彩色图像处理
计算机图像处理 第09章 彩色图像处理
下一页
home
上一页
图8.7 HSI彩色模型
(a)HSI彩色模型坐标系统
(b)HSI彩色三角形
下一页
home
上一页
下一页
home
上一页
• HIS色系-亮度分量I • I表示光照强度或称为亮度,它确定了像素 的整体亮度,而不管其颜色是什么。
下一页
home
上一页
• 亮度(I)效果示意图
下一页
home
• 色调(hue)
– 从一个物体反射过来的或透过物体的光波长 – 是由颜色种类来辨别的,如红、橙、绿。
• 色饱和度(saturation)
– 即色纯度,指颜色的深浅 – 例如:深红和浅红。
• 亮度(brightness)
– 颜色的明暗程度,从黑到白,主要受光源强弱影响。
下一页
home
上一页
8.1.2 三基色原理
– 与人的视觉特性比较接近。
• 重要性
– 消除了亮度成分V在图像中与颜色信息的联系
– 色调H和饱和度S分量与人的视觉感受密切相关。
下一页
home
上一页
图8.6 HSV颜色模型
绿
绿 ° 120
S H 0° 红
红 蓝 1 20 ° I
240 ° 蓝
0° 2 40 °
(a)HSV颜色模型
(b)颜色轮
(c)柱形彩色空间
(8.2a) (8.2b)
B' Tem p 1 B Tem p 1 Tem p2
•
G'
Tem p 1 G Tem p 1 Tem p2
下一页
home
上一页
5 B' 1 G ' 1 R' H1 3 B ' 3 G ' 5 R '
数字图像处理_实验报告书(八)彩色图像处理
rgb=cat(3,rgb_R,rgb_G,rgb_B);figure,imshow(rgb),title('RGB彩色图像');截图:(2)编写MATLAB程序,将一彩色图像从RGB空间转换为HIS空间,并观察其效果。
如例9.2所示。
程序:rgb=imread('LenaRGB.bmp');figure,imshow(rgb);rgb1=im2double(rgb);r=rgb1(:,:,1);g=rgb1(:,:,2);b=rgb1(:,:,3);I=(r+g+b)/3figure,imshow(I);tmp1=min(min(r,g),b);tmp2=r+g+b;tmp2(tmp2==0)=eps;S=1-3.*tmp1./tmp2;figure,imshow(S);tmp1=0.5*((r-g)+(r-b));tmp2=sqrt((r-g).^2+(r-b).*(g-b));theta=acos(tmp1./(tmp2+eps));H=theta;H(b>g)=2*pi-H(b>g);H=H/(2*pi);H(S==0)=0;figure,imshow(H);截图:(3)编写MATLAB程序,将一彩色图像在RGB空间进行彩色分割,并观察其效果。
如例9.11所示。
程序:rgb=imread('LenaRGB.bmp');figure,imshow(rgb);rgb1=im2double(rgb);r=rgb1(:,:,1);figure,imshow(r);g=rgb1(:,:,2);figure,imshow(g);b=rgb1(:,:,3);figure,imshow(b);r1=r;r1_u=mean(mean(r1(:)));[m,n]=size(r1);sd1=0.0;for i=1:mfor j=1:nsd1= sd1+(r1(i,j)-r1_u)*(r1(i,j)-r1_u);endendr1_d=sqrt(sd1/(m*n));r2=zeros(size(rgb1,1),size(rgb1,2));ind=find((r>r1_u-1.25*r1_d)&(r<r1_u+1.25*r1_d));r2(ind)=1;figure,imshow(r2);截图:(4)编写MATLAB程序,将一彩色图像在向量空间进行边缘检测,并观察其效果。
真彩色图像处理
第四部分真彩色增强一、真彩色增强方法图4.1 真彩色增强原理图1、对HSI图像亮度增强⑴、将R,G,B分量图转化为H,S,I分量图;⑵、利用对灰度图增强的方法增强其中的I分量图;⑶、再将结果转化为用R,G,B分量图来显示。
以上方法并不改变原图的彩色内容,但增强后的图看起来会有些不同。
这是因为尽管色调和饱和度没有变化,但亮度分量得到了增强,整个图会比原来更亮一些。
图4.3是基于matlab以增强亮度的方法进行真彩色增强的图像,其代码见附录(a)增强前图像(b)增强后图像图4.2 对HSI进行亮度增强结果结论:图(b)明显比图(a)要亮的多,在视觉效果上,图(b)比较让人觉得美好。
