重点高中三角函数知识点总结
高中三角函数公式大全必背知识点
三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotA cotB 1cotAcotB -+倍角公式 tan2A =Atan 12tanA2- Sin2A=2SinA•CosA Cos2A =Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A)=2cos 1A -cos(2A )=2cos 1A +tan(2A)=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin +和差化积sina+sinb=2sin 2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=b a b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)]cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式 sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosa cos(2π-a) = sinasin(2π+a) = cosa cos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =aacos sin 万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa - 其他a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b]a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba]1+sin(a) =(sin 2a +cos 2a)21-sin(a) = (sin 2a -cos 2a)2非重点三角函数csc(a) =a sin 1 sec(a) =a cos 1双曲函数sinh(a)=2e -e -aacosh(a)=2e e -aa +tg h(a)=)cosh()sinh(a a公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= ta nα cot (π+α)= cotα 公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系:sin(2π+α)= cosαcos(2π+α)= -sinαtan(2π+α)= -cotαcot(2π+α)= -t anαsin(2π-α)= cosαcos(2π-α)= sinαtan(2π-α)= cotαcot(2π-α)= tanαsin(23π+α)= -cosαcos(23π+α)= sinαtan(23π+α)= -cotαcot(23π+α)= -tanαsin(23π-α)= -cosαcos(23π-α)= -sinαtan(23π-α)= cotαcot(23π-α)= tanα(以上k∈Z)物理公式A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A公式表达式乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAta nB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA )ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA )倍角公式 tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)co s(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B )/2 cosA+cosB=2cos((A+B)/2)sin((A-B )/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+ 1)/21+3+5+7+9+11+13+15+…+(2n-1) =n22+4+6+8+10+12+14+…+(2n)=n(n +1)12+22+32+42+52+62+72+82+…+ n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n +1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n( n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a -b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h' 圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h-----------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2 相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosA sin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2 相减:sinBcosA=[sin(A+B)-sin(A-B)]/2 这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(1)t anA+tanB+tanC=tanA·tanB ·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·si n(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·si nB·sinC(5)cos2A+cos2B+cos2C=-4cosAco sBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin( a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ( m+1)tan(α+β)=(1+m)/(1-m)tanβ。
高中数学三角函数知识点总结
