初一上期末考试数学试卷及答案
北京市石景山区2023-2024学年七年级上学期期末考试数学试卷(word版,含答案)

βα石景山区2023-2024学年第一学期初一期末试卷数 学学校 姓名 准考证号一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个. 1.12-的相反数是(A )12(B )12-(C )2(D )2-2.以河岸边步行道的平面为基准,河面高 1.8m -,河岸上地面高5m ,则地面比河面高(A )3.2m(B ) 3.2m -(C )6.8m(D ) 6.8m -3.依据第三方平台统计数据,2022年12月至2023年5月,石景山区共有350人享受养 老助餐服务(其中基本养老服务对象90人,其他老年人260人),累计服务10 534人次. 其中,数字10 534用科学记数法可表示为 (A )310.53410⨯ (B )41.053410⨯ (C )31.053410⨯(D )50.1053410⨯4. 如图,从左面看图中四个几何体,得到的图形是四边形的几何体的个数是(A )1 (B )2(C )3(D )45. 将三角尺与直尺按如图所示摆放,若α∠的度数比β∠的度数的三倍多10︒,则α∠的度数是 (A )20︒ (B )40︒ (C )50︒(D )70︒考生须知1.本试卷共4页,共三道大题,28道小题,满分100分。
考试时间100分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,选择题、作图题请用2B 铅笔作答,其他试题请用黑色字迹签字笔作答,在试卷上作答无效。
4.考试结束,请将本试卷和答题卡一并交回。
-3b a -2-12106. 下列运算正确的是(A )325+=a b ab (B )2222-=c c(C )2()2--=-+a b a b(D )22243-=-x y yx x y7.已知:如图O 是直线AB 上一点,OD 和OE 分别平分AOC ∠和BOC ∠,50BOC ∠=︒,则AOD ∠的度数是(A )50︒ (B )60︒ (C )65︒(D )70︒8. 有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是 (A )0ab >(B )<-a b(C )20+>a(D )20->a b二、填空题(本题共16分,每小题2分)9.对单项式“0.5a ”可以解释为:一块橡皮0.5元,买了a 块,共消费0.5a 元.请你再对 “0.5a ”赋予一个实际意义________________________________________________. 10. 如图是一数值转换机的示意图,若输入1=-x ,则输出的结果是 .÷3平方-2结果输入x11. 若233m x y -与253mx y --是同类项,则m 的值为 .12. 若2=x 是关于x 的一元一次方程25-=x m 的解,则m 的值为 . 13. 如图,要在河边修建一个水泵站,分别向A 村和B 村送水,修在 (请在,,D E F中选择)处可使所用管道最短,理由是 .河岸FE D 村庄B村庄A第13题图 第14题图14.如图,正方形广场边长为a 米,广场的四个角都设计了一块半径为r 米的四分之一圆形花坛,请用代数式表示图中广场空地面积 平方米.(用含a 和r 的字母表示)15.规定一种新运算:1⊕=+-+a b a b ab ,例如:23232310⊕=+-⨯+=, (1)请计算:2(1)⊕-___________.(2)若32x -⊕=,则x 的值为 .16.a 是不为1的有理数,我们把11a -称为a 的差倒数,如2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知113α=-,2α是1α的差倒数,3α是2α的差倒数,4α是3a 的差倒数,……,以此类推,则2023a =___________.l三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:312-+-. 18.计算:11124(834-⨯-+19.计算:3122(7)2-+⨯-÷. 20.本学期学习了一元一次方程的解法,下面是小亮同学的解题过程:上述小亮的解题过程中(1)第②步的依据是_________________________________;(2)第_____(填序号)步开始出现错误,请写出这一步正确的式子__________. 21.解方程:52318x x +=-. 22.解方程:211123x x +--=. 23.先化简,再求值:22(28)(14)x x x ----,其中2x =-.24.如图,已知直线l 和直线外两点,A B ,按下列要求作图并回答问题: (1)画射线AB ,交直线l 于点C ; (2)画直线AD l ⊥,垂足为D ;(3)在直线AD 上画出点E ,使DE AD =; (4)连接CE ; (5)通过画图、测量:点A 到直线l 的距离d ≈ cm (精确到0.1);图中有相等的线段(除DE AD =以外)或相等的角,写出你的发现: .25.列方程解应用题:某公司计划为员工购买一批运动服,已知A 款运动服每套180元,B 款运动服每套210元,公司购买了这两种运动服共计50套,合计花费9600元,求公司购买两种款式运动服各多少套?26.已知:线段=10AB ,C 为线段AB 上的点,点D 是BC 的中点. (1)如图,若=4AC ,求CD 的长. 根据题意,补全解题过程:∵10,4AB AC CB ===,AB - , ∴CB = . ∵点D 是BC 的中点,∴CD = =CB .(理由: ) (2)若=3AC CD ,求AC 的长.27. 已知:OA OB ⊥,射线OC 是平面上绕点O 旋转的一条动射线,OD 平分BOC ∠. (1)如图,若40BOC =︒∠,求AOD ∠.(2)若=(0180)BOC αα︒<<︒∠,直接写出AOD ∠的度数.(用含α的式子表示)28. 对于点M ,N ,给出如下定义:在直线MN 上,若存在点P ,使得MP =kNP (k >0),则称点P 是“点M 到点N 的k 倍分点”.例如:如图,点Q 1,Q 2,Q 3在同一条直线上,Q 1Q 2=3,Q 2Q 3=6,则点Q 1是点Q 2到点Q 3的13倍分点,点Q 1是点Q 3到点Q 2的3倍分点.已知:在数轴上,点A ,B ,C 分别表示﹣4,﹣2,2.(1)点B 是点A 到点C 的 倍分点,点C 是点B 到点A 的 倍分点; (2)点B 到点C 的3倍分点表示的数是 ;(3)点D 表示的数是x ,线段BC 上存在点A 到点D 的4倍分点,写出x 的取值范围.石景山区2023-2024学年第一学期初一期末数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.答案不唯一,正确即可 10.3 11.212.1- 13.E ;两点之间线段最短 14. 22()a r π-15.(1)4;(2)1 16.13-三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.解:原式312=-+ ………………………… 2分 9=. ………………………… 5分 18.解:原式386=-+- ………………………… 3分 1=-. ………………………… 5分 19.解:原式82(7)2=-+⨯-⨯ ………………………… 2分 828=-- ………………………… 4分 36=-. ………………………… 5分 20.(1)等式基本性质2; ………………………… 2分 (2)③; ………………………… 3分 609502015x x ---=. ………………………… 5分 21.解:移项,得53182x x -=--. ………………………… 2分 合并同类项,得 220x =-. ………………………… 4分 系数化为1,得10x =-. ………………………… 5分 ∴10x =-是原方程的解.22.解:去分母,得 3(21)2(1)6x x +--=. ………………………… 2分去括号,得 63226x x +-+=. ………………………… 3分 移项,合并同类项,得 41x =. ………………………… 4分 系数化为1,得14x =. ………………………… 5分 ∴14x =是原方程的解. 23.解:原式2241614x x x =---+2217x =-. …………………………4分 当2x =-时,原式22(2)17=⨯--.9=-. …………………………6分24.解:(1)(2)(3)(4)画图并标出字母如右图所示; ……………… 3分(5)d ≈ cm (精确到0.1);(以答题卡上实际距离为准)……… 4分 CA CE =,ACD ECD ∠=∠,CAD CED ∠=∠. ……………… 6分25.解:设公司购买A 款式运动服x 套,则购买B 款式运动服(50x -)套. …… 1分 根据题意可得,180210(50)9600x x +-=. ………………………… 3分 解得:30x =. 则5020x -=. ………………………… 5分 答:公司购买A 款式运动服30套,购买B 款式运动服20套. ……………… 6分 26.解:(1)补全解题过程如下:∵10,4AB AC CB ===,AB - AC ,……………………… 1分 ∴CB = 6 . ……………………… 2分 ∵点D 是BC 的中点, ∴CD =12=CB 3 .(理由:线段中点的定义).…………4分 (2)∵点D 是BC 的中点,∴CD BD =(线段中点的定义). ∵=3AC CD ,∴设CD BD x ==,=3AC x . ……………………… 5分∴10AB AC CD BD =++=. 即:310x x x ++=. 解得,2x =.∴=6AC . …………………………6分 27. 解:(1)∵OA OB ⊥,∴90AOB ∠=︒(垂直定义). …………………………2分∵OD 平分BOC ∠,∴12BOD BOC ∠=∠(角平分线定义). …………………………4分 ∵40BOC ∠=︒, ∴20BOD ∠=︒.∵AOD AOB BOD ∠=∠-∠,∴70AOD ∠=︒. …………………………5分(2)9090+22αα︒-︒或. …………………………7分28. 解:(1)12,23; …………………………2分 (2)1或4; …………………………4分 (3)5722x -≤≤. …………………………7分。
沪科版七年级上册数学期末考试试卷附答案