2、对HSI图像进行对比度增强图4.4是基于matlab以增强对比度的方法进行真彩色增强的图像,其代码见附录图4.3 对HSI增强对比度增强的结论:图(b)的视觉效果明显比图(a)要好的多,清晰的多,颜色比(a)要深。
3、对HSI图像进行亮度和饱和度的增强图4.5是基于matlab以增强亮度和饱和度的方法进行真彩色增强的图像,其代码见附录图4.4 对HSI图像进行增强结果结论:这是对前两个方法的综合,很显然,图(b)比图(a)要亮,要清晰,视觉效果比以上两种方法分别做要好的多。
二、直接在rgb空间对图像增强图4.6是基于matlab在rgb空间增强图像,其代码见附录图4.5 对RGB图像进行增强结果以下是基于matlab以增强亮度的方法进行真彩色增强的代码:%% 彩色图像亮度增强(执行速度较慢)clcclearfc = imread('E:\maomao.jpg');figure(1);imshow(fc)title('原始真彩色(256*256*256色)图像')fr = fc(:,:,1);fg = fc(:,:,2);fb = fc(:,:,3);% imshow(fr)% title('红色分量图像')% imshow(fg)% title('绿色分量图像')% imshow(fb)% title('蓝色分量图像')h = rgb2hsi(fc);H = h(:,:,1);S = h(:,:,2);I = h(:,:,3);I =I*1.5;% imshow(H)% title('色调分量图像')% imshow(S)% title('饱和度分量图像')% imshow(I)% title('亮度分量图像')h = cat(3,H,S,I);%cat函数是拼接数组的函数,这里将在第3维上进行拼接。
彩色图像的灰度化处理
第1章绪论1.1数字图像数字图像,又称数码图像或数位图像,是二维图像用有限数字数值像素的表示。
数字图像是由模拟图像数字化得到的、以像素为基本元素的、可以用计算机或数字电路存储和处理的图像。
像素(或像元,Pixel)是数字图像的基本元素,像素是在模拟图像数字化时对连续空间进行离散化得到的。
每个像素具有整数行(高)和列(宽)位置坐标,同时每个像素都具有整数灰度值或颜色值。
通常,像素在计算机中保存为二维整数数阻的光栅图像,这些值经常用压缩格式进行传输和储存。
数字图像可以许多不同的输入设备和技术生成,例如数码相机、扫描仪、坐标测量机、seismographic profiling、airborne radar等等,也可以从任意的非图像数据合成得到,例如数学函数或者三维几何模型,三维几何模型是计算机图形学的一个主要分支。
数字图像处理领域就是研究它们的变换算法。
1.2设计平台本次设计采用的平台是MATLAB 7.0。
MATLAB编程语言被业界称为第四代计算机语言,它允许按照数学推导的习惯编写程序。
MATLAB7.0的工作环境包括当前工作窗口、命令历史记录窗口、命令控制窗口、图形处理窗口、当前路径选择菜单、程序编辑器、变量查看器、模型编辑器、GUI编辑器以及丰富的函数库和MATLAB附带的大量M文件。
MATLAB是由美国Math Works公司生产的一个为科学和工程计算专门设计的交互式大型软件,是一个可以完成各种计算和数据处理的、可视化的、强大的计算工具。
它集图示和精确计算于一身,在应用数学、物理、化工、机电工程、医药、金融和其他需要进行复杂计算的领域得到了广泛应用。
MATLAB作为一种科学计算的高级语言之所以受欢迎,就是因为它有丰富的函数资源和工具箱资源,编程人员可以根据自己的需要选择函数,而无需再去编写大量繁琐的程序代码,从而减轻了编程人员的工作负担,被称为第四代编程语言。
在MATLAB设计环境中,图像处理工具箱提供一套全方位的参照标准算法和图形工具,用于进行图像处理、分析、可视化和算法开发。
灰度图像处理vs彩色图像处理:适用领域和优缺点的比较
灰度图像处理vs彩色图像处理:适用领域和优缺点的比较随着数字图像技术的不断发展,图像处理领域也日益壮大,而图像的颜色信息是我们最直观的视觉感受之一。
因此,图像处理中最常见的便是对彩色图像进行处理。
但是,在实际的图像处理任务中,灰度图像有时也会被使用。
那么,灰度图像处理与彩色图像处理之间的关系和差异是什么呢?接下来,我们将详细讨论这两种图像处理技术的适用领域,以及各自的优缺点。
1.适用领域比较灰度图像处理灰度图像是一种仅包含黑、灰、白三种颜色的图像,它可以降低图像数据的复杂度,提高图像处理速度。
