采用相关分析进行图像的快速匹配定位

采用相关分析进行图像的快速匹配定位
采用相关分析进行图像的快速匹配定位

实验四:采用相关分析进行图像的快速匹配定位

1.实验目的:

a. 掌握图像信号处理的基本概念和一般方法,学会读入图像信息。

b. 学习图像匹配的一般方法,了解相关估计在图像匹配和检测中的应用。

c. 熟悉图像匹配与校准定位的基本方法,学习二维图像信号的快速相关估计的基本算法,学会用FFT 作快速相关估计。 2.实验内容:

a. 读入图像数据。

b. 编写图像匹配的程序,从一幅图像中任取一幅子图(模板T ),然后

在另外一幅图像中寻找能和该子图匹配的目标(S i,j

)的位置。 c. 设计程序界面,将匹配结果直观地显示出来。 d. 探讨快速算法。 3.算法讨论及分析 算法1:

设模板T 在被搜索图S 中平移,模板覆盖下的那块子图像我们记做S i,j ,(i,j)为这块子图像的左上角象素点在S 中的坐标,从图1中,我们可以看出i 和j 的取值范围为:1

()()()2

,11,,,M

M

i j

m n D i j S m n T m n ==??=-??

∑∑(1)

图4-1被搜索的图像(a )与模板(b )

展开式(1),则有

()()()()()2

2

,,11

11

11

,,2,,,M

M

M

M

M

M

i j

i j

m n m n m n D i j S

m n S

m n T m n T m n ======??=-?+????

??

∑∑∑∑∑∑(2)

式(2)右边第三项表示模板的总能量,它是一个常数,与(i,j)无关;第一项是模板覆盖下的那块子图像的能量,它随着(i,j)的改变而缓慢变化;第二项是被覆盖子图和模板的互相关,它随着(i,j)的改变而变化。当T 和S i,j 匹配时,式(2)的第二项的取值最大。因此,我们可以用以下相关函数作相似性测度:

()()()

,,,,M M

i j

S m n T m n R i j ?=

∑∑(3)

易知()0,1R i j ≤≤,并且仅当()

()

,,,i j S i j T i j 为常数时,(),R i j 取极大值,这时T 和S i,j 匹配。

方法一:

方法一采用的是完全按照相关系数的定义,使用循环函数,完成对相关系数的求解,程序流程图如下。

方法二:

(),11

(,),(,)m n

x y k l R x y s x k y l t k l ===++∑∑(4)

,(,)x y R x y 为子块(),s x y 与模板图像t 相关系数,可通过FFT 快速计算,根据FFT 的性质有

(){},(,)(,),x y R x y IFFT S u v T u v *=?

式中(,)S u v 为基准图像(),s x y 的傅里叶变换,(),T u v *为模板图像T 的傅里叶变换的共轭,因此可通过一次FFT 变换和IFFT 变化求出整个被搜索图像与模板图像相关系数。

根据公式(3),需要计算基准图像的能量值S 2。分析得之,可以看出,相邻点的计算

含有大量的重复操作。经分析可得,

()()()1

2222,1

,1111,,,(,)m n

m n x m x y x y

i j i j i x

S

i j S i j S i y n S i y +-+=====??=++-??∑∑∑∑∑

(5)

()()()1

2

222

1,,11

11

,,,(,)y n m

n

m

n

x y

x y

i j i j j y

S

i j S i j S x m j S x j +-+=====??=++-??∑∑∑∑∑(6)

利用之前的结果,可以节省一定的计算时间。

4.实验结果及分析

该实验使用图片pic1_2.bmp ,使用模板templet1_2.bmp 。在matlab 中,读入的图像数据为图像每一个像素的灰度值,将模板的灰度值存在一个向量中,与原图进行匹配,如果相关系数达到极大值,则说明匹配良好,找到搜索的结果。

(a)被搜索的图片pic1_2.bmp

(b)被搜索的图片templet1_2.bmp

(c)搜索的结果

图4-2 实验所使用的图片

表1 两种方法计算时间对比

5.原程序清单

方法一:

clear all

S1=imread('pic1_2.bmp');%读入被搜索的图片pic1_2.bmp

S=double(S1);%读入的图片数据类型是uint8,转换类型为double

g1=imread('templet1_2.bmp');%读入模板图片templet1_2.bmp

g=double(g1);%读入的图片数据类型是uint8,转换类型为double

x=size(g,1); %获取g的行数

m=size(S,1);%S的X坐标

y=size(g,2); %获取g的列数

n=size(S,2);%S的Y坐标

Sxy=0*g; %定义临时变量

tempg=0;

tempg=double(tempg);

gvector=ones(x*y,1); %定义临时变量,将g矩阵存储为列向量的形式Svector=0*gvector; %定义临时变量,将S矩阵的分块存储为列向量的形式

for i1=1:1:x %使用循环,将g矩阵存储为列向量的形式

for i2=1:1:y

gvector((i1-1)*y+i2,1)=g(i1,i2);

end

end

for numy=1:1:n-y+1 %使用循环,将S矩阵分块存储为列向量的形式for numx=1:1:m-x+1

for i1=1:1:x

for i2=1:1:y

Sxy(i1,i2)=S(i1+numx-1,i2+numy-1);

end

end

for i1=1:1:x

for i2=1:1:y

Svector((i1-1)*y+i2,1)=Sxy(i1,i2);

