数轴上表示互为相反数的两个点分别位于原点的两旁,且与原点的距离相等.2.只有正负号不同的数成为互为相反数.(例:数a的相反数是﹣a,﹣a的相反数是a)注意:零的相反数是零.变为相反数的方法:通常在一个数的前面添上“﹣”号,表示这个数的相反数.(在一个数的前面添上“+”号,仍表示这个数本身.(例题解析)正负号组合化简方法:1.根据相反数的意义.2.数前面负号的个数。

负号的个数为偶数个时,取正;负号的个数为奇数个时,取负.2.4绝对值定义:在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.取一个数的绝对值的结果:1.一个正数的绝对值是它本身.2.零的绝对值是零.3.一个负数的绝对值是它的相反数.4.任何一个有理数的绝对值总是正数或0(通常也称非负数).即对任意有理数a,总有|a|≥0.2.5有理数的大小比较两个负数,绝对值大的反而小.法则内容:1.同号两数相加,取与加数相同的正负号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大加数的正负号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得零;4.一个数与零相加,仍得这个数.法则扩充总结:正正相加,和大于其中任意一个加数;负负相加,和小于其中任意一个加数;正负相加,和大于负数,小于正数.(正指正数,负指负数)注意:一个有理数由正负号和绝对值两部分组成,进行加法运算时,应注意确定和的正负号及绝对值.加法交换律:两个数相加,交换加数的位置,和不变.字母表示:a+b=b+a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.字母表示:(a+b)+c=a+(b+c).2.7有理数的减法法则:减去一个数,等于加上这个数的相反数.字母表示:a-b=a+(-b)2.8有理数的加减混合运算方法:1.按照运算顺序,从左到右逐步运算.2.用有理数减法法则,统一为只有加法运算的和式.加法运算律的应用:因为有理数的加减法可以统一成加法,所以在进行有理数加减混合运算时,可以适当应用加法运算律,简化运算.补充概念:从1开始逐步增大的连续奇数的和等于奇数个数的平方;从2开始逐步增大的连续偶数的和,等于偶数个数的平方加偶数个数.内容:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零.(两数相乘,若把一个因数换成它的相反数,则所得的积是原来的积的相反数.)乘法交换律:两个数相乘,交换因数的位置,积不变.字母表示:ab=ba乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.字母表示:(ab)c=a(bc)分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.字母表示:a(b+c)=ab+ac积的正负号与各因数的正负号之间的关系:几个不等于零的数相乘,积的正负号由负因数的个数决定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.几个数相乘,有一个因数为零,积就为零.2.10有理数的除法倒数的定义:乘积是1的两个数互为倒数.有理数的除法转为乘法的方法:除以一个数等于乘以这个数的倒数.注意:零不能作除数.有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.2.11有理数的乘方定义及相关内容:求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a中,a叫做底数,n叫做指数,a读作a的n次方,a看作是a的n次方的结果时,也可读作a的n次幂.幂的特点:(根据有理数乘法法则)正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.2.12科学记数法定义:一个大于10的数就记成a×10的形式,其中1≤a<10,n是正整数.像这样的记数法叫做科学记数法.注意:1.a的整数数位只有一位.2.n是原数的整数数位少1.2.13有理数的混合运算混合运算的运算顺序:1.先算乘方,再算乘除,最后算加减;2.同级运算,按照从左至右的顺序进行;3.如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的.补充:加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方叫做第三级运算.注意:进行分数的乘除运算时,一般要把带分数化为假分数,把除法转化为乘法.2.14近似数一个与实际非常接近的数,称为近似数.题型分析:科学记数法中a×10看它精确到哪一位,就看a最右边的那个数字在原数中是哪一位.注意:1.题目要求精确到十位、百位等,往往采用科学记数法,而要求精确到十分位、百分位等,往往不采用科学记数法.2.对一个比较大的数,取近似值往往采用科学记数法,因为科学记数法中的精确度只看a.3.取近似值有三种方法:四舍五入法、去尾法、进一法,要根据题的要求和实际情况而定.2.15用计算器进行计算:略第二章小结第三章整式的加减注意:1.式子中出现的乘号,通常写作“·”或忽略不写.2.数字与字母相乘时,数字通常写在字母前面.3.除法运算写成分数形式.4.括号前面的乘号也要被省略.定义:由数和字母用运算符号连接所成的式子,称为代数式.单独一个数或一个字母也是代数式.列代数式的原因:在解决问题时,列出代数式,使问题变得简洁,更具一般性.3.2代数式的值定义:一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.定义:由数与字母的乘积组成的代数式叫做单项式.注意:1.当一个单项式的系数是1或-1时,“1”通常省略不写.2.单项式的系数是带分数时,通常写成假分数.定义:几个单项式的和叫做多项式.