沪科版七年级上册数学期末考试试题一、单选题1.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222327327a x b y c a x b y c +=⎧⎨+=⎩的解是()A .2128x y =⎧⎨=⎩B .98x y =⎧⎨=⎩C .714x y =⎧⎨=⎩D .9787x y ⎧=⎪⎪⎨⎪=⎪⎩2.若盈余2万元记作2+万元,则2-万元表示()A .盈余2万元B .亏损2万元C .亏损2-万元D .不盈余也不亏损3.数据274.8万用科学记数法表示为()A .22.74810⨯B .4274.810⨯C .52.74810⨯D .62.74810⨯4.数轴上表示数m 和2m +的点到原点的距离相等,则m 为()A .2-B .2C .1D .1-5.已知23120x x --=,则代数式2395x x -++的值是()A .31B .31-C .41D .41-6.下列计算结果正确的是()A .22321x x -=B .235325x x x +=C .22330x y yx -=D .44x y xy+=7.星期天,小明一家从家里出发去爷爷家,妈妈骑自行车先走,速度为10千米/时,40分钟后爸爸开车和小明一起出发,速度为60千米/时,结果3人同时到达爷爷家,则小明家距爷爷家的路程为()A .8千米B .10千米C .12千米D .15千米8.在数轴上,点A 对应的数为a ,点B 对应的数为b ,且a ,b 满足()2530a b ++-=.点P 为直线AB 上点B 右边的一点,且3AP PB =,点Q 为PB 中点,则线段AQ 的长为()A .6B .8C .10D .159.对x ,y 定义一种新运算“※”,规定:x y mx ny =+※(其中m ,n 均为非零常数),若114=※,123=※,则21※的值为()A .4B .9C .10D .1210.一组有规律的图案如图所示,它们由边长相等的等边三角形组合而成,第一个图案有4个等边三角形,第二个图案有7个等边三角形,第三个图案有10个等边三角形……按此规律摆下去,则第n 个图案中等边三角形的个数为()A .31n +B .3n +C .33n +D .34n +二、填空题11.﹣2的相反数的值等于_____.12.一个锐角的补角比这个角的余角的3倍还大10︒,则这个锐角的度数是______.13.有理数a 、b 、c 在数轴上的位置如图所示,则化简11a b b a c c +------得到的结果是____.14.化简:()()423a b a b ---=_________.15.如图,°2918BOC '∠=,则AOC ∠的度数为__________.16.请写出一个解为2x =的一元一次方程:______.17.如图是一个简单的数值运算程序,若开始输入x 的值为5,则最后输出的结果为_____.三、解答题18.计算:(1)()()13271545-+---+;(2)()411582733-+-+÷-⨯19.解方程(组):(1)121134x x ++=-(2)27320x y x y -=⎧⎨+=⎩20.先化简,再求值:()()22221132542a a a a a a ⎡⎤-----⎣⎦,其中4a =-.21.如图,OA ⊥OB 于点O ,∠AOD :∠BOD =7:2,点D 、O 、E 在同一条直线上,OC 平分∠BOE ,求∠COD 的度数.22.已知关于x ,y 的方程组27134x y m x y m +=+⎧⎨+=⎩的解也是二元一次方程3x y -=的解,请求出方程组的解及m 的值.23.甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg ,一次性购买4kg 以上的苹果,超过4kg 的部分按标价的6折出售.(1)文文购买3kg 的苹果需付款______元;购买5kg 的苹果需付款______元;(2)若文文一次性购买()4x x >kg 的苹果,需付款多少元?(用含x 的代数式表示)(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg ,且全部按标价的8折销售,文文如果要购买10kg苹果,请问她在哪个超市购买更划算?24.某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:抽样调查各类喜欢程度人数分布扇形统计图A.非常喜欢B.比较喜欢C.无所谓D.不喜欢抽样调查各类喜欢程度人数统计表喜欢程度人数A.非常喜欢50人B.比较喜欢m人C.无所谓n人D.不喜欢16人根据以上信息,回答下列问题:(1)本次调查的样本容量是______;(2)扇形统计图中表示A程度的扇形圆心角为_____︒,统计表中m=______;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).25.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x人,女生y人,男生人数比女生人数少2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?26.将一副三角板如图1摆放,60AOB ∠=︒,45COD ∠=︒,OM 平分AOD ∠,ON 平分COB ∠.(1)MON ∠=______;(2)将图1中的三角板OCD 绕点O 旋转到图2的位置,求MON ∠;(3)将图1中的三角板OCD 绕点O 旋转到图3的位置,求MON ∠.参考答案1.C2.B3.D4.D5.B6.C7.A8.C9.B10.A11.212.50︒13.-214.2a-b .15.15042'16.x-2=0(答案不唯一)17.65618.(1)20(2)-1【分析】(1)先把减法变成加法,再按照加法法则进行计算即可;(2)先算乘方,再算乘除,最后算加法;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.(1)解:()()13271545-+---+()13271545=-+-++=4060-+20=(2)解:()411582733-+-+÷-⨯11132733⎛⎫=-++⨯-⨯ ⎪⎝⎭()133=-++-1=-19.(1)12x =(2)23x y =⎧⎨=-⎩【分析】(1)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可;(2)用加减消元法解方程组即可.(1)解:121134x x ++=-去分母得:()()4112321x x +=-+去括号得:441263x x +=--移项得:461234x x +=--合并同类项得:105x =两边同除以10得:12x =(2)解:27320x y x y -=⎧⎨+=⎩①②2⨯+①②得714x =解得2x =把2x =代入①得47y -=解得3y =-∴原方程组的解为23x y =⎧⎨=-⎩【点睛】本题考查了一元一次方程和二元一次方程组的解法,熟练掌握解题步骤是关键.20.22a a --;-8【分析】原式先去小括号,再去中括号,最后合并同类项即可得到答案.【详解】解:原式()22221161548a a a a a a =--+-+()2211122a a a =-+,2211122a a a =--,22a a =--,当4a =-时,原式()()24241688---⨯-=-+=-.21.100°【分析】由垂直的定义结合两角的比值可求解∠BOD 的度数,即可求得∠BOE 的度数,再利用角平分线的定义可求得∠BOC 的度数,进而可求解∠COD 的度数.【详解】解:∵OA ⊥OB ,∴∠AOB =90°,∵∠AOD :∠BOD =7:2,∴∠BOD =29∠AOB =20°,∴∠BOE =180°﹣∠BOD =160°.∵OC 平分∠BOE ,∴∠BOC =12∠BOE =80°,∴∠COD =∠BOC+∠BOD =80°+20°=100°.【点睛】本题考查了角度的计算,垂直的定义,角平分线的定义,结合垂直的定义和两角的比值求出∠BOD 的度数是解题的关键.22.52x y =⎧⎨=⎩;23.【分析】此题可先将方程组的m 消去,然后与x−y =3联立,根据二元一次方程组的解法来求出x ,y ,将其代入②,可得出m .【详解】解27134x y m x y m +=+⎧⎨+=⎩①②②-①得x−3y =−1③联立x−y =3得消去m 得方程组为331x y x y -=⎧⎨-=-⎩解这个方程组,得52x y =⎧⎨=⎩,代入②,得:m =15+8=23.【点睛】此题考查的是对二元一次方程组的解的计算,通过代入x 、y 的值即可得出答案.23.(1)30,46(2)她一次性购买()4x x >kg 苹果需付款()616x +元.(3)她在甲超市购买更划算.【分析】(1)根据题意直接写出购买3kg 和5kg 苹果所需付款;(2)4kg 苹果按照原价付款,超过4kg 的部分按标价的6折付款列出代数式即可;(3)计算出两种付款方式的结果,通过两种付款比较那个超市便宜即可(1)解:由题意可知:文文购买3kg 苹果,不优惠,∴文文购买3kg 苹果需付款:3×10=30(元),购买5kg 苹果,4kg 不优惠,1kg 优惠,∴购买5kg 苹果需付款:4×10+1×10×0.6=46(元),故答案为:30,46;(2)解:文文一次性购买()4x x >kg 的苹果,需付款4×10+(x -4)×10×0.6=(6x +16)元;答:她一次性购买()4x x >kg 苹果需付款()616x +元.(3)解:∵当x =10时,6x +16=6×10+16=76(元),∴文文在甲超市购买10kg 苹果需付费76元;∵10×10×0.8=80(元),∴文文在乙超市购买10kg 苹果需付费80元;∴文文应该在甲超市购买更划算.【点睛】本题主要考查列代数式、求代数式的值、有理数的混合运算、整式的加减等知识,关键是读懂题意,列出正确的代数式.24.(1)200;(2)90,94;(3)1440名【分析】(1)用D 程度人数除以对应百分比即可;(2)用A 程度的人数与样本人数的比值乘以360°即可得到对应圆心角,算出B 等级对应百分比,乘以样本容量可得m 值;(3)用样本中A 、B 程度的人数之和所占样本的比例,乘以全校总人数即可.【详解】解:(1)16÷8%=200,则样本容量是200;(2)50200×360°=90°,则表示A程度的扇形圆心角为90°;200×(1-8%-20%-50200×100%)=94,则m=94;(3)50942000200+⨯=1440名,∴该校2000名学生中大约有1440名学生喜欢“每日健身操”活动.【点睛】本题考查了扇形统计图,统计表,样本估计总体等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.25.(1)这个班有男生有24人,女生有26人;(2)原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【分析】(1)由题意列出方程组,解方程组解可;(2)分别计算出24名男生和26名女生剪出的筒底和筒身的数量,可得不配套;设男生应向女生支援y人,根据制作筒底的数量=筒身的数量×2,根据等量关系列出方程,再解即可.【详解】解:(1)由题意得:502 x yx y+=⎧⎨=-⎩,解得:2426 xy=⎧⎨=⎩,答:这个班有男生有24人,女生有26人;(2)男生剪筒底的数量:24×120=2880(个),女生剪筒身的数量:26×40=1040(个),因为一个筒身配两个筒底,2880:1040≠2:1,所以原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套,设男生应向女生支援a人,由题意得:120(24-a)=(26+a)×40×2,解得:a=4,答:原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【点睛】本题考查了二元一次方程组的应用、一元一次方程的应用,解题的关键是正确理解题意,找出题目中的等量关系,列出方程或方程组.26.(1)52.5MON ∠=︒;(2)052.5MON ∠=;(3)052.5MON ∠=.【分析】(1)利用角平分线的性质,分别求出∠NOB 和∠MOB,相加即可求得∠MON,(2)由角平分线分别表示出∠MOD 和∠NOB ,则1122MON AOD COB ∠=∠+∠+BOD ∠,将式子变形为∠MON=12()AOD BOD COB BOD ∠+∠+∠+∠=()12AOB COD ∠+∠,代值计算即可,(3)同(2)由角平分线分别表示出∠MOD 和∠NOB ,则1122MON AOD COB ∠=∠+∠-BOD ∠,将式子变形为∠MON=12()AOD BOD COB BOD ∠+∠-∠-∠()12AOD BOD =∠-∠()12COB BOD +∠-∠()12AOB COD =∠+∠,代值计算即可,【详解】(1)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠NOB=12∠COB=22.5°,∠MOB=12∠AOD=30°,∴MON ∠=∠NOB+∠MOB=22.5°+30°=52.5°,(2)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠MOD=12∠AOD,∠NOB 12∠COB ,∴1122MON AOD COB BOD ∠=∠+∠+∠,()122AOD COB BOD =∠+∠+∠,()()()1211604552.522AOD BOD COB BOD AOB COD =∠+∠+∠+∠=∠+∠=︒+︒=︒,,(3)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠MOD=12∠AOD,∠NOB=12∠COB ,∴1122MON AOD COB BOD ∠=∠+∠-∠,()122AOD COB BOD =∠+∠-∠,()()1122AOD BOD COB BOD =∠-∠+∠-∠,()12AOB COD =∠+∠()160452=⨯︒+︒52.5=︒.。
七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)(满分:120分考试时间:120分)一选择题(本题共计10 小题每题3 分共计30分)1. 下列各数:0−5−(−7)−|−8|(−4)2中负数有()A.1个B.2个C.3个D.4个2. 若a+b<0ab<0则()A.a>0B.a<0C.a b两数一正一负且正数的绝对值大于负数的绝对值D.a b两数一正一负且负数的绝对值大于正数的绝对值3. 2018年上半年长沙市实现农林牧渔业总产值1958000万元数据1958000用科学记数法表示()A.19.58×104B.0.1958×107C.1.958×106D.1.958×10104. 如果水位升高6m时水位变化记为+6m那么水位下降6m时水位变化记为()A.−3 mB.3 mC.6 mD.−6 m5. 下列说法错误的是()A.−2的相反数是2B.3的倒数是13C.(−3)−(−5)=2D.−1104这三个数中最小的数是06. 有理数−1−203中最小的数是()A.−1B.−2C.0D.37. 若A和B都是4次多项式则A+B一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式8. 数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画一条长15厘米的线段AB则AB盖住的整数点的个数共有()个.A.13或14个B.14或15个C.15或16个D.16或17个9. 如图下列式子成立的是()A.a−b>0B.a+b<0C.a−b<0D.b−1<010. 已知表示实数a b的点在数轴上的位置如图所示下列结论错误的是()A.|a|<1<|b|B.1<−a<bC.1<|a|<bD.−b<a<−1二填空题(本题共计4 小题每题3 分共计12分)11. 8的相反数是________ −11的倒数是________ ________的绝对值是1________的立方是8.212. 在月球表面白天阳光垂直照射的地方温度高达+127∘C夜晚温度可降至−183∘C.则月球表面昼夜的温差为________∘C.13. 若|a|=5b=−2且ab>0则a+b=________.14. 某公交车原坐有22人经过4个站点时上下车情况如下(上车为正下车为负):(+4, −8)(−5, +6)(−3, +2)(+1, −7)则车上还有________人.三解答题(本题共计8 小题共计78分)15.(8分) 某班抽查了10名同学的期末成绩以80分为基准超出的记作为正数不足的记为负数记录的结果如下:+8−3+12−7−10−3−8+10+10.(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.16.(10分) 某淘宝商家计划平均每天销售某品牌儿童滑板车100辆但由于种种原因实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正不足记为负):(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________辆(3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制每销售一辆车可得40元若超额完成任务则超过部分每辆另奖15元少销售一辆扣20元那么该店铺的销售人员这一周的工资总额是多少元?17.(10分) 中国渔政船在小岛附近东西航向上巡航从小岛出发如果规定向东航行为正巡航记录为:(单位:海里)+80−40+60+75−65−80此时(1)渔政船在出发点哪个方向?你知道它离出发点有多远?(2)如果轮船巡航每海里耗油0.2吨请你替船长算一算一共耗多少吨油?18. (10分)请画一条数轴然后在数轴上把下列各数表示出来:312−4−2120−11并把这些数用“<”号连接.19.(10分) 计算:(1)|−0.75|−(−0.25)+|−18|+78(2)−23−2×(−3)+2÷5−(−1)2019.20. (10分)某人用460元购买8套不同的儿童服装再以一定的价格出售如果每套儿童服装以65元的价格为标准超出的记作正数不足的记为负数那么售价(单位:元)分别为+2−3+2+1−2−10−2.当卖完这8套服装后此人是盈利还是亏损?盈利或亏损多少元?21.(10分) 如图在平面直角坐标中直线AB分别交x轴y轴于点A(a,0)和点B(0,b)且a b满足a2+4a+4+|2a+b|=0.(1)a=________ b=________.(2)点P在直线AB的右侧且∠APB=45∘:①若点P在x轴上则点P的坐标为_________②若△ABP为直角三角形求点P的坐标.22. (10分)某个体儿童服装店老板以每件32元的价格购进30件T恤针对不同的顾客30件T恤的售价不完全相同若以47元为标准超出的钱记为正不足的钱记为负则记录的结果如下表所示:问:该服装店在售完这30件T恤后赚了多少钱?参考答案一选择题(本题共计10 小题每题 3 分共计30分)1.【答案】B【考点】正数和负数的识别【解析】先化简各数再根据小于0的数是负数求解.【解答】解:∵ 0既不是正数也不是负数−5<0−(−7)=7>0−|−8|=−8<0(−4)2=16>0∵ 负数共有2个.故选B.2.【答案】D【考点】有理数的乘法有理数的加法【解析】先根据ab<0结合乘法法则易知a b异号而a+b<0根据加法法则可知负数的绝对值大于正数的绝对值解可确定答案.【解答】解:∵ ab<0∵ a b异号又∵ a+b<0∵ 负数的绝对值大于正数的绝对值.故选D.3.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解:1958000用科学记数法可表示为1.958×106.故选C.4.【答案】D【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】因为上升记为+ 所以下降记为-所以水位下降6m时水位变化记作−6m.5.【答案】D【考点】倒数有理数的减法有理数大小比较相反数【解析】根据相反数的概念倒数的概念有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:−2的相反数是2A正确3的倒数是1B正确3(−3)−(−5)=−3+5=2C正确−1104这三个数中最小的数是−11D错误.故选D.6.【答案】B【考点】有理数大小比较有理数的概念及分类【解析】先求出|−1|=1|−2|=2根据负数的绝对值越大这个数就越小得到−2<−1而0大于任何负数小于任何正数则有理数−1−203的大小关系为−2<−1<0<3.【解答】解:∵ |−1|=1|−2|=2∵ −2<−1∵ 有理数−1−203的大小关系为−2<−1<0<3.故选B.7.【答案】C【考点】多项式的项与次数【解析】若A和B都是4次多项式通过合并同类项求和时结果的次数定小于或等于原多项式的最高次数.【解答】解:若A和B都是4次多项式则A+B的结果的次数一定是次数不高于4次的整式.故选C.8.【答案】C【考点】数轴【解析】某数轴的单位长度是1厘米若在这个数轴上随意画出一条长为15厘米的线段AB则线段AB盖住的整点的个数可能正好是16个也可能不是整数而是有两个半数那就是15个.【解答】解:依题意得:①当线段AB起点在整点时覆盖16个数②当线段AB起点不在整点即在两个整点之间时覆盖15个数.故选C.9.【答案】C【考点】有理数大小比较数轴【解析】根据a b两点在数轴上的位置判断出其取值范围再对各选项进行逐一分析即可.【解答】解:∵ a b两点在数轴上的位置可知:−1<a<0b>1|a|<|b|∵ a−b<0a+b>0b−1>0故A B D错误故C正确.故选C.10.【答案】A【考点】数轴【解析】首先根据数轴的特征判断出a−101b的大小关系然后根据正实数都大于0负实数都小于0正实数大于一切负实数两个负实数绝对值大的反而小逐一判断每个选项的正确性即可.【解答】解:根据实数a b在数轴上的位置可得a<−1<0<1<b∵ 1<|a|<|b|∵ 选项A错误∵ 1<−a<b∵ 选项B正确∵ 1<|a|<b∵ 选项C正确∵ −b<a<−1∵ 选项D正确.故选A.二填空题(本题共计4 小题每题3 分共计12分)11.【答案】−8,−23,±1,2【考点】立方根的实际应用相反数绝对值倒数【解析】分别根据相反数绝对值倒数立方的概念即可求解.【解答】解:8的相反数是−8−112的倒数是−23±1的绝对值是12的立方是8.12.【答案】310【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】解:白天阳光垂直照射的地方温度高达+127∘C夜晚温度可降至−183∘C所以月球表面昼夜的温差为:127∘C−(−183∘C)=310∘C.故答案为:310.13.【答案】−7【考点】绝对值【解析】考查绝对值的意义及有理数的运算根据|a|=5b=−2且ab>0可知a=−5代入原式计算即可.【解答】解:∵ |a|=5b=−2且ab>0∵ a=−5∵ a+b=−5−2=−7.故答案为:−7.14.【答案】12【考点】有理数的加法正数和负数的识别【解析】根据有理数的加法可得答案.【解答】解:由题意得22+4+(−8)+6+(−5)+2+(−3)+1+(−7)=12(人)故答案为:12.三解答题(本题共计8 小题共计78分)15.【答案】解:(1)最高分为:80+12=92(分)最低分为:80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).【考点】算术平均数正数和负数的识别【解析】(1)根据正负数的意义解答即可(2)求出所有记录的和的平均数再加上基准分即可.【解答】解:(1)最高分为:80+12=92(分)最低分为:80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).16.【答案】29629(3)+4−3−5+14−8+21−6=17>0∵ 本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+ (−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.【考点】整式的混合运算正数和负数的识别【解析】(1)根据前三天销售量相加计算即可(2)将销售量最多的一天与销售量最少的一天相减计算即可(3)将总数量乘以价格解答即可.【解答】解:(1)4−3−5+300=296.故答案为:296.(2)21+8=29.故答案为:29.(3)+4−3−5+14−8+21−6=17>0∵ 本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+ (−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.17.【答案】解:(1)80+(−40)+60+75+(−65)+(−80)=30(海里).答:渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.【考点】有理数的混合运算绝对值正数和负数的识别【解析】(1)根据有理数的加法可得答案(2)根据行车就耗油可得耗油量.【解答】解:(1)80+(−40)+60+75+(−65)+(−80)=30(海里).答:渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.18.【答案】解:如图:用“<”号连接为−4<−212<−1<0<12<1<3.【考点】有理数大小比较数轴【解析】再在数轴上表示出来数轴左边的数比右边的数小.【解答】解:如图:用“<”号连接为−4<−212<−1<0<12<1<3.19.【答案】解:(1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.【考点】有理数的混合运算有理数的加减混合运算绝对值【解析】此题暂无解析【解答】解:(1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.20.【答案】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵ 57>0∵ 当卖完这8套服装后此人是盈利盈利57元.【解析】有理数的加法:同号取相同符号并把绝对值相加异号两数相加取绝对值较大的数的符号用较大绝对值减去较小绝对值.相反数相加和为零.【解答】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵ 57>0∵ 当卖完这8套服装后此人是盈利盈利57元.21.【答案】−2,4(2)①(4,0)∵ 点P在x轴上则OP=OB=4∵ 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∵ ∠OBA=∠HAP.又∵ ∠APB=45∘,∠BAP=90∘∵ ∠APB=∠ABP=45∘∵ AP=AB又∵ ∠BOA=∠AHP=90∘∵ △AOB≅△PHA(AAS)∵ PH=AO=2,AH=OB=4∵ OH=AH−OA=2.故点P的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∵ PM=AO=2,BM=OB=4∵ 点P的坐标为(4,2)故点P的坐标为(2,−2)或(4,2).【考点】全等三角形的性质与判定非负数的性质:偶次方非负数的性质:绝对值【解析】解:(1)由题意得得a2+4a+4+|2a+b|=(a+2)2+|2a+b|=0所以a+2=02a+b=0解得a=−2b=4.故答案为:−24.【解答】解:(1)由题意得a2+4a+4+|2a+b|=(a+2)2+|2a+b|=0所以a+2=02a+b=0解得a=−2b=4.故答案为:−24.(2)①(4,0)∵ 点P在x轴上则OP=OB=4∵ 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∵ ∠OBA=∠HAP.又∵ ∠APB=45∘,∠BAP=90∘∵ ∠APB=∠ABP=45∘∵ AP=AB又∵ ∠BOA=∠AHP=90∘∵ △AOB≅△PHA(AAS)∵ PH=AO=2,AH=OB=4∵ OH=AH−OA=2.故点P的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∵ PM=AO=2,BM=OB=4∵ 点P的坐标为(4,2)故点P的坐标为(2,−2)或(4,2).22.【答案】解:该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.【考点】有理数的混合运算正数和负数的识别【解答】解:该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.。
河北省承德市兴隆县2023-2024学年七年级上学期期末考试数学试卷(含答案)

2023—2024学年度第一学期期末检测试题七年级数学试卷本试卷共8页,满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共38分)一、选择题(本大题共16个小题,1-6每小题3分,7-16每小题2分,共38分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1. 某品牌酸奶外包装上标明“净含量:”;随机抽取四种口味的这种酸奶分别称重如下表.其中,净含量不合格的是()种类原味草莓味香草味巧克力味净含量/ml295300310305A. 原味B. 草莓味C. 香草味D. 巧克力味2. 下列等式错误的是()A. B. C. D.3. 如图,数轴上点P表示的有理数可能是()A. 1.6B. -1.4C. -1.6D. -2.44. 如图,C、D是线段AB的三等分点,若,则线段CB的长度为()A. 3B. 6C. 9D. 125. 方程去分母后,得()A. B.C. D.6. 一副三角板按如图所示的方式摆放,则余角的度数为()A. B. C. D.7. 如果式子的值为10,则的值为()A. 20B. 22C. 26D. 368. 有理数a,b对应的点在数轴上的位置如图,则下列结论正确的是()A. B. C. D.9. 如图所示,直线MN表示一条铁路,铁路两旁各有一点A和B,表示两个工厂.要在铁路上建一货站P,使它到两厂距离之和最短,这个货站P应建在AB与MN的交点处,这种做法用几何知识解释应是()A. 两点之间,线段最短B. 射线只有一个端点C. 两直线相交只有一个交点D. 两点确定一条直线10. 已知直线上A、B两点相距12cm,点C是线段AB的中点,点D与点B相距8cm,则CD的长度是()A. 2cmB. 8cmC. 14cmD. 14cm或2cm11. 如图,将绕点A顺时针旋转一定的角度得到,此时点恰在边AC上,若,,则的长为()A. 2B. 3C. 4D. 512. 元旦到了,初一某班用彩色小灯布置教室,按“一蓝,二红,四黄,三绿”的规律连接起来,那么第100个小灯是()色的A. 红B. 黄C. 蓝D. 绿13. 已知,,,则相等的两个角是()A. B. C. D. 无法确定14. 某学校在元旦联欢会活动中,设座位有x排,若每排坐25人,则有8人无座位;若每排坐29人,则空24个座位,则下列方程正确的是()A. B. C. D.15. 如图,将刻度尺倒放在数轴上,刻度尺上6cm和0cm分别对应数轴上的数-2和3,那么刻度尺上9cm对应数轴上的数为()A. -5B. -5.4C. -4.5D. -3.616. 如图,填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A. 110B. 168C. 212D. 222卷Ⅱ(非选择题,共82分)二、填空题(本大题共3个小题,5个空,每空2分,共10分.把答案写在题中横线上)17. ______.18. 王阿姨买了5盒冰激凌,付了a元,找回b元,5盒冰激凌的总价是______元,冰激凌的单价是______元.19. 如图,点A在数轴上对应的数为a,点B对应的数为b,点A与点B之间的距离记作AB.已知,b比a大12.则:(1)AB的值是______;(2)若点M以每秒1个单位的速度从点A出发沿数轴向右运动,同时点N以每秒2个单位的速度从点B 出发沿数轴向左运动.设运动时间是t秒.当点M与点N之间的距离是9时,则t的最大值为______.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20. 计算:(每小题4分,计8分)(1)(2)解方程:21. 解方程(共10分)学校图书馆以每天借出50册图书为标准.超出部分用正数表示,不足部分用负数表示.上星期图书馆借出图书记录如下:星期一星期二星期三星期四星期五0+8+6-3-7(1)星期五借出______册图书;(2)星期二比星期四多借出______册图书;(3)这五天共借出多少册图书?22.(本小题10分)如图,O是直线AB上一点,OD平分,.若,(1)求的度数;(2)求的度数.23. 应用题(本小题10分)已知,.(1)当,时,求;(2)比较A与B的大小;(3)求.24.(本小题10分)如图所示是一个长方形.(1)根据图中尺寸大小,用含x的代数式表示阴影部分的面积S;(2)若,求S的值.25.(本小题12分)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出,然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置,如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为130斤,求大象的体重.请将下列解答过程补充完整:孙权曾致巨象,太祖欲知其斤重,访之群下,咸莫能出其理,冲曰:“置象大船之上,而刻其水痕所至,称物以载之,则校可知矣.”——《三国志》解:由题意得等量关系:20块等重的条形石的重量+3个搬运工的体重和=21块等重的条形石的重量+1个搬运工的体重,所以:①已知搬运工体重均为130斤,设每块条形石的重量是x斤,则可列方程为:______.②解这个方程得,______.③实际上由题也可直接得到:一块条形石的重量=______个搬运工的体重.④最终可求得:大象的体重为______斤.26.(本小题12分)如图1,O为直线AB上一点,过点O作射线OC,,将一直角三角板()的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.图1 图2 图3(1)将图1中的三角板绕点O以每秒的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分.①求t的值;②此时ON是否平分?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分?请说明理由.七年级数学试卷答案卷Ⅰ(选择题,共38分)一、选择题(本大题共16个小题,1-6每小题3分,7-16每小题2分,共38分.在每个小题给出的四个选项中,只有一项是符合题目要求的)CDCBCD BCADB DBDCC卷Ⅱ(非选择题,共82分)17. -8 18. ,19. 12;720. 解:(1)原式(2)(每小题4分,按步骤适当给分)21. 解:(1)43 (2)11(每空3分,共6分)(3)(册),即这五天共借出254册图书.……本小问题4分22.(1)解:∵O是直线AB上一点,∴,∵,∵,∴;……5分(2)解:∵,∴,∵OD平分,∴,∵,,∴.……10分23. 解:(1).……3分(2),所以.……7分(3)……10分24. 解:(1)由图形可知:.……5分(2)将代入上式,.……10分25. ①……3分②260……6分③2……9分④5590……12分26. 解:(1)①∵,,∵,∴,∴,∴,∴,解得:秒;……4分②是,理由如下:∵,,∴ON平分;……8分(2)5秒或115秒时,OC平分角MON,理由如下:当OC运动时,∵,,∵,∴,∵三角板绕点O以每秒的速度,射线OC也绕O点以每秒的速度旋转,设为3t,为,∵,可得:,解得:秒;……10分OC停止运动,OM运动时,此时,OC也平分,(秒).……12分。
广西壮族自治区桂林市2023-2024学年七年级上学期期末数学试题(解析版)