end

end

R=corrcoef(gvector,Svector); %求得S分块与模板g的相关系数if R(1,2)>0.95 %找出图片中与模板相匹配的位置,并标记

imshow(S1)

for i=1:1:y

text(numy+i-1,numx,'\o ','Color','red');

end

for i=1:1:x

text(numy,numx+i-1,'\o ','Color','red');

end

for i=1:1:x

text(numy+y-1,numx+i-1,'\o ','Color','red');

end

for i=1:1:y

text(numy+i-1,numx+x-1,'\o ','Color','red');

end

break;

end

end

if R(1,2)>0.95

break;

end

end

方法二

clear all

S1=imread('pic1_1.bmp'); %读入被搜索的图片pic1_2.bmp

S=double(S1); %读入的图片数据类型是uint8,转换类型为double

g1=imread('templet1_1.bmp'); %读入模板图片templet1_2.bmp

g=double(g1); %读入的图片数据类型是uint8,转换类型为double

x=size(g,1); %获取g的行数

m=size(S,1); %S的X坐标

y=size(g,2); %获取g的列数

n=size(S,2); %S的Y坐标

[R,corr1]=Dfft(S,g,1,1); %使用FFT和IFFT函数,求解相关系数

gg=sum(sum(g.^2)); %使用FFT和IFFT函数,求解相关系数

St1=zeros(1,y); %定义变量

St2=St1; %定义变量

for numy=1:1:n-y+1

for numx=1:1:m-x+1

if (numx==1)&&(numy==1)%求解numx=1时的Sxy的值,为之后求解numx!=1时的Sxy做准备

Sxy=S(numx:1:x+numx-1,numy:1:y+numy-1);

ss0=sum(sum(Sxy.^2));

ss=ss0;

elseif (numx==1)&&(numy~=1) %使用公式(5)计算列的

St1=S(numx:1:numx+x-1,numy-1);

St2=S(numx:1:numx+x-1,numy+y-1);

ss0=ss0+sum(St2.^2)-sum(St1.^2);

ss=ss0;

else %根据公式(6)求解numx!=1时的Sxy的值,

St1=S(numx-1,numy:1:numy+y-1);

St2=S(numx+x-1,numy:1:numy+y-1);

ss=ss+dot(St2,St2)-dot(St1,St1);

end

R1=corr1(numx,numy)/sqrt(gg*ss); %求基准图像与模板图像之间的相关系数if R1>0.95 %找出图片中与模板相匹配的位置,并标记

imshow(S1)

for i=1:1:y

text(numy+i-1,numx,'\o ','Color','red');

end

for i=1:1:x

text(numy,numx+i-1,'\o ','Color','red');

end

for i=1:1:x

text(numy+y-1,numx+i-1,'\o ','Color','red');

end

for i=1:1:y

text(numy+i-1,numx+x-1,'\o ','Color','red');

end

break;

end

end

if R1>0.95

break;

end

end

function [R,corr1]=Dfft(I1,I2,i,j)

[m1 n1] = size(I1);

[m2 n2] = size(I2);

I1 = padarray(I1,[1024 - m1,1024 - n1],'post');

I2 = padarray(I2,[1024 - m2,1024 - n2],'post');

% 计算FFT,乘以时域信号然后进行fft

FI1 =(fft2(I1));

FI2 = (fft2(I2));

% 求解互相关,f(x,y)°h(x,y) = ifft2{conj(F(u,v)).*H(u,v)},复数共轭分别对模板和图像进行如下

corr1 = (ifft2(FI1.*conj(FI2)));

R=corr1(i,j);

6.实验后的体会和建议

通过该实验,通过自己编程,掌握图像信号处理的基本概念和一般方法,学会读入图像信息。学习图像匹配的一般方法,了解相关估计在图像匹配和检测中的应用。熟悉图像匹配与校准定位的基本方法。

建议在matlab方面多给一些提示,比如一些基本指令和基本思路,因为在使用matlab 不是很熟悉,所以在编程和了解matlab上投入了较多的精力,以及图像数据类型转换上学习了较长的时间。但是相比于实验2,在使用matlab上有了较大的进步。

赵宇凡开题报告-基于图像特征提取与匹配的目标识别系统设计

北京联合大学毕业设计(论文)开题报告 题目:基于图像特征提取与匹配的目标识别系统设计 专业:通信工程指导教师:韩玺 学院:信息学院学号:30 班级:2008080304430姓名:赵宇凡 一、课题任务与目的 1、课题的主要任务:以DSP平台为系统硬件平台,并基于DM6437为处理器核心,设计硬件原理图,编写特征点提取算法,使系统通过特征点匹配对静态目标进行识别。 2、课题的主要目的:设计并实现一个功能完整,操作简单的目标识别系统,使其能够对静态图像目标进行特征提取与匹配,从而进行目标识别。 二、调研资料情况 1、课题的学术状态: (1)DM6437关键特性 时钟频率达600MHz,1个TVP5146M2视频解码器4个视频DACV输出,128MDDR2DRAM,提供16M non-volatile flash memory, 64M NAND flash, 2M SRAM 提供UART, CAN,I/O接口,AIC33立体音频编码器,10/100 MBS以太网接口,可配置的boot load选项,嵌入式的JTAG仿真器接口,4个用户LEDs及4个用户切换点,提供子板扩展插槽,VLYNQ接口,提供S/PDIF接口。 (2)SIFT算法 从理论上说,SIFT是一种相似不变量,即对图像尺度变化和旋转是不变量。然而,由于构造SIFT特征时,在很多细节上进行了特殊处理,使得SIFT对图像的复杂变形和光照变化具有了较强的适应性,同时运算速度比较快,定位精度比较高。如:在多尺度空间采用DOG算子检测关键点,运算速度大大加快;关键点的精确定位不仅提高了精度,而且大大提高了关键点的稳定性;在构造描述子时,以子区域的统计特性,而不是以单个像素作为研究对象,提高了对图像局部变形的适应能力;对于16*16的关键点邻域和4*4的子区域,在处理梯度幅度时都进行了类似于高斯函数的加权处理,强化了中心区域,淡化了边缘区域的影响,从而提高了算法对几何变形的适应性;该方法不仅对通用的线