由于灰度图只需要处理单通道数据,因此在一些算法中,灰度图图像处理通常比彩色图像处理速度更快且计算成本更低。
同时,灰度图像处理技术不仅适用于图像增强、边缘检测等方面,还在计算机视觉领域中使用广泛,特别是在人脸识别、匹配、测量等领域。
彩色图像处理彩色图像处理则包含了RGB、HSV等多种色彩空间,可以更好地表现真实世界中的色彩信息,并能够更好的反应图像的细节和维度。
彩色图像处理技术被广泛应用于数字媒体、互联网影视和广告、航空航天等领域。
与灰度图像相比,彩色图像处理不但可以降低图像处理数据的复杂度,还能够表现具体的色彩信息,使得图像处理更加精准,更加全面。
2.优缺点比较灰度图像处理优点:(1)细节更加清晰。
由于灰度图像只有一种色调,因此图像的细节表现比彩色图像更加精准。
(2)处理速度快。
灰度图像处理通常只需要处理单通道数据,处理速度比彩色图像更快。
(3)计算成本更低。
灰度图像处理算法相对来说比较简单,因此计算成本更低。
缺点:(1)信息表达不完整。
由于灰度图像只有黑、灰、白三种颜色,因此它无法表现图像的色彩信息,限制了图像处理的深度和全面性。
(2)图像表现力较差。
灰度图像无法表现真实世界中色彩丰富的场景和细节。
彩色图像处理优点:(1)更加逼真。
由于考虑到色彩信息,彩色图像能够更加逼真地表现真实世界中的色彩和细节。
(2)图像处理深度更高。
第6章彩色图像处理资料
补充 YUV彩色空间
YUV是被欧洲电视系统所采用的一种颜色编 码方法(属于PAL) 。
Y为颜色的亮度 U 为色差信号,为红色的浓度偏移量成份 V 为色差信号,为蓝色的浓度偏移量成份 YUV格式有:4∶4∶4 ;4∶2∶2 ;
4∶1∶1 ;4∶2∶0
YUV与RGB间的转换
6.1 彩色基础 p252
将红、绿、蓝的量称为三色值,表示为X,Y,Z, 则一种颜色由三色值系数定义为:
x X X Y Z
y Y X Y Z
z Z X Y Z
x y z 1
CIE色度图
纯色在色度图边 界上,任何不在 边界上而在色度 图内的点都表示 谱色的混合色;
越靠近等能量点 饱和度越低,等 能量点的饱和度 为0;
Y 0.299 0.587 0.114R
U
0.147
0.289
0.436 G
V 0.615 0.515 0.1 B
R 1 0
1.1398 Y
G 1
0.3946
Hale Waihona Puke 0.5805UB 1 2.032 0.0005V
6.3 伪彩色图像处理
伪彩色(又称假彩色)图像处理是根据特定的 准则对灰度值赋以彩色的处理,即将灰度 图转换为彩色图。
6.2.2 CMY和CMYK模型
CMY模型和RGB模型间的关系:
C 1 R
M
1
G
Y 1 B
RGB三个值已归一化为[0,1]
等量的青色、品红和黄色应该产生黑色。但实 际产生的黑色不够纯正,另外加上价格因素, 引入黑色(打印的主色),构成CMYK模型。
6.2.2 CMY和CMYK模型
彩色图像分割
二值、灰度形态学
二值形态学中的运算对象是集合。设A为图像集合,S为结 构元素,数学形态学运算是用S对A进行操作。需要指出,实际 上结构元素本身也是一个图像集合。对每个结构元素可以指定 一个原点,它是结构元素参与形态学运算的参考点。应注意, 原点可以包含在结构元素中,也可以不包含在结构元素中,但 运算的结果常不相同。以下用阴影代表值为1的区域,白色代表 值为0的区域,运算是对值为1的区域进行的。二值形态学中两 个最基本的运算——腐蚀与膨胀,如图所示。
基本符号和术语
1. 元素和集合
在数字图像处理的数学形态学运算中,把一幅图像称为一个 集合。对于二值图像而言,习惯上认为取值为1的点对应于景 物中心,用阴影表示,而取值为0的点构成背景,用白色表示, 这类图像的集合是直接表示的。考虑所有值为1的点的集合为 A, 则A与图像是一一对应的。对于一幅图像A,如果点a在A
y S1
O
y
x X
X○ S1 X○ S2
O S2
x
(a)
(b)
X (c)
图 (a) 结构元素S1和S2
(b) X○S1
(c) X○S2
y S1
O
y
x
S1 X
X● S1
X● S2
O S2
x
X
S1
(a)
(b)
图 (a) 结构元素S1和S2
(c)
(b) X●S1; (c) X●S2
实验五 彩色图像处理
实验五彩色图像处理一、实验目的使用MatLab 软件对图像进行彩色处理。
使学生通过实验熟悉使用MatLab软件进行图像彩色处理的有关方法,并体会到图像彩色处理技术以及对图像处理的效果。