高中数学三角函数知识点总结1.特殊角的三角函数值:sin 00= 0 cos 00= 1 tan 00= 0sin300=21 cos300=23tan300=33sin 045=22cos 045=22tan 045=1sin600=23cos600=21 tan600=3sin900=1 cos900=0 tan900无意义2.角度制与弧度制的互化:,23600π= ,1800π= 1rad =π180°≈57.30°=57°18ˊ. 1°=180π≈0.01745(rad )003004560900120 0135 01501802703606π 4π 3π 2π 32π 43π 65π π23π π23.弧长及扇形面积公式弧长公式:r l .α= 扇形面积公式:S=r l .21α----是圆心角且为弧度制。
r-----是扇形半径4.任意角的三角函数设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α=r y 余弦cos α=r x 正切tan α=xy(2) 各三角函数值在各象限的符号:sinα·cscα cosα·secα tanα·cotα5.同角三角函数的基本关系:(1)平方关系:s in 2α+ cos 2α=1。
(2)商数关系:ααcos sin =tan α (z k k ∈+≠,2ππα)6.诱导公式:记忆口诀:2k παα±把的三角函数化为的三角函数,概括为:奇变偶不变,符号看象限。
()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:正弦与余弦互换,符号看象限.7正弦函数、余弦函数和正切函数的图象与性质(1).“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为: (0,0), ⎝ ⎛⎭⎪⎫π2,1, (π,0),⎝ ⎛⎭⎪⎫32π,-1, (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为: (0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1) (2).三角函数的图象和性质函数性质y=sin x y=cos x y=tan x定义域R R{x|x≠kπ+π2,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:x=kπ+π2(k∈Z);对称中心:(kπ,0)(k∈Z)对称轴:x=kπ(k∈Z);对称中心:(kπ+π2,0) (k∈Z)对称中心:⎝⎛⎭⎪⎫kπ2,0(k∈Z)周期2π2ππ单调性单调增区间:[2kπ-π2,2kπ+π2](k∈Z);单调减区间:[2kπ+π2,2kπ+3π2](k∈Z)单调增区间:[2kπ-π,2kπ] (k∈Z) ;单调减区间:[2kπ,2kπ+π](k∈Z)单调增区间:(kπ-π2,kπ+π2)(k∈Z)奇偶性奇函数偶函数奇函数(3).一般地对于函数f(x),如果存在一个非零的常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期)对函数周期性概念的理解周期性是函数的整体性质,要求对于函数整个定义域范围的每一个x值都满足f(x +T)=f(x),其中T是不为零的常数.如果只有个别的x值满足f(x+T)=f(x),或找到哪怕只有一个x 值不满足f (x +T )=f (x ),都不能说T 是函数f (x )的周期. 函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为:2π|ω| y =tan(ωx +φ)的最小正周期为:π|ω|(4).求三角函数值域(最值)的方法:求三角函数的最值问题就是通过适当的三角变换或代数换元,化归为基本类的三角函数或代数函数,利用三角函数的有界性或常用的求函数最值的方法去处理.基本类型1)sin y a x b =+(或cos y a x b =+)型,利用|sin |1x ≤(或|cos |1x ≤),即可求解,此时必须注意字母a 的符号对最值的影响.2)sin cos y a x b x =+型,引入辅助角ϕ,化为)y x ϕ=+,利用函数|sin()|1x ϕ+≤即可求解.3)2sin sin y a x b x c =++(或2cos cos y a x b x c =++)型,可令sin t x =(或cos t x =),||1t ≤,化归为闭区间上二次函数的最值问题. 4)sin sin a x b y c x d +=+(或cos cos a x by c x d+=+)型,解出sin x (或cos x )利用|sin |1x ≤(或|cos |1x ≤)去解;或用分离常数的方法去解决.5)sin cos a x b y c x d +=+(或cos sin a x by c x d+=+)型,可化归为sin()()x g y ϕ+=去处理;或用万能公式换元后用判别式法去处理;当a c =时,还可以利用数形结合的方法去处理.6)对于含有sin cos ,sin cos x x x x ±的函数的最值问题,常用的方法是令sin cos ,||x x t t ±=≤将sin cos x x 转化为t 的关系式,从而化归为二次函数的最值问题.7)在解含参数的三角函数最值问题中,需对参数进行讨论.(5).求三角函数的单调区间时,应先把函数式化成形如y =A sin(ωx +φ) (ω>0)的形式,再根据基本三角函数的单调区间,求出x 所在的区间.应特别注意,应在函数的定义域内考虑.注意区分下列两题的单调增区间不同;利用换元法求复合函数的单调区间(要注意x 系数的正负号) (1)y =sin ⎝ ⎛⎭⎪⎫2x -π4;(2)y =sin ⎝ ⎛⎭⎪⎫π4-2x .8、三角函数公式:两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+降幂公式: 升幂公式 : 1+cos α=2cos 22αcos 2α22cos 1α+=1-cos α=2sin 22αsin 2α22cos 1α-=倍角公式tan2A =A tan 12tanA2-Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)半角公式sin(2A )=2cos 1A -cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=AA cos 1cos 1-+ tan(2A )=A A sin cos 1-=AA cos 1sin + 和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]-------------------------------------------------------------------------------------------- 三角函数 积化和差 和差化积公式 记不住就自己推,用两角和差的正余弦: cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC (5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1万能公式sina=2)2(tan 12tan2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan2aa-其它公式a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a)2其他非重点三角函数csc(a) =asin 1 sec(a) =a cos 19.