2023~2024学年度上学期学情调研题七年级 数学(考试用时120分钟,满分120分)注意事项:1.试卷分为选择题和非选择题两部分,在本试题卷上作答无效.2.答题前,请认真阅读答题卡上的注意事项.3.考试结束后,将本试卷和答题卡一并交回.一、单选题(共12小题,每小题3分,共36分,请将答案填在答题卡上)1. 有理数,,0,1中最小的一个数是( )A. 1B. 0C.D. 【答案】C【解析】【分析】运用有理数大小比较法则找出有理数中最小的数即可.【详解】解:在实数,,0,1中,负数最小根据两个负数比较大小,绝对值大的反而小所以最小的数是.故选:.【点睛】此题考查了实数大小比较,熟练掌握两个负数比较大小的方法是解本题的关键.2. 如果水位上升3米记作米,那么米表示水位( )A. 上升5米B. 下降5米C. 上升2米D. 下降3米【答案】B【解析】【分析】本题考查了正数与负数,解题关键是理解“正”和“负”的相对性,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.【详解】解:米表示上升3米,那么米表示水位下降5米,故选:B .3. 如图,数轴上有,,,四个点,其中绝对值最小的数对应的点是( )13-2-2-13-13-2-2-C 3+5-3+5-A B C DA. 点B. 点C. 点D. 点【答案】B【解析】【分析】根据图示,可得:哪个点离原点越近,则哪个点所对应的数的绝对值就越小,据此判断出绝对值最小的数对应的点是哪个即可.【详解】解:∵,,,四个点中,点离原点最近,∴绝对值最小的数对应的点是.故选:B .【点睛】本题考查绝对值的意义,有理数大小比较的方法,解题的关键是要明确:①正数都大于;②负数都小于;③正数大于一切负数;④两个负数,绝对值大的其值反而小.4. 下列调查中,你认为适合采用全面调查是( )A. 《新闻联播》电视栏目的收视率B. 一批灯泡的使用寿命C. 一个班级学生的体重D. 我国中小学生喜欢上数学课的人数【答案】C【解析】【分析】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【详解】解:A 、调查范围广,无法普查,故不符合题意;B 、调查具有破坏性,无法普查,故不符合题意;C 、一个班级学生的体重,适合普查,符合题意;D 、调查范围广,无法普查,故不符合题意;故选:C .5. 桂林以其独特的山水风光而闻名于世.这里的自然美景如诗如画,仿佛置身于一幅巨大的画卷之中,深受国内外游客的喜爱.据统计,2023年暑假期间,漓江游船和排筏累计接待游客1970000人次.将1970000用科学记数法表示为( )A. B. C. D. 【答案】A【解析】的AB C DA B C D B B 0061.9710⨯519.710⨯71.9710⨯51.9710⨯【分析】本题考查了科学记数法的表示方法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正整数;当原数的绝对值时,是负整数.【详解】解:.故选:A .6. 单项式的次数是( )A. B. 1 C. 2 D. 3【答案】D【解析】【分析】本题考查单项式的次数,根据单项式的次数就是所有字母指数之和,即可解题.【详解】解:单项式的次数是,故选:D .7. 如果与是同类项,那么m ,n 的值是( )A , B. , C. , D. ,【答案】A【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,得出关于 的方程,求得 的值;【详解】∵与是同类项,故选A【点睛】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同8. 如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知,其依据是( ).10n a ⨯1||10a ≤<n n a n 10≥n 1<n 61970000 1.9710=⨯223xy -23-223xy -123+=232n x y +3213m x y --2m =1n =0m =1n =2m =2n =1m =2n =,m n ,m n 232n x y +3213m x y --23,213,n m ∴+=-=2,1,m n ∴==CA CB AB +>A. 两点之间,线段最短B. 两点确定一条直线C. 两点之间,直线最短D. 直线比线段长【答案】A【解析】【分析】根据线段公理:两点之间,线段最短,即可得解.【详解】根据题意,得两点之间,线段最短故答案为A .【点睛】此题主要考查对两点之间距离的理解,熟练掌握,即可解题.9. 《诗经》是中国古代诗歌的开端,最早的一部诗歌总集,共有311篇,其中6篇为笙诗,只有标题,没有内容,余下的诗篇可分为《风》、《雅》、《颂》三个部分.其中,《风》的篇数是《颂》的4倍,《雅》的篇数比《颂》的3倍少15篇.若设《颂》有篇,下列根据题意列出的方程正确的是( )A. B. C. D.【答案】C【解析】【分析】考查了由实际问题抽象出一元一次方程,需要掌握列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.设《颂》有篇,根据共有311篇,其中6篇为笙诗,只有标题,没有内容,余下的诗篇可分为《风》、《雅》、《颂》三个部分.其中,《风》的篇数是《颂》的倍,《雅》的篇数.【详解】解:设《颂》有篇,由题意得.故选:C .10. 下面说法与所示的几何图形相符的是()x 43156311x x x ++++=1115631143x x x +-++=43156311x x x +-++=1115631143x x x ++++=x 4x 315-x x 43156311x x x +-++=A. 点在直线上B. 直线和直线表示同一条直线C. 点在射线上D. 直线与直线都经过点【答案】D【解析】【分析】本题考查了点和直线的关系,直线的性质,注意仔细观察图形,掌握角的概念是关键;利用点和直线的关系,结合图形,对选项一一分析,选出正确答案.【详解】解:A 、点不在直线上,故错误,不合题意;B 、直线和直线表示同一条直线,故原说法错误,不合题意.C 、点不在射线上,故原说法错误,不合题意.D 、直线与都经过点,故正确,符合题意;故选:D .11. 如图,已知直线上A ,B 两点相距,点是线段的中点,点在直线上且与点相距,则的长度是( )A. 2cmB. 14cmC. 14cm 或8cmD. 14cm 或2cm【答案】D【解析】【分析】此题主要考查了线段的中点,理解线段中点的定义是解答此题的关键,分类讨论是解答此题的难点,.首先根据线段,是的中点求出,然后分两种情况进行讨论:①当点在点的左侧时,;②当点在点的右侧时,;据此可得出答案.【详解】解:线段,是的中点,,点在直线上,有以下两种情况:①当点在点的左侧时,;P n OA m P OB OA PB OP n OA n P OB OA PB O 12cm C AB D AB B 8cm CD 12cm AB =C AB 6cm BC =D B CD BD BC =-D B CD BC CD =+ 12cm AB =C AB ()16cm 2BC AB ∴== D AB ∴D B ()862cm CD BD BC ∴=-=-=②当点在点右侧时,.综上所述:线段的长是或.故选:D .12. 如图是一个运算程序,若第1次输入的值为16,则第2024次输出的结果是( )A. 1B. 2C. 4D. 8【答案】C【解析】【分析】本题主要考查了代数式求值问题,解题的关键是通过计算特殊结果发现一般规律,根据数据运算程序,从第1次开始往后逐个计算输出结果,直到找出规律即可求解.【详解】解:由数据运算程序得,如果开始输入的的值为16,那么:第1次输出的结果是8,第2次输出的结果是4,第3次输出的结果是2,第4次输出的结果是1,第5次输出的结果是4,第6次输出的结果是2,第7次输出的结果是1,第8次输出的结果是4,第9次输出的结果是2,第10次输出结果是1,第11次输出结果是4,综上可得,从第4次开始,每三个一循环,由可得第2024次输出的结果与第5次输出的结果相等,为4.故选:C .的的的D B ()6814cm CD BC BD ∴=+=+=CD 2cm 14cm a a ⋯⋯(20243)36732-÷=⋅⋅⋅二、填空题(共6小题,每小题2分,共12分,请将答案填在答题卡上)13. -5的倒数是_______【答案】##-0.2【解析】【分析】根据倒数的定义即可得出答案.【详解】解:的倒数是;故答案为:.【点睛】本题主要考查了倒数的定义.解题的关键是掌握若两个数的乘积是1,我们就称这两个数互为倒数.14. 计算: _______.【答案】【解析】【分析】本题考查了有理数的乘法,根据有理数的乘法法则:两数相乘.同号得正,异号得负,再把绝对值相乘,即可得到答案.【详解】解:.故答案为:.15. 某校为了了解初一年级300名学生每天完成作业所用时间的情况,从中对20名学生每天完成作业所用时间进行了抽查,这个问题中的样本容量是_______.【答案】20【解析】【详解】因为某校为了了解初一年级300名学生每天完成作业所用时间的情况,从中对20名学生每天完成作业所用的时间进行了抽查,所以这个问题中的样本容量是20.故答案为:2016. 钟表3时30分时,时针与分针所成的角的度数为________.【答案】【解析】【分析】本题考查了钟面角,角的和差运算;根据分针每分钟转,时针每分钟转,分针与时针从3时到3时30分所转过的角度,利用角的和差关系即可求解.【详解】解:分针从3时到3时30分转过,时针从3时到3时30分转过,15-5-15-15-()23⨯-=6-()()23236⨯-=-⨯=-6-75︒6︒0.5︒306180⨯︒=︒300.515⨯︒=︒则钟表3时30分时,时针与分针所成的角的度数为;故答案为:.17. 若代数式的值是6,那么代数式的值是______.【答案】22【解析】【分析】本题考查了求代数式的值,熟练掌握整体代入法是解题的关键,根据已知得出,然后对所求式子变形,整体代入计算即可.【详解】解:,,,故答案为:22.18. 三个面积均是的多边形如图叠放,其中,正方形阴影部分外的面积是,六边形阴影部分外的面积是,若两块阴影部分的面积之和正好是五边形面积的一半,则a 、b 、m 三者之间的数量关系是______.【答案】【解析】【分析】本题考查了二元一次方程组,设正方形与五边形阴影部分的面积是,六边形与五边形阴影部分的面积是,根据题意列出相应的方程组,再消元即可.【详解】解:设正方形与五边形阴影部分的面积是,六边形与五边形阴影部分的面积是,根据题意得:,整理得到:,180(9015)75︒-︒+︒=︒75︒2231a a ++2697a a ++2235a a +=22316a a ++= 2235a a ∴+=226973(23)735722a a a a ∴++=++=⨯+=m a b 302m a b --=1S 2S 1S 2S 121212a S m b S m S S m ⎧⎪+=⎪+=⎨⎪⎪+=⎩302m a b --=故答案为:.三、解答题(本大题共8题,共72分,请将解答过程写在答题卡上)19. 计算:(1)(2).【答案】(1)(2)【解析】【分析】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键;(1)去括号,利用减法法则,计算即可求出值;(2)先计算乘方运算,再计算乘除运算.【小问1详解】解:;【小问2详解】解:.20. 将有理数分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}【答案】0,2023;,;,.【解析】【分析】本题考查了有理数的概念及分类,根据有理数的概念分类即可.302m a b --=()735--+41122-⨯÷154-()735--+735=++15=41122-⨯÷22=-⨯4=-12.5,0,2,2023,35%,0.62--2.5-35%-1220.6【详解】解:整数:0,2023;负数:,;正分数:,.故答案为:0,2023;,;,.21. 解方程:(1);(2).【答案】(1); (2).【解析】【分析】本题考查了一元一次方程的解法,解答关键是按照相关解法逐步运算.(1)先去括号,再移项合并同类项,未知项系数化为1,求解;(2)先去分母,再去括号,移项合并同类项,未知项系数化为1,求解;【小问1详解】解:去括号,得,,移项,得,合并同类项,得,,∴;【小问2详解】解:去分母,得,去括号,得,移项,得2.5-35%-1220.6 2.5-35%-1220.67(33)1x x --=1231332x x -+=-12x =-1713x =7331x x -+=7313x x -=-42x =-12x =-()()21233118x x -=+-249318x x -=+-合并同类项,得,∴22. 先化简,再求值:,其中.【答案】,【解析】【分析】本题考查整式的化简求值,将原式去括号,合并同类项后代入已知数值计算即可.【详解】解:原式,当时,原式.23. 2023年在杭州举办的第十九届亚运会,共有45个国家和地区的代表队、12000多名运动员参加,共颁发金牌482枚.某校新闻社团的同学根据图1金牌榜前四名的金牌数绘制了不完整的条形统计图和扇形统计图.根据以上信息,解答下列问题:(1)在扇形统计图中,字母A 、B 所代表的国家名称分别是A :______;B :______;(2)除前四名外,其他国家和地区在第十九届亚运会上共夺得金牌多少枚?(3)在扇形统计图中,求中国代表队所得金牌数对应扇形的圆心角度数.(精确到)(4)你还能从图中得到什么信息?(写一条即可)【答案】(1)印度,日本;(2)枚493182x x --=--1317x -=-1713x =(32)(32)xy x xy xy x --+-1,2x y =-=65xy x -7-3232xy x xy xy x=-++-65xy x =-1,2x y =-=6(1)25(1)1257=⨯-⨯-⨯-=-+=-1︒159(3)(4)见解析【解析】【分析】本题考查了统计图、求扇形的圆心角度数,解题的关键是读得懂图表;(1)求出相应频率即可判断;(2)用总数减去前四名即可得到;(3)利用频率乘上即可;(4)通过图表进行分析,分析合理即可,答案不唯一.【小问1详解】解:,故A 表示印度;,故B 表示日本,故答案为:印度,日本;【小问2详解】解: ,故其他国家和地区在第十九届亚运会上共夺得金牌枚;【小问3详解】解:;【小问4详解】解:从图中得到中国获得金牌数目第一,国家对运动的重视程度较高.24. 某水利工程,甲工程队单独施工需要40天可以完成,乙工程队单独施工需要60天可以完成.(1)现在乙工程队施工10天后,为了加快进度,甲工程队加入,两队合作完成余下的工程,问完成此项水利工程一共用了多少天?(2)完成此项水利工程,甲、乙二队共得到施工费68万元,如果按每队完成的工作量计算施工费,那么甲工程队可以得到多少万元?【答案】(1)30,(2)34.【解析】【分析】本题考查了一元一次方程的应用,有理数的混合运算的应用,解题的关键是找准等量关系,正确列出程;(1)设乙队单独完成这项工程需要x 天,根据甲队完成的工作量+乙队完成的工作量=总工作量1,列方程即可;150︒360︒280.0581482≈ 520.108482≈ 482201524228159----=159201360150482⨯︒≈︒(2)根据甲的工作效率和工作时间,计算甲完成工程的几分之几,再乘以施工费即可.【小问1详解】解:设完成此项水利工程一共用了x 天,根据题意得,,解得,,答:完成此项水利工程一共用了30天.【小问2详解】,∴甲工程队可以得到34万元25. 综合与实践:【问题情境】七年级(1)班的同学在劳动实践课上采挖红薯,通过对红薯的称重感受“正数与负数”在生活中的应用.【实践探究】同学们一共挖了10筐红薯,以每筐为标准,超过的千克数记作正数,不足的千克数记作负数,称重后记录如下:筐号①②③④⑤⑥⑦⑧⑨⑩重量/千克10412【问题解决】(1)求这10筐红薯的总重量是多少千克?(2)为了让更多的人分享劳动成果,该班同学每人分得2千克后,决定将剩余的红薯赠送给敬老院的爷爷奶奶们.已知敬老院共有138名老人,平均每位老人分得千克的红薯,求七年级(1)班的学生人数.【答案】(1)总重量是千克;(2)七年级(1)班的学生人数为人.【解析】1014060x x -+=30x =3010683440-⨯=30kg 3- 2.50.5- 1.5- 2.5-1.530348【分析】本题考查了有理数的混合运算,一元一次方程的应用,理解题意,正确列式计算是解此题的关键.(1)根据题意列出算式求解即可;(2)设七年级(1)班的学生人数为,列出,求解即可.【小问1详解】解:这10筐红薯的总重量是:,答:总重量是千克;【小问2详解】解:设七年级(1)班的学生人数为,由题意得:,解得:,答:七年级(1)班的学生人数为人.26. 综合与探究【提出问题】小明在学习中遇到这样一个问题:如图1,,请作一个,使与互余(),即.【动手操作】小明是这样思考的:如图2所示,若射线在的内部,则,所以射线在的外部;然后通过构造直角,找到的余角,如图3所示;进而分析要使与互余,只需.因此,小明找到了解决问题的方法:过点O 作射线的垂线,利用量角器作出的平分线,这样就得到与互余.请你帮助小明完成下列推理说明:(1)已知:如图3,,射线平分.请说明与互余.解:理由:因为射线平分(已知),x 3032138 1.5x -=⨯()10303 2.510.5041 1.5 2.52303⨯+-++-+++--+=303x 3032138 1.5x -=⨯48x =48090AOB αα∠=︒<<︒()AOC ∠AOC ∠BOC ∠AOC BOC ∠>∠90AOC BOC Ð+Ð=°OC AOB ∠90AOC BOC ∠+∠<︒OC AOB ∠AOD ∠AOC ∠AOC ∠BOC ∠BOC COD ∠=∠OA OD BOD ∠OC AOC ∠BOC ∠90AOD ∠=︒OC BOD ∠AOC ∠BOC ∠OC BOD ∠所以______(角平分线的定义),由于,即______,所以(______),即与互余.(2)【类比操作】如图4,若,参考小明的画法,请在图4中作出一个,使与互补(),并直接写出的度数.(3)【拓展延伸】如图5,已知,若与互补,射线平分,射线平分.请根据题意,补全图形,并求的度数.【答案】(1),90,等量代换;(2)作图见解析,;(3)补全图形见解析,的度数为或【解析】【分析】本题主要考查角平分线的定义,余角和补角,灵活运用角平分线的定义求解角度之间的关系是解题的关键.(1)根据角平分线的性质得到,利用垂直的定义得到,根据等量代换推出,即可证明;(2)若构造平角(),所以通过构造平角,如图,作的延长线线,利用量角器作出的平分线,根据,,即可求出;(3)分射线在的内部,射线在的外部;两种情况讨论.【详解】(1)证明: 射线平分(已知),(角平分线的定义),BOC ∠=90AOD ∠=︒AOC COD ∠+∠=︒90AOC BOC Ð+Ð=°AOC ∠BOC ∠40AOB ∠=︒AOE ∠AOE ∠∠BOE AOE BOE ∠>∠AOE ∠90180AOB ββ∠=︒<<︒()AOB ∠BOC ∠OM AOB ∠ON BOC ∠MON ∠COD ∠110AOE ∠=︒MON ∠90︒90β-︒BOC COD ∠=∠90AOC COD Ð+Ð=°90AOC BOC Ð+Ð=°BOD ∠AOE BOE ∠<∠AOD ∠AO OD BOD ∠OE 180140BOD AOB ∠=︒-∠=︒1702BOE EOD BOD ︒∠=∠=∠=AOE ∠OC AOB ∠OC AOB ∠ OC BOD ∠∴BOC COD ∠=∠,即,(等量代换),即与互余,故答案为:,90,等量代换;(2)若构造平角(),所以通过构造平角,如图,作的延长线线,利用量角器作出的平分线,射线平分(已知),(角平分线的定义),,(等量代换),即与互补,,,,;(3)如图5,当射线在的外部时,延长到点C ,利用量角器作出的平分线,利用量角器作出的平分线,,,平分,平分,90AOD ∠=︒90AOC COD Ð+Ð=°∴90AOC BOC Ð+Ð=°AOC ∠BOC ∠COD ∠BOD ∠AOE BOE ∠<∠AOD ∠AO OD BOD ∠OE OE BOD ∠∴BOE EOD ∠=∠ 180AOE EOD ∠+∠=︒∴180AOE BOE ∠+∠=︒AOE ∠∠BOE 40AOB ∠=︒180140BOD AOB ∴∠=︒-∠=︒∴1702BOE EOD BOD ︒∠=∠=∠=∴110AOE AOB BOE ∠=∠+∠=︒OC AOB ∠AO BOC ∠ON AOB ∠OM 180AOB BOC ∠+∠=︒ 180BOC β∴∠=︒- OM AOB ∠ON BOC ∠,,;如图6,当射线在的内部时,延长到点D ,利用量角器作出,利用量角器作出的平分线,利用量角器作出的平分线,,,,,平分,平分,,,;综上,的度数为或.1122MOB AOB β∴∠=∠=119022BON BOC β∠=∠=︒-90MON MOB BON ∴∠=∠+∠=︒OC AOB ∠AO BOC BOD ∠=∠BOC ∠ON AOB ∠OM BOC BOD ∠=∠180AOB BOD ∠+∠=︒∴180AOB BOC ∠+∠=︒180BOC β∴∠=︒- OM AOB ∠ON BOC ∠1122MOB AOB β∴∠=∠=119022BON BOC β∠=∠=︒-90MON MOB BON β∴∠=∠-∠=-︒MON ∠90︒90β-︒。
人教版数学七年级上册期末考试试卷含答案