二、实验要求要求学生能够完成彩色图像的分析,能正确讨论彩色图像的亮度、色调等性质;会对彩色图像进行直方图均衡,并能正确解释均衡处理后的结果;能够对单色图像进行伪彩色处理、利用多波长图像进行假彩色合成、进行单色图像的彩色变换。
三、实验内容与步骤(1) 彩色图像的分析调入并显示彩色图像flower1.tif ;拆分这幅图像,并分别显示其R,G,B分量;根据各个分量图像的情况讨论该彩色图像的亮度、色调等性质。
(2) 彩色图像的直方图均衡接内容(1);显示这幅图像的R,G,B分量的直方图,分别进行直方图均衡处理,并显示均衡后的直方图和直方图均衡处理后的各分量;将处理完毕的各个分量合成彩色图像并显示其结果;观察处理前后图像的彩色、亮度、色调等性质的变化。
(3) 假彩色处理调入并显示红色可见光的灰度图像vl_red.jpg、绿色可见光的灰度图像vl_green.jpg 和蓝色可见光的灰度图像vl_blue.jpg;以及近红外灰度图像infer_near.jpg和中红外灰度图像infer_mid.jpg;以图像vl_red.jpg为R;图像vl_green.jpg为G;图像vl_blue.jpg为B,将这三幅图像组合成可见光RGB彩色图像;分别以近红外图像infer_near.jpg和中红外图像infer_mid替换R分量,形成假彩色图像;观察处理的结果,注意不同波长红外线图像组成图像的不同结果(4) 伪彩色处理1:灰度切片处理调入并显示灰度图像head.jpg;利用MATLAB提供的函数对图像在8~256级的范围内进行切片处理,并使用hot模式和cool 模式进行彩色化;观察处理的结果。
(5) 彩色变换(选做)调入并显示灰度图像Lenna.jpg;使用不同相位的正弦函数作为变换函数,将灰度图像变换为RGB图像。
第六章 彩色图像处理
z =1- (x+y)
从380 nm的紫色到781nm的红色等各种纯色的位置标 在舌形色度图周围的边界上。任何不在边界上而在色 度图内部的点都表示谱色的混合色。 图边界上的任何点都是全饱和的。离开边界并接近等 能量点,就在颜色中加入更多的白光,该颜色就变成 欠饱和。
16
例如,图中标记为绿 的点有62%的绿和25% 的红成分,从上式得 到蓝的成分约为13%。
• •
全彩色处理(图像用全彩色传感器获取)
伪彩色处理(对特定的单一亮度或亮度范围赋予一种颜色)
2
专题制图仪
3
嫦娥一号所拍月球三维照片
4
主要内容
彩色基础 彩色模型 伪彩色处理 彩色变换
平滑和锐化
彩色分割
彩色图像的噪声
5
6.1 彩色基础
Color Spectrum
Newton discovered that when a beam of sunlight passes through a glass prism, the emerging beam of light is not white but consists instead of a continuous spectrum of colors. No color in the spectrum ends abruptly, but rather each color blends smoothly into the next.
X x X Y Z Y y X Y Z Z z X Y Z x y z 1
15
色度图 (C.I.E.Chromaticity Diagram)
MATLAB彩色图像处理
色彩平衡是调整图像中颜色分量的过程,以改善图像的色彩表现。在Matlab中,可以 使用colorbalance函数进行色彩平衡。
03
图像滤波与变换
图像滤波
均值滤波
通过将像素邻域的平均 值赋给输出图像的相应 像素,减少图像中的噪
声。
中值滤波
将像素值替换为其邻域 的中值,对去除椒盐噪
声特别有效。
高斯滤波
使用高斯函数对图像进 行平滑处理,有助于减
少图像中的细节。
双边滤波
结合了像素的空间邻近 度和灰度值相似度,能
够保留边缘信息。
图像变换
傅里叶变换
小波变换
将图像从空间域转换到频率域,用于分析 图像的频率成分。
将图像分解成不同频率和方向的小波系数 ,用于图像压缩和特征提取。
离散余弦变换(DCT)
支持向量机(SVM)
基于统计学习理论的分类器,用于图像识别。
05
Matlab应用实例
图像平滑处理
01
02
03
均值滤波
通过将像素邻域的平均值 赋给输出图像的相应像素, 减少图像中的噪声。
高斯滤波
利用高斯函数的形状对图 像进行平滑,对图像的边 缘进行平滑处理,减少噪 声的影响。
中值滤波
将像素邻域的中值赋给输 出图像的相应像素,对去 除椒盐噪声特别有效。
图像锐化处理
拉普拉斯算子
利用拉普拉斯算子对图像 进行锐化,增强图像的边 缘和细节。