其中,每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式含有几项,就叫做几项式.多项式里,次数最高项的次数,就是这个多项式的次数.定义:把一个多项式各项的位置按照其中某一字母指数的大小顺序来排列.从大到小为降幂排列,从小到大为升幂排列.注意:1.重新排列多项式时,每一项一定要连同它的正负号一起移动.2.含有两个或两个以上字母的多项式,常常按照其中某一字母的升幂排列或降幂排列.定义:所含字母相同,并且相同字母的指数也相等的项叫做同类项.所有的常数项都是同类项.法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变正负号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变正负号.添括号法则:所添括号前面是“+”号,括到括号里的各项都不改变正负号;所添括号前面是“-”号,括到括号里的各项都改变正负号.注意:添括号与去括号的过程正好相反,添括号是否正确,不妨用去括号检验一下.运算步骤:先去括号,再合并同类项.第3章小结第4章图形的初步认识4.1生活中的立体图形立体图形展示图:柱体锥体球体多面体的定义:每一个面都是平的的立体图形叫做多面体.注意:圆柱、球体等含有曲面的立体图形不称为多面体.视图的定义:视图来自于投影.中心投影的定义:从一点发出的这种投影称为中心投影.平行投影的定义:平行投影是在一束平行光线照射下形成的投影.物体的三视图及其定义:从正面得到的投影,称为主视图;从上面得到的投影,称为俯视图;从侧面得到的投影,称为侧视图,依投影方向不同,有左视图和右视图.通常将主视图、俯视图与左(或右)视图称做一个物体的三视图.因而,三视图一般画主视图、俯视图、左视图.注意:1.画出来的是平面图形.2.画出能看到的轮廓.3.画出能看到的棱、尖点.4.3立体图形的表面展开图:略4.4平面图形圆的特性:由曲线围成的封闭图形.多边形的定义:由线段围成的封闭图形叫做多边形.三角形在多边形中的意义:在多边形中,三角形是最基本的图形.每个多边形都可以分割成若干个三角形.从n边形的某一顶点出发引对角线,能得到(n-3)条对角线,能分成(n-2)个三角形.点存在的意义:表示那些大小尺寸可以忽略的物体.许多点的聚集又可以表现不同的图形.线段的意义:线段是无数排成行的点的聚集.多面体各部分名称示意图:面棱顶点关于线段的基本事实:两点之间,线段最短.射线的定义:把线段向一方无限延伸所形成的图形叫做射线.直线的定义:把线段向两方无限延伸所形成的图形叫做直线.关于直线的基本事实:(三种说法)经过两点有一条直线,并且只有一条直线;两点确定一条直线;经过两点有且只有一条直线.比较方法:1.用刻度尺量,比较大小2.将其中一条线段移到另一条线段上去加以比较.中点的定义:把一条线段分成两条相等线段的点,叫做这条线段的中点.题型分析:一条直线上有n个点,线段的条数为n(n-1)/2条.注意:线段的和差往往用图形语言告诉我们,我们要善于挖掘图形语言.点和直线的位置关系:1.点在直线上;2.点在直线外.欧拉公式:顶点数+面数-棱数=2(应用的范围是多面体)角的?定义:由两条有公共端点的射线组成的图形叫做角.角的?定义:由一条射线绕着它的端点旋转而成的图形.射线的端点叫做角的顶点,起始位置的射线叫做角的始边,终止位置的射线叫做角的终边.表示角的方法:1.两个端点及一个顶点(表示时要把表示角的顶点的字母写在中间);2.一个顶点(顶点处只能有一个角时才能用此方法);3.一个阿拉伯数字或希腊字母(先标出后才能用)平角的定义:绕着端点旋转到角的终边和始边成一直线,这时所成的角叫做平角.周角的定义:绕着端点旋转到终边和始边再次重合,这时所成的角叫做周角. 角度的单位换算:1°=60′ 1′=60″(1度等于60分,1分等于60秒)注意:描述物体运动的方向时,要以正北、正南方向为基准.题型分析:从一点引出n条射线,确定角的个数为n(n-1)/2个.角的平分线的定义:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.余角的定义:两个角的和等于90°(直角),就说这两个角互为余角,简称互余.补角的定义:两个角的和等于180°(平角),就说这两个角互为补角.关于余角、补角的定理:同角或等角的余角相等;同角或等角的补角相等.注意:互余和互补有时通过特殊的位置(即图形语言)告诉我们.第4章小结第5章相交线与平行线对顶角的?定义:两个角具有相同的顶点,且其中一个角的两边分别与另一个角的两边互为反向延长线,我们把这样的两个角叫做对顶角.对顶角的?定义:两直线相交所成的四个角中,不相邻的一对角叫做对顶角. 对顶角的性质:对顶角相等.垂直、垂足、垂线的定义:两直线相交所成的四个角中,有一个角等于90°,两线互相垂直,它们的交点叫做垂足,我们把其中的一条直线叫做另一条直线的垂线.关于垂线的基本事实:过一点有且只有一条直线与已知直线垂直.垂线段的定义:过直线外一点作已知直线的垂线,这一点与已知直线相交的点所在的线段叫做垂线段.点到直线的距离的定义:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.同位角的定义:内错角的定义:同旁内角的定义:平行线的定义:在同一平面内不相交的两条直线叫做平行线.互相平行的两条直线的表示的方法:例:直线a与直线b互相平行,记作“a∥b”.两条不相交的直线的位置关系有:相交或平行.关于平行线的基本事实:1.过直线外一点有且只有一条直线与这条直线平行.2.如果两条直线都和第三条直线平行,那么这两条直线也互相平行.判定方法:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.关于垂直、平行的性质:在同一平面内,垂直于同一条直线的两条直线平行. 性质:两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.第五章小结。