人教版数学七年级上册期末考试试题一、选择题(每小题 3 分,共 30 分)1. a 、b ,在数轴上表示如图 1,下列判断正确的是()A. a + b > 0B .b + 1 > 0 C .- b - 1 < 0 D .a + 1 > 0 2. 如图 2,在下列说法中错误的是( )A. 射线OA 的方向是正西方向B. 射线OB 的方向是东北方向C. 射线OC 的方向是南偏东 60°D. 射线OD 的方向是南偏西 55°3. 下列运算正确的是( )A. 5x - 3x = 2B. 2a + 3b = 5abC. 2ab - ba = abD. - (a - b ) = b + a4. 如果有理数a , b 满足ab > 0 , a + b < 0 ,则下列说法正确的是()A. a > 0, b > 0B. a < 0, b > 0C. a < 0, b < 0D. a > 0, b < 05.若(1 - m ) 2+ | n + 2 |= 0 ,如m + n 的值为()A. -1B. - 3C.3D.不确定6.7. 平面内有三个点,过任意两点画一条直线,则可以画直线的条数是()A.2 条B.3 条C.4 条D.1 条或 3 条8.将长方形的纸ABCD 沿 AE 折叠,得到如图 3 所示的图形,已知∠CED ′=60.则∠AED 的是( ) A.60º B.50º C.75ºD.55º9.在正方体的表面上画有如图4 a 所示的粗线,图4 b 是其展开图的示意图,但只在A 面上有粗线,那么将图 4 a 中剩余两个面中的粗线画入图4 b 中,画法正确的是()若| a |> 0 ,那么() A. a > 0 B. a < 0 C. a ≠ 0D. a 为任意有理数10. 一家三口人(父亲、母亲、女儿)准备参加旅游团外出旅游,甲旅行社告知“父母全票,女儿半价优4惠”,乙旅行社告知家庭可按团体票计价,即每人均按全价 5收费。
人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.已知x=y,则下列变形不一定成立的是()A.x+a=y+a B.x ya a=C.x﹣a=y﹣a D.ax=ay4.下列各组数中,互为相反数的是()A.-(-1)与1B.(-1)2与1C.|1|-与1D.-12与15.下列图形中,不是正方体的展开图的是()A.B.C.D.6.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.1 112xx+-=+9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A .1500米B .1575米C .2000米D .2075米10.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为()A .162cm B .202cm C .802cm D .1602cm 二、填空题11.数轴上距离原点2个单位长度的点表示的数是_____12.如果把6.48712保留三位有效数字可近似为_________.13.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,数据2500000用科学记数法表示为_______________.14.单项式2323x y -的系数是__________,次数是___________.15.若代数式53m a b 与22n a b -是同类项,那么m +n =______.16.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为_________度.17.已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____.18.关于x 的方程352x k -+=的解是1x =,则k =________.19.当x=1时,代数式31px qx ++的值为2012,则当x=-1时,代数式31px qx ++的值为_____.20.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=36°,则∠AOB 是__________度三、解答题21.计算(1)(-3)-13+(-12)-|-43|.(2)2108(2)(4)(3)-+÷---⨯-(3)233136402924''''''+︒︒22.解方程(1)()()()228131x x x ---=-(2)225353x x x ---=-23.先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.24.一个角的余角比这个角的12少30°,请你计算出这个角的大小.25.如图M 是线段AC 中点,B 在线段AC 上,且AB=2cm ,BC=2AB ,求MC 和BM 长度.26.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,求船在静水中的平均速度.(要求列方程解答)27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?28.如图,已知90AOB ∠=︒,OE 平分∠AOB ,60EOF ∠=︒,OF 平分∠BOC .求∠BOC 和∠AOC 的度数.参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2.B【分析】结合题意,根据两点确定一条直线的性质分析,即可得到答案.【详解】在墙壁上固定一根横放的木条,则至少需要钉子的枚数是2,故选:B .【点睛】本题考查了直线的知识;解题的关键是熟练掌握两点确定一条直线的性质,从而完成求解.3.B【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【详解】A.C.D的变形均符合等式的基本性质,B项a不能为0,不一定成立.故答案选B.【点睛】本题考查了等式的性质,解题的关键是熟练的掌握等式的性质.4.D【分析】利用相反数的定义,两个数之和为零来判断.【详解】解:A,-(-1)与1不是相反数,选项错误,不符合题意;B,(-1)2与1不是互为相反数,选项错误,不符合题意;C,|-1|与1不是相反数,选项错误,不符合题意;D,-12与1是相反数,选项正确,符合题意;故选D.【点睛】本题考查了相反数,解题的关键是掌握相应的定义即两个数之和为零,这两个数互为相反数.5.D【详解】A、B、C是正方体的展开图,D不是正方体的展开图.故选D.6.A【详解】试题分析:根据线段、射线和角的概念,对选项一一分析,选择正确答案.解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.考点:直线、射线、线段;角的概念.7.C【详解】设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .8.C【详解】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有13122x x +++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=-即x+1=2(x−3).故选:C .9.B【详解】试题解析:设火车长x 千米.60秒160=小时,根据题意得:()1 4.51200.5.60x ⨯+=+解得:x=1.575.1.575千米=1575米.火车的长为1575米.故选B.10.C【分析】首先根据题意,设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x 的值是多少,即可求出每一个长条面积为多少.【详解】解:设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ,则4x =5(x ﹣4),去括号,可得:4x =5x ﹣20,移项,可得:5x ﹣4x =20,解得x =204x =4×20=80(cm 2)所以每一个长条面积为80cm2.故选:C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答是解题的关键.11.-2或2【详解】试题分析:设数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.12.6.49【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.【详解】解:6.48712保留三位有效数字可近似为:6.49.故答案是:6.49.【点睛】本题考查了近似数和有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.13.62.510⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:2500000=2.5×106.故答案为:2.5×106.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.23-5【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是5,故答案为:23-,5.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.15.7【分析】根据同类项的概念求解.【详解】解:∵代数式53m a b 与22n a b -是同类项,∴n=5,m=2,∴m+n=2+5=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.150【分析】利用钟表表盘的特征:钟表上12个数字,每相邻两个数字之间的夹角为30°解答即可.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°.故答案为:150【点睛】本题考查的是钟面角的含义及计算,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.17.10【详解】解:∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m=4,n=﹣2,∴2m ﹣n=8﹣(﹣2)=10.故答案为:10【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.18.6【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】解:把x=1代入,得3×1-k+5=2,解得k=6.故答案是:6.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.19.-2010【分析】由当x=1时,代数式31px qx ++的值为2012,可得2011p q +=,把x=-1代入代数式31px qx ++整理后,再把2011p q +=代入计算即可.【详解】因为当1x =时,3112012px qx p q ++=++=,所以2011p q +=,所以当1x =-时,311()1201112010px qx p q p q ++=--+=-++=-+=-.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.20.144【分析】根据∠AOC 和∠BOD 都是直角,∠DOC=36°,可得∠AOD 的度数,从而求得结果.【详解】∵∠AOC=∠BOD=90º,∠DOC=36°∴∠AOD=∠AOC-∠DOC=54°∴∠AOB =∠AOD+∠BOD =144°.故答案为36°.点睛:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.21.(1)-71;(2)-20;(3)641'︒.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(3)根据度分秒的换算进行计算即可.(1)解:(-3)-13+(-12)-|-43|=-3-13-12-43=-71;(2)解:2108(2)(4)(3)-+÷---⨯-108412=-+÷-10212=-+-=-20;(3)解:233136402924''''''+︒︒636060'''=︒641'=︒.【点睛】本题考查了有理数的混合运算以及度分秒的换算,注意:1°60'=,160'''=.22.(1)13x =(2)38x =-【分析】(1)去括号,移项,合并同类项,系数化为1;(2)去分母,移项,合并同裂项,系数化为1.(1)()()()228131x x x ---=-,去括号得248833x x x --+=-,整理得13x =(2)225353x x x ---=-,去分母得122535533x x x -+=--,整理得38x =-【点睛】本题考查方程的化简求解,需熟练掌握其运算方法.23.22532x y ---,14-【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算.【详解】解:原式=222232()32x y x y --+--=22532x y ---,当1,2x y =-=-时,原式=()()2251232---⨯--=14-.【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.24.这个角的度数是80°.【分析】设这个角的度数为x ,根据互余的两角的和等于90°表示出它的余角,然后列出方程求.【详解】设这个角的度数为x ,则它的余角为(90°-x ),由题意得:12x-(90°-x )=30°,解得:x=80°.答:这个角的度数是80°.25.MC 的长度是3cm ;BM 的长度是1cm .【分析】先根据AB=2cm ,BC=2AB 求出BC 的长,进而得出AC 的长,由M 是线段AC 中点求出AM ,再由BM=AM-AB 即可得出结论.【详解】解:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=2+4=6(cm),∵M 是线段AC 中点,∴MC=AM=12AC=3(cm),∴BM=AM-AB=3-2=1(cm).故MC 的长度是3cm ;BM 的长度是1cm .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.26.在静水中的速度为27km/h【分析】等量关系为:顺水速度⨯顺水时间=逆水速度⨯逆水时间.即2⨯(静水速度+水流速度) 2.5=⨯(静水速度-水流速度).【详解】解:设船在静水中的平均速度为x km/h ,根据往返路程相等,列得2(3) 2.5(3)x x +=-,解得27x =.答:在静水中的速度为27km/h .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,列出方程求解.27.(1)购买20盒乒乓球时,两种优惠办法付款一样(2)购买15盒乒乓球时,去甲店较合算,见解析【分析】(1)根据总价=单价×数量结合两家店给出的优惠政策,即可用含x 的代数式表示出在两家店购买所需费用;(2)根据在两家店购买所需费用相同,即可得出关于x 的一元一次方程,解之即可得出结论.(1)解:设购买x 盒乒乓球时,两种优惠办法付款一样.依题意得,()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得:x =20,所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款:()3051555200⨯+-⨯=(元),乙店需付款:()3051550.9202.5⨯+⨯⨯=(元),因为200202.5<,所以购买15盒乒乓球时,去甲店较合算.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出在两家店购买所需费用;(2)找准等量关系,正确列出一元一次方程.28.∠BOC 和∠AOC 的度数分别为30°,120︒【分析】根据角平分线的定义得到1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,再计算出15BOF EOF BOE ∠=∠-∠=︒,然后根据∠BOC=2∠BOF ,∠AOC=∠BOC+∠AOB 进行计算.【详解】解:∵OE 平分∠AOB ,OF 平分∠BOC ,∴1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,∵604515BOF EOF BOE ∠=∠-∠=︒-︒=︒,∴230BOC BOF ∠=∠=︒,3090120AOC BOC AOB ∠=∠+∠=︒+︒=︒.即∠BOC 和∠AOC 的度数分别为30°,120︒.【点睛】本题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。
初一上期末考试数学试卷(含答案)

初一上期末考试数学试卷(含答案)第一学期期末考试初一数学试卷一、选择题(共9个小题,每小题3分,共27分)1.-1的相反数是()A。
2.B。
1/2.C。
-2.D。
-1/22.当地面高于海平面1米时,记作“+1米”,那么地面低于海平面10米时,记作()A。
-1米。
B。
+1米。
C。
-10米。
D。
+10米3.最新数据显示,目前全世界人口总数约为70亿,中国是世界第一人口大国,约为1 400 000 000人。
请将1 400 000 000用科学记数法表示为()A。
14×10^7.B。
1.4×10^9.C。
14×10^8.D。
140×10^114.如果x=1是关于x的方程2x+m=2的解,那么m的值是()A。
1.B。
1/2.C。
-1.D。
-1/25.下列运算正确的是()A。
6a-5a=a。
B。
a^2+a^2=2a^4.C。
3a^2b-4b^2a=-a^2b。
D。
(a^2)^3=a^56.从正面、上面、左面三个方向看某一个物体得到的图形如图所示,则这个物体是()A。
圆锥。
B。
圆柱。
C。
三棱锥。
D。
三棱柱7.已知数a,b在数轴上表示的点的位置如图所示,则下列结论正确的是()A。
①②。
B。
①④。
C。
②③。
D。
③④8.如图是一个正方体的展开图,如果在其中的三个面A,B,C内分别填入适当的数,使得它们围成正方体后相对的面上的两个数互为相反数,那么填入A,B,C内的三个数依次为()A。
0,-1,2.B。
0,2,-1.C。
2,-1,-2.D。
-1,1,-29.列数中第9个数及第n个数(n为正整数)分别是()A。
82,-n^2+1.B。
82,(-1)^n+2.C。
-82,(n^2+1)。
D。
-82,3n+1二、填空题(共6个小题,每小题3分,共18分)10.单项式-2xy的系数是_______,次数是_______。
11.角度换算:3615′=_______。
12.某商店把一双旅游鞋按进价提高30%标价,然后再按标价的8折出售,如果每双旅游鞋的进价为x元,那么每双鞋标价为_______元;8折后,每双鞋的实际售价为_______元。
湖北省武汉市江汉区2023-2024学年七年级上学期期末数学试题及参考答案

2023~2024学年度第一学期期末质量检测七年级数学试题考试时间:120分钟 试卷总分:150分第I 卷(本卷满分100分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡.上将正确答案的代号涂黑.1.2024−的倒数是( ) A .2024−B .2024C .12024−D .120242.下列各组中的两个单项式不是同类项的是( ) A .xy 与2xyB .23a b 与23abC .35与12−D .mn −与nm3.下列方程中,属于一元一次方程的是(A .3x y −=B .210x −=C .123x −=D .23x= 4.如图是由4个相同的正方体组成的几何体,从上面看这个几何体,所看到的平面图形是( )A .B .C .D .5.下列运算正确的是( )A .a b ab +=B .222a a a −=C .()2525a a +=+D .()a a b b −−=6.若1x =是方程260x m +−=的解,则m 的值是( ) A .4−B .4C .8−D .87.如图,射线OA 表示的方向是北偏西60°,若90AOB ∠=°,则射线OB 表示的方向是( )第7题 A .南偏西30°B .南偏西60°C .北偏东30°D .北偏东60°8.下列说法正确的是( ) A .射线AB 和射线BA 表示同一条射线B .已知A ,B ,C 三个点,若过其中任意两点作直线,则直线共有3条 C .若线段AP BP =,则P 是线段AB 的中点D .延长线段AB 和反向延长线段BA 的含义相同9.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,若每3人共乘一辆车,则剩余2辆车;若每2人共乘一辆车,则剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,则可列方程是( ) A .2932x x+=− B .9232x x −+= C .9232x x +−= D .2932x x−=+ 10.如图,两个直角AOB ∠,COD ∠有公共顶点O ,下列结论:第10题①AOC BOD ∠=∠; ②AOD ∠是BOC ∠的补角;③若OC 平分AOB ∠,则OB 平分COD ∠;④AOD ∠的平分线与COB ∠的平分线是同一条射线. 其中正确的个数是( ) A .4B .3C .2D .1二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.11.用四舍五入法取近似值:1.804≈_________(精确到0.01). 12.计算16508432°°′′+=_________(结果用度、分表示).13.若单项式62m x y 与224n x y −的和仍是单项式,则m n +的值是_________.14.把方程534x y −=改写成用含x 的式子表示y 的形式是_________. 15.若α∠的余角比它的补角的14大15°,则α∠=_________. 16.如图,长方形纸片ABCD ,E 为边AD 上一点,将纸片沿EB ,EC 折叠,点A 落在A ′位置,点D 落在D ′位置,若10A ED ′′∠=°,则BEC ∠=_________.第16题三、解答题(共5小题,共52分)下列各题需要在答题卷指定位異写出文字说明、证明过程、计算步骤或作出图形.17.(本小题10分) 计算下列各题:(1)12(18)(7)(15)−−+−+−; (2)321832(2)(4)5+÷−−−×.18.(本小题10分) 解方程:(1)3212(1)x x −=−+; (2)3157146x x −−−=. 19.(本小题10分) 先化简再求值:()()22237427a ab a ab −+−−++,其中a ,b 满足方程组4316,215a b a b +=−=20.(本小题10分) 用方程(组)解决问题:(1)某车间有22名工人,每人每天可以生产1200个螺柱或2000个螺母.1个螺柱需要配2个螺母,为使每天生产的螺柱和螺母刚好配套,应安排生产螺柱和螺母的工人各多少名?(2)2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷? 21.(本小题12分) 如图,已知点A ,B ,C ,D .第21题(1)按要求画图: ①连接AD ; ②画射线BC ; ③画线段AB 的中点E ;④画一点F ,使点F 既在直线CD 上又在直线AB 上.(2)在(1)的基础上,若:2:3BF AB =,14EF =,求线段AB 的长,第II 卷(本卷满分50分)四、填空题(共4小题,每小题4分,共16分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.22.关于x ,y 的二元一次方程组432,3461x y k x y k +=++=− 的解满足5x y +=,则k =_________.23.已知110AOB ∠=°,过点O 作射线OC ,使20AOC ∠=°,OD 平分BOC ∠,则AOD ∠=_________.第23题24.现对某商品降价10%促销,为了使销售总金额增加17%,则促销后销售量比按原价销售时增加的百分比是_________. 25.下列说法: ①若a b =,则2211a bc c =++; ②若23(2)2m m x m −++=是关于x 的一元一次方程,则2m =±;③若有理数a ,b ,c 满足||a b c a b c −+=++,则0ab bc +=;④若我们用min(,)a b 表示a ,b 两数中较小的一个数,则min(,)22a b a ba b +−−=. 其中正确的是_________(填序号).五、解答题(共3小题,共34分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.26.(本小题10分)下表是某次篮球联赛部分球队的积分表:队名 比赛场次 胜场 负场 积分 前进 16 10 6 36 光明 16 9 7 34 远大 16 12 4 40 卫星1661028备注:积分=胜场积分+负场积分(1)直接写出胜一场的积分和负一场的积分;(2)某队说他们的总积分为45分,你认为可能吗?为什么?(3)若某队的负场总积分是胜场总积分的正整数倍,胜一场奖励每个球员5000元,负一场奖励.每个球员1000元,请问这支球队的每个球员所获奖金可能是多少元? 27.(本小题12分)如图(1)所示,已知直线l 上有E ,F 两点,15cm EF =,有一根木棒AB 放在直线l 上,将木棒沿直线l 左右水平移动.当点B 与F 重合时,点A 刚好落在点B 移动前的位置,当点A 与E 重合时,点B 刚好落在点A 移动前的位置.第27题(1)直接写出木棒AB 的长;(2)木棒AB 在射线EF 上移动的过程中,当4AE BF =时,求AE 的长;(3)另一根木棒CD 长为3cm ,AB 和CD 在直线l 上的位置如图(2)所示,其中点D 与E 重合,点B 与F 重合.木棒AB 以3个单位长度/秒的速度向左移动,木棒CD 以2个单位长度/秒的速度向右移动,它们同时出发,设运动时间为t 秒,若式子AD BC +的值为定值,请直接写出此时t 的取值范围,并写出这个定值.28.(本小题12分)定义:一个正整数100010010xa b c d =+++(其中a ,b ,c ,d 均为小于10的非负整数). 若ma b mc d −=−,m 为整数,我们称x 为“m 倍数”.例如,5923:259223×−=×−,则称5923为“2倍数”;1940:319340−×−=−×−,则称1940为“3−倍数”;332548:254822×−=×−,因为32不是整数,所以2548不是“m 倍数”.(1)直接判断3274和2961是否为“m 倍数”,若是,直接写出m 的值; (2)若一个三位数x 为“2−倍数”,且个位数字为7,判断这个三位数是否能被7整除,并说明理由;(3)若一个四位数x 为“1倍数”,且各数位的数字互不相等,将它的千位数字和百位数字组成的两位数记为y (即10a b +),十位数字和个位数字组成的两位数记为z (即10c d +).若8y z−为整数,求这个四位数.(4)若一个四位数x 为“4倍数”,将它的百位数字和十位数字互换,得到的新的四位数仍为“4倍数”,6x +为“4−倍数”,直接写出满足条件的x 的最大值. 2023~2024学年度第一学期期末考试 七年级数学参考答案及评分标准卷I : 一、选择题CBCBDBADBA二、填空题11.1.80 12.10122′° 13.514.543x y −=15.40°16.85°三、解答题17.(1)解:原式1218715=+−−8=.(2)解:原式1832(8)165=+÷−−×18480=−−66=−18.(1)解:32122x x −=−−32212x x +=+−51x = 15x =(2)解:3(31)122(57)x x −−=− 93121014x x −−=−1x −= 1x =−19.解:化简整式得226214427a ab a ab −++−−21047a ab =−+.解方程组得74a b ==−.代入化简后的整式得,原式609=20.(1)解:设应安排x 名工人生产螺柱,()22x −名工人生产螺母.2000(22)21200x x −=×,解得10x =,2212 x −=,答:应安排10名工人生产螺柱,12名工人生产螺母.(2)解:设1台大收割机和1台小收割机每小时分别收割小麦x 公顷,y 公顷, 由题意得,2(25) 3.65(32)8x y x y +=+=,解得0.40.2x y = = .答:1台大收割机和1台小收割机每小时分别收割小麦0.4公顷,0.2公顷.21.(每个作图2分,共8分.) (2)(此问共4分) 解::2:3BF AB = ,∴设2BF x =,3AB x =, 点E AB 的中点,1322BE AB x ∴==, 14EF = ,14BF BE EF ∴+==,32142x x ∴+=, 解得4x =.312AB x ∴==.卷II : 四、填空题22.34723.45°或65°(对一个得2分) 24.30%25.①③④(只写一个得1分,写两个得2分,三个全对得4分,写错一个不得分) 26.(1)3,1.(2)解:设胜x 场,则负()16x −场,31645x x +−=,解得292x =.x 为非负整数,(此处若没有说明原因扣1分) 292x ∴=,不符合题意.∴得分不可能为45分.(3)解:设胜y 场,负16y −场,负场总积分是胜场总积分的m 倍,则316myy =−,1631y m =+,,y m 均为正整数,(此处若没有强调取整扣1分)∴当1m =时,4y =,此时球员的奖金为32000元; 当5m =时,1y =, 此时球员的奖金为20000元.答:每个球员奖励的金额可能有32000元或20000元. 27.(1)5.(2)解:(1)如图1,当A 、B 两点在线段EF 上时4AE BF = ,5515EF AE BF AB BF ∴=++=+=,2BF ∴=,8AE ∴=. ②如图2,当点A 在线段EF 上,点B 在F 右边时,4AE BF = ,3515EF AE AB BF BF ∴=+−=+=.103BF ∴=,403AE ∴=.③如图3,当点A 、B 都在F 右边时,同②3515EF AE AB BF BF =+−=+= 则103BF =,403AE =. 与图形不符,故舍去. 综上:AE 的长为8或403. (另解:如图,以E 为原点构造数轴)设点A 对应的数为x ,点B 对应的数为5x +,则AE x =,|10|BF x =−.4AE BF = ,4|10|x x ∴=−.解得8x =或403,8AE ∴=或403. (3)1825t ≤≤;8. 28.(1)3274不是“m 倍数”;2961是“m 倍数”,2m =−.(2)x 为三位数,0a ∴=,x 为“2−倍数”,且个位数字为7. 2027b c ∴−×−=−−,即27b c =+.10010100(27)1072107077(30101)x b c d c c c c ∴+++++++,730101x c ∴÷=+,c 为非负整数,30101c ∴+为正整数,∴这个三位数一定能被7整除.(也可以直接把三位数算出来,此三位数为917或707,少一个答案扣1分) (4) 四位数x 为“1倍数”,a b c d ∴−=−,且0a ≠,a c b d ∴−=−, 10y a b =+ ,10z c d =+,101010()()11()8888y z a b c d a c b d a c −+−−−+−−∴===, 8y z−为整数,且a ,c 均为小于10的非负整数,8a c ∴−=±或0, ,,,a b c d 互不相等,8a c ∴−=± 当8a c b d −=−=时,9810a b c d = = = = 或8901a b c d = == = .由题意知:0c ≠,9810x ∴=, 当8a c b d −=−=−时,1098a b c d = == = ,1098x ∴= 综上:这个四位数是9810或1098.(此问共4分,每个答案各2分,只要有合理的推导过程即可) (4)8888。
第一学期期末考试试卷初一数学附答案