梯度算子
基于图像梯度的锐化方法, 能够突出显示图像中的边 缘和其他高频部分。
Sobel算子
通过计算像素邻域内像素 的加权差分,实现图像的 锐化。
图像边缘检测
Canny边缘检测
第六章 彩色图像处理 2
3.彩色分层
作用:突出图像中特殊的彩色区域、从其周围分离出目 标物。
基本思路是:(1)显示感兴趣的颜色以便从背景中把它们 分离出来;(2)像模板那样使用由彩色定义的区域,以便进一 步处理。 最直接的方法沿用灰度分层技术。然而,因为一个彩色 像素是一个n维参量,彩色变换函数比相对应的灰度变换函数 要复杂得多,事实上,所要求的变换比到目前为止考虑的彩 色分量变换也复杂得多。这是因为所有的彩色分层方法都要 求,每个像素变换后的彩色分量是所有n个原始像素彩色分量 的函数。 对一幅彩色图像分层的最简单的方法之一是,把某些感 兴趣区域以外的区域的彩色映射为不突出的自然色。
上图显示了一碗草莓和一个咖啡杯的高分辨率彩色图像。这是从大幅 (4“×5”)彩色负片数字化的图像。 图中的第二行包含原始的CMYK扫描分量图像。在这些图像的每一个 CMYK彩色分量中,白用1表示,黑用0表示。这样,我们看到草莓是由大 量的深红和黄色组成的,因为对应于这两种CMYK分量的图像最亮。黑色 较少并通常限于咖啡和草莓碗中的阴影。 当CMYK图像被转换为RGB时,如图中第三行所示,可以看到草莓包含 大量的红色和很少的绿色与蓝色。 最后一行显示了用式计算出的HSI分量图像。如期望的那样,强度分量 是全彩色原像的单色复现。另外,草莓在彩色方面相对较纯净。它们具有 最高的饱和度或图像中色调被白光稀释得最少。最后注意到说明色度分量 时的某些困难。问题包含这样一些事实:(1)在HSI模型中,0o和360o相遇 处有一个不连续点.(2)色调对于0饱和度没定义(对白、黑和纯灰)。模型 的不连续点多出现在草莓周围,它们用接近白(1)和黑(0)的灰度值描述。 其结果是不希望的高对比灰度级的混合去描述单颜色——红色。
彩色图像处理课件
白平衡
消除由于光照条件不同而 引起的色彩偏差,使得图 像的色彩更加真实自然。
色彩映射
通过建立输入图像和输出 图像之间的映射关系,实 现图像色彩的变换和调整。
色彩分离与合成
将彩色图像分离成不同的 颜色通道进行处理,然后 再合成彩色图像,以实现 色彩平衡的调整。
锐化与去噪
锐化滤波器
联合锐化与去噪
通过增强图像的高频分量来提高图像 的清晰度,使得图像的边缘和细节更 加突出。
混合压缩方法
JPEG压缩
结合有损和无损压缩技术,先通过色彩空间转换和量化进行有损压 缩,再利用预测编码和算术编码进行无损压缩。
渐进式JPEG
一种特殊的JPEG压缩方法,允许图像在下载时由模糊到清晰逐渐显 示。
有损至无损转换
首先应用有损压缩方法减少数据量,然后对压缩后的数据进行无损压 缩以确保数据的完整性。
01
02
03
直方图均衡化
通过拉伸像素强度分布来 增强图像对比度,使得图 像的亮度分布更加均匀。
对比度拉伸
通过线性或非线性的映射 函数,将原始图像的像素 值映射到更宽的范围,从 而增强图像的对比度。
自适应对比度增强
根据图像的局部特征动态 调整对比度增强算法,以 更好地突出图像的细节和 纹理。
色彩平衡调整
素划分为不同的区域。
适用范围
适用于目标和背景灰度差异较大 的图像。
基于边缘的分割
边缘检测
边缘连接
区域划分
利用边缘检测算子(如 Sobel、Canny等)提取
图像中的边缘信息。
将检测到的边缘点连接 起来,形成封闭的边界。
根据边界信息将图像划 分为不同的区域。
适用范围
适用于边缘明显且连续 的图像。
《彩色图像处理》课件
人脸识别
02
利用彩色图像处理技术,对人脸图像进行特征提取、比对和分
析,实现人脸识别和身份验证。
指纹识别
03
通过对指纹图像进行彩色图像处理,提取指纹特征,实现指纹
识别和身份验证。
彩色图像处理在广告设计领域的应用
色彩校正
通过对图像进行色彩校正,调整颜色、亮度和对 比度,以达到更好的视觉效果和品牌形象。
数字摄影和艺术创作
利用彩色图像处理技术对数字 摄影作品和艺术作品进行后期 处理和创作。
安全和监控
利用彩色图像处理技术对监控 视频进行分析,如人脸识别、
行为分析等。
彩色图像处理的基本流程
特征提取
从彩色图像中提取出感兴趣的 特征,如边缘、角点等。
增强和变换
对彩色图像的色彩、对比度等 进行增强和变换,以突出某些 特征或改善视觉效果。
图片美化
利用彩色图像处理技术,对图片进行美化处理, 如磨皮、美白、瘦脸等,提高图片质量和观感。
创意设计