七年级数学上册华师版知识点总结

七年级数学上册华师版知识点总结

七年级数学上册华师版知识点总结数学是一门充满智慧和奥秘的科学,而作为学生的我们不能只是被动地接受这门学科,更应该积极思考和探究。

下面是我针对七年级数学上册华师版的课程内容,总结出的一些重要知识点。

一、有理数在学习有理数这一章节时,我们首先需要了解有理数的概念以及如何比较大小。

有理数包括正整数、负整数和0,还有正分数、负分数和0,它们都可以用数轴表示。

在比较大小时,我们需要先比较绝对值,再根据正负关系进行比较。

二、整式与分式整式和分式是我们在数学学习中接触到的最基础的符号和式子。

整式由变量和常数项组成,如10x+2y+5;而分式则包括分子和分母,如x/(3y+1)。

我们需要学习如何化简、合并、展开和因式分解这些式子。

同时还需要进一步了解分式的分解、约分、通分和加减乘除等基本运算。

三、一次函数在学习一次函数时,我们首先需要掌握函数的概念:函数是一种特殊的关系,将自变量的取值代入函数的公式中,得到对应的因变量的值。

一次函数就是变量的最高次数为1的函数,如y=2x+1。

我们需要学习如何绘制函数图像、求解方程、计算截距和斜率以及分析函数的性质。

四、平面图形在学习平面图形这一章节时,我们需要了解不同图形的定义、性质、面积和周长。

比如:长方形的面积是长乘以宽,周长是两倍长加两倍宽;三角形的面积是底乘以高的一半,周长是三边长的和。

同时还需要学习如何判断是否为全等、相似、共面和相交图形,在解决问题时还需要掌握相应的变量和公式。

五、统计在学习统计这一章节时,我们需要掌握各种数据的表示方法和不同类型的图表。

比如:频数表、频数分布图、折线图、柱状图等。

在解决问题时,我们还需要学习如何分析统计数据并作出结论。

以上是七年级数学上册华师版的主要知识点总结。

要想在数学学习中取得好成绩,除了以上知识点的掌握,我们还需要加强练习,多做题,掌握解题方法,并在实际生活中学会将数学知识运用到实际问题中。

相信只要付出努力,大家都能够学好数学,取得更好的成绩。

华东师范大学出版社七年级上册数学知识点总结归纳

华东师范大学出版社七年级上册数学知识点总结归纳

华东师范大学出版社七年级上册数学知识点总结归纳华东师范大学出版社七年级上册数学知识点总结归纳文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)七年级上册知识点总结第1章走进数学世界1、数学伴我们成长,测量、称重、计算等都与数学有关.2、数学与现实生活密切联系,人类离不开数学.3、人人都能学好数学.第2章有理数1、相反意义的量:像向东和向西、零上和零下、收入和支出、升高和降低、买入和卖出等都表示具有相反意义的量.2、正数和负数(1)正数都大于零;(2)在正数前面加上一个“—”号的数叫做负数,负数都小于零;(3)0既不是正数也不是负数,它是正数和负数的分界点.3、有理数(4)有理数:正数和分数统称为有理数;(5)整数包括正整数、0、负整数;(6)分数包括正分数、负分数.4、有理数的分类:0和正数统称为非负数,0和负数统称为非正数.5、数轴的概念:规定了正方向、原点和单位长度的直线叫做数轴.6、有理数的大小比较(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.7、相反数的意义(1)代数意义:只有符号不同的两个数称互为相反数,零的相反数是0;(2)几何意义:在数轴上表示互为相反数的两个点分别位于原点的两侧,且与原点的距离相等.8、相反数的表示方法:数a的相反数是-a,这里的a可以表示任何一个数.9、绝对值的意义(1)几何意义:把数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|;(2)代数意义:一个正数的绝对值等于本身,零的绝对值是0,一个负数的绝对值等于相反数.10、绝对值的非负性:对于任何有理数a,都有|a|≥0.11、两个负数的大小比较法则:两个负数,绝对值大的反而小.12、有理数大小的比较方法(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.两个正数,绝对值大的数大;两个负数绝对值大的数反而小.13、有理数的加法法则(1)同号两数相加,取加数的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同0相加仍得这个数.14、在进行有理数的加法运算时,应分两步:首先,判断符号;然后,再计算绝对值.15、有理数的加法运算律(1)交换律:两个数相加,交换加数的位置,和不变,即:a+b=b+a;(用字母表示)(2)结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变,即:(a+b)+c=a+(b+c).(用字母表示)16、运用加法运算律的技巧:正负结合;凑整结合;相反数结合;同分母结合;整分结合.17、有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b).18、加减法统一成加法:有理数的加减法运算可以通过有理数的减法法则将减法转化为加法,统一成只有加法运算的和式.19、和式的写法:在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.20、加减混合运算的方法和步骤(1)将减法统一成加法,并写成省略加号的和的形式;(2)运用加法的交换律和结合律,简化运算.21、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得0.22、有理数乘法步骤:先确定积的符号;再计算绝对值的积.23、倒数:乘积是1的两个数互为倒数.24、有理数的除法法则(1)除以一个数等于乘以这个数的倒数;(2)两数相除,同号得正,异号得负,并把绝对值相除;(3)0除以任何一个不等于零的数,都得0.25、乘方的有关概念(1)求n个相同因数的积的运算叫乘方,乘方的结果叫幂,a叫底,n叫指数,a n 读作:a的n次方(或a的n次幂).