正弦定理 :2sin sin sin a b cR A B C===. 余弦定理:2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.三角形面积定理.111sin sin sin 222S ab C bc A ca B ===.初等函数的图形幂函数的图形指数函数的图形反三角函数的图形反三角函数的性质。
高中数学三角函数关系总结
高中数学三角函数关系总结三角函数是高中数学中重要的概念之一,涉及到角度和长度的关系。
在数学中,常用的三角函数有正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
本文将对高中数学中的三角函数关系进行总结,重点讨论三角函数之间的关系和基本性质。
1. 正弦函数(sin)正弦函数是指给定一个角度,通过对角度上的点投影到单位圆上得到的纵坐标值。
正弦函数的定义域为任意实数,值域在[-1, 1]之间。
一些基本关系和性质如下:- 正弦函数的图像具有周期性,即sin(x + 2π) = sin(x)。
- 正弦函数的奇偶性:sin(-x) = -sin(x),表示正弦函数关于原点对称。
- 正弦函数的最值:在定义域内,正弦函数的最大值为1,最小值为-1。
- 正弦函数的增减性:在[0, π]上,正弦函数是递增的;在[π, 2π]上,正弦函数是递减的。
2. 余弦函数(cos)余弦函数是指给定一个角度,通过对角度上的点投影到单位圆上得到的横坐标值。
余弦函数的定义域为任意实数,值域也在[-1, 1]之间。
一些基本关系和性质如下:- 余弦函数的图像具有周期性,即cos(x + 2π) = cos(x)。
- 余弦函数的奇偶性:cos(-x) = cos(x),表示余弦函数关于y轴对称。
- 余弦函数的最值:在定义域内,余弦函数的最大值为1,最小值为-1。
- 余弦函数的增减性:在[0, π/2]上和[3π/2, 2π]上,余弦函数是递减的;在[π/2, 3π/2]上,余弦函数是递增的。
3. 正切函数(tan)正切函数是指给定一个角度,通过单位圆上的角投影点的纵坐标除以横坐标得到。
正切函数的定义域为(x ≠ (2n+1)π/2,n∈Z),值域为全体实数。
一些基本关系和性质如下:- 正切函数的图像具有周期性,即tan(x + π) = tan(x)。
- 正切函数的奇偶性:tan(-x) = -tan(x),表示正切函数关于原点对称。
高中特殊三角函数值记忆口诀
高中特殊三角函数值记忆口诀
三角函数在高中数学中占有重要地位,其中特殊角的三角
函数值是必须要掌握的重点内容。
掌握这些特殊角的值不仅有利于计算,还对理解三角函数的性质和图像具有重要意义。
为了帮助大家更轻松地记忆这些特殊角的三角函数值,下面将介绍一些口诀和记忆方法。
正弦、余弦、正切特殊角值
1.当角度为0度时,正弦值为0,余弦值为1,正切
值为0。
记忆口诀:零秒一分零度
2.当角度为30度时,正弦值为0.5,余弦值为√3/2,
正切值为√3/3。
记忆口诀:三无不等
3.当角度为45度时,正弦值为√2/2,余弦值为√2/2,
正切值为1。
记忆口诀:对角均根号二
4.当角度为60度时,正弦值为√3/2,余弦值为0.5,
正切值为√3。
记忆口诀:三有半度
5.当角度为90度时,正弦值为1,余弦值为0,正切
值为无穷。
记忆口诀:莫尔零度
前三者函数线性之不等
[高斯毕达哥拉斯秦乐音,已统与标等]
以上是对高中数学中特殊角的三角函数值的简单口诀总结。
通过这些口诀可以更好地记忆和理解特殊角的三角函数值,希望对大家学习有所帮助。
如果想要更深入地理解三角函数的性质和应用,建议多做相关练习,加深对知识的掌握。
希望这些口诀和方法能帮助大家更轻松地掌握高中数学中
特殊角的三角函数值,让学习变得更加有趣和易懂。
高中数学 三角函数
高中数学:三角函数一、概述三角函数是高中数学的一个重要组成部分,是解决许多数学问题的关键工具。
它涉及的角度、边长、面积等,都是几何和代数的核心元素。
通过学习三角函数,我们可以更好地理解图形的关系,掌握数学的基本概念。
二、三角函数的定义三角函数是以角度为自变量,角度对应的边长为因变量的函数。
常用的三角函数包括正弦函数(sine)、余弦函数(cosine)和正切函数(tangent)。
这些函数的定义如下:1、正弦函数:sine(θ) = y边长 / r (其中,θ是角度,r是从原点到点的距离)2、余弦函数:cosine(θ) = x边长 / r3、正切函数:tangent(θ) = y边长 / x边长三、三角函数的基本性质1、周期性:正弦函数和余弦函数都具有周期性,周期为 2π。
正切函数的周期性稍有不同,为π。
2、振幅:三角函数的振幅随着角度的变化而变化。
例如,当角度增加时,正弦函数的值也会增加。
3、相位:不同的三角函数具有不同的相位。
例如,正弦函数的相位落后余弦函数相位π/2。
4、奇偶性:正弦函数和正切函数是奇函数,余弦函数是偶函数。
5、导数:三角函数的导数与其自身函数有关。
例如,正弦函数的导数是余弦函数,余弦函数的导数是负的正弦函数。
四、三角函数的实际应用三角函数在现实生活中有着广泛的应用,包括但不限于以下几个方面:1、物理:在物理学中,三角函数被广泛应用于描述波动、振动、电磁场等物理现象。
例如,简谐振动可以用正弦或余弦函数来描述。
2、工程:在土木工程和机械工程中,三角函数被用于计算角度、长度等物理量。
例如,在桥梁设计、建筑设计等过程中,需要使用三角函数来计算最佳的角度和长度。
3、计算机科学:在计算机图形学中,三角函数被用于生成二维和三维图形。
例如,使用正弦和余弦函数可以生成平滑的渐变效果。
4、金融:在金融学中,三角函数被用于衍生品定价和风险管理。
例如,Black-Scholes定价模型就使用了正态分布(一种特殊的三角函数)。
高中数学知识点总结(第四章 三角函数、解三角形 第七节 正弦定理和余弦定理)