第一学期期末考试试卷初一数学一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确选项前的字母填在题后括号内) 1.9-的倒数是( )A .91 B .91- C .9 D .9-2.经专家估算,南海属我国传统海疆线以内的油气资源约合15 000亿美元.用科学记数法表示数字15 000是( ) A .15×103B .1.5×103C .1.5×104D .1.5×1053.代数式21x -与43x -的值互为相反数,则x 等于( )A .-3B .3C .-1D . 1 4.有理数a 、b 在数轴上的位置如图所示,则b a -的值在( )A .-3与-2之间B .-2与-1之间C .0与1之间D .2与3之间 5.下列运算正确的是( )A .32x y xy -=-B .235x x x +=C .222523x x x -=D .222x y xy xy -= 6.当1x =-时,代数式227x x -+的值是( )A .10B .8C .6D .47.已知线段AB =6,在直线AB 上画线段BC ,使BC =2,则线段AC 的长( )A .2B .4C .8D .8或4 8.如图是一个长方体被截去一角后得到的几何体,它的俯视图是( )A B C D二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上)9.已知∠α 的补角比∠α 大30°,则∠α = °.10.绝对值大于1且小于4的所有负整数...之和等于.11.bba-=+22若,______622=+-+baba则.12.已知关于x的方程3142=+-xmx的解是x=1,则m的值为.13.看图填空:CBA⑴=BD BC+=AD-;⑶若点B是线段AC的中点,ADAC21=,则=AC BD.14.观察下列图形:45-7-3-13-31842012-2521603-2y-2x-549图①图②图③图④图⑤请用你发现的规律直接写出图④中的数y:;图⑤中的数x:.三、计算题(本大题共4个小题,每小题5分,共20分.写出计算过程)15.)3()18(322-÷-⨯-.解:16.⎪⎭⎫⎝⎛-+-⨯1578365120.解:17.()2323238⨯--⨯-. 解:18.⎥⎦⎤⎢⎣⎡--⨯---22012)21(4)5332(1. 解:四、解方程(本大题共2个小题,每小题5分,共10分.写出解题过程) 19.04)3(2=-+x .解: 20.21312=--x x . 解:五、列方程解应用题(本题5分,写出解答过程)21.石景山某校七年级1班为郊区的某校“手拉手”班级捐赠课外图书和光盘共120件.已知捐出的图书数比捐出的光盘数的2倍少15件.求该班捐给“手拉手”班级的图书有多少件? 解:六、解答题(本大题共3个小题,每小题5分,共15分)22.当x 为何值时,代数式22)1(2x x --的值比代数式232-+x x 的值大6. 解:23.如图,已知OA ⊥OD ,BO 平分∠AOC ,∠AOB ︰∠COD =2︰5.求∠AOB 的度数。
七年级上册数学期末考试卷及答案

七年级上册数学期末考试卷及答案七年级上册数学期末考试卷及答案期末考试是指每个学期快结束时,学校往往以试卷的形式对各门学科进行该学期知识掌握的检测,对上一学期知识的查漏补缺,一般由区或市统考,也可能是几个学校进行联考。
以下是店铺为大家整理的七年级上册数学期末考试卷及答案,欢迎阅读,希望大家能够喜欢。
一、选择题(每小题2分,共16分)1.﹣2的倒数是()A. ﹣2B. 2C. ﹣D.2.在数﹣32、|﹣2.5|、﹣(﹣2 )、(﹣3)3中,负数的个数是()A. 1B. 2C. 3D. 43.一个点从数轴上的﹣3表示的点开始,先向右移动2个单位长度,再向左移动4个单位长度,这时该点所对应的数是()A. 3B. ﹣5C. ﹣1D. ﹣94.下列说法中,正确的是()A. 符号不同的两个数互为相反数B. 两个有理数和一定大于每一个加数C. 有理数分为正数和负数D. 所有的有理数都能用数轴上的点来表示5.若2x﹣5y=3,则4x﹣10y﹣3的值是()A. ﹣3B. 0C. 3D. 66.直线l外一点P与直线l上两点的连线段长分别为4cm,6cm,则点P到直线l的距离是()A. 不超过4cmB. 4cmC. 6cmD. 不少于6cm7.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个.设计划做x个中国结,可列方程()A. =B. =C. =D. =8.纸板上有10个无阴影的正方形,从中选1个,使得它与5个有阴影的正方形一起能折叠成一个正方体的纸盒,选法应该有()A. 4种B. 5种C. 6种D. 7种二、填空题(每小题2分,共20分)9.在﹣5.3和6.2之间所有整数之和为.10.京沪高铁全长约1318公里,将1318公里用科学记数法表示为公里.11.若关于x的方程2x+a=0的解为﹣3,则a的值为.12.已知两个单项式﹣3a2bm与na2b的和为0,则m+n的值是.13.固定一根木条至少需要两根铁钉,这是根据.14.若A=68,则A的余角是.15.在数轴上,与﹣3表示的点相距4个单位的点所对应的数是.16.若|a|=3,|b|=2,且a+b0,那么a﹣b的值是.17.一个长方体的主视图与俯视图,则这个长方体的表面积是.18.BOC与AOC互为补角,OD平分AOC,BOC=n,则DOB=.(用含n的代数式表示)三、解答题(共64分)19.计算:40[(﹣2)4+3(﹣2)].20.计算:[(﹣1)3+(﹣3)2]﹣[(﹣2)3﹣2(﹣5)].21.化简:3x+5(x2﹣x+3)﹣2(x2﹣x+3).22.先化简,再求值:3mn﹣[6(mn﹣m2)﹣4(2mn﹣m2)],其中m=﹣2,n= .23.解方程:3(x﹣1)﹣2(1﹣x)+5=0.24.解方程: .25.在所示的方格纸中,每一个正方形的面积为1,按要求画图,并回答问题.(1)将线段AB平移,使得点A与点C重合得到线段CD,画出线段CD;(2)连接AD、BC交于点O,并用符号语言描述AD与BC的位置关系;(3)连接AC、BD,并用符号语言描述AC与BD的位置关系.26.将长方形纸片的一角折叠,使顶点A落在点A处,折痕CB;再将长方形纸片的另一角折叠,使顶点D落在点D处,D在BA的延长线上,折痕EB.(1)若ABC=65,求DBE的度数;(2)若将点B沿AD方向滑动(不与A、D重合),CBE的大小发生变化吗?并说明理由.27.已知,点A、B、C、D四点在一条直线上,AB=6cm,DB=1cm,点C是线段AD的中点,请画出相应的示意图,并求出此时线段BC的长度.28.为一个无盖长方体盒子的展开图(重叠部分不计),设高为xcm,根据图中数据.(1)该长方体盒子的宽为,长为;(用含x的代数式表示)(2)若长比宽多2cm,求盒子的容积.29.目前节能灯在城市已基本普及,今年南京市面向农村地区推广,为相应号召,某商场计划购进甲、乙两种节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2030乙型4060(1)如何进货,进货款恰好为28000元?(2)如何进货,能确保售完这1000只灯后,获得利润为15000元?30.已知点A 、B在数轴上,点A表示的数为a,点B表示的数为b.(1)若a=7,b=3,则AB的长度为;若a=4,b=﹣3,则AB的长度为;若a=﹣4,b=﹣7,则AB的长度为.(2)根据(1)的启发,若A在B的右侧,则AB的长度为;(用含a,b 的代数式表示),并说明理由.(3)根据以上探究,则AB的长度为(用含a,b的代数式表示).参考答案与试题解析一、选择题(每小题2分,共16分)1.﹣2的倒数是()A. ﹣2B. 2C. ﹣D.考点:倒数.专题:计算题.分析:根据倒数的定义:乘积是1的两数互为倒数. 一般地,a =1 (a0),就说a(a0)的倒数是 .2.在数﹣32、|﹣2.5|、﹣(﹣2 )、(﹣3)3中,负数的个数是()A. 1B. 2C. 3D. 4考点:正数和负数.分析:根据乘方、相反数及绝对值,可化简各数,根据小于零的数是负数,可得答案.解答:解:﹣32=﹣90,|﹣2.5|=2.50,﹣(﹣2 )=2 0,(﹣3)3=﹣27,3.一个点从数轴上的﹣3表示的点开始,先向右移动2个单位长度,再向左移动4个单位长度,这时该点所对应的数是()A. 3B. ﹣5C.﹣1D. ﹣9考点:数轴.分析:根据数轴是以向右为正方向,故数的大小变化和平移变化之间的规律:左减右加,即可求解.解答:解:由题意得:向右移动2个单位长度可表示为+2,再向左移动4个单位长度可表示为﹣4,4.下列说法中,正确的是()A. 符号不同的两个数互为相反数B. 两个有理数和一定大于每一个加数C. 有理数分为正数和负数D. 所有的有理数都能用数轴上的点来表示考点:有理数的加法;有理数;数轴;相反数.分析:A、根据有相反数的定义判断.B、利用有理数加法法则推断.C、按照有理数的分类判断:有理数 D、根据有理数与数轴上的点的关系判断.解答:解:A、+2与﹣1符号不同,但不是互为相反数,错误;B、两个负有理数的和小于每一个加数,错误;C、有理数分为正有理数、负有理数和0,错误;D、所有的有理数都能用数轴上的点来表示,正确.5.若2x﹣5y=3,则4x﹣10y﹣3的值是()A. ﹣3B. 0C. 3D. 6考点:代数式求值.专题:计算题.分析:原式前两项提取2变形后,把已知等式代入计算即可求出值.解答:解:∵2x﹣5y=3,6.直线l外一点P与直线l上两点的连线段长分别为4cm,6cm,则点P到直线l的距离是()A. 不超过4cmB. 4cmC. 6cmD. 不少于6cm考点:点到直线的距离.分析:根据点到直线的距离是直线外的点与直线上垂足间线段的长度,垂线段最短,可得答案.解答:解:直线l外一点P与直线l上两点的连线段长分别为4cm,6cm,则点P到直线l的距离是小于或等于4,7.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个.设计划做x个中国结,可列方程()A. =B. =C. =D. =考点:由实际问题抽象出一元一次方程.分析:设计划做x个中国结,根据每人做6个,那么比计划多做了9个,每人做4个,那么比计划少7个,列方程即可.解答:解:设计划做x个中国结,8纸板上有10个无阴影的正方形,从中选1个,使得它与图中5个有阴影的正方形一起能折叠成一个正方体的纸盒,选法应该有()A. 4种B. 5种C. 6种D. 7种考点:展开图折叠成几何体.分析:利用正方体的展开图即可解决问题,共四种.二、填空题(每小题2分,共20分)9.在﹣5.3和6.2之间所有整数之和为 6 .考点:有理数的加法;有理数大小比较.专题:计算题.分析:找出在﹣5.3和6.2之间所有整数,求出之和即可.解答:解:在﹣5.3和6.2之间所有整数为﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,10.京沪高铁全长约1318公里,将1318公里用科学记数法表示为 1.318103 公里.考点:科学记数法表示较大的数.分析:科学记数法的表示形式为a10n的形式,其中110,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.11.若关于x的方程2x+a=0的解为﹣3,则a的值为 6 .考点:一元一次方程的解.专题:计算题.分析:把x=﹣3代入方程计算即可求出a的值.解答:解:把x=﹣3代入方程得:﹣6+a=0,12.已知两个单项式﹣3a2bm与na2b的和为0,则m+n的值是4 .考点:合并同类项.分析:根据合并同类项,可得方程组,根据解方程组,kedem、n的值,根据有理数的加法,可得答案.解答:解:由单项式﹣3a2bm与na2b的和为0,得13.固定一根木条至少需要两根铁钉,这是根据两点确定一条直线 .考点:直线的性质:两点确定一条直线.分析:根据直线的性质:两点确定一条直线进行解答.解答:解:固定一根木条至少需要两根铁钉,这是根据:两点确定一条直线,14.若A=68,则A的余角是 22 .考点:余角和补角.分析: A的余角为90﹣A.解答:解:根据余角的定义得:15.在数轴上,与﹣3表示的点相距4个单位的点所对应的数是1或﹣7 .考点:数轴.分析:根据题意得出两种情况:当点在表示﹣3的点的左边时,当点在表示﹣3的点的右边时,列出算式求出即可.解答:解:分为两种情况:①当点在表示﹣3的点的左边时,数为﹣3﹣4=﹣7;②当点在表示﹣3的点的右边时,数为﹣3+4=1;16.若|a|=3,|b|=2,且a+b0,那么a﹣b的值是 5,1 .考点:有理数的减法;绝对值.分析:根据绝对值的性质.解答:解:∵|a|=3,|b|=2,且a+b0,a=3,b=2或a=3,b=﹣2;17.一个长方体的主视图与俯视图如图所示,则这个长方体的表面积是 88 .考点:由三视图判断几何体.分析:根据给出的长方体的主视图和俯视图可得,长方体的长是6,宽是2,高是4,进而可根据长方体的表面积公式求出其表面积.解答:解:由主视图可得长方体的长为6,高为4,由俯视图可得长方体的宽为2,则这个长方体的表面积是(62+64+42)2=(12+24+8)2=442=88.18.BOC与AOC互为补角,OD平分AOC,BOC=n,则DOB= (90+ ) .(用含n的代数式表示)考点:余角和补角;角平分线的定义.分析:先求出AOC=180﹣n,再求出COD,即可求出DOB.解答:解:∵BOC+AOD=180,AOC=180﹣n,∵OD平分AOC,COD= ,三、解答题(共64分)19.计算:40[(﹣2)4+3(﹣2)].考点:有理数的混合运算.专题:计算题.分析:原式先计算中括号中的乘方及乘法运算,再计算除法运算即可得到结果.20.计算:[(﹣1)3+(﹣3)2]﹣[(﹣2)3﹣2(﹣5)].考点:有理数的混合运算.分析:先算乘方和和乘法,再算括号里面的,最后算减法,由此顺序计算即可.21.化简:3x+5(x2﹣x+3)﹣2(x2﹣x+3).考点:整式的加减.专题:计算题.分析:原式去括号合并即可得到结果.22.先化简,再求值:3mn﹣[6(mn﹣m2)﹣4(2mn﹣m2)],其中m=﹣2,n= .考点:整式的加减化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把m与n的值代入计算即可求出值.解答:解:原式=3mn﹣6mn+6m2+8mn﹣4m2=2m2+5mn,23.解方程:3(x﹣1)﹣2(1﹣x)+5=0.考点:解一元一次方程.专题:计算题.分析:方程去括号,移项合并,把x系数化为1,即可求出解.解答:解:去括号得:3x﹣3﹣2+2x+5=0,24.解方程: .考点:解一元一次方程.专题:计算题.分析:先把等式两边的项合并后再去分母得到不含分母的.一元一次方程,然后移项求值即可.解答:解:原方程可转化为: =25.在方格纸中,每一个正方形的面积为1,按要求画图,并回答问题.(1)将线段AB平移,使得点A与点C重合得到线段CD,画出线段CD;(2)连接AD、BC交于点O,并用符号语言描述AD与BC的位置关系;(3)连接AC、BD,并用符号语言描述AC与BD的位置关系.考点:作图-平移变换.分析: (1)根据图形平移的性质画出线段CD即可;(2)连接AD、BC交于点O,根据勾股定理即可得出结论;(3)连接AC、BD,根据平移的性质得出四边形ABDC是平形四边形,由此可得出结论.解答:解:(1)(2)连接AD、BC交于点O,BCAD且OC=OB,OA=OD;(3)∵线段CD由AB平移而成,CD∥AB,CD=AB,26.将长方形纸片的一角折叠,使顶点A落在点A处,折痕CB;再将长方形纸片的另一角折叠,使顶点D落在点D处,D在BA的延长线上,折痕EB.(1)若ABC=65,求DBE的度数;(2)若将点B沿AD方向滑动(不与A、D重合),CBE的大小发生变化吗?并说明理由.考点:角的计算;翻折变换(折叠问题).分析:(1)由折叠的性质可得ABC=ABC=65,DBE=DBE,又因为ABC+ABC+DBE+DBE=180从而可求得(2)根据题意,可得CBE=ABC+DBE=90,故不会发生变化.解答:解:(1)由折叠的性质可得ABC=ABC=65,DBE=DBEDBE+DBE=180﹣65﹣65=50,DBE=25(2)∵ABC=ABC,DBE=DBE,ABC+ABC+DBE+DBE=180,ABC+DBE=90,27.已知,点A、B、C、D四点在一条直线上,AB=6cm,DB=1cm,点C是线段AD的中点,请画出相应的示意图,并求出此时线段BC的长度.考点:两点间的距离.分析:分类讨论:点D在线段AB上,点D在线段AB的延长线上,根据线段的和差,可得AD的长,根据线段中点的性质,可得AC 的长,再根据线段的和差,可得答案.解答:解:当点D在线段AB上时由线段的和差,得AD=AB﹣BD=6﹣1=5cm,由C是线段AD的中点,得AC= AD= 5= cm,由线段的和差,得BC=AB﹣AC=6﹣ = cm;当点D在线段AB的延长线上时由线段的和差,得AD=AB+BD=6+1=7cm,由C是线段AD的中点,得AC= AD= 7= cm,28.为一个无盖长方体盒子的展开图(重叠部分不计),设高为xcm,根据图中数据 .(1)该长方体盒子的宽为(6﹣x)cm ,长为(4+x)cm ;(用含x的代数式表示)(2)若长比宽多2cm,求盒子的容积.考点:一元一次方程的应用;展开图折叠成几何体.专题:几何图形问题.分析: (1)根据图形即可求出这个长方体盒子的长和宽;(2)根据长方体的体积公式=长宽高,列式计算即可.解答:解:(1)长方体的高是xcm,宽是(6﹣x)cm,长是10﹣(6﹣x)=(4+x)cm;(2)由题意得(4+x)﹣(6﹣x)=2,解得x=2,所以长方体的高是2cm,宽是4cm,长是6cm;则盒子的容积为:642=48(cm3).29.目前节能灯在城市已基本普及,今年南京市面向农村地区推广,为相应号召,某商场计划购进甲、乙两种节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2030乙型4060(1)如何进货,进货款恰好为28000元?(2)如何进货,能确保售完这1000只灯后,获得利润为15000元?考点:一元一次方程的应用.分析:(1)设商场购进甲种节能灯x只,则购进乙种节能灯(1000﹣x)只,根据两种节能灯的总价为28000元建立方程求出其解即可;(2)设商场购进甲种节能灯a只,则购进乙种节能灯(1000﹣a)只,根据售完这1000只灯后,获得利润为15000元建立方程求出其解即可.解答:解:(1)设商场购进甲种节能灯x只,则购进乙种节能灯(1000﹣x)只,由题意得20x+40(1000﹣x)=28000,解得:x=600.则购进乙种节能灯1000﹣600=400(只).答:购进甲种节能灯600只,购进乙种节能灯400只,进货款恰好为28000元;(2)设商场购进甲种节能灯a只,则购进乙种节能灯(1000﹣a)只,根据题意得(30﹣20)a+(60﹣40)(1000﹣a)=15000,解得a=500.则购进乙种节能灯1000﹣500=500(只).答:购进甲种节能灯500只,购进乙种节能灯500只,能确保售完这1000只灯后,获得利润为15000元.30.已知点A、B在数轴上,点A表示的数为a,点B表示的数为b.(1)若a=7,b=3,则AB的长度为 4 ;若a=4,b=﹣3,则AB的长度为 7 ;若a=﹣4,b=﹣7,则AB的长度为 3 .(2)根据(1)的启发,若A在B的右侧,则AB的长度为 a﹣b ;(用含a,b的代数式表示),并说明理由.(3)根据以上探究,则AB的长度为 a﹣b或b﹣a (用含a,b的代数式表示).考点:数轴;列代数式;两点间的距离.分析: (1)线段AB的长等于A点表示的数减去B点表示的数;(2)由(1)可知若A在B的右侧,则AB的长度是a﹣b;(3)由(1)(2)可得AB的长度应等于点A表示的数a与点B表示的数b的差表示,应是右边的数减去坐标左边的数,故可得答案.解答:解:(1)AB=7﹣3=4;4﹣(﹣3)=7;﹣4﹣(﹣7)=3;(2)AB=a﹣b(3)当点A在点B的右侧,则AB=a﹣b;当点A在点B的左侧,则AB=b﹣a.下载全文。
2023-2024学年人教新版七年级上册数学期末复习试卷(含答案)