(2)正数的任何次幂都是正数;负数的奇次方幂是负数,偶次方幂是正数.26、科学计数法把一个大于10的数记成a×10n的形式,其中0≤a<10,n是正数,这种计数法叫做科学计数法.27、有理数的混合运算顺序(1)先算乘方,再算乘除,最后算加减;(2)同级运算,按照从左至右的顺序依次进行;(3)如果有括号,就先算小括号,再算中括号,然后算大括号.28、近似数:与实际很接近的数.29、精确度:反映近似数的精确程度的量.一般地,一个近似数四舍五入到某一位,就说这个近似数精确到那一位.30、计算器的组成:计算器的面板由显示器和按键组成.第3章整式的加减1、用字母表示数后,有些数量之间的关系用含有字母的式子表示,看上去更加简明,更具有普遍意义.2、用字母表示数后,字母的取值要根据实际情景来确定.3、用运算符号把数或表示数的字母连接而成的式子,称为代数式.4、单独一个数或单独一个字母也是代数式.5、列代数式的实质就是把文字语言转化为符号语言.6、列代数式的一般方法有:(1)抓住关键词,由关键词确定相应的运算符号;(2)理清运算顺序,一般是先读的先算,必要时添上括号;(3)较复杂的数量关系,可分段处理;(4)根据实际问题中的基本数量关系或公式列代数式.7、用数值代替代数式中的字母,按照代数式中的运算关系计算得出结果,叫做代数式的值.8、求代数式的值的步骤:先代入,再求值.9、数与字母的乘积所组成的代数式叫做单项式,单独的数或字母也是单项式.10、单项式中的数字因数叫做这个单项式的系数,所有字母指数之和叫做这个单项式的次数.11、几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.12、在多项式里,最高次项的次数就是这个多项式的次数.13、单项式和多项式统称为整式.14、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母的降幂排列.15、把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母的升幂排列.16、所含字母相同,并且相同字母的指数也相等的项叫做同类项,所有的常数项都是同类项.17、把多项式中的同类项合并成一项,叫做合并同类项.18、合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.19、去括号法则:(1)括号前面是“+”,把括号和它前面的“+”号去掉,括号里各项不改变正负号;(2)括号前面是“—”,把括号和它前面的“—”号去掉,括号里各项改变正负号;20、添括号法则:(1)所添括号前面是“+”号,括到括号里的各项不改变正负号;(2)所添括号前面是“—”号,括到括号里的各项改变正负号;21、整式加减的一般步骤:先去括号,再合并同类项.第4章生活中的立体图形1、生活中的立体图形有很多,常见的有柱体、锥体和球体,其中柱体分为圆柱和棱柱,锥体分为圆锥和棱锥2、从正面、上面和侧面(左面或右面)三个不同的方向看一个物体,然后描绘出三幅所看到的图,即视图.3、从正面看到的图形,称为主视图;从上面看到的图形,称为俯视图;从侧面看到的图形,称为侧视图,依观看的方向不同,有左视图和右视图.4、单一的规则的立体图形的三视图,如果主视图和侧视图是三角形,一般和锥体有关,可根据俯视图是圆形或n边形,可以判断是圆锥或,n棱锥;对于主视图和侧视图是长方形的,一般和柱体有关,再观察俯视图是圆形或n边形,可以判断是圆柱或n 棱柱.5、圆柱的侧面展开图是矩形(长方形或正方形),圆锥的侧面展开图是扇形.6、同一个立体图形,按不同的方式展开得到的平面展开图是不同的.7、圆是由曲面围成的封闭图形;多边形是由线段围成的封闭图形.8、在多边形中,最基本的图形是三角形.9、两点之间线段最短.10、经过两点有1条直线,并且只有1条直线,即两点确定一条直线.11、线段的长短比较有两种方法:一种是度量的方法;一种是叠合的方法.12、把一条线段分成两条相等线段的点,叫做这条线段的中点.13、角是由两条有公共端点的射线组成的图形,角也可以看做是一条射线绕着它的端点旋转而成的图形.14、角的表示方法(1)当顶点处只有一个角时,用一个大写字母表示;(2)用三个大写字母表示,注意顶点字母必须写在中间;(3)用希腊字母或阿拉伯数字表示.15、角的大小比较:(1)“形的比较”——叠合法;(2)“数的比较”——度量法.16、从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.17、两个角的和等于90°(直角),就说这两个角互为余角;两个角的和等于180°(平角),就说这两个角互为补角.18、同角(或等角)的余角相等;同角(或等角)的补角相等.第5章相交线与平行线1、对顶角相等.2、在同一平面内,经过直线外或直线上一点,有且只有1条直线与已知直线垂直.3、直线外一点与直线上各点连接的所有线段中,垂线段最短.4、两条直线被第三条直线所截,位于截线的同侧,被截直线的同一方的两个角叫做同位角;位于截线的两侧,被截直线之间的两个角叫做内错角;位于截线的同侧,被截直线之间的两个角叫做同旁内角.5、在同一平面内不相交的两条直线叫做平行线.6、经过直线外一点,有1条直线与这条直线平行.7、如果两条直线都和第三条直线平行,那么这两条直线也互相平行.8、平行线的判定方法(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)如果有两条直线与第三条直线平行,那么这两条直线也互相平行;(5)在同一平面内,垂直于同一条直线的两条直线互相平行.9、平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.。