第七节 正弦定理和余弦定理一、基础知识 1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =a sin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B为锐角,∴cos B =1-sin 2B =223. (2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析](1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac=c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b 2c -a =sin A sin B +sin C =ab +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac ,∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc ,由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A=3×3+2232×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清] 1.变条件若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形 2.变条件若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形 3.变条件若本例(2)条件改为“cos A cos B =ba=2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC是直角三角形.答案:直角三角形[课时跟踪检测]A 级1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D.6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C+c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6. 6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A.5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sinB ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sinB =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A +B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a =1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C , ∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A ,∴sin ∠ADB =AB sin A BD =22.又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2,由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.第二课时 正弦定理和余弦定理(二) 考点一 有关三角形面积的计算[典例] (1)(2019·广州调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( )A .37 B.372C .9D.92(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则B =________.[解析] (1)法一:由余弦定理b 2=a 2+c 2-2ac cos B ,代入数据,得a =3,又cos B =34,B ∈(0,π),所以sin B =74,所以S △ABC =12ac sin B =372. 法二:由cos B =34,B ∈(0,π),得sin B =74,由正弦定理b sin B =csin C 及b =7,c =4,可得sin C =1,所以C =π2,所以sin A =cos B =34,所以S △ABC =12bc sin A =372.(2)由余弦定理得cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B . 又∵S =34(a 2+c 2-b 2),∴12ac sin B =34×2ac cos B , ∴t a n B =3,∵B ∈()0,π,∴B =π3.[答案] (1)B (2)π3[变透练清] 1.变条件本例(1)的条件变为:若c =4,sin C =2sin A ,sin B =154,则S △ABC =________. 解析:因为sin C =2sin A ,所以c =2a ,所以a =2,所以S △ABC =12ac sin B =12×2×4×154=15.答案:15 2.变结论本例(2)的条件不变,则C 为钝角时,ca的取值范围是________.解析:∵B =π3且C 为钝角,∴C =2π3-A >π2,∴0<A <π6 .由正弦定理得ca =sin ⎝⎛⎭⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1t a n A.∵0<t a n A <33,∴1t a n A>3, ∴c a >12+32×3=2,即ca >2. 答案:(2,+∞)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.解:(1)由已知及正弦定理得(2sin B -sin A )cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.[解题技法]1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 考点二 平面图形中的计算问题[典例] (2018·广东佛山质检)如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1. (1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .[解] (1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·c os ∠ABC , 即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,即AC sin π6=4sin θ, ① 在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝⎛⎭⎫π2-θ=θ-π4, 由正弦定理得AC sin ∠ABC =ABsin ∠BCA ,即AC sin 3π4=1sin ⎝⎛⎭⎫θ-π4,② ①②两式相除,得sin 3π4sin π6=4sin ⎝⎛⎭⎫θ-π4sin θ,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ. 又因为sin 2θ+c os 2θ=1,所以sin θ=255,即sin ∠CAD =255.[解题技法]与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.[题组训练]1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.解析:设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3. 在△ABD 中,c os ∠ADB =a 2+4a 23-a22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63. 在△BDC 中,BD sin C =BCsin ∠BDC, ∴sin C =BD ·sin ∠BDC BC =66.答案:662.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列.(1)求sin ∠CED ; (2)求BE 的长. 解:设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·c os ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去). 在△CDE 中,由正弦定理得EC sin ∠EDC =CDsin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以c os ∠AEB =c os ⎝⎛⎭⎫2π3-α=c os 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,c os ∠AEB =EA BE =2BE =714,所以BE =47.考点三 三角形中的最值、范围问题[典例] (1)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin 2A ,则角A 的取值范围为( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π4 C.⎣⎡⎦⎤π6,π4D.⎣⎡⎦⎤π6,π3(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( )A.32B.22C.12D .-12[解析] (1)在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin 2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b=2a ,所以A 为锐角.又因为sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. (2)因为cos 2A +cos 2B =2cos 2C ,所以1-2sin 2A +1-2sin 2B =2-4sin 2C ,得a 2+b 2=2c 2,cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时等号成立,故选C. [答案] (1)B (2)C[解题技法]1.三角形中的最值、范围问题的解题策略解与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角取值范围等求解即可.2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解, 已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.[题组训练]1.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A = b sin A ,则sin A +sin C 的最大值为( )A.2B.98C .1D.78解析:选B ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sin B ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos 2A =sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 2.(2018·哈尔滨三中二模)在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________.解析:∵sin 2A +sin 2B -sin A sin B =sin 2C ,∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,又∵C ∈(0,π),∴C =π3.由正弦定理可得a sin A =b sin B =2sin π3=433,∴a =433sin A ,b =433sin B .又∵B =2π3-A ,∴a +b =433sin A +433sin B =433sin A +433sin ⎝⎛⎭⎫2π3-A =4sin ⎝⎛⎭⎫A +π6.又∵A ∈⎝⎛⎭⎫0,2π3,∴A +π6∈⎝⎛⎭⎫π6,5π6,∴sin ⎝⎛⎭⎫A +π6∈⎝⎛⎦⎤12,1,∴a +b ∈(2,4]. 答案:(2,4]3.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos B b +cos C c =sin A 3sin C .(1)求b 的值;(2)若cos B +3sin B =2,求△ABC 面积的最大值.解:(1)由题意及正、余弦定理得a 2+c 2-b 22abc +a 2+b 2-c 22abc =3a 3c ,整理得2a 22abc =3a3c ,所以b = 3.(2)由题意得cos B +3sin B =2sin ⎝⎛⎭⎫B +π6=2, 所以sin ⎝⎛⎭⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,所以B =π3.由余弦定理得b 2=a 2+c 2-2ac cos B , 所以3=a 2+c 2-ac ≥2ac -ac =ac , 即ac ≤3,当且仅当a =c =3时等号成立. 