图像匹配的主要方法分析

图像匹配的主要方法分析 在我国的图像处理中,有很多的关键技术正在不断的发展和创新之中。这些相关技术的发展在很大程度上推动了我国图像处理事业的发展。作为图像处理过程中的关键技术,图像匹配技术正在受到越来越多的关注。文章针对图像匹配的主要方法进行详细的论述,希望通过文章的阐述和分析能够为我国的图像匹配技术的发展和创新贡献微薄力量,同时也为我国图像处理技术的发展贡献力量。 标签:图像处理;图像匹配;特征匹配;方法 在我国的图像处理技术中,图像的匹配技术不仅仅是其中的重要组成部分,同时还是很多图像技术的发展创新的技术基础。例如图像技术中的立体视觉技术;图像技术中的运动分析技术以及图像技术中的数据融合技术等。通过上述内容可以看出,在我国的图像技术中,图像匹配技术具有非常广泛的应用。随着我国的相关技术不断的创新和发展,对于图像匹配技术的要求也是越来越高。这样就要求我国的图像匹配技术有更深层次的研究和发展。我国现阶段的研究主要是针对图像匹配过程中的匹配算法进行研究,希望借助研究能够更加有效的提升在实际的工作应用中的图像质量,同时也能够在很大程度上提升图像处理的图像分别率。文章的主要陈述点是通过图像匹配技术的具体方法进行优点和缺点的分析,通过分析优点和缺点来论述我国图像处理技术中的图像匹配技术的发展方向以及改进措施。近些年出现了很多的图像匹配方法,针对现阶段的新方法以及新的研究思路我们在实际的应用过程中要有一个非常清醒的选择。文章针对这一问题主要有三个内容的阐述。第一个是图像匹配技术的算法融合;第二个是图像匹配技术中的局部特征算法;最后一个是图像匹配技术中的模型匹配具体算法。 1 现阶段在世界范围内较为经典的图像匹配技术的算法 关于现阶段在世界范围内的较为经典的图像匹配技术的算法的阐述,文章主要从两个方面进行分析。第一个方面是ABS图像匹配算法。第二个方面是归一化相互关图像匹配算法。下面进行详细的论述和分析。 (1)算法一:ABS图像匹配算法。ABS图像匹配算法最主要的原理就是要使用模板的图像以及相应的匹配图像的搜索用窗口之间的转换差别来显示两者之间的关联性。图像匹配的大小在数值上等同于模板图像的窗口滑动顺序。窗口的每一次滑动都会引起模板图像的匹配计算。现阶段ABS的算法主要有三个,如下: 在选择上述三种计算方法的过程中要根据实际情况社情相应的阀值,否则会出现很高的失误率。上述的三种算法使用范围较狭窄。只使用与等待匹配的图像在模板影像的计算。 (2)算法二:归一化相互关图像匹配算法。归一化相互关的图像匹配算法在现阶段是较为经典的算法。通常专业的称法为NC算法。此计算方法主要是采

基于matlab的图像识别与匹配

基于matlab的图像识别与匹配 摘要 图像的识别与匹配是立体视觉的一个重要分支,该项技术被广泛应用在航空测绘,星球探测机器人导航以及三维重建等领域。 本文意在熟练运用图像的识别与匹配的方法,为此本文使用一个包装袋并对上面的数字进行识别与匹配。首先在包装袋上提取出来要用的数字,然后提取出该数字与包装袋上的特征点,用SIFT方法对两幅图进行识别与匹配,最终得到对应匹配数字的匹配点。仿真结果表明,该方法能够把给定数字与包装袋上的相同数字进行识别与匹配,得到了良好的实验结果,基本完成了识别与匹配的任务。