华东师大版数学七年级(上册)知识点汇总

华东师大版数学七年级(上册)知识点汇总

七年级上册知识点归纳第二章有理数正分数负分数正整数0负整数1. 相反意义的量 向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。

2. 正数和负数像+21,+12,1.3,258等大于0的数(“+”通常不写)叫正数。

像—5,—2.8,-43等在正数前面加“—"(读负)的数叫负数.【注】0既不是正数也不是负数。

3. 有理数(1)整数:正整数、零和负整数统称为整数。

分数:正分数和负分数统称为分数. 有理数:整数和分数统称为有理数。

(2)有理数分类1) 按有理数的定义分类 2)按正负分类正整数 正整数 整数 0 正有理数有理数 负整数 有理数 正分数 正分数 0 负整数分数 负有理数负分数 负分数 【注】有限循环小数叫做分数。

(3)数集 把一些数组合在一起,就组成了一个数的集合,简称数集。

所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。

4. 数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。

【注】1)数轴的三要素:原点、正方向、单位长度缺一不可.2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。

2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数. 5. 相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。

(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数.(几何意义)(3)0的相反数是0.也只有0的相反数是它的本身。

(4)相反数是表示两个数的相互关系,不能单独存在。

(5)数a 的相反数是—a. (6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。

华东师大版数学七年级上册知识点[1]

华东师大版数学七年级上册知识点[1]

华东师大版数学七年级上册知识点(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(华东师大版数学七年级上册知识点(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为华东师大版数学七年级上册知识点(word版可编辑修改)的全部内容。

七年级上第二章有理数正分数负分数正整数0负整数1. 相反意义的量 向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。