所以△ABC 的面积S △ABC =12ac sin B =34ac ≤334,当且仅当a =c =3时等号成立.故△ABC 面积的最大值为334.考点四 解三角形与三角函数的综合应用考法(一) 正、余弦定理与三角恒等变换[典例] (2018·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 b sin A =ac os ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. [解] (1)在△ABC 中,由正弦定理a sin A =b sin B ,可得b sin A =a sin B .又因为b sin A =ac os ⎝⎛⎭⎫B -π6, 所以a sin B =ac os ⎝⎛⎭⎫B -π6, 即sin B =32cos B +12sin B , 所以t a n B = 3.因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =ac os ⎝⎛⎭⎫B -π6,可得sin A =37. 因为a <c ,所以cos A =27. 所以sin 2A =2sin A cos A =437,cos 2A =2c os 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314. 考法(二) 正、余弦定理与三角函数的性质[典例] (2018·辽宁五校联考)已知函数f (x )=c os 2x +3sin(π-x )c os(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.[解] (1)f (x )=c os 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π. (2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.[对点训练]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.解:(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z),得x =k π+5π12(k ∈Z),即当x =k π+5π12(k ∈Z)时,f (x )取得最大值1.[课时跟踪检测]A 级1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则 △ABC 的面积为( )A.12 B.14C .1D .2解析:选A 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC 的面积S =12bc sin A =12×2×12=12.2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若(2a +c )cos B +b cos C =0,则角B 的大小为( )A.π6 B.π3C.2π3D.5π6解析:选C 由已知条件和正弦定理,得(2sin A +sin C )cos B +sin B cos C =0.化简,得2sin A cos B +sin A =0.因为角A 为三角形的内角,所以sin A ≠0,所以cos B =-12,所以B =2π3. 3.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )A .6B .3C .2D .2或3解析:选D 因为S △ABC =12bc sin A =22,所以bc =6,又因为sin A =223,A ∈⎝⎛⎭⎫0,π2, 所以cos A =13,因为a =3,所以由余弦定理得9=b 2+c 2-2bc cos A =b 2+c 2-4,b 2+c 2=13,可得b =2或b =3. 4.(2018·昆明检测)在△ABC 中,已知AB =2,AC =5,t a n ∠BAC =-3,则BC 边上的高等于( )A .1 B.2 C.3D .2解析:选A 法一:因为t a n ∠BAC =-3,所以sin ∠BAC =310,c os ∠BAC =-110.由余弦定理,得BC 2=AC 2+AB 2-2AC ·ABc os ∠BAC =5+2-2×5×2×⎝⎛⎭⎫-110=9,所以BC =3,所以S △ABC =12AB ·AC sin ∠BAC =12×2×5×310=32,所以BC 边上的高h =2S △ABCBC =2×323=1.法二:在△ABC 中,因为t a n ∠BAC =-3<0,所以∠BAC 为钝角,因此BC 边上的高小于2,结合选项可知选A.5.(2018·重庆九校联考)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且a sin B =3b cos A ,当b +c =4时,△ABC 面积的最大值为( )A.33B.32C.3D .23解析:选C 由a sin B =3b cos A ,得sin A sin B =3sin B cos A ,∴t a n A =3,∵0<A <π,∴A =π3,故S △ABC =12bc sin A =34bc ≤34⎝⎛⎭⎫b +c 22=3(当且仅当b =c =2时取等号),故选C.6.(2019·安徽名校联盟联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( )A .2+3B .2+2C .3D .3+2解析:选A 由b +2c cos A =0,得b +2c ·b 2+c 2-a 22bc =0,整理得2b 2=a 2-c 2.由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+3c 24ac ≥23ac 4ac =32,当且仅当a =3c 时等号成立,此时角B 取得最大值,将a =3c 代入2b 2=a 2-c 2可得b =c .又因为bc =1,所以b =c =1,a =3,故△ABC 的周长为2+ 3.7.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知72=52+BC 2-2×5×BC ×cos 120°, 即49=25+BC 2+5BC ,解得BC =3(负值舍去). 故S △ABC =12AB ·BC sin B =12×5×3×32=1534.答案:15348.(2019·长春质量检测)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若 12b cos A =sin B ,且a =23,b +c =6,则△ABC 的面积为________.