通过彩色图像处理技术,实现创意设计和艺术效 果,如动态海报、数字绘画等。
THANKS
谢谢
视频捕捉
将纸质图像扫描成数字格式,转换为彩色图 像。
网络下载
从互联网上下载彩色图像资源。
彩色图像的预处理技术
01
02
03
04
灰度转换
将彩色图像转换为灰度图像, 减少颜色信息,突出图像的明
暗对比。
噪声消除
去除图像中的噪声和干扰,提 高图像的清晰度和质量。
尺寸调整
去雾处理
去除图像中的雾气和阴影,提高图像 的可见度和清晰度。
03
CHAPTER
彩色图像的分割与识别
彩色图像的分割算法
彩色图像处理综述
嚣 科创 论 】 § 技新坛 【
彩 色 图 像 处 理 综 述
谢斌盛 张 正 平
贵州 贵阳 50 2 ) 5 0 5 ( 贵卅l 大学 计算机 科学与信息工程 学院
摘
要: 介绍 彩色 图像处理 的研 究背 景,对 目前所提 出 的主要颜 色空 间进 行 归类分 析 ,并对各种 颜色 空间 的转换关 系进 行论述 。并且 介绍 了基于彩 色图像 的增
类是 将彩 色 图像经 过色 调空 间转 换 ,将 密 切相 关 的分量 (G ) 的空间 转变 RB
到 基本 不 相关 的 色调 空 间, 保持 色相 不 变从 而 保证 了没有 颜色 的 偏移 , 而对 亮 度作 相应 的处 理: 另 一类算 法 从人 眼 对物 体 颜色 的感 知 特性 触 发 ,将色 彩 横 常性 应用 于彩 色图像 的 强 。
强 ,彩色 图像 的滤波 ,彩 色图像 的分 割和彩色 图像 的压缩的些处 理算法。
关键词 : 彩色 图像 处理;彩色 图像分割 彩 色图像压缩 ;彩 色图像增 强;彩 色图像滤波 中图分类号 :T 3 1 4 文献标 识码:A 文章编号 :17 - 7 9 2 1 )1 1 1 8 1 P9 1 5 7( 0 0 2 0 6 —0 6
0引言
更好 的 去处 彩色 图像分 量 间 的冗 余 ,提高 压 缩 比,而 且在 Y 子阵 技术 中提 出 c 了Y 三 维 子 阵 和C 三 维 子 阵 的概 念 ;量 化 方 法 采 用 了线 性 非 均匀 标 量 薰 类 类 化 ,并 定义 了 一种 新 的运 算方 法— —量 化 除 法 。此方 法在 压 缩整 体效 果方 面
已经 优于 ] E 方法 。 PG
随着 信息 技术 的 发展 ,彩 色 图像 的处 理 已经成 为一 个 重要 的研 究领 域 , 本 文 在 总结 了彩 色 图像 的基 本 理 论的基 础 上 ,还 介绍 了彩色 图像 中的 图像 增 强 ,滤 波 ,压缩 , 分割 等处 理 算法 ,由于 彩色 图像 的的 研究 范 围非 常广 泛 , 因此 ,本文 对其 中几 个范 畴给 予综 述性 的介 绍 。 1彩色 图像 增强 图像增 强 时指 针对 特 定 的需要 采用 特 定方 法突 出 图像 中的 某些 信息 , 同 时削弱 或 取 出无 关信 息 的 图像处 理 方法 。常见 的彩 色 图像 增 强算 法有 两类 :
第二十一章 彩色和多光谱图像处理
视觉彩色模型
在上面讨论的几种颜色模型中,RGB、CMYK、YIQ是为便于研究用硬件显示 彩色的方法提出来的;XYZ、UCS是为便于色度学的理论研究而提出来的,它们都 不能很好地与人眼的视觉特性相匹配。 从视觉的角度来讲,颜色可分为彩色和非彩色两大类。非彩色是指黑色、白 色及其两者之间深浅不同的灰色,称为非彩色或无色系列(achromatic series)。彩 色系列或有色系列(chromatic series)是指除了白色系列以外的各种颜色.为了定量 地描述颜色对人眼的视觉作用,可以选用亮度( brightness)、色调(hue)、饱和度 (saturation)这三个与视觉特征有关的量来计算描述,这三个量称为颜色的三个基 本属性. 色调是指光的颜色,不同波长的光呈现不同的颜色,具有不同的色调。发光 物体的色调取决于它产生的辐射光谱的分布特征;不发光物体的色调则由它的吸 收、反射、透射和照明光源的特性所共同决定。饱和度指颜色的深浅或浓淡程 度。饱和度的深浅与颜色中加入白色的比例有关。一种纯颜色中加入的白色成分 越多,则其饱和度越低,因而饱和度反映了某种颜色被白色冲淡的程度。白色成 分为0,则饱和度为100%;只有白色,则饱和度为0。亮度就是人眼感觉到的光 的明暗程度。光波的能量越大,亮度就越大。颜色的色调和饱和度说明了颜色的 深浅,合称为色度。
0.114 R Y 0.299 0.587 I = 0.596 0.274 0.322 G Q 0.211 0.523 0.312 B
工业彩色模型