1 研究内容 图像识别中的模式识别是一种从大量信息和数据出发,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别、评价的过程。 图形辨别是图像识别技术的一个重要分支,图形辨别指通过对图形的图像采用特定算法,从而辨别图形或者数字,通过特征点检测,精确定位特征点,通过将模板与图形或数字匹配,根据匹配结果进行辨别。 2 研究意义 数字图像处理在各个领域都有着非常重要的应用,随着数字时代的到来,视频领域的数字化也必将到来,视频图像处理技术也将会发生日新月异的变化。在多媒体技术的各个领域中,视频处理技术占有非常重要的地位,被广泛的使用于农业,智能交通,汽车电子,网络多媒体通信,实时监控系统等诸多方面。因此,现今对技术领域的研究已日趋活跃和繁荣。而图像识别也同样有着更重要的作用。 3 设计原理 3.1 算法选择 Harris 角点检测器对于图像尺度变化非常敏感,这在很大程度上限制了它的应用范围。对于仅存在平移、旋转以及很小尺度变换的图像,基于Harris 特征点的方法都可以得到准确的配准结果,但是对于存在大尺度变换的图像,这一类方法将无法保证正确的配准和拼接。后来,研究人员相继提出了具有尺度不变性的特征点检测方法,具有仿射不变性的特征点检测方法,局部不变性的特征检测方法等大量的基于不变量技术的特征检测方法。 David.Lowe 于2004年在上述算法的基础上,总结了现有的基于不变量技术的特征检测方法,正式提出了一种基于尺度空间的,对图像平移、旋转、缩放、甚至仿射变换保持不变性的图像局部特征,以及基于该特征的描述符。并将这种方法命名为尺度不变特征变换(Scale Invariant Feature Transform),以下简称SIFT 算法。SIFT 算法首先在尺度空间进行特征检测,并确定特征点的位置和特征点所处的尺度,然后使用特征点邻域梯度的主方向作为该特征点的方向特征,以实现算子对尺度和方向的无关性。利用SIFT 算法从图像中提取出的特征可用于同一个物体或场景的可靠匹配,对图像尺度和旋转具有不变性,对光照变化、

(完整版)图像特征特点及常用的特征提取与匹配方法

图像特征特点及常用的特征提取与匹配方法 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1) 颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2) 颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡 的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3) 颜色矩

图像匹配与拼接方法

图像匹配与拼接 分匹配和拼接两部分 一、匹配 当然匹配的方法,有sift,surf什么的,这里主要就介绍一下我自己的方法啦! 特征点提取是必须的,不然搜索范围太大哇!并且可能不可靠,所以特征点提取是必须的。什么点适合做特征点呢?这方面的论文很多啦,主要还是看你用什么方法匹配了,如果是用互相关作为相似性准则的话,那自相关系数随各个方向变化大的点就适合作特征点了,当然还要考虑稳定性,即特征点应该不太受光照、噪声、缩放、旋转等的影响,这样的才是好的特征点。当然,如果确定了应用坏境,不一定要满足不受上四个因素影响的,比如平行的双目匹配、全景图的匹配等,具体问题具体分析吧!角点特征是个人比较喜欢的特征。这里我自己定义了一种局部特征,效果还行,匹配采用互相关为准则的匹配,大概效果如下: 目测这几个匹配点还是正确的哇!在一些应用中,可能需要的匹配点数相当多,这就需要较密集的匹配了。密集的匹配可以根据初始的匹配结果估计搜索范围,这可以加速搜索,同时也要提取更多的特征点呀!话不多说了,下面是密集的匹配:

虽然这样的密度对于三维重构来说还不够,但对于一般的图像拼接来说足够了。匹配完了,下面就要将第二步了。 二、矫正 匹配好两幅图像了,接下来干啥呢?把它们对准呗。可惜了,两幅图像之间不但存在平移,还存在旋转缩放什么的,更复杂的,可能还存在所谓的3D变换,那就复杂啦!不管怎么样,所谓的对准,也就是矫正,总是基于一定的模型的,即基于相机拍摄两幅图像的相对姿态。对于全景图拼接(个人觉得是最简单的且较实用的拼接),需要根据相机焦距或者视场角投影到柱面上,然后两幅图像间的位置就只有一维的平移关系了。但是这对拍摄的相机也是有要求的,就是要保证拍摄两幅图像时,物防焦点是重合的,这样才能根据稀疏的几个点确定所有重叠区域内点的相对位置呀!但实际中很难做到物方焦点重合,比如数码相机或者所谓的智能手机的全景图拍摄,一般人都是拿着相机或者手机绕人旋转,而非绕物方焦点旋转拍摄的,这样拼接起来是绝对有误差的呀!特别是拼接近景,误差就更大了,远景还好。怎么克服这个缺点呢?简单的改进方法就是绕着摄像头旋转吧,虽然这也不是严格绕物方焦距旋转,但起码误差小得多啦,拼接的效果当然也就好得多了,可以试一试哦! 不扯了,第二种模型就是认为两幅图像间存在的变换关系是有2D旋转、缩放、平移的,可以通过一个旋转、缩放、平移矩阵来矫正,这个也不难,但是应用范围却相当有限,不详说了。 第三种模型就是不用模型,或者说认为两幅图像间的对应点存在的是一种线性变换关系,这样只要解一个线性方程组就可以了,似乎也挺简单的。但可惜的是,不是任给的两幅图像间都只存在线性变换呀!它可能是一个3D的线性变换,那就麻烦了,这个必须需要密匹配呀!不然就一定是有误差的,即不能通过稀疏的匹配点来矫正两幅图像的所有对应点的。 还有更多的模型,比如各方位的全景图,需要投影到球面上的哇!不过这个模型也不难。最难的当然是拍摄两幅图像时,相机不同,相机姿态也不同了,这个是很有挑战的,我也很惧怕这个。下面展示三种矫正结果: 1、2D线性模型: 2D矫正,认为匹配点之间存在线性变换,X=ax+by+c,Y=dx+ey+e这样的模型,业内称之放射变换,其中x,y是第一幅点的坐标,X,Y是对应的第二幅图像中的点坐标,使用最小二乘法计算a、b、c、d、e、f,第二幅图相对于第一幅图矫正的结果就是这样的了