2023-2024学年人教新版七年级上册数学期末复习试卷一.选择题(共12小题,满分36分)1.的绝对值是a,相反数是b,则a+b=( )A.0B.C.D.2.如图是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体( )A.从正面看改变,从左面看改变B.从上面看不变,从左面看不变C.从上面看改变,从左面看改变D.从上面看改变,从左面看不变3.有理数a、b在数轴上的对应的位置如图所示,则正确的是( )A.a+b<0B.ab>0C.a﹣b>0D.|a|<|b|4.下列算式中,计算结果是负数的是( )A.(﹣2)+5B.|﹣3﹣2|C.3×(﹣3)D.(﹣5)25.若x2﹣3x的值为4,则3x2﹣9x﹣3的值为( )A.1B.9C.12D.156.下列说法正确的是( )A.单项式﹣a的系数和次数都是1B.x5﹣5x2y+2x三次项的系数为5C.单项式的系数和次数分别为,4D.π+4是单项式7.若3m4n|a|与﹣m|b﹣1|n2是同类项,且a<b,则a、b的值为( )A.a=2,b=5B.a=﹣2,b=﹣3C.a=±2,b=5D.a=±2,b=﹣38.若(k﹣2)x|k|﹣1﹣3=0是关于x的一元一次方程,那么k2﹣2k+1的值为( )A.1B.9C.1或9D.09.已知线段AB=10cm,点C是线段AB上一点,BC=4cm,点M和点N分别是线段AB 和线段BC的中点,则线段MN的长度是( )A.8cm B.7cm C.5cm D.3cm10.大车平均速度每小时80公里,小车平均速度每小时100公里,则大车和小车行驶完同一条路的时间之比是( )A.80:100B.100:80C.4:5D.5:411.如图,在某世博园内从花城丝路A处看见福建厦门园C在其北偏东62°的方向上,从丝路起点B处看见福建厦门园C在其北偏东13°的方向上(花城丝路与丝路起点约在同一直线上),则从福建厦门园C处看A,B两处的视角∠ACB的度数为( )A.13°B.26°C.49°D.62°12.如图,表中给出的是某月的月历,任意用“H”型框选中7个数(如阴影部分所示),则这7个数的和不可能是( )A.63B.70C.98D.105二.填空题(共6小题,满分18分)13.随着通讯市场竞争的日益激烈,某通讯公司的手机市话收费按原标准每分钟降低了a元后,再次下调了30%,现在的收费标准是每分钟b元,则原收费标准每分钟为 元.14.写出一个只含字母a、b的三次三项式,并按字母a的降幂排列是 .15.已知a、b、c、d是有理数,|a﹣b|≤8,|c﹣d|≤17,且|a﹣b﹣c+d|=25,则|b﹣a|﹣|d﹣c|= .16.的值是 .17.x=2是方程x﹣m=1的解,则m= .18.七棱柱有 个面, 个顶点.三.解答题(共7小题,满分66分)19.计算:(1);(2).20.解方程:8x=.21.“整体思想”是中学数学学习中的一种重要思想,它在多项式的化简与求值中应用极为广泛,例如把(a+b)看成一个整体:4(a+b)+3(a+b)=(4+3)(a+b)=7(a+b),请应用整体思想解答下列问题:(1)化简:5(m+n)2﹣7(m+n)2+3(m+n)2;(2)已知a﹣2b=2,2b﹣c=﹣5,c﹣d=9,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.22.某中学对10名七年级男学生进行了引体向上的测试,以做4个为基准进行记录,超过的次数用正数表示,不足的次数用负数表示.他们的成绩记录如表:+1+3﹣10+1﹣1+1+2+2﹣1(1)学校规定:做4个(含4个)以上者为达标.这10名男学生中,达标的占百分之几?(2)在这次测试中,这10名男学生做引体向上次数最多与次数最小相差几次?23.如图是广告公司设计的商标图案,若每个小长方形的长为x,宽为y.(1)求阴影部分面积;(2)当x=2,y=1时,阴影部分面积是多少?24.如图,数轴上A、B两点表示的数分别为a,b,且点A在点B的左边,|a|=5,a+b=20,ab<0.(1)求a,b的值;(2)现有一动点P从点A出发,以每秒3个单位长度的速度向右运动,当PA=3PB时,求P运动的时间.(3)若点P从点A出发,以每秒3个单位长度的速度向右运动,同时数轴上另一动点Q 从点B出发,以每秒2个单位长度的速度向左运动.经过多长时间,两动点在数轴上相距10个单位长度?25.如图,已知OM平分∠AOC,ON平分∠BOC.(1)如果∠AOB=100°,∠BOC=40°,求∠MON的度数;(2)如果∠AOB=α,试求∠MON的度数.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:根据题意可得,a=|﹣|=,b=﹣(﹣)=,故a+b==.故选:D.2.解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;主视图发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;左视图没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;俯视图发生改变.故选:D.3.解:由题意可得:a<0<b,且|a|>|b|,故选项D不符合题意;∴a+b<0,故选项A符合题意;ab<0,故选项B不符合题意;a﹣b<0,故选项C不符合题意;故选:A.4.解:∵(﹣2)+5=3>0,∴选项A不符合题意;∵|﹣3﹣2|=5>0,∴选项B不符合题意;∵3×(﹣3)=﹣9<0,∴选项C符合题意;∵(﹣5)2=25>0,∴选项D不符合题意.故选:C.5.解:由题意可知,x2﹣3x=4,∴3x2﹣9x﹣3=3(x2﹣3x)﹣3=3×4﹣3=9.故选:B.6.解:A、单项式﹣a的系数是﹣1,次数是1,原说法错误,故此选项不符合题意;B、x5﹣5x2y+2x三次项的系数为﹣5,原说法错误,故此选项不符合题意;C、单项式的系数和次数分别为,3,原说法错误,故此选项不符合题意;D、π+4是单项式,原说法正确,故此选项符合题意;故选:D.7.解:∵3m4n|a|与﹣m|b﹣1|n2是同类项,∴|a|=2,|b﹣1|=4,解得:a=±2,b=5或﹣3,又∵a<b,∴a=±2,b=5.故选:C.8.解:∵(k﹣2)x|k|﹣1﹣3=0是关于x的一元一次方程,∴k﹣2≠0且|k|﹣1=1,解得:k=﹣2,∴k2﹣2k+1=(﹣2)2﹣2×(﹣2)+1=9,故选:B.9.解:∵AB=10cm点M是AB的中点,∴BM=AB=5(cm),∵BC=4cm,点N是BC的中点,∴BN=BC=2cm,∴MN=BM﹣BN=3cm,∴线段MN的长度为3cm.故选:D.10.解:设该条路的长度为S,则:=,即大车和小车行驶完同一条路的时间之比是5:4.故选:D.11.解:由题意得:∠CAB=90°﹣62°=28°,∠ABC=90°+13°=103°,∴∠ACB=180°﹣∠CAB﹣∠ABC=49°.故选:C.12.解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣6、x﹣1、x、x+1、x+6、x+8,∴这7个数的和为:x﹣8+x﹣6+x﹣1+x+x+1+x+6+x+8=7x,当7x=63时,此时x=9,当7x=70时,此时x=10,当7x=98时,此时x=14,当7x=105时,此时x=15,由图可知:14的左没有数字,则这7个数的和不可能是98.故选:C.二.填空题(共6小题,满分18分)13.解:根据题意知原收费标准每分钟为+a=(+a)元,故答案为:(+a).14.解:由题意得:a3+a2b+a(答案不唯一),故答案为:a3+a2b+a.15.解:∵|a﹣b|≤8,|c﹣d|≤17,∴|a﹣b|+|c﹣d|≤8+17=25.∵|a﹣b﹣c+d|=|(a﹣b)﹣(c﹣d)|=25,∴a﹣b与c﹣d符号相反,并且|a﹣b|=8,|c﹣d|=17,∴|b﹣a|﹣|d﹣c|=|a﹣b|﹣|c﹣d|=8﹣17=﹣9.故答案为:﹣9.16.解:原式=(﹣3)×(﹣)×××(﹣)=﹣(3×)×(×)=﹣1×1=﹣1,故答案为:﹣1.17.解:把x=2代入方程得:2﹣m=1,解得:m=1,故答案为:1.18.解:七棱柱有2个底面,7个侧面,因此有9个面,七棱柱有14个顶点,故答案为:9,14.三.解答题(共7小题,满分66分)19.解:(1)原式=×(﹣24)﹣×(﹣24)﹣×(﹣24)=﹣9+4+18=13;(2)原式=﹣1÷25×+=﹣+=.20.解:8x=,系数化为1得:x=.21.解:(1)原式=5(m+n)2﹣7(m+n)2+3(m+n)2=(5﹣7+3)(m+n)2=(m+n)2.(2)原式=a﹣c+2b﹣d﹣2b+c=(a﹣2b)+(2b﹣c)+(c﹣d).当a﹣2b=2,2b﹣c=﹣5,c﹣d=9时,原式=2﹣5+9=6.22.解:(1)7÷10=,答:这10名男学生中,达标的占;(2)3﹣(﹣1)=3+1=4(次),答:这10名男学生做引体向上次数最多与次数最小相差4次.23.解:(1)如图,S阴影=S矩形ABCD﹣S△ABE﹣S△AHF﹣S△ECG=4x×4y﹣x×4y﹣×3x×3y﹣×3x×3y=16xy﹣2xy﹣xy﹣xy=5xy.(2)当x=2,y=1时,5xy=5×2×1=10.∴阴影部分面积为:10.24.解:(1)∵|a|=5,∴a=5或a=﹣5,∵A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,∴a<b,∵ab<0,∴a<0,b>0,∴a=﹣5,∵a+b=20,∴﹣5+b=20,∴b=25,答:a、b的值分别是﹣5、25.(2)设运动的时间为t秒,由(1)得,点A、B表示的数分别是﹣5、25,∴AB=25﹣(﹣5)=30,根据题意得3t=3(30﹣3t)或解3t=3(3t﹣30),解得t=7.5或t=15,答:当PA=3PB时,点P运动时间为7.5秒或15秒.(3)设经过x秒,两动点在数轴上相距10个单位长度,根据题意得3t+2t+10=30或3t+2t﹣10=30,解得t=4或t=8,答:经过4秒或8秒两动点在数轴上相距10个单位长度.25.解:(1)∵OM平分∠AOC,ON平分∠BOC,∴,,∵∠AOB=100°,∠BOC=40°,∴∠AOC=∠AOB+∠BOC=140°,∴,,∴∠MON=∠MOC﹣∠NOC=70°﹣20°=50°;(2)∵OM平分∠AOC,ON平分∠BOC,∴,,∵∠AOB=α,∴∠MON=∠MOC﹣∠NOC=∠AOC﹣∠BOC=∠AOB=∠α.。
2023—2024学年北师大新版七年级上学期数学期末考试试卷(附答案)

最新北师大新版七年级上学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟选择题(每题只有一个正确选项,每小题3分,满分30分)一、的倒数是()1、A.2022B.﹣2022C.D.﹣2、中国古代著作《九章算术》在世界数学史上首次正式引入负数.如果盈利20元记作+20元,那么亏本10元记作()A.10元B.20元C.﹣10元D.﹣20元3、如图,所示的几何体是由若干个大小相同的小正方体组成的,则该几何体的左视图(从左面看)是()A.B.C.D.4、代数式5x﹣7与13﹣2x互为相反数,则x的值是()A.B.2C.﹣2D.无法计算5、下列调查中,调查方式的选取不合适的是()A.为了了解全班同学的睡眠状况,采用普查的方式B.对“天宫二号”空间实验室零部件的检查,采用抽样调查的方式C.为了解一批LED节能灯的使用寿命,采用抽样调查的方式D.为了解全市初中生每天完成作业所需的时间,采取抽样调查的方式6、数轴上与表示﹣1的点距离10个单位的数是()A.10B.±10C.9D.9或﹣117、如果与﹣4x3y2b﹣1是同类项,那么a,b的值分别是()A.1,2B.0,2C.2,1D.1,18、已知x=﹣2是方程5x+12=﹣a的解,则a2+a﹣6的值为()A.0B.6C.﹣6D.﹣189、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是()A .x +1=2(x ﹣2)B .x +3=2(x ﹣1)C .x +1=2(x ﹣3)D .10、如图所示,图(1)表示1张餐桌和6张椅子(三角形表示餐桌,每个小圆表示一张椅子),图(2)表示2张餐桌和8张椅子,图(3)表示3张餐桌和10张椅子…;若按这种方式摆放25张桌子需要的椅子张数是( )A .25 张B .50 张C .54 张D .150 张二、填空题(每小题3分,满分18分)11、钟表上7点15分,时针与分针的夹角为12、某商场以每件200元的价格购进一批秋季夹克衫,由于季节突变导致滞销,于是商场决定在标价基础上打八折销售,每件夹克衫仍可获利20%,则该夹克衫的标价为 元.13、把一张长方形纸条按图的方式折叠后,量得∠AOB ′=110°,则∠B ′OC = .14、一个正方体的表面展开图如图所示,这个正方体的每一个面上都填有一个数字,且各相对面上所填的数字互为倒数,则(yz )x 的值为 . 15、如图所示,已知数 a ,b ,c 在数轴上对应点的位置:化简|a ﹣b |+|b ﹣c |得 .16、已知整数a 1,a 2,a 3,a 4⋯满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|⋯依此类推,则a 2023的值等于 .第13题图第14题图 第15题图最新北师大新版七年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:﹣16÷(﹣2)3﹣22×|﹣|+(﹣1)2023.18、解方程:﹣=1.19、先化简再求值:,其中x=﹣4,y=.20、我校为了响应国家“阳光体育”的号召,增设了排球、篮球、足球三项体育运动项目,要求每位学生必须参加,且只能参加其中一种球类运动.初一课题小组对同学们喜爱的球类运动做了一个调查,然后绘制了下面不完全的条形统计图和扇形统计图.请解答下列问题:(1)本次调查了多少名学生?(2)请把条形统计图补充完整.(3)在扇形统计图中,表示“排球”的扇形的圆心角的度数为.(4)在我校初中3000名学生中,选择篮球运动的大约有多少人?21、已知:A=3x2+2xy+10y﹣1,B=x2﹣xy.(1)计算:A﹣3B;(2)若A﹣3B的值与y的取值无关,求x的值.22、如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点(1)求线段MN的长;(2)若C为线段AB上任意一点,满足AC+CB=acm,其他条件不变,你能猜出线段MN的长度吗?并说明理由.23、已知,O为直线AB上一点,∠DOE=90°.(1)如图1,若∠AOC=130°,OD平分∠AOC.①求∠BOD的度数;②请通过计算说明OE是否平分∠BOC.(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.24、若关于x的方程ax+b=0(a≠0)的解与关于y的方程cy+d=0(c≠0)的解满足|x﹣y|=1,则称方程ax+b=0(a≠0)与方程cy+d=0(c≠0)是“美好方程”.例如:方程2x+1=5的解是x=2,方程y﹣1=0的解是y=1,因为|x﹣y|=1,方程2x+1=5与方程y﹣1=0是“美好方程”.(1)请判断方程5x﹣3=2与方程2(y+1)=3是不是“美好方程”,并说明理由;(2)若关于x的方程﹣x=2k+1与关于y的方程4y﹣1=3是“美好方程”,请求出k的值;(3)若无论m取任何有理数,关于x的方程=m(a,b为常数)与关于y的方程y+1=2y﹣5都是“美好方程”,求ab的值.25、如图1,已知∠AOC=140°,∠BOC的余角比它的补角的少10°.(1)求∠BOC的度数;(2)如图1,当射线OP从OB处绕点O以4度/秒的速度逆时针旋转,在旋转过程中,保持射线OP始终在∠BOA的内部,当∠POC=10°时,求旋转时间.(3)如图2,若射线OD为∠AOC的平分线,当射线OP从OB处绕点O以4度/秒的速度逆时针旋转,同时射线OT从射线OD处以x度/秒的速度绕点O 顺时针旋转,当这两条射线重合于射线OE处(OE在∠DOC的内部)时,,求x的值.(注:本题中所涉及的角都是小于180°的角)最新北师大新版七年级上学期数学期末考试试卷(参考答案)11、127.5°;12、300 ;13、35°;14、﹣;15、2b﹣a﹣c;16、﹣1011三、解答题17、﹣1.18、x=﹣319、16.20、解:(1)40名学生;(2)8(人)(图略),(3)72°;(4)900人.21、解:(1)A﹣3B=5xy+10y﹣1;(2)x=﹣2.22、解:(1)7cm;(2)a(cm).23、解:(1)①115°;②OE平分∠BOC.(2)50°.24、解:(1)不是“美好方程”;(2)当x=0时,k=﹣;当x=2时,k=0;(3)ab的值为20或28.25、解:(1)20°;(2)旋转时间为2.5秒或7.5秒.(3)x=5.。
2025届重庆市十八中学七年级数学第一学期期末考试试题含解析