2. 正数和负数像+ 21,+12,1.3,258等大于0的数(“+”通常不写)叫正数。

像-5,-2.8,—43等在正数前面加“-"(读负)的数叫负数。

【注】0既不是正数也不是负数.3. 有理数(1)整数:正整数、零和负整数统称为整数.分数:正分数和负分数统称为分数。

有理数:整数和分数统称为有理数.(2)有理数分类1) 按有理数的定义分类 2)按正负分类正整数 正整数 整数 0 正有理数有理数 负整数 有理数 正分数正分数 0 负整数分数负有理数负分数负分数【注】有限循环小数叫做分数.(3)数集把一些数组合在一起,就组成了一个数的集合,简称数集.所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。

4.数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。

【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。

2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。

华师版七年级上册数学知识点考点精华总结归纳大全

华师版七年级上册数学知识点考点精华总结归纳大全

华师版七年级上册数学知识点考点精华总结归纳大全在数学课堂教学中,教师应有意识而且有必要地还原数学知识的生活背景,书本上的知识放在生活中来学习,把让数学问题生活化。

这次小编给大家整理了华师版七年级上册数学知识点,供大家阅读参考。

目录七年级上册数学知识点苏教版七年级上册数学知识点七年级数学知识点七年级上册数学知识点第一章有理数(一)正负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整数之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

)2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。

(四)有理数的加减法1.先定符号,再算绝对值。

2.加法运算法则:同号相加,取相同符号,并把绝对值相加。

异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数同0相加减,仍得这个数。

3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5. ab = a +(b) 减去一个数,等于加这个数的相反数。

华师版七年级上册数学知识点

华师版七年级上册数学知识点

华师版七年级上册数学知识点华师版七年级上册数学知识点有哪些?在数学课堂教学中,教师应有意识而且有必要地还原数学知识的生活背景,书本上的知识放在生活中来学习,把让数学问题生活化。

一起来看看华师版七年级上册数学知识点,欢迎查阅!七年级上册数学知识点第一章有理数(一)正负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整数之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

)2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。

(四)有理数的加减法1.先定符号,再算绝对值。

2.加法运算法则:同号相加,取相同符号,并把绝对值相加。

异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数同0相加减,仍得这个数。

3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5. ab = a +(b) 减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华师大版七年级上册数学知识点精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】第1章 走进数学世界1.在n ·n 的正方形方格中,有12+22+32+…+n2个正方形.2.幻方: 三阶幻方:四阶幻方: 第2章 有理数 定义:像﹣2、﹣2.5、﹣237、﹣0.7这样的数是负数,像13、3.5、500、1.2这样的数是正数.(正数前面有时也可以放上一个“+”<读作“正”>号)注意:零既不是正数,也不是负数.分类:方法1:整、分法方法2:正、零、负法162 3 13 511 10 8 9 76 12 414 15 1 有理数整数 分数正整数 负整数 零 正分数 负分数数集的定义:把这些数(指上文提到的有理数)放在一起,就组成一个数的集合,简称数集.上文有理数组成的数集叫做有理数集.定义:规定了原点、正方向和单位长度的直线叫做数轴.方法:在数轴上表示的两个数,右边的数总比左边的数大.正数都大于零,负数都小于零,正数都大于负数.2.3相反数几何定义:1.在数轴上表示互为相反数的两个点分别位于原点的两旁,且与原点的距离相等.2.只有正负号不同的数成为互为相反数.(例:数a的相反数是﹣a,﹣a的相反数是a)注意:零的相反数是零.变为相反数的方法:通常在一个数的前面添上“﹣”号,表示这个数的相反数.(在一个数的前面添上“+”号,仍表示这个数本身.(例题解析)正负号组合化简方法:1.根据相反数的意义.2.数前面负号的个数。