视觉检测原理介绍

技术细节 本项目应用了嵌入式中央控制及工业级图像高速传输控制技术,基于CCD/CMOS与DSP/FPGA的图像识别与处理技术,成功建立了光电检测系统。应用模糊控制的精选参数自整定技术,使系统具有对精确检测的自适应调整,实现产品的自动分选功能。 图1 控制系统流程图 光电检测系统主要通过检测被检物的一些特征参数(灰度分布,RGB分值等),从而将缺陷信息从物体中准确地识别出来,通过后续的系统进行下一步操作,主要分为以下几部分 CCD/CMOS图像采集部分 系统图像数据采集处理板中光信号检测元件CCD/CMOS采用进口的适合于高精度检测的动态分析单路输出型、保证实际数据输出速率为320MB/s的面阵CCD/CMOS。像素分别为4000*3000和1600*1200,帧率达到10FPS。使用CCD/CMOS 作为输入图像传感器,从而实现了图像信息从空间域到时间域的变换。为了保证所需的检测精度,需要确定合理的分辨率。根据被检测产品的大小,初步确定系统设计分辨率为像素为0.2mm。将CCD/CMOS接收的光强信号转换成电压幅值,再经过A/D转换后由DSP/ FPGA芯片进行信号采集,即视频信号的量化处理过程,图像采集处理过程如图所示:

图2 图像采集处理过程 数据处理部分 在自动检测中,是利用基于分割的图像匹配算法来进行图像的配对为基础的。图像分割的任务是将图像分解成互不相交的一些区域,每一个区域都满足特定区域的一致性,且是连通的,不同的区域有某种显著的差异性。分割后根据每个区域的特征来进行图像匹配,基于特征的匹配方法一般分为四个步骤:特征检测、建立特征描述、特征匹配、利用匹配的“特征对”求取图像配准模型参数。 算法基本步骤如下: 1)利用图像的色彩、灰度、边缘、纹理等信息对异源图像分别进行分割,提取区域特征; 2)进行搜索匹配,在每一匹配位置将实时图与基准图的分割结果进行融合,得到综合分割结果; 3)利用分割相似度描述或最小新增边缘准则找出正确匹配位置。 设实时图像分割为m个区域,用符号{A1,A2,… Am}表示,其异源基准图像分割为n个区域,用符号{B1,B2,…Bn}表示。分割结果融合方法如下: 在每一个匹配位置,即假设的图像点对应关系成立时,图像点既位于实时图中,又位于其异源基准图像中,则融合后区域点的标识记为:(A1B1,A1B2,…,A2B1,A2B2,…)。标识AiBj表示该点在实时图中位于区域i,在基准图中位于区域j。算法匹配过程如下图所示:

图像特征特点及其常用的特征提取与匹配方法

图像特征特点及其常用的特征提取与匹配方法 [ 2006-9-22 15:53:00 | By: 天若有情 ] 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(m ean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。(4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。 (5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局

图像匹配

研究配准进两年的时间,有幸看到一个技术文档,做了一下的总结,如有不妥之处敬请大家谅解,多提出意见 废话不多说,书归正传! 这里主要讲解的是多模态或者说是多序列MRI图像配准。采用的图片是人体膝盖图。配准暂且分为五部 Step1. 下载图片 Step2. 初始配准(粗配准) Step3. 提高配准精度 Step4. 利用初始条件提高配准精度配准 Step5. 结果满意不满意,你说了算 下面一一详细说明以上几个步骤! 一,下载图片 这里采用的图片是matlab子带的两张MR膝盖图, “knee1.dcm”作为参考图像,"knee2.dcm"为浮动图像! Plain Text code ? 1 2 fixed = dicomread('knee1.dcm'); % 读参考图像fixed moving = dicomread('knee2.dcm'); % 读浮动图像moving 可能接下来大家关注的问题就是这两幅图像到底有什么区别,这种区别又有多大的可视化程度,下面就为推荐两个比较好用的函数用于观测两幅图像的区别。Plain Text code ? 1 2 figure, imshowpair(moving, fixed, 'method'); title('Unregistered'); imshowpair函数就是指以成双成对的形式显示图片,其中一个重要的参数就是‘method’,他又4个选择 (1)‘falsecolor’字面意思理解就是伪彩色的意思了,其实就是把两幅图像的差异用色彩来表示,这个是默认的参数。 (2)‘blend’这是一种混合透明处理类型,技术文档的翻译是 alpha blending,大家自己理解吧。 (3)‘diff’这是用灰度信息来表示亮度图像之间的差异,这是对应 ‘falsecolor’的一种方式。 (4)参数‘monotage’可以理解成‘蒙太奇’,这是一种视频剪辑的艺术手法,其实在这里我们理解成拼接的方法就可以了。 为什么在这里罗里吧嗦的说这么多的显示呢,大家知道"人靠衣装,美靠...."(就不多说了吧),总之就是一个好的视觉效果能给人以耳目一新的效果。