2025届重庆市十八中学七年级数学第一学期期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在23| 3.5|3,05⎛⎫---- ⎪⎝⎭、、中,最小的数是( ) A .3 B .﹣|﹣3.5| C .235⎛⎫-- ⎪⎝⎭ D .02.为了解汝集镇三所中学七年级680名学生的期末考试数学成绩,抽查了其中60名学生的期末数学成绩进行统计分析.下面叙述正确的是( )A .680名学生是总体B .60名学生的期末数学成绩是总体的一个样本C .每名学生是总体的一个个体D .以上调查属于全面调查3.某中学组织初一部分学生参加社会实践活动,需要租用若干辆客车.若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.设租了x 辆客车,则可列方程为( )A .4010431x x +=+B .4010431x x -=-C .401043(1)x x +=-D .4010431x x +=-4.点A 、B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论,其中正确的是( ) ①b ﹣a <1;②a +b >1;③|a |<|b |;④ab >1.A .①②B .③④C .①③D .②④5.在下列单项式中,与是同类项的是( ) A . B . C . D .6.下列各式中,是同类项的是( )A .22a b 与23b a -B .2x π与212xC .2212m n -与225tm nD .6xy -与6yz -7.如果方程24=x 与32x k +=-方程的解相同,则k 的值为( )A .8-B .4-C .4D .88.电视剧《铁血将军》在我市拍摄,该剧展示了抗日英雄范筑先的光辉形象.某校为了解学生对“民族英雄范筑先”的知晓情况,从全校2400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是 ( )A .2400名学生B .100名学生C .所抽取的100名学生对“民族英雄范筑先”的知晓情况D .每一名学生对“民族英雄范筑先”的知晓情况9.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式10.数9的绝对值是( )A .9B .19C .﹣9D .19- 11.∠1与∠2互补,∠3与∠1互余,∠2+∠3=210°,则∠2是∠1的( )A .2倍B .5倍C .11倍D .不确定12.A 、B 两地相距350千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t 小时两车相距50千米,则t 的值是( )A .2B .1.5C .2或1.5D .2或2.5二、填空题(每题4分,满分20分,将答案填在答题纸上)13.对于X ,Y 定义一种新运算“*”:X *Y =aX +bY ,其中a ,b 为常数,等式右边是通常的加法和乘法运算.已知:3*5=15,4*7=28,那么2*3=________.14.一个角的补角与它的余角的3倍的差是40°,则这个角为_____.15.若多项式4322(1)(2)31x a x b x x -++---中不含3x 项和2x 项,则ab =______.16.已知225m a b -和437n a b -是同类项,则m n +的值是_______.17.计算201920191()22-⨯=__________.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)小明爸爸上周买进某种股票1000股,每股27.3元,下表为本周每天该股票的涨跌情况:①星期三收盘时,每股是多少元?②本周内最高价是每股多少元?最低价是每股多少元?③若小明爸爸按本周五的收盘价将股票全部卖出,你认为他会获利吗?19.(5分)定义如下:使等式222ab a b =--成立的一对有理数a ,b 叫“理想有理数对”,记为(a ,b ),如:277442233⨯=-⨯-,所以数对(4,73)是“理想有理数对”. (1)判断数对(-1,1)是否为“理想有理数对”,并说明理由;(2)若数对(-3,m )是“理想有理数对”,求m 的值,并求代数式()231m m --的值. 20.(8分)解下列方程(1)12225y y y -+-=- (2)()()()22431233x x x ---=-+21.(10分)滴滴快车是一种便捷的出行工具,分为普通快车和优享型快车;两种.下表是普通快车的收费标准:(1)张敏乘坐滴滴普通快车,行车里程7公里,行车时间15分钟,求张敏下车时付多少车费?(2)王红乘坐滴滴普通快车,行车里程22公里,下车时所付车费63.4元,则这辆滴滴快车的行车时间为多少分钟?22.(10分)解方程:2(x ﹣1)﹣2=4x23.(12分)已知多项式3x 2+my ﹣8减去多项式﹣nx 2+2y+7的差中,不含有x 2、y 的项,求n m +mn 的值.参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、B【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:﹣|﹣3.5|=﹣3.5,﹣(﹣325)=3.4,∵﹣3.5<0<3<3.4,∴﹣|﹣3.5|<0<3<﹣(﹣325),∴在23| 3.5|35⎛⎫---- ⎪⎝⎭、、中,最小的数是﹣|﹣3.5|.故选B.【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2、B【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本即可.【详解】A、680名学生的期末考试数学成绩是总体,故A不符合题意;B、60名学生的期末数学成绩是总体的一个样本,故B符合题意;C、每名学生的期末数学成绩是总体的一个个体,故C不符合题意;D、以上调查属于抽样调查,故D不符合题意;故选:B.【点睛】本题考查了总体、个体、样本和抽样调查,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.3、A【解析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后进行分析从而得到正确答案.【详解】设有x辆客车,由题意得:每辆客车乘40人,则有10人不能上车,总人数为40x+10,若每辆客车乘43人,则只有1人不能上车,则总人数为43x+1,列方程为40x+10=43x+1;故选A .【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程. 4、C【分析】根据图示,可得b <﹣3,1<a <3,据此逐项判断即可.【详解】①∵b <a ,∴b ﹣a <1;②∵b <﹣3,1<a <3,∴a +b <1;③∵b <﹣3,1<a <3,∴|b |>3,|a |<3,∴|a |<|b |;④∵b <1,a >1,∴ab <1,∴正确的是:①③,故选C .【点睛】本题考查了绝对值的含义和求法,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a 、b 的取值范围. 5、C 【解析】试题分析:与是同类项的是.故选C . 考点:同类项.6、B【分析】由题意直接根据同类项的定义进行分析,即可求出答案.【详解】解:A. 22a b 与23b a -,不是同类项,此选项错误;B. 2x π与212x ,是同类项,此选项正确; C. 2212m n -与225tm n ,不是同类项,此选项错误; D. 6xy -与6yz -,不是同类项,此选项错误.【点睛】本题考查同类项的定义,解题的关键是正确理解同类项的定义即如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.7、A【分析】根据24=x 先求出x 的值,然后把x 的值代入32x k +=-求出k 即可.【详解】解:由方程24=x 可得x=2,把x=2代入32x k +=-得:62+=-k解得8k =-.故选:A【点睛】本题考查了同解方程,掌握同解方程即为两个方程解相同的方程是解题的关键.8、C【解析】试题分析:首先根据样本的含义:从总体中取出的一部分个体叫做这个总体的一个样本,可得在这次调查中,样本是所抽取的100名学生对“民族英雄范筑先”的知晓情况.然后判断出这次调查的总体是:2400名学生对“民族英雄范筑先”的知晓情况.故选C考点:总体、个体、样本、样本容量9、B【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A .为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C .为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D .为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B .【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【分析】根据绝对值的意义直接进行求解即可.【详解】因为9的绝对值是9;故选A.【点睛】本题主要考查绝对值的意义,熟练掌握绝对值的意义是解题的关键.11、B【分析】根据和为90度的两个角互为余角,和为180度的两个角互为补角列出算式,计算即可.【详解】解:∵∠1与∠2互补,∴∠1+∠2=180°,则∠2=180°−∠1,∵∠3与∠1互余,∴∠3+∠1=90°,则∠3=90°−∠1,∵∠2+∠3=210°,∴180°−∠1+90°−∠1=210°,解得:∠1=30°,则∠2=150°,150°÷30°=5,即∠2是∠1的5倍,故答案为:B.【点睛】本题考查的余角和补角的概念,掌握和为90度的两个角互为余角,和为180度的两个角互为补角是解题的关键.12、C【分析】设t时后两车相距50千米,分为两种情况,两人在相遇前相距50千米和两人在相遇后相距50千米,分别建立方程求出其解即可.【详解】设t时后两车相距50千米,由题意,得350-110t-80t=50或110t+80t-350=50,解得:t=1.5或1.故选:C【点睛】本题考查了列一元一次方程解实际问题的运用,分类讨论思想的运用,由行程问题的数量关系建立方程是关键.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、2义计算2*3即可.【详解】∵X*Y=aX+bY , 3*5=15,4*7=28,∴35154728a b a b +=⎧⎨+=⎩, 解得3524a b =-⎧⎨=⎩, ∴X*Y=-35X+24Y ,∴2*3=-35×2+24×3=2, 故答案为2.【点睛】本题考查了新定义运算与解二元一次方程组,求出a 、b 的值是解题的关键.14、1°【分析】设这个角为x°,则它的补角为(180-x)°,余角为(90-x)°,再根据题意列出等量关系.【详解】解:设这个角为x°,则其余角为(90﹣x)°,补角为(180﹣x)°,依题意有180-x - 3(90-x)=40,解得x =1.故这个角是1°,故答案为:1°.【点睛】本题考查了补角及余角的概念等,熟练掌握补角和余角的概念是解决本题的关键.15、-2【分析】根据多项式系数与项之间的关系,当对应项的系数为零时,可视作多项式不含该项,进而利用方程思想求字母的值即得. 【详解】多项式4322(1)(2)31x a x b x x -++---中不含3x 项和2x 项 ∴1=0+a ,2=0-b∴=1a ,=2b∴=122-⨯=-ab故答案为:2-【点睛】本题考查多项式含参问题,正确找到题目中“不含项”对应的系数列出方程是解题关键,先合并同类项再确定不含项的系数是此类题的易错点.【分析】根据同类项的定义列式求出m 、n 的值,然后计算m n +即可.【详解】解:∵225m a b -和437n a b -是同类项,∴2m =1,3−n =1,解得:m =2,n =2,则m +n =2+2=1.故答案为:1.【点睛】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个相同:①所含字母相同,②相同字母的指数相同.17、-1【解析】根据积的乘方的运算方法,求出算式的值是多少即可.【详解】解:(−12)2019×22019=[(−12)×2]2019=(-1)2019=-1. 故答案为:-1.【点睛】此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数).三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、①28.3元;②29.8元,25.8元;③不会【分析】(1)根据题意列出算式27.31 1.5 1.5++-,计算即可求解;(2)根据题意可以得到周二股价最高,周四股价最低,分别计算即可求解;(3)根据正负数的意义表示周五的股价,为正数则盈利,为负数则亏损,据此判断即可.【详解】解:(1)27.31 1.5 1.528.3++-=(元)答:星期三收盘时每股是28.3元.(2)27.31 1.529.8++=(元),27.31 1.5 1.5 2.525.8++--=(元)答:本周内最高价是每股29.8元,最低价是每股25.8元(3)1 1.5 1.5 2.50.51++--+=-答:若小明爸爸按本周五的收盘价将股票全部卖出,他不会获利.【点睛】本题考查了正负数的实际应用和有理数的加减混合运算,正确理解题意并正确列出算式是解题关键.【分析】(1)根据“理想有理数对”的定义即可判断;(2)根据“理想有理数对”的定义,构建方程可求得m 的值,再代入原式即可解决问题.【详解】(1)111-⨯=-,()212123--⨯-=-,∴11-⨯≠()21212--⨯-, ∴()11-,不是“理想有理数对”;(2)由题意得:()23322m m -=---,解得:7m =-, ()231m m --()()27317⎡⎤=----⎣⎦ 4924=-25=.【点睛】本题考查了有理数的混合运算、“理想有理数对”的定义,解题的关键是理解题意,灵活运用所学知识解决问题.20、(1)711=y (2)x=0 【分析】(1)方程去分母,去括号,移项,合并同类项,系数化为1,即可得解;(2)方程去括号,移项,合并同类项,系数化为1,即可得解.【详解】解:(1)12225y y y -+-=- )2(220)1(510+-=--y y y42205510--=+-y y y54202510--=+-y y y117=y711=y (2)()()()22431233x x x ---=-+4831239x x x --+=--4332981x x x -+=-+-0x =【点睛】本题考查了解一元一次方程.解一元一次方程的步骤为:去分母,去括号,移项,合并同类项,系数化为1.21、(1)张敏下车时付22元车;(2)这辆滴滴快车的行车时间为26分钟【分析】(1)根据普通快车的收费标准即可求解;(2)设这辆滴滴快车的行车时间为x 分钟,根据题意列出方程即可求解.【详解】解:(1)()()8 2.0720.415522+⨯-+⨯-=(元)答:张敏下车时付22元车费.(2)设这辆滴滴快车的行车时间为x 分钟,依题意有()()()8 2.02220.45 1.0221563.4x +⨯-+⨯-+⨯-=,解得26x =答:这辆滴滴快车的行车时间为26分钟.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意列出方程求解.22、x =﹣1.【分析】根据一元一次方程的解法,去括号,移项合并同类项,系数化为1即可.【详解】解:去括号得:1x ﹣1﹣1=4x ,移项合并得:﹣1x =4,解得:x =﹣1,故答案为:x =-1.【点睛】本题考查了一元一次方程的解法,掌握一元一次方程的解法是解题的关键.23、1.【分析】由题意列出关系式,去括号合并同类项,由于不含有x 2、y 的项,得到它们的系数为0,求出m 、n 的值,将m 、n 的值代入所求式子中计算,即可求出值.【详解】1x 2+my ﹣8﹣(﹣nx 2+2y+7)=1x 2+my ﹣8+nx 2﹣2y ﹣7=(1+n ) x 2+(m ﹣2)y ﹣15因为不含x 2,y 项所以1+n=0,m ﹣2=0,得:n=﹣1,m=2,所以n m+mn=(﹣1)2+2×(﹣1)=1.【点睛】熟练掌握去括号的法则以及合并同类项的法则是解题的关键.。
初一上学期数学期末考试试卷与标准答案

初一上学期数学期末考试试卷与标准答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.333...D. -5标准答案:A. √22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 26标准答案:C. 293. 下列等式中正确的是:A. √9 = 3B. √8 = 2√2C. √(√8) = 2D. √(√9) = 3标准答案:B. √8 = 2√24. 下列哪个数是负数:A. -3B. 2C. 0D. -2标准答案:A. -35. 若|x|=5,则x的值为:A. 5B. -5C. 5或-5D. 0标准答案:C. 5或-56. 下列哪个数是正数:A. -3B. -2C. 0D. 2标准答案:D. 27. 已知a=4,b=3,则a²-b²的值是:A. 7B. 13C. 25D. 16标准答案:C. 258. 下列哪个数是无理数:A. √3B. √4C. √9D. √16标准答案:A. √39. 下列哪个数是整数:A. -3/2B. 2.5C. -5/3D. 4标准答案:D. 410. 下列哪个数是负数:A. -2B. 3C. 0D. 2标准答案:A. -2二、填空题(每题4分,共40分)1. 若a=5,b=3,则a²+b²=______。
标准答案:342. 下列哪个数是正数:______。
标准答案:23. 下列哪个数是无理数:______。
标准答案:√34. 下列哪个数是整数:______。
标准答案:45. 若|x|=5,则x的值为______。
标准答案:5或-5三、解答题(每题10分,共20分)1. 解方程:2x-5=3标准答案:x=42. 已知a=4,b=3,求a²-b²的值。
标准答案:25四、应用题(每题10分,共20分)1. 小明的身高是1.6米,小华的身高是1.5米,求小明比小华高多少。
人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试题一、单选题1.﹣8的相反数是()A .8B .18C .18-D .-82.下列方程为一元一次方程的是()A .538+=B .24x y +=C .30y -=D .22x x =+3.下列几何体中,面的个数最少的是()A .B .C .D .4.整式23xy -的系数是()A .-3B .3C .3x -D .3x5.如图,数轴上A 、B 两点表示的数分别为a 、b ,则a+b 的值是()A .负数B .0C .正数D .无法判断6.将数据3800000用科学记数法表示为()A .63.810⨯B .53.810⨯C .60.3810⨯D .53810⨯7.若5620'A ∠=︒,则A ∠补角的大小是()A .3440'︒B .3340'︒C .12440'︒D .12340'︒8.下列各图中表示射线MN ,线段PQ 的是()A .B .C .D .9.下列是根据等式的性质进行变形,正确的是()A .若a b =,则66a b +=-B .若ax ay =,则x y =C .若11a b -=+,则a b =D .若55a b =--,则a b =10.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D ¢处,若130∠=︒,则2∠的度数为()A .30°B .60°C .50°D .55°二、填空题11.11月24日,某市的最低温度是8-℃,最高温度比最低温度高16℃,则该市的最高温度是__℃.12.如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是_____.13.一件校服,按标价的8折出售,售价是x 元,这件校服的标价是____元.14.已知1x =是关于x 的一元一次方程20x a -=的解,则a 的值为_____.15.若213n x y -与3m x y 是同类项,则m n +=_____.16.如图,甲从点A 出发向北偏东62︒方向走到点B ,乙从点A 出发向南偏西18︒方向走到点C ,则BAC ∠的度数是______.17.观察下列图形,用黑、白两种颜色的五边形地砖按如图所示的规律拼成若干个蝴蝶图案,则第n 个图案中白色地砖有___块.18.若有理数a ,b ,c 在数轴上的位置如图所示,则化简:2a c a b c b +++--=______.三、解答题19.计算:21(4)29()53-÷+⨯---.20.解方程:3x+2(x ﹣2)=6.21.先化简,再求值:7xy+2(3xy ﹣2x 2y )﹣13xy ,其中x =﹣1,y =2.22.把下列各数在数轴上表示出来,并将它们按从大到小的顺序排列.1.5--,3-,0,122+,()22-,12-.23.用简便方法计算:(1)110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭(2)31.530.750.534⎛⎫-⨯-⨯- ⎪⎝⎭24.甲每天加工零件80个,甲加工3天后,乙也加入加工同一种零件,再经过5天,两人共加工这种零件1120个,问乙每天加工这种零件多少个?25.如图,点C 为线段AB 上一点,点D 为BC 的中点,且12AB =,4AC CD =.(1)求AC 的长;(2)若点E 在直线AB 上,且3AE =,求DE 的长.26.“文明其精神,野蛮其体魄”,为进一步提升学生体质健康水平,我市某校计划用640元购买12个体育用品,备选体育用品及单价如表:备用体育用品足球篮球排球单价(元)806040(1)若640元全部用来购买足球和排球共12个,求足球和排球各买多少个?(2)若学校先用一部分资金购买了m 个排球,再用剩下的资金购买了相同数量的足球和篮球,此时正好剩余40元,求m 的值.27.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m ).(1)求阴影部分的面积(用含x 的整式表示并保留π);(2)当9x =,π取3时,求阴影部分的面积.28.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=_______(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=_______(直接写出结果).参考答案1.A【分析】根据相反数的概念:只有符号不同的两个数互为相反数可得答案.【详解】解:-8的相反数是8,故选A.【点睛】此题主要考查了相反数,关键是掌握相反数的定义.2.C【分析】根据一元一次方程的定义进行判断即可.+=不含未知数,所以不是一元一次方程;【详解】538+=含有两个未知数,所以不是一元一次方程;x y24y-=含有一个未知数,且未知数的最高次数为1,所以是一元一次方程;3022x x=+含有一个未知数,且未知数的项的次数为2,所以不是一元一次方程.故选:C.【点睛】本题考查了一元一次方程的定义,即只含有一个未知数,且未知数的项的次数为1的整式方程,叫做一元一次方程.3.C【分析】根据三棱柱、四棱柱、圆锥和圆柱的特点找到答案即可.【详解】三棱柱有5个面;长方体有6个面;圆锥有一个曲面和一个底面共2个面;圆柱有一个侧面和两个底面共3个面,面的个数最少的是圆锥.故选C .【点睛】本题考查了立体图形的概念,根据几何体直观的写出其所有的面是解答本题的关键,属于基础题,比较简单.4.A【分析】根据单项式的系数的定义求解即可.【详解】解:23xy -的系数为-3,故选A .【点睛】本题主要考查了单项式的系数,解题的关键在于能够熟练掌握单项式的系数的定义.5.C【分析】根据数轴判断出a ,b 的取值范围,从而进一步解答问题.【详解】解:根据数轴可得,-1<a<0,1<b<2,且|a|<|b|∴ 0a b +>故选:C【点睛】本题考查了数轴,利用数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,得出a 、b 的大小是解题关键.6.A【分析】根据科学记数法进行改写即可.【详解】63800000 3.810=⨯故选:A .【点睛】本题考查用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,n 为整数,确定a 与n 的值是解题的关键.7.D【分析】根据补角的定义解答即可.【详解】解:∵∠A =56°20′,∴∠A 的补角=180°−∠A =180°−56°20′=123°40′.故选:D .【点睛】本题主要考查了补角的定义以及角的度分秒换算,正确理解补角的定义是解题的关键.8.B【分析】直线没有端点,射线只有一个端点,线段有两个端点.【详解】解:根据射线MN 有一个端点,线段PQ 有两个端点得到选项B 符合题意,选项A 、C 、D 均不符合题意,故选:B .【点睛】本题考查射线、线段的定义,是基础考点,掌握相关知识是解题关键.9.D【分析】根据等式的性质依次判断即可.【详解】解:A.若a b =,则66a b +=+,原选项错误,不符合题意;B.若ax ay =,当a≠0时x =y ,原选项错误,不符合题意;C.若11a b -=+,则2a b =+,原选项错误,不符合题意;D.若55a b =--,则a b =,原选项正确,符合题意.故选:D .【点睛】本题主要考查了等式的性质,熟记等式的性质是解题的关键.10.B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.11.8【分析】根据题意列出算式,再根据有理数的加法法则计算即可.【详解】解:8168-+=℃所以该市的最高温度是8℃.故答案为:8【点睛】本题主要考查了有理数的运算,掌握有理数的加法法则是解题关键.12.两点之间,线段最短【分析】根据题意可知,A B 两点之间,线段AB 和折线ACB 比较,线段最短【详解】解:点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是两点之间,线段最短故答案为:两点之间,线段最短【点睛】本题考查了线段的性质,掌握两点之间,线段最短是解题的关键.13.54x 或者1.25x【分析】根据售价=标价⨯折扣,即可得到答案.【详解】x =标价0.8⨯∴标价=50.84x x =故答案为:54x .【点睛】本题考查了列代数式,掌握售价、标价和折扣之间的关系式解题的关键.14.2【分析】把x=1代入方程2x-a=0,再求出关于a 的方程的解即可.【详解】解:把x=1代入方程2x-a=0得:2-a=0,解得:a=2,故答案为:2.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的一元一次方程是解此题的关键,注意:使方程左、右两边相等的未知数的值,叫方程的解.15.0【详解】解:∵213n xy -与3m x y 是同类项,∴2,13m n =-=,解得:2,2m n ==-,∴()220+=+-=m n .故答案为:0【点睛】本题主要考查了同类项的定义,熟练掌握所含字母相同,并且相同字母的次数相同的两个单项式称为单项式是解题的关键.16.136︒##136度【分析】先求得AB 与正东方向的夹角度数,再利用角的和差解题.【详解】解:AB 与正东方向的夹角为90°-62°=28°则BAC ∠=28°+90°+18°=136°故答案为:136︒【点睛】本题考查方向角,正确理解方向角的定义是解题关键.17.()31m +【分析】观察发现:第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1.【详解】解:根据图示得:每个图形都比其前一个图形多3个白色地砖,第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1块.故答案为(3n+1).【点睛】本题考查了图形的变化规律,找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律是解题的关键.18.a【详解】试题解析:根据数轴上点的位置得:c <b <0<a ,且|c|>|a|∴c-b <0,2a+b >0,a+c<0则原式=-(a+c)+(2a+b)+(c-b)=-a-c+2a+b+c-b=a.故答案为a.19.0【分析】先算乘方和绝对值,然后再按有理数的四则混合运算法则计算即可.【详解】解:原式162(3)5=÷+--835=--0=.20.x =2【分析】去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:去括号,可得:3x+2x ﹣4=6,移项,可得:3x+2x =6+4,合并同类项,可得:5x =10,系数化为1,可得:x =2.【点睛】此题主要考查解一元一次方程,解题的关键是熟知方程的解法.21.-4x 2y ,-8【分析】直接去括号合并同类项,再把已知数据代入得出答案.【详解】解:原式=7xy+6xy-4x 2y-13xy=-4x 2y ,当x=-1,y=2时,原式=-4×(-1)2×2=-4×1×2=-8.22.数轴见详解,-3< 1.5--<12-<0<122+<()22-.【分析】先将绝对值及乘方的数化简,再根据有理数与数轴上点的对应关系表示各数.【详解】 1.5--=-1.5,()22-=4,将各数表示在数轴上:∴-3< 1.5--<12-<0<122+<()22-.【点睛】此题考查绝对值的化简,有理数的乘方运算,利用数轴上的点表示有理数的方法,有理数的大小比较.23.(1)1(2)0.75-【分析】(1)根据有理数加法的运算律求解即可;(2)先把分数化为小数,然后根据有理数乘法的结合律求解即可.(1)解:原式110.573(2.75)24⎡⎤⎡⎤⎛⎫⎛⎫=-+++-+- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦()76=+-1=.(2)解:原式 1.530.750.53(0.75)=-⨯-⨯-1.530.750.530.75=-⨯+⨯0.75(1.530.53)=⨯-+0.75(1)=⨯-0.75=-.【点睛】本题主要考查了有理数的计算,熟知有理数的加法和乘法运算律是解题的关键.24.乙每天加工这种零件96个.【分析】直接利用甲加工的零件+乙加工的零件=1120,进而得出等式求出答案.【详解】解:设乙每天加工这种零件x 个,根据题意可得:80×3+5(80+x )=1120,解得:x=96,答:乙每天加工这种零件96个.【点睛】本题主要考查了一元一次方程的应用,正确表示出甲乙加工的零件数是解题关键.25.(1)8;(2)7或13.【分析】(1)根据中点的定义可得22BC CD BD ==,由4AC CD =,12AB =求得CD 进而求得AC ;(2)分情况讨论,①当点E 在线段AB 上时,②当点在线段BA 的延长线上,分别根据线段的和差关系,求得ED .【详解】解:(1)∵点D 为BC 的中点,22BC CD BD∴==,4AB AC BC AC CD =+= ,4212CD CD ∴+=,2CD ∴=4428AC CD ∴==⨯=;(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=12AB = ,∴E 点不在AB 的延长线上,所以DE 的长为7或13.【点睛】本题考查了线段的和差关系,线段中点的定义,数形结合是解题的关键.26.(1)购买足球4个,购买排球8个;(2)8【分析】(1)设购买足球x 个,排球y 个,然后根据题意列出方程求解即可;(2)根据题意求出购买足球和篮球的数量,然后列方程求解即可.【详解】解:(1)设购买足球x 个,排球y 个,根据题意得:128040640x y x y +=⎧⎨+=⎩,解得:48x y =⎧⎨=⎩.答:购买足球4个,购买排球8个.(2)依题意得:购买了m 个排球,则购买足球和排球的数量均为122m -个,所以有:12124080606404022m m m --+⨯+⨯=-解得:8m =.答:m 的值为8.【点睛】本题主要考查了二元一次方程组的实际应用,一元一次方程的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.27.(1)()29620m 2x π--(2)241m 2【分析】(1)根据阴影部分与其它部分面积之间的关系列出代数式即可;(2)代入计算即可.(1)由图形中各个部分面积之间的关系,得221242(22)(42)22S x π+⎛⎫=+--+-⋅ ⎪⎝⎭阴影部分1462492x π=+--⨯()29620m 2x π=--.(2)当9x =,π取3时,()2 27415420m 22S =--=阴影部分.【点睛】本题考查了列代数式、代数式求值、圆的面积公式等知识,正确地列出代数式是正确解答的前提.28.(1)∠MON =45°,原因见解析;(2)35°;(3)12α【分析】(1)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(2)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(3)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可.【详解】解:(1)如图1,∵∠AOB =90°,∠BOC =60°,∴∠AOC =90°+60°=150°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC =12∠AOC =75°,∠NOC =12∠BOC =30°∴∠MON =∠MOC ﹣∠NOC =45°.(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=65°,∠NOC=12∠BOC=30°∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35°.(3)如图3,∠MON=12α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,∴∠MON=∠MOC﹣∠NOC=12(α+β)﹣12β=12α即∠MON=12α.故答案为:12α.。
七年级数学上册期末考试试卷【含答案】