解析:由题意可知cos A 2=sin B b =sin Aa ,因为a =23,所以t a n A =3,因为0<A <π,所以A =π3,由余弦定理得12=b 2+c 2-bc =(b +c )2-3bc ,又因为b +c =6,所以bc =8,从而△ABC 的面积为12bc sin A =12×8×sin π3=2 3.答案:239.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠BAC =π2,点D 在边BC上,AD =1,且BD =2DC ,∠BAD =2∠DAC ,则sin Bsin C=________.解析:由∠BAC =π2及∠BAD =2∠DAC ,可得∠BAD =π3,∠DAC =π6.由BD =2DC ,令DC =x ,则BD =2x .因为AD =1,在△ADC 中,由正弦定理得1sin C =x sin π6,所以sin C =12x,在△ABD 中,sin B =sin π32x =34x ,所以sin B sin C =34x 12x=32.答案:3210.(2018·河南新乡二模)如图所示,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos A =________.解析:∵AD =DB ,∴∠A =∠ABD ,∠BDC =2∠A .设AD =DB =x , ∴在△BCD 中,BC sin ∠BDC =DB sin C,可得4sin 2A =xsin π3. ①在△AED 中,DE sin A =AD sin ∠AED ,可得22sin A =x1. ② 联立①②可得42sin A cos A =22sin A 32,解得cos A =64.答案:6411.(2019·南宁摸底联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 c (1+cos B )=b (2-cos C ).(1)求证:2b =a +c ;(2)若B =π3,△ABC 的面积为43,求b .解:(1)证明:∵c (1+cos B )=b (2-cos C ),∴由正弦定理可得sin C +sin C cos B =2sin B -sin B cos C , 即sin C cos B +sin B cos C +sin C =sin(B +C )+sin C =2sin B , ∴sin A +sin C =2sin B ,∴a +c =2b .(2)∵B =π3,∴△ABC 的面积S =12ac sin B =34ac =43,∴ac =16.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =(a +c )2-3ac . ∵a +c =2b ,∴b 2=4b 2-3×16,解得b =4. 12.在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长; (2)求c os ⎝⎛⎭⎫A -π6的值. 解:(1)因为cos B =45,0<B <π,所以sin B =35.由正弦定理得AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=5 2.(2)在△ABC 中,因为A +B +C =π,所以A =π-(B +C ), 又因为cos B =45,sin B =35,所以cos A =-c os(B +C )=-c os ⎝⎛⎭⎫B +π4=-cos Bc os π4+sin B sin π4=-45×22+35×22=-210.因为0<A <π,所以sin A =1-c os 2A =7210. 因此,c os ⎝⎛⎭⎫A -π6=cos Ac os π6+sin A sin π6=-210×32+7210×12=72-620. B 级1.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( )A .(2,2)B .(2,6)C .(2,3)D .(6,4)解析:选B ∵B =2A ,∴sin B =sin 2A =2sin A cos A ,∴ba =2cos A .又C =π-3A ,C为锐角,∴0<π-3A <π2⇒π6<A <π3,又B =2A ,B 为锐角,∴0<2A <π2⇒0<A <π4,∴π6<A <π4,22<cosA <32,∴2<b a <3,∴2<2ba< 6. 2.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +bc os 2A =2a ,则角A 的取值范围是________.解析:由已知及正弦定理得sin 2A sin B +sin Bc os 2A =2sin A ,即sin B (sin 2A +c os 2A )=2sin A ,∴sin B =2sin A ,∴b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac =3a 2+c 24ac ≥23ac 4ac =32,当且仅当c =3a 时取等号.∵A 为三角形的内角,且y =cos x 在(0,π)上是减函数,∴0<A ≤π6,则角A 的取值范围是⎝⎛⎦⎤0,π6. 答案:⎝⎛⎦⎤0,π6 3.(2018·昆明质检)如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2.(1)求AD 的长; (2)求△CBD 的面积.解:(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD =255,又∠BCD =2∠ABD ,所以∠ABD ∈⎝⎛⎭⎫0,π2,所以c os ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·c os ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =c os ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·c os ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CDsin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54, 所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58.。
高中数学第五章三角函数重点知识点大全(带答案)