图像识别匹配技术原理

第1章绪论 1.1研究背景及意义 数字图像,又称数码图像或数位图像,是二维图像用有限数字数值像素的表示。通常,像素在计算机中保存为二维整数数组的光栅图像,这些值经常用压缩格式进行传输和储存。数字图像可以由许多不同的输入设备和技术生成,例如数码相机、扫描仪、坐标测量机等,也可以从任意的非图像数据合成得到,例如数学函数或者三维几何模型,三维几何模型是计算机图形学的一个主要分支。数字图像处理领域就是研究它们的变换算法。 数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。 图像配准(Image registration)就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,它已经被广泛地应用于遥感数据分析、计算机视觉、图像处理等领域。 图像配准的方法迄今为止,在国内外的图像处理研究领域,已经报道了相当多的图像配准研究工作,产生了不少图像配准方法。总的来说,各种方法都是面向一定范围的应用领域,也具有各自的特点。比如计算机视觉中的景物匹配和飞行器定位系统中的地图匹配,依据其完成的主要功能而被称为目标检测与定位,根据其所采用的算法称之为图像相关等等。 基于灰度信息的图像配准方法一般不需要对图像进行复杂的预先处理,而是利用图像本身具有灰度的一些统计信息来度量图像的相似程度。主要特点是实现简单,但应用范围较窄,不能直接用于校正图像的非线性形变,在最优变换的搜索过程中往往需要巨大的运算量。经过几十年的发展,人们提出了许多基于灰度信息的图像配准方法,大致可以分为三类:互相关法(也称模板匹配法)、序贯相似度检测匹配法、交互信息法。 目前主要图像配准方法有基于互信息的配准方法,基于相关性的配准方法和基于梯度的配准方法。其中基于梯度的方法基本很少单独使用,而作为一个辅助

基于特征的图像匹配算法-毕业论文含源代码

诚信声明 本人声明: 我所呈交的本科毕业设计论文是本人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致中所罗列的容以外,论文中不包含其他人已经发表或撰写过的研究成果。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了意。本人完全意识到本声明的法律结果由本人承担。 申请学位论文与资料若有不实之处,本人承担一切相关责任。 本人签名:日期:2010 年05 月20日

毕业设计(论文)任务书 设计(论文)题目: 学院:专业:班级: 学生指导教师(含职称):专业负责人: 1.设计(论文)的主要任务及目标 (1) 了解图象匹配技术的发展和应用情况,尤其是基于特征的图象匹配技术的发展和应用。 (2) 学习并掌握图像匹配方法,按要求完成算法 2.设计(论文)的基本要求和容 (1)查阅相关中、英文文献,完成5000汉字的与设计容有关的英文资料的翻译。(2)查阅15篇以上参考文献,其中至少5篇为外文文献,对目前国外图象匹配技术的发展和应用进行全面综述。 (3)学习图象匹配算法,尤其是基于特征的图象匹配算法。 (4)实现并分析至少两种基于特征的图象匹配算法,并分析算法性能。 3.主要参考文献 [1]谭磊, 桦, 薛彦斌.一种基于特征点的图像匹配算法[J].天津理工大学报,2006, 22(6),66-69. [2]甘进,王晓丹,权文.基于特征点的快速匹配算法[J].电光与控制,2009,16(2), 65-66. [3]王军,明柱.图像匹配算法的研究进展[J].大气与环境光学学报,2007,2(1), 12-15.

4

采用相关分析进行图像的快速匹配定位

实验四:采用相关分析进行图像的快速匹配定位 1.实验目的: a. 掌握图像信号处理的基本概念和一般方法,学会读入图像信息。 b. 学习图像匹配的一般方法,了解相关估计在图像匹配和检测中的应用。 c. 熟悉图像匹配与校准定位的基本方法,学习二维图像信号的快速相关估计的基本算法,学会用FFT 作快速相关估计。 2.实验内容: a. 读入图像数据。 b. 编写图像匹配的程序,从一幅图像中任取一幅子图(模板T ),然后 在另外一幅图像中寻找能和该子图匹配的目标(S i,j )的位置。 c. 设计程序界面,将匹配结果直观地显示出来。 d. 探讨快速算法。 3.算法讨论及分析 算法1: 设模板T 在被搜索图S 中平移,模板覆盖下的那块子图像我们记做S i,j ,(i,j)为这块子图像的左上角象素点在S 中的坐标,从图1中,我们可以看出i 和j 的取值范围为:1

图像识别匹配技术原理

第1章绪论 1?1研究背景及意义 数字图像,又称数码图像或数位图像,是二维图像用有限数字数值像素的表示。通常,像素在计算机中保存为二维整数数组的光栅图像,这些值经常用压缩格式进行传输和储存。数字图像可以由许多不同的输入设备和技术生成,例如数码相机、扫描仪、坐标测量机等,也可以从任意的非图像数据合成得到,例如数学函数或者三维几何模型,三维几何模型是计算机图形学的一个主要分支。数字图像处理领域就是研究它们的变换算法。 数字图像处理(Digital Image Process in g)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。 图像配准(Image registration)就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,它已经被广泛地应用于遥感数据分析、计算机视觉、图像处理等领域。 图像配准的方法迄今为止,在国内外的图像处理研究领域,已经报道了相当多的图像配准研究工作,产生了不少图像配准方法。总的来说,各种方法都是面向一定范围的应用领域,也具有各自的特点。比如计算机视觉中的景物匹配和飞行器定位系统中的地图匹配,依据其完成的主要功能而被称为目标检测与定位,根据其所采用的算法称之为图像相关等等。 基于灰度信息的图像配准方法一般不需要对图像进行复杂的预先处理,而是利用图像本身具有灰度的一些统计信息来度量图像的相似程度。主要特点是实现简单,但应用范围较窄,不能直接用于校正图像的非线性形变,在最优变换的搜索过程中往往需要巨大的运算量。经过几十年的发展,人们提出了许多基于灰度信息的图像配准方法,大致可以分为三类:互相关法(也称模板匹配法)、序贯相似度检测匹配法、交互信息法。 目前主要图像配准方法有基于互信息的配准方法,基于相关性的配准方法和基