七年级数学上册期末考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么它的体积是多少?A. 240立方厘米B. 120立方厘米C. 60立方厘米D. 48立方厘米4. 下列哪个数是偶数?A. 101B. 102C. 103D. 1045. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是多少?A. 22厘米B. 34厘米C. 44厘米D. 54厘米二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。
()2. 一个正方形的对角线长度等于它的边长。
()3. 0.3333……是一个无限循环小数。
()4. 一个等边三角形的三个角都是60度。
()5. 一个数的立方根只有一个。
()三、填空题(每题1分,共5分)1. 1千米等于______米。
2. 一个正方形的周长是24厘米,那么它的边长是______厘米。
3. 5的平方是______,5的立方是______。
4. 如果一个数的平方是49,那么这个数可能是______或______。
5. 两个质数相乘得到的数一定是______。
四、简答题(每题2分,共10分)1. 解释什么是素数。
2. 简述平行四边形的性质。
3. 什么是算术平均数?如何计算?4. 请解释概率的基本概念。
5. 什么是勾股定理?请简要说明。
五、应用题(每题2分,共10分)1. 一个长方形的长是15厘米,宽是8厘米,求这个长方形的面积。
2. 一个等腰三角形的底边长是10厘米,高是12厘米,求这个三角形的面积。
3. 一个数的平方是36,求这个数。
4. 计算下列分数的和:1/3 + 1/4 + 1/6。
2023-2024学年全国初一上数学人教版期末考试试卷(含答案解析)

20232024学年全国初一上数学人教版期末考试试卷一、选择题(每题2分,共20分)1. 下列数中,不是有理数的是()A. 3/4B. 2C. √5D. 0.52. 下列式子中,正确的是()A. 3 + 2 = 5B. 3 2 = 5C. 3 × 2 = 5D. 3 ÷ 2 = 53. 下列图形中,不是直线的是()A. 直线ABB. 线段ABC. 射线ABD. 曲线AB4. 下列式子中,不是同类项的是()A. 3x + 2yB. 4x 2yC. 3x + 2xD. 4y 2y5. 下列式子中,正确的是()A. 2^3 = 8B. 2^4 = 16C. 3^2 = 9D. 3^3 = 276. 下列式子中,正确的是()A. 1/2 + 1/3 = 5/6B. 1/2 1/3 = 1/6C. 1/2 × 1/3 = 1/6D. 1/2 ÷ 1/3 = 3/27. 下列式子中,正确的是()A. (2 + 3) × 4 = 20B. 2 + 3 × 4= 20C. 2 × (3 +4) = 20 D. 2 × 3 + 4 = 208. 下列式子中,正确的是()A. 2^3 × 2^4 = 2^7B. 2^3 ÷ 2^4 = 2^1C. 2^3 + 2^4 = 2^7D. 2^3 2^4 = 2^19. 下列式子中,正确的是()A. 3x + 2y = 5B. 3x 2y = 5C. 3x × 2y = 5D. 3x ÷ 2y = 510. 下列式子中,正确的是()A. (x + y)^2 = x^2 + 2xy + y^2B. (x y)^2 = x^2 2xy + y^2C. (x + y)^2 = x^2 2xy + y^2D. (x y)^2 = x^2 + 2xy + y^2二、填空题(每题2分,共20分)1. 下列数中,不是有理数的是()A. 3/4B. 2C. √5D. 0.52. 下列式子中,正确的是()A. 3 + 2 = 5B. 3 2 = 5C. 3 × 2 = 5D. 3 ÷ 2 = 53. 下列图形中,不是直线的是()A. 直线ABB. 线段ABC. 射线ABD. 曲线AB4. 下列式子中,不是同类项的是()A. 3x + 2yB. 4x 2yC. 3x + 2xD. 4y 2y5. 下列式子中,正确的是()A. 2^3 = 8B. 2^4 = 16C. 3^2 = 9D. 3^3 = 276. 下列式子中,正确的是()A. 1/2 + 1/3 = 5/6B. 1/2 1/3 = 1/6C. 1/2 × 1/3 = 1/6D. 1/2 ÷ 1/3 = 3/27. 下列式子中,正确的是()A. (2 + 3) × 4 = 20B. 2 + 3 × 4 = 20C. 2 × (3 +4) = 20 D. 2 × 3 + 4 = 208. 下列式子中,正确的是()A. 2^3 × 2^4 = 2^7B. 2^3 ÷ 2^4 = 2^1C. 2^3 + 2^4 = 2^7D. 2^3 2^4 = 2^19. 下列式子中,正确的是()A. 3x + 2y = 5B. 3x 2y = 5C. 3x × 2y = 5D. 3x ÷ 2y = 510. 下列式子中,正确的是()A. (x + y)^2 = x^2 + 2xy + y^2B. (x y)^2 = x^2 2xy + y^2C. (x + y)^2 = x^2 2xy + y^2D. (x y)^2 = x^2 + 2xy + y^2三、解答题(每题10分,共30分)1. 解方程:2x + 3 = 72. 解不等式:3x 2 < 53. 求解:2^3 × 2^4 ÷ 2^2四、应用题(每题10分,共20分)1. 小明有10元钱,他买了一支铅笔和一本笔记本,铅笔的价格是2元,笔记本的价格是5元。
2024人教版七年级数学上册期末试卷及答案

2024人教版七年级数学上册期末试卷及答案2024人教版七年级数学上册期末试卷及答案一、选择题1、在平面直角坐标系中,点P(3,2)在哪个象限? A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2、如果|a|=2,那么a的值是? A. -2 B. 2 C. ±2 D. 以上都不正确3、下列哪个数是勾股数? A. 10,15,20 B. 6,8,10 C. 4,5,6D. 3,4,54、一个角的补角是140°,那么这个角的余角是多少度? A. 30° B. 40° C. 50° D. 60°二、填空题5、一个正方形的边长为4cm,它的面积为____cm².51、在-2,-1,0,1,2这五个数中,最小的数是____,最大的数是____.511、如果一个角的余角等于这个角的补角的一半,那么这个角的度数为____度.三、计算题8、(4+6i)+(2-3i) = ____ + ____i.81、(2+i)/(3-2i) = ____ + ____i.四、解答题10、在等腰三角形ABC中,AB=AC=10cm,BC=12cm,求BC边上的高。
101、在Rt△ABC中,∠C=90°,∠A=30°,求BC与AB的比值。
五、应用题12、已知一个直角三角形的两条直角边长分别为6cm和8cm。
求这个三角形的斜边长。
121、在一块长为3m、宽为2m的矩形地面上,修建一个花园,使得花园面积是该矩形面积的一半。
请用几何语言描述该花园的形状,并给出修建该花园的方案。
六、选做题14、(供学有余力的同学选做)已知i为虚数单位,计算:(1+i)/(1-i) = ____ + ____i.答案:一、选择题1、A. 第一象限正确。
因为点P的横坐标3>0,纵坐标2>0,所以在第一象限。
2、C. ±2 正确。
因为|a|=2,所以a=±2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环境保护表扬建议
房产建筑道路交通其他投诉奇闻铁事40%
35%30%25%20%15%10%5%
数学初一上学期期末试卷
一、填空题:(每题3分,共30分)
1、1
3
-的倒数是_____________,相反数是___________________.
2、比较大小(用”>”或”<”表示):3| 1.8|_____();2----11()_____()22
---+. 3、用代数式表示:(1)a 与b 的差的平方:_____________; (2)a 的立方的2倍与1-的和________________________. 4、若a-b=1,则代数式a-(b-2)的值是_______;
若a+b=1,则代数式5-a-b 的值是________.
5、时钟指向5:30,则时针与分针所成较小的那个角的度数为__________度.
6、如图,A 、B 、C 三点在同一直线上.
(1)用上述字母表示的不同线段共有_________条; (2)用上述字母表示的不同射线共有_____条.
7、22.5°=______度_____分;12°24′=____________°.
8、已知点B 在直线AC 上,AB=8cm ,AC=18cm ,P 、Q 分别是AB 、AC 的中点,则PQ = _______.
9、图1是某晚报“百姓热线”一周接到的热线的统计图,其中有关环境保护问题最多,共有70个,请回答下列问题:
(1)本周“百姓热线”共接到热线____________个; (2)有关交通问题的有_______个
10、图2是一个数值转换机的示意图,若输入x 的值为3, y 的值为-2时,则输出的结果为:_________________.
B C
图1 图2
二、选择题(每题3分,共24分) 1、下列语句正确的是 ( )
A .1是最小的自然数;
B .平方等于它本身的数只有1
C .绝对值最小的数是0;
D .任何有理数都有倒数 2、下列各式中运算正确的是 ( ) A .6a-5a=1 B .a 2+a 2=a 4 C .3a 2+2a 3=5a 5 D .3a 2b-4ba 2=-a 2b 3、下列判断的语句不正确的是 ( ) A .若点C 在线段BA 的延长线上,则BA=AC -BC B .若点C在线段AB上,则AB=AC+BC C .若AC+BC>AB,则点C一定在线段BA外 D .若A、B、C三点不在一直线上,则AB<AC+BC 4、给出下列判断正确的是( )
①在数轴上,原点两旁的两个点所表示的数都是互为相反数; ②任何正数必定大于它的倒数;③5ab ,12
x ,4
a 都是整式; ④x 2-xy+y 2是按字母y 的升幂排列的多项式, A .①② B .②③ C .③④ D .①④ 5、下列说确的个数是( )
①两条直线相交,有公共顶点而没有公共边的两个角是对顶角; ②如果两条线段没有交点,那么这两条线段所在直线也没有交点; ③邻补角的两条角平分线构成一个直角;
④直线外一点与直线上各点连接的所有线段中,垂线段最短。
A .1个
B .2个
C .3个
D .4个 6、若1||225(1)34
m x y m y -+-是三次三项式,则m 等于 ( ) A .±1 B .1 C .-1 D .以上都不对
7、下面是一个长方形的展开图,其中错误的是 ( )
8、下列各数中,负数出现的频率是 ( ) -6.1,1||2
--,-(-1),(-2)2,(-2)3,-[-(-3)]
A .83.3%
B . 66.7%
C .50%
D .33.3%
三、计算题:(第1-2题每题5分,第3题7分,共17分) 1、)5(|425|])21()21[()2(32---⨯⨯-÷-; 2、)8
71213815.2()15(25149+-+--⨯;
3、当3,2
1
-=-
=y x 时,求代数式)](223[)2(322y xy y x xy x ++---的值。
四、解答题(第1题4分,第2--4每题6分, 第5题7分,共29分) 1、 如图,OA 的方向是北偏东15°,OB 的方向是西偏北50°。
(1) 若∠AOC=∠AOB ,则OC 的方向是___________; (2) OD 是OB 的反向延长线,OD 的方向是_________; (3) ∠BOD 可看作是OB 绕点O 逆时针方向至OD, 作∠BOD 的平分线OE,OE 的方向是____________;
A.
(4) 在(1)、(2)、(3)的条件下,∠COE=______°。
2、已知,如图∠1和∠D 互余,CF ⊥DF 。
问图中哪些角会相等?AB 与CD 平行吗?为什么?
3、 如图,在△ABC 中,AB EF ⊥,AB CD ⊥,G 在AC 上,∠CDG=∠BEF , 试说明∠AGD=∠ACB 。
A
C
E
B
4、出租车司机小某天上午营运都是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午行车里程(单位:千米)如下:-2,+5,-1,+10,-15,-3。
(1)将最后一位乘客送到目的地时,小距出发地多远?此时在出发东边还是西边? (2)若汽车耗油量为m 升/千米,这天上午小共耗油多少升? (3)若出租车起步价为8元,起步里程为3千米(包括3千米),超过部分每千米1.2元。
问小今天上午共得出租款多少元?
2
1D C
B F A
5、儿童公园计划砌一个形状如图①所示的喷水池,后来有人建议该为图②形状,且外圆直径不变,小圆和大圆圆心在同一直线上,只是担心原来备好的材料不够,请你比较两种方案,哪种需要的材料多?
②
五、探索(共20分) 1、(本题10分)观察下列算式
(1)填空:1
3=______, 2
3=_______,3
3=________,4
3=_________,
53=______,63=_________,73=________,83=_________.
(2)用你所发现的规律写出2005
3
的末位数字是__________。
2、(本题10分)观察下列各式。
2311=,233321=+,23336321=++,23333104321=+++,………
(1)根据观察,你发现了什么规律; (2)求3
3
3
3
10321++++ 的值;
(3)若2
3
3
3
3
2005321a =++++ ,你能求出a 的值吗?
. .. .
参考答案:
一.
1.-3,1 3 ;
2.<,>;
3.(1)(a-b)2;(2)2a3-1.
4.3,4.
5.184.
6.(1)3;(2)6.
7.22,30,12.4.
8.5cm或9cm.
9.(1)200;(2)40.
10.5.
二.
CDAC,CBCB.
三.
1.-395;
2.-144.5;
3.-12;
四.
1.
(1)北偏东700;
(2)南偏东400;
(3)南偏西500;
(4)1500.
2.(略)3.(略)
4.(1)6千米,西边(2)36m升(3)73.2元5.一样多
五.
1.(1)3,9,27,81,243,729,2187,6561 (2)3
2.(1)
2
3
3
3
3
2
)
1(
3
2
1⎥
⎦
⎤
⎢⎣
⎡+
=
+
+
+
+
n
n
n
(2)3025 (3)2011015。