由于计算机显示器和许多电子显示设备采用的CRT直接使用R、G、 B三色电子枪在荧光屏上显示颜色,为了便于处理,大多数图像格式都 采用RGB模型来表示像素的颜色。 RGB彩色模型的优点是:(1)简单;(2)其它表色系统必须最后转化成 RGB系统才能在彩色显示器上显示。 RGB系统的缺点:(1)RGB空间用红、绿、蓝三原色的混合比例 定义不同的色彩,使不同的色彩难以用准确的数值来表示,并进行定量分 析;(2)在RGB系统中,由于彩色合成图像通道之间相关性很高,使合成图 像的饱和度偏低,色调变化不大,图像视觉效果差;(3)人眼不能直接感觉 红、绿、蓝三色的比例, 而只能通过感知颜色的亮度、色调以及饱和度 来区分物体,而色调和饱和度与红、绿、蓝的关系是非线性的,因此,在R GB空间中对图像进行增强处理结果难以控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1.1 三基色原理
◆对不同颜料配色过程的理解:
品红色颜料+黄色颜料=红色颜料=>白色–绿色–蓝色
青色颜料+黄色颜料=绿色颜料 => 白色–红色–蓝色
品红色颜料+青色颜料=蓝色颜料=>白色–绿色–红色 品红色颜料+青色颜料+黄色颜料=黑色颜料 =>白色–绿色–红色–蓝色
6.1.1 三基色原理
2. 相减混色
6.3.2 彩色图像的灰度化
(1) 最大值法 即将输入图像中的每个像素的R、G、B分量值的 最大者赋给输出图像中对应像素的R、G、B分量的方 法。用公式可表示为:
g R ( x, y) g G ( x, y) g B ( x, y) max( f R ( x, y), f G ( x, y), f B ( x, y))
B 3I ( R G)
(6.19)
6.2.4 HSI彩色模型到RGB彩色模型的转换
(3)当240º≤H < 360º:
G I (1 S )
S cos(H 240 ) B I [1 ] cos(300 H )
(6.20)
(6.21)
(6.22)
R 3I (G B)
I=1
绿 青
黄
H
S 蓝 品红
红
I=0.5
I=0
6.2.1 HSI彩色模型
HSI色系 —— 亮度分量I
I 表示光照强度或称为亮度,它确定了像 素的整体亮度,而不管其颜色是什么。
I:
小
大
6.2.1 HSI彩色模型
HSI色系 —— 亮度(I)效果示意图
6.2.1 HSI彩色模型
HSI色系 —— 色度分量H
在这种色系中
Y:亮度;U,V:色差信号
目的是为了可以使电视节目可用同时被黑白 电视及彩色电视接收。
电视信号在发射时,转换成YUV形式;接收 时再还原成RGB三基色信号,由显像管显示。
6.2.5 其它彩色模型简介
YUV模型
—— 电视信号接收原理示意图
彩 色 电 视 信 号 Y,U,V Y 黑 白 电 视 信 号
品红 蓝
黑 红 绿
青
白色 – 红色 = 青色 白色 – 绿色 = 品红色 白色 – 蓝色 = 黄色 白色 – 绿色 – 红色 – 蓝色 = 黑色
黄
图6.2 相减混色的三基色及其补色的关系
6.1.2 CIE色度图
1、相关概念
CIE()际照明委员会) 国
◆对于无彩色(消色)图像来说,亮度(也即灰
度)是唯一的属性。
品红 白 黑 (1,0,0) R 红 黄 灰度级 (0,1,0) 绿 青
G
图6.4
RGB彩色立方体示意图
6.2.1 HSI彩色模型
HSI(hue-saturation-intensity)彩色模型比 较适合于人用色调(H)、饱和度(S)和亮度(I) 描述被观察物体颜色的解释,对于开发基于彩色描述 的图像处理方法是一个理想的工具。 白
白 白 品红 青 I=1
黄
绿 青 H 蓝 S 品红 黄 红 I
蓝
红 I=0.5 绿
黑
I=0 黑
图6.6 RGB立方体旋转示意图
6.2.3 RGB彩色模型到HSI彩色模型的转换
1 [( R G ) ( R B)] 2 arccos [( R G ) 2 ( R G )(G B)]1 / 2
6.2 彩色模型
颜色的描述是通过建立彩色模型来实现的,不同 的彩色模型对应于不同的处理目的 CIE(国际照明委员会)在进行大量的色彩测试 实验的基础上提出了一系列的颜色模型:
RGB模型:红(R)、绿(G)、蓝(B)三基色混合 HSI模型:色度(H) 、饱和度(S) 、亮度(I) YUV模型: 亮度(Y)、色度(UV) YCbCr模型:亮度(Y)、色度(CbCr)
S=0
S=1/4
S=1/2
S=1
6.2.2 HSI彩色模型
思考问题:在这个圆柱体上,红色的点 顺(逆)时针旋转会变成什么样?上下 移动呢?向圆心方向移动呢?