人脸识别主要算法原理

人脸识别主要算法原理 主流的技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他结合才能有比较好的效果; 2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。 3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是:设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的基础。 3. 特征脸方法(Eigenface或PCA)

人脸识别主要算法原理

人脸识别主要算法原理 主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果; 2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。 3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧 面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是: 设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的 基础。 3. 特征脸方法(Eigenface或PCA)

关于图像匹配的综述

关于图像匹配的综述 1.图像匹配的背景及定义 1.1图像匹配的背景及意义 图像匹配技术广泛的应用于日常生活中的诸多领域,如医疗诊断中各种医学图片的分析与识别、遥感图片识别、天气预报中的卫星云图识别、指纹识别、人脸识别等。图像匹配技术主要指通过计算机,采用数学技术方法,对获取的图像按照特定目的进行相应的处理。图像匹配技术是人工智能的一个重要分支和应用,随着计算机技术及人工智能技术的发展,图像识别技术逐渐成为人工智能的基础技术之一。它涉及的技术领域相当的广泛,也越来越深入,其基本分析方法也随着数学工具的不断进步而不断发展。现在,图像识别技术的应用范围己经不仅仅局限于视觉的范围,也体现在机器智能和数字技术等方面。 1.2图像匹配的定义 所谓图像匹配是指在一幅(或一批)图像中寻找与给定目标图像相似的图像或者图像区域(子图像)的过程。通常将已知目标图像称为模板图像,而将待搜索图像中可能与它对应的子图称作该模板的待匹配的目标图像。图像匹配是在来自不同时间或者不同视角的同一场景的两幅或多幅图像之间寻找对应关系,该技术隶属于计算机视觉哺领域。图像匹配的具 体应用包括目标或场景识别、在多幅图像中求解3D结构、立体对应和运动跟踪等。由于拍摄时间、拍摄角度、自然环境的变化,多种传感器的使用、传感器本身的缺陷及噪声等影响,拍摄的图像会存在灰度失真和几何畸变。同时,图像预处理过程会引入的误差,这都是导致模板图像与待匹配的目标图像之间通常存在着一定程度上的差异。在这种情况下,如何使匹配算法精度高、正确匹配率高、速度快和抗干扰性强成为人们关心的问题。 2.图像匹配算法的分类 图像匹配算法的选取对图像匹配结果的影响很大。实用的匹配算法不仅要求计算量小,还必须具有良好的抗噪能力和抗几何形变的能力。通常情况下,图像匹配算法可以分为以下两大类:基于灰度相关的匹配算法、基于特征的图像匹配算法。 1) 基于灰度分布的相关匹配算法,也称为基于区域的匹配方法。常见的基于图像灰度的匹配方法有:(1)归一化灰度相关匹配、(2)最小二乘影像匹配、和(3)序贯相似性检测法匹配等。该类算法直接利用整幅图像的灰度信息,建立两幅图像之间的相似性度量,然后采用某种搜索方法,寻找使相似性度量值最大或最小的变换模型的参数值。在灰度及几何畸变

人脸识别几种解决方案的对比_人脸识别技术原理介绍

人脸识别几种解决方案的对比_人脸识别技术原理介绍 人脸识别概要人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。人脸识别特点非强制性:用户不需要专门配合人脸采集设备,几乎可以在无意识的状态下就可获取人脸图像,这样的取样方式没有强制性; 非接触性:用户不需要和设备直接接触就能获取人脸图像; 并发性:在实际应用场景下可以进行多个人脸的分拣、判断及识别; 除此之外,还符合视觉特性:以貌识人的特性,以及操作简单、结果直观、隐蔽性好等特点。 人脸识别技术原理分析人脸识别主要分为人脸检测(face detecTIon)、特征提取(feature extracTIon)和人脸识别(face recogniTIon)三个过程。 人脸检测:人脸检测是指从输入图像中检测并提取人脸图像,通常采用haar特征和Adaboost算法训练级联分类器对图像中的每一块进行分类。如果某一矩形区域通过了级联分类器,则被判别为人脸图像。 特征提取:特征提取是指通过一些数字来表征人脸信息,这些数字就是我们要提取的特征。常见的人脸特征分为两类,一类是几何特征,另一类是表征特征。几何特征是指眼睛、鼻子和嘴等面部特征之间的几何关系,如距离、面积和角度等。由于算法利用了一些直观的特征,计算量小。 不过,由于其所需的特征点不能精确选择,限制了它的应用范围。另外,当光照变化、人脸有外物遮挡、面部表情变化时,特征变化较大。所以说,这类算法只适合于人脸图像的粗略识别,无法在实际中应用。 表征特征利用人脸图像的灰度信息,通过一些算法提取全局或局部特征。其中比较常用的特征提取算法是LBP算法。LBP方法首先将图像分成若干区域,在每个区域的像素640x960邻域中用中心值作阈值化,将结果看成是二进制数。

