数字图像处理技术的现状及其发展方向

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理技术的现状及其发展方向

人类通过眼、耳、鼻、舌、身接受信息,感知世界。约有75%的信息是通过视觉系统获取的。数字图象处理是用数字计算机处理所获取视觉信息的技术,上世纪20年代Bartlane 电缆图片传输系统(纽约和伦敦之间海底电缆)传输一幅图片所需的时间由一周多减少到小于3个小时;上世纪5O年代,计算机的发展,数字图像处理才真正地引起人们的巨大兴趣;1964年,数字图像处理有效地应用于美国喷气推进实验室(J.P.L)对“徘徊者七号”太空船发回的大批月球照片的处理;但是直到上世纪六十年代末至七十年代初,由于离散数学理论的创立和完善,使之形成了比较完整的理论体系。成为一门新兴的学科。数字图像处理的两个主要任务:如何利用计算机来改进图像的品质以便于人类视觉分析;对图像数据进行存储、传输和表示,便于计算机自动化处理。图像处理的范畴是一个受争论的话题,因此也产生了其他的领域比如图像分析和计算机视觉等等。

1.数字图像处理主要技术概述

不论图像处理是基于什么样的目的,一般都需要通过利用计算机图像处理对输入的图像数据进行相关的处理,如加工以及输出,所以关于数字图像处理的研究,其主要内容可以分为以下几个过程。图像获取:这个过程基本上就是把模拟图像通过转换转变为计算机真正可以接受的数字图像,同时,将数字图像显示并且体现出来(例如彩色打印)。数据压缩和转换技术:通过数据压缩和数据转换技术的研究,减少数据载体空间,节省运算时间,实现不同星系遥感数据应用的一体化。图像分割:虽然国内外学者已提出很多种图像分割算法,但由于背景的多变性和复杂性,至今为止还没有一种能适用于各种背景的图像分割算法。当前提出的小波分析、模糊集、分形等新的智能信息处理方法有可能找到新的图像分割方法。图像校正:在理想情况下,卫星图像上的像素值只依赖于进入传感器的辐射强度;而辐射强度又只与太阳照射到地面的辐射强度和地物的辐射特性(反射率和发射率)有关,使图像上灰度值的差异直接反映了地物目标光谱辐射特性的差异,从而区分地物目标。图像复原:以图像退化的数学模型为基础,来改善图像质量表达与描述,图像分割后,输出分割标记或目标特征参数;特征提取:计算描述目标的特征,如目标的几何形状特征、统计特征、矩特征、纹理特征等。图像增强:显示图像中被模糊的细节,或是突出图像中感兴趣的特征。图像识别:统计模式识别、模糊模式识别、人工神经网络等。

2.数字图像处理设备研究

通常,要把模拟图像转化为数字图像,需要用到相应的一些图像数字化设备。常见的数字化设备有数字相机、扫描仪、数字化仪等。一般来说,图像的数字化包括采样和量化两个过程。图像在空间上的离散化称为采样。用空间上部分点的灰度值代表图像,这些点称为采样点。模拟图像经过采样后,离散化为像素。但像素值(即灰度值)仍是连续量。把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。通常来说,采样点数越多,图像质量越好,但占空间大。当图像的采样点数一定时,量化级数越多,图像质量越好。数字图像处理系统由图像数字化设备、图像处理计算机和图像输出设备组成。

为完成上述功能,图像数字处理系统应当包含以下五个组成部分:1)采样孔;2)图像扫描机构;3)光传感器;4)量化器:将传感器输出的连续量转化为整数值;5)输出存储装置。

3.数字图像处理的应用领域研究

目前,数字图像处理主要被应用在以下几个方面:通信:图象传输,电视电话,HDTV 等;生物特征识别:基于生理特征的身份识别:指纹、人脸、虹膜等,基于行为特征的身份识别:步态、语音等,可以用于安保、视频监控等;光学字符识别:印刷体识别(例如:扫描识别软件),手写体识别(例如:手机手写字符识别);宇宙探测:星体图片处理;遥感:地形、地质、矿藏探查,森林、水利、海洋、农业等资源调查,自然灾害预测,环境污染的

监测,气象云图;生物医学:CT,NMR,X射线成象,B超,红外图象,显微图象;工业生产:产品质量检测,生产过程控制,CAD,CAM;交通运输;军事:军事目标侦察,制导系统,警戒系统,自动火器控制,反伪装等;公安:现场照片,指纹,手迹,印章,人像等;处理和鉴别:机器人视觉;娱乐:电影特技,动画,广告等。

经过近90年代的发展,特别是第3代数字计算机问世后,数字图像处理技术出现了空前的发展,但存在一定的问题,具体体现在以下5个方面:(1)在提高精度的同时着重解决处理速度的问题,巨大的信息量和数据量和处理速度仍然是一对主要矛盾;(2)加强软件的研究和开发新的处理方法,重点是移植其他学科的技术和研究成果;(3)边缘学科的研究(如人的视觉特性、心理学特性的研究的突破)促进图像处理技术的发展;(4)理论研究已逐步形成图像处理科学自身的理论体系;(5)建立图像信息库和标准子程序,统一存放格式和检索。图像信息量和数据量大,若没有图像处理领域的标准化,图像信息的建立、检索和交流将是一个极严重的问题,交流和使用极不便,造成资源共享的严重障碍。

图像处理技术未来发展大致体现在在以下4 个方面:

1) 朝高速、高分辨率、立体化、多媒体、智能化和标准化方向发展. 具体表现:

(1)提高硬件速度。这不仅仅要提高计算机的速度,而且A/ D 和D/ A 的速度要实时化;

(2)提高分辨率。主要是提高采集分辨率和显示分辨率,其主要困难是显像管的制造和图像图形刷新存取速度;

(3)立体化。图像是二维信息,信息量更大的三维图像将随意计算图形学及虚拟现实技术的发展将得到广泛应用;

(4)多媒体化。20世纪90年代出现的多媒体技术,其关键技术就是图像数据的压缩,目前数据压缩的国际标准有多个,而且还在发展,它将朝着人类接收和处理信息最自然的方式发展;

(5)智能化。力争使计算机识别和理解能够按照人的认识和思维方式工作,能够考虑到主观概率和非逻辑思维;

(6)标准化。从整体上看,图像处理技术目前还没有国际标准。

2) 图像和图形相结合朝着三维成像或多维成像的方向发展。

3) 硬件芯片的开发研究。目前结合多媒体的研究,硬件芯片越来越多,如Thomson公司ST13220采用Systolic结构设计了运动预测器,把图像处理的众多功能固化在芯片上,为实践服务。

4) 新理论和新算法的研究。图像处理科学经过初创造期、发展期、普及期和广泛应用期,近年来引入了一些新的理论并提出了一些新的算法,如:Wavelet 、Fractal 、

Mor-phology 、遗传算法和神经网络等,其中Fractal广泛应用图像处理、图形处理、纹理分析,同时还用于物理、数学、生物、神经和音乐等方面。

结束语

图像处理是一项具有挑战性的课题,具有重要的理论意义和实际应用价值。随着计算机技术的迅猛发展,图像处理技术应用领域越来越广泛,已在国家安全、经济发展、日常生活中充当越来越重要的角色,这门边缘技术将得到更为广泛的应用。但是,我们对于图像处理的技术还处于很初级的水平,还有很多很多我们尚未解决的科研技术问题等待着我们去攻克,对于图像处理技术的研究工作任重而道远。

相关文档
最新文档