负号的个数为偶数个时,取正;负号的个数为奇数个时,取负.2.4绝对值定义:在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.取一个数的绝对值的结果:1.一个正数的绝对值是它本身.2.零的绝对值是零.3.一个负数的绝对值是它的相反数.4.任何一个有理数的绝对值总是正数或0(通常也称非负数).即对任意有理数a,总有|a|≥0.2.5有理数的大小比较较数的大小的方法比较两个负数的大小的方法:两个负数,绝对值大的反而小.法则内容:1.同号两数相加,取与加数相同的正负号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大加数的正负号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得零;4.一个数与零相加,仍得这个数.法则扩充总结:正正相加,和大于其中任意一个加数;负负相加,和小于其中任意一个加数;正负相加,和大于负数,小于正数.(正指正数,负指负数)注意:一个有理数由正负号和绝对值两部分组成,进行加法运算时,应注意确定和的正负号及绝对值.加法交换律:两个数相加,交换加数的位置,和不变.字母表示:a+b=b+a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.字母表示:(a+b)+c=a+(b+c).2.7有理数的减法法则:减去一个数,等于加上这个数的相反数.字母表示:a-b=a+(-b)2.8有理数的加减混合运算方法:1.按照运算顺序,从左到右逐步运算.2.用有理数减法法则,统一为只有加法运算的和式.加法运算律的应用:因为有理数的加减法可以统一成加法,所以在进行有理数加减混合运算时,可以适当应用加法运算律,简化运算.补充概念:从1开始逐步增大的连续奇数的和等于奇数个数的平方;从2开始逐步增大的连续偶数的和,等于偶数个数的平方加偶数个数.内容:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零.(两数相乘,若把一个因数换成它的相反数,则所得的积是原来的积的相反数.)乘法交换律:两个数相乘,交换因数的位置,积不变.字母表示:ab=ba乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.字母表示:(ab)c=a(bc)分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.字母表示:a(b+c)=ab+ac积的正负号与各因数的正负号之间的关系:几个不等于零的数相乘,积的正负号由负因数的个数决定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.几个数相乘,有一个因数为零,积就为零.2.10有理数的除法倒数的定义:乘积是1的两个数互为倒数.有理数的除法转为乘法的方法:除以一个数等于乘以这个数的倒数.注意:零不能作除数.有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.2.11有理数的乘方定义及相关内容:求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a中,a 叫做底数,n叫做指数,a读作a的n次方,a看作是a的n次方的结果时,也可读作a的n次幂.幂的特点:(根据有理数乘法法则)正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.2.12科学记数法定义:一个大于10的数就记成a×10的形式,其中1≤a<10,n是正整数.像这样的记数法叫做科学记数法.注意:1.a的整数数位只有一位.2.n是原数的整数数位少1.2.13有理数的混合运算混合运算的运算顺序:1.先算乘方,再算乘除,最后算加减;2.同级运算,按照从左至右的顺序进行;3.如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的.补充:加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方叫做第三级运算.注意:进行分数的乘除运算时,一般要把带分数化为假分数,把除法转化为乘法.2.14近似数一个与实际非常接近的数,称为近似数.题型分析:科学记数法中a×10看它精确到哪一位,就看a最右边的那个数字在原数中是哪一位.注意:1.题目要求精确到十位、百位等,往往采用科学记数法,而要求精确到十分位、百分位等,往往不采用科学记数法.2.对一个比较大的数,取近似值往往采用科学记数法,因为科学记数法中的精确度只看a.3.取近似值有三种方法:四舍五入法、去尾法、进一法,要根据题的要求和实际情况而定.2.15用计算器进行计算:略第二章小结第三章整式的加减注意:1.式子中出现的乘号,通常写作“·”或忽略不写.2.数字与字母相乘时,数字通常写在字母前面.3.除法运算写成分数形式.4.括号前面的乘号也要被省略.定义:由数和字母用运算符号连接所成的式子,称为代数式.单独一个数或一个字母也是代数式.列代数式的原因:在解决问题时,列出代数式,使问题变得简洁,更具一般性.3.2代数式的值定义:一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.定义:由数与字母的乘积组成的代数式叫做单项式.注意:1.当一个单项式的系数是1或-1时,“1”通常省略不写.2.单项式的系数是带分数时,通常写成假分数.定义:几个单项式的和叫做多项式.其中,每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式含有几项,就叫做几项式.多项式里,次数最高项的次数,就是这个多项式的次数.