黄
120 绿
S H 青
白
0
S
240 蓝
品红
I
黑
红点的顺(逆)时针转动
红点的上下移动
红点向圆心方向移动
6.2.3 RGB彩色模型到HSI彩色模型的转换
S:表示饱和度,饱和度参数是色环的原点 到彩色点的半径长度。 在环的外围圆周是纯的或称饱和的颜色,其 饱和度值为1。在中心是中性(灰)色,即 饱和度为0。
6.2.2 HSI彩色模型
绿。
。
黄
P S H
。
青。
·
红
蓝
。
品红
图6.5 HSI彩色模型中的色调和饱和度
6.2.2 HSI彩色模型
HSI色系 —— 饱和度(S)效果示意图
◆对于有彩色图像来说,通常用亮度、色调及饱
和度表示颜色的特性。
6.1.2 CIE色度图
◆在彩色图像中: 亮度反映了该颜色的明亮程度。颜色中掺入的白色越 多亮度就越大,掺入的黑色越多亮度就越小。 色调用于描述纯色(如纯黄色、纯红色),反映了观 察者接收到的主要颜色。 饱和度给出一种纯色被白光稀释的程度的度量,与加 入到纯色(色调)中的白光成正比(由于加入了白光,观 察者接收到的不再是某种纯色,而是反应该纯色属性的混 合颜色)。
其中:
R G B 1
6.3.2 彩色图像的灰度化
人眼对绿光的亮度感觉仅次于白光,是三基色中 最亮的,红光次之,蓝光最低。 如果权值ωG、ωR、ωB满足条件ωG>ωR>ωB,将 会得到比较合理的灰度化结果。相关研究表明,当 ωG=0.587、ωR=0.299、ωB=0.114时,得到的灰度化 图像较合理,此时灰度化公式就变为:
1 I ( R G B) 3
3 S 1 [min( R, G, B)] RG B
H 360 GB GB
6.2.4 HSI彩色模型到RGB彩色模型的转换
(1)当0º≤H<120º:
B I (1 S )
S cos(H ) R I [1 ] cos(60 H )
6.1 彩色视觉
光学原理解释的色彩的形成
6.1 彩色视觉
可视光区的波长在400nm~700nm,当光谱 采样限制到三个人类视觉系统敏感的红、绿、 蓝光波段时,对这三个光谱带的光能量进行采 样,就可以得到一幅彩色图像
红外光 可见光区
紫外光
400nm
435.8nm
546.1nm
700nm
780nm
6.3.2 彩色图像的灰度化
(2) 平均值法 即将输入图像中的每个像素的R、G、B分量的算 术平均值赋给输出图像中对应R ( x, y) g G ( x, y) g B ( x, y) ( f R ( x, y) f G ( x, y) f B ( x, y)) / 3
6.3.1 反色变换
(a)原彩色图像 图6.8
(b)图(a)的负片效果 彩色图像的反色变换
6.3.2 彩色图像的灰度化
◆将彩色图像转变为灰度图像的处理称为彩色图 像的灰度化处理。 ◆将彩色图像转换为灰度图像的实质,就是通过 对图像R、G、B分量的变换,使得每个像素点的R、G、 B分量值相等。 ◆彩色图像的灰度化方法主要包括:最大值法、 平均值法和加权平均值法。
H:表示色度,由角度表示。反映了该颜色 最接近什么样的光谱波长。0o为红色,120o 为绿色,240o为蓝色。
6.2.2 HSI彩色模型
HSI色系 —— 色度(H)效果示意图
H=0º
H=60º
H=120º
H=180º
H=240º
H=300º
6.2.2 HSI彩色模型
HSI色系 —— 饱和度分量S
第6章 彩色图像处理
主要内容
6.1 彩色视觉 6.2 颜色模型 6.3 彩色变换 6.4 彩色图像增强 6.5 彩色图像平滑 6.6 彩色图像锐化
6.1 彩色视觉
人眼对于彩色的观察和处理是一种生理和 心理现象,其机理还没有完全搞清楚,因 而对于彩色的许多结论都是建立在实验基 础之上的
彩色视觉是人眼对射入的可见光光谱的强弱及波 长成份的一种感觉。
6.2.5 其它彩色模型简介
1、CMYK色系—— 基本概念
这种色系用于印刷行业。 是一种减色系统,将从白光中滤出三种原色 之后获得的颜色作为表色系的三原色CMY。 K为黑色,为了印刷时对黑色可用黑色墨来 印刷。
• C:青色,从白色中滤去红色。
• M:品红,从白色中滤去绿色。
• Y: 黄色,从白色中滤去蓝色。
6.2.5 其它彩色模型简介
1、CMYK色系—— 着色原理
既然是减色系统,其着色原理是基于光吸收 的,这有别于RGB的光射入的方式。
C与M叠加:同时吸收了R与G,则为蓝色;
C与Y叠加:同时吸收了R与B,则为绿色;
M与Y叠加:同时吸收了G与B,则为红色。
6.2.5 其它彩色模型简介
2、YUV表色系—— 基本概念
6.1.1 三基色原理
2. 相加混色
一般把三基色按不同比例相加进行的混色称为相加混 色。 红色 红色 绿色 红色 红色 绿色 蓝色 + + + + + + + 蓝色 = 绿色 = 蓝色 = 绿色 + 青色 = 品红色 黄色 = 品红色 黄色 青色 蓝色 = 白色 白色 = 白色 白色