图像匹配总结

图像匹配方法总结 图像匹配最早是美国70年代从事飞行器辅助导航系统,武器投射系统的末制导等应用研究中提出的。从80年代以后,其应用已逐步从原来单纯的军事应用扩大到其它领域。随着科学技术的发展,图像匹配技术已经成为现代信息处理领域中的一项极为重要的技术,在许多领域内有着广泛而实际的应用,如:模式识别,自动导航,医学诊断,计算机视觉,图像三维重构、遥感图像处理等领域。图像匹配是这些应用领域的瓶颈问题,目前很多重要的计算机视觉方面的研究都是在假设匹配问题已经得到解决的前提下开展的。因此,对图像匹配做进一步深入的研究有着非常重要的意义。 图像匹配是图像处理领域常见的基础问题, 是在变换空间中寻找一种或多种变换, 使来自不同时间、不同传感器或不同视角的同一场景的两幅或多幅图像在空间上一致。由于拍摄时间、角度、环境的变化、多种传感器的使用和传感器本身的缺陷, 使拍摄的图像不仅受噪声的影响, 而且存在严重的灰度失真和几何畸变。在这种条件下, 匹配算法如何达到精度高、匹配正确率高、速度快、鲁棒性和抗干扰性强以及并行实现成为人们追求的目标。 根据匹配算法的基本思想可将图像匹配方法分成两大类,即基于区域的匹配方法和基于特征的匹配方法。两类方法相比而言,基于特征的匹配方法有计算量小,鲁棒性好,对图像形变不敏感等优点,所以基于特征的匹配方法是目前研究的热点。基于特征的图像匹配方法主要包括三步:特征提取、特征描述和特征匹配。 一、特征提取方法 图像匹配过程中,首先要根据给定的匹配任务和参与匹配图像的数据特性来决定使用何种特征进行匹配。所选取的特征必须要显著,并且易于提取,在参考图像和待配准图像上都要有足够多的分布,另外,所选择的特征必须易于进行后续的匹配。在图像配准中常用的特征有特征点,如拐点、角点;特征线,如边缘曲线、直线段;特征面,如小面元、闭合区域等。 1、Harris算法 基本思想:它是一种基于信号的点特征提取算子。这种算子受信号处理中自相关函数的启发,给出与自相关函数相联系的矩阵M。M阵的特征值是自相关函数的一阶曲率,如果两个曲率值都高,则认为该点是特征点。 实验结果:Harris算子计算量小,能在一定程度上抗尺度变化,当存在较大尺度缩放时稳定性较差。并且该算子对旋转,噪声敏感。 2、SUSAN算法 基本思想:它用圆形模板在图像上移动,若模板内像素的灰度与模板中心像素灰度的差值小于一定阈值,则认为该点与核具有相同的灰度,由满足这样条件的像素组成的局部区域称为“USAN”。根据USAN的尺寸、质心和二阶矩,可检测边缘、角点等特征。 实验结果:SUSAN算子可提取图像边缘和图像特征点,对明显角点提取的能力较强,较适合提取图像边缘上的拐点。SUSAN算子提取的特征点抗图像旋转、噪声影响的效果较好。 3、Harris-Laplace算法 基本思想:该算法首先使用尺度Harris角点算子在尺度空间中的每一幅二维图像中检测特征点,尺度维上获得选择大于某一阂值的局部极值作为候选角点,然后再验证这些点是否在Laplacian算子局部极大值。如果是,则确定为特征点,并将获得极大值的点所在的尺度作为特征尺度。 实验结果:对Harris算法的改进,使其具有更好的尺度不变性。该算法可提取图像特征点,也

SIFT算法实现原理步骤

SIFT 算法实现步骤 :1 关键点检测、2 关键点描述、3 关键点匹配、4 消除错配点 1关键点检测 1.1 建立尺度空间 根据文献《Scale-space theory: A basic tool for analysing structures at different scales 》我们可知,高斯核是唯一可以产生多尺度空间的核,一个图像的尺度空间,L (x,y,σ) ,定义为原始图像I(x,y)与一个可变尺度的2维高斯函数G(x,y,σ) 卷积运算。 高斯函数 高斯金字塔 高斯金子塔的构建过程可分为两步: (1)对图像做高斯平滑; (2)对图像做降采样。 为了让尺度体现其连续性,在简单 下采样的基础上加上了高斯滤波。 一幅图像可以产生几组(octave ) 图像,一组图像包括几层 (interval )图像。 高斯图像金字塔共o 组、s 层, 则有: σ——尺度空间坐标;s ——sub-level 层坐标;σ0——初始尺度;S ——每组层数(一般为3~5)。 当图像通过相机拍摄时,相机的镜头已经对图像进行了一次初始的模糊,所以根据高斯模糊的性质: -第0层尺度 --被相机镜头模糊后的尺度 高斯金字塔的组数: M 、N 分别为图像的行数和列数 高斯金字塔的组内尺度与组间尺度: 组内尺度是指同一组(octave )内的尺度关系,组内相邻层尺度化简为: 组间尺度是指不同组直接的尺度关系,相邻组的尺度可化为: 最后可将组内和组间尺度归为: ()22221 ()(),,exp 22i i i i x x y y G x y σπσσ??-+-=- ? ??()()(),,,,*,L x y G x y I x y σσ=Octave 1 Octave 2 Octave 3 Octave 4 Octave 5σ2σ 4σ8 σ 0()2s S s σσ= g 0σ=init σpre σ()() 2log min ,3O M N ??=-?? 1 12S s s σσ+=g 1()2s S S o o s σσ++=g 222s S s S S o o σσ+=g g 121 2(,,,) i n k k k σσσσ--L 1 2 S k =