定义:把一个多项式各项的位置按照其中某一字母指数的大小顺序来排列.从大到小为降幂排列,从小到大为升幂排列.注意:1.重新排列多项式时,每一项一定要连同它的正负号一起移动.2.含有两个或两个以上字母的多项式,常常按照其中某一字母的升幂排列或降幂排列.定义:所含字母相同,并且相同字母的指数也相等的项叫做同类项.所有的常数项都是同类项.法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变正负号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变正负号.添括号法则:所添括号前面是“+”号,括到括号里的各项都不改变正负号;所添括号前面是“-”号,括到括号里的各项都改变正负号.注意:添括号与去括号的过程正好相反,添括号是否正确,不妨用去括号检验一下.运算步骤:先去括号,再合并同类项.第3章小结第4章图形的初步认识4.1生活中的立体图形立体图形展示图:柱体锥体球体多面体的定义:每一个面都是平的的立体图形叫做多面体.注意:圆柱、球体等含有曲面的立体图形不称为多面体.视图的定义:视图来自于投影.中心投影的定义:从一点发出的这种投影称为中心投影.平行投影的定义:平行投影是在一束平行光线照射下形成的投影.物体的三视图及其定义:从正面得到的投影,称为主视图;从上面得到的投影,称为俯视图;从侧面得到的投影,称为侧视图,依投影方向不同,有左视图和右视图.通常将主视图、俯视图与左(或右)视图称做一个物体的三视图.因而,三视图一般画主视图、俯视图、左视图.注意:1.画出来的是平面图形.2.画出能看到的轮廓.3.画出能看到的棱、尖点.4.3立体图形的表面展开图:略4.4平面图形圆的特性:由曲线围成的封闭图形.多边形的定义:由线段围成的封闭图形叫做多边形.三角形在多边形中的意义:在多边形中,三角形是最基本的图形.每个多边形都可以分割成若干个三角形.从n边形的某一顶点出发引对角线,能得到(n-3)条对角线,能分成(n-2)个三角形.点存在的意义:表示那些大小尺寸可以忽略的物体.许多点的聚集又可以表现不同的图形.线段的意义:线段是无数排成行的点的聚集.多面体各部分名称示意图:面棱顶点关于线段的基本事实:两点之间,线段最短.射线的定义:把线段向一方无限延伸所形成的图形叫做射线.直线的定义:把线段向两方无限延伸所形成的图形叫做直线.关于直线的基本事实:(三种说法)经过两点有一条直线,并且只有一条直线;两点确定一条直线;经过两点有且只有一条直线.比较方法:1.用刻度尺量,比较大小2.将其中一条线段移到另一条线段上去加以比较.中点的定义:把一条线段分成两条相等线段的点,叫做这条线段的中点.题型分析:一条直线上有n个点,线段的条数为n(n-1)/2条.注意:线段的和差往往用图形语言告诉我们,我们要善于挖掘图形语言.点和直线的位置关系:1.点在直线上;2.点在直线外.欧拉公式:顶点数+面数-棱数=2(应用的范围是多面体)角的?定义:由两条有公共端点的射线组成的图形叫做角.角的?定义:由一条射线绕着它的端点旋转而成的图形.射线的端点叫做角的顶点,起始位置的射线叫做角的始边,终止位置的射线叫做角的终边.表示角的方法:1.两个端点及一个顶点(表示时要把表示角的顶点的字母写在中间);2.一个顶点(顶点处只能有一个角时才能用此方法);3.一个阿拉伯数字或希腊字母(先标出后才能用)平角的定义:绕着端点旋转到角的终边和始边成一直线,这时所成的角叫做平角.周角的定义:绕着端点旋转到终边和始边再次重合,这时所成的角叫做周角.角度的单位换算:1°=60′ 1′=60″(1度等于60分,1分等于60秒)注意:描述物体运动的方向时,要以正北、正南方向为基准.题型分析:从一点引出n条射线,确定角的个数为n(n-1)/2个.角的平分线的定义:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.余角的定义:两个角的和等于90°(直角),就说这两个角互为余角,简称互余.补角的定义:两个角的和等于180°(平角),就说这两个角互为补角.关于余角、补角的定理:同角或等角的余角相等;同角或等角的补角相等.注意:互余和互补有时通过特殊的位置(即图形语言)告诉我们.第4章小结第5章相交线与平行线对顶角的?定义:两个角具有相同的顶点,且其中一个角的两边分别与另一个角的两边互为反向延长线,我们把这样的两个角叫做对顶角.对顶角的?定义:两直线相交所成的四个角中,不相邻的一对角叫做对顶角.对顶角的性质:对顶角相等.垂直、垂足、垂线的定义:两直线相交所成的四个角中,有一个角等于90°,两线互相垂直,它们的交点叫做垂足,我们把其中的一条直线叫做另一条直线的垂线.关于垂线的基本事实:过一点有且只有一条直线与已知直线垂直.垂线段的定义:过直线外一点作已知直线的垂线,这一点与已知直线相交的点所在的线段叫做垂线段.点到直线的距离的定义:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.同位角的定义:内错角的定义:同旁内角的定义:平行线的定义:在同一平面内不相交的两条直线叫做平行线.互相平行的两条直线的表示的方法:例:直线a与直线b互相平行,记作“a∥b”.两条不相交的直线的位置关系有:相交或平行.关于平行线的基本事实:1.过直线外一点有且只有一条直线与这条直线平行.2.如果两条直线都和第三条直线平行,那么这两条直线也互相平行.判定方法:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.关于垂直、平行的性质:在同一平面内,垂直于同一条直线的两条直线平行.性质:两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.第五章小结。

相关文档
最新文档