高中数学第五章三角函数重点知识点大全单选题1、若sinα+cosαsinα−cosα=12,则tan (α+π4)的值为( ) A .−2B .2C .−12D .12 答案:C分析:利用弦化切和两角和的正切展开式化简计算可得答案. 因为sinα+cosαsinα−cosα=12.所以tanα+1tanα−1=12,解得tanα=−3,于是tan (α+π4)=tanα+tanπ41−tanαtanπ4=−3+11−(−3)=−12.故选:C.2、已知角α的终边经过点P (−3,4),则sinα−cosα−11+tanα的值为( )A .−65B .1C .2D .3答案:A分析:由三角函数的定义可得sinα=45,cosα=−35,tanα=−43,将其代入即可求解.由√(−3)2+42=5,得sinα=45,cosα=−35,tanα=−43,代入原式得=45−(−35)−11+(−43)=−65.故选:A3、记函数f(x)=sin (ωx +π4)+b(ω>0)的最小正周期为T .若2π3<T <π,且y =f(x)的图象关于点(3π2,2)中心对称,则f (π2)=( ) A .1B .32C .52D .3答案:A分析:由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解. 由函数的最小正周期T 满足2π3<T <π,得2π3<2πω<π,解得2<ω<3,又因为函数图象关于点(3π2,2)对称,所以3π2ω+π4=kπ,k ∈Z ,且b =2,所以ω=−16+23k,k ∈Z ,所以ω=52,f(x)=sin (52x +π4)+2, 所以f (π2)=sin (54π+π4)+2=1. 故选:A4、已知tanα=cosα2−sinα,则sinα=( ) A .√154B .12C .√32D .14答案:B分析:利用田家四季歌的基本关系得到sinαcosα=cosα2−sinα,整理可得2sinα=cos 2α+sin 2α,再根据平方关系计算可得;解:由tanα=cosα2−sinα,得sinαcosα=cosα2−sinα,即cos 2α=2sinα−sin 2α,∴2sinα=cos 2α+sin 2α=1, 解得sinα=12, 故选:B.5、已知sinαcosα=−16,π4<α<3π4,则sinα−cosα的值等于( )A .2√33B .−2√33C .−√63D .43答案:A分析:结合同角三角函数的基本关系式,利用平方的方法求得正确结论. 由于sinαcosα=−16,π4<α<3π4,所以sinα>0,cosα<0,故sinα−cosα>0,所以sinα−cosα=√(sinα−cosα)2=√1−2sinαcosα=√1+13=2√33. 故选:A6、√3tan26∘tan34∘+tan26∘+tan34∘= ( ) A .√33B .−√3C .√3D .−√33答案:C解析:利用两角和的正切公式,特殊角的三角函数值化简已知即可求解.解:√3tan26°tan34°+tan26°+tan34°=√3tan26°tan34°+tan(26°+34°)(1−tan26°tan34°)=√3tan26°tan34°+√3(1−tan26°tan34°) =√3tan26°tan34°+√3−√3tan26°tan34°=√3. 故选:C .7、已知sinθ+sin (θ+π3)=1,则sin (θ+π6)=( ) A .12B .√33C .23D .√22答案:B分析:将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值. 由题意可得:sinθ+12sinθ+√32cosθ=1,则:32sinθ+√32cosθ=1,√32sinθ+12cosθ=√33, 从而有:sinθcos π6+cosθsin π6=√33, 即sin (θ+π6)=√33. 故选:B.小提示:本题主要考查两角和与差的正余弦公式及其应用,属于中等题.8、将函数y =2sin (x +π3)的图象向左平移m (m >0)个单位长度后,所得到的图象关于原点对称,则m 的最小值是( ) A .π12B .π6C .π3D .2π3答案:D分析:由三角函数平移变换可得平移后函数为y =2sin (x +m +π3),根据对称性得到m +π3=kπ(k ∈Z ),结合m >0可得所求最小值.将y =2sin (x +π3)向左平移m (m >0)个单位长度得:y =2sin (x +m +π3),∵y=2sin(x+m+π3)图象关于原点对称,∴m+π3=kπ(k∈Z),解得:m=−π3+kπ(k∈Z),又m>0,∴当k=1时,m取得最小值2π3.故选:D.多选题9、已知tanθ=2,则下列结论正确的是()A.tan(π−θ)=−2B.tan(π+θ)=−2C.sinθ−3cosθ2sinθ+3cosθ=−17D.sin2θ=45答案:ACD分析:对于A,B利用诱导公式可求解;对于C,D利用齐次式化简可判断. 对于A选项,tan(π−θ)=−tanθ=−2,故A选项正确;对于B选项,tan(π+θ)=tanθ=2,故B选项错误;对于C选项,sinθ−3cosθ2sinθ+3cosθ=tanθ−32tanθ+3=2−34+3=−17,故C选项正确;对于D选项,sin2θ=2sinθcosθ=2sinθcosθsin2θ+cos2θ=2tanθtan2θ+1=44+1=45,故D选项正确.故选:ACD10、下列选项中,与sin(−330∘)的值相等的是()A.2cos215∘B.cos18∘cos42∘−sin18∘sin42∘C.2sin15∘sin75∘D.tan30∘+tan15∘+tan30∘tan15∘答案:BC分析:求出sin(−330∘)的值以及各选项中代数式的值,由此可得出合适的选项.sin(−330∘)=sin(360∘−330∘)=sin30∘=12.对于A选项,2cos215∘=2×1+cos30∘2=1+cos30∘=1+√32;对于B选项,cos18∘cos42∘−sin18∘sin42∘=cos(18∘+42∘)=cos60∘=12;对于C选项,2sin15∘sin75∘=2sin15∘sin(90∘−15∘)=2sin15∘cos15∘=sin30∘=12;对于D选项,∵tan45∘=tan(30∘+15∘)=tan30∘+tan15∘1−tan30∘tan15∘=1,化简可得tan30∘+tan15∘+tan30∘tan15∘=1.故选:BC.11、已知tanα=4,tanβ=−14,则( )A .tan(−α)tanβ=1B .α为锐角C .tan(β+π4)=35D .tan2α=tan2β 答案:ACD分析:由诱导公式可判断A ,由正切函数的定义可判断B ,由正切函数的两角和公式可判断C ,由二倍角公式可判断D.对于A ,∵tanα=4,tanβ=−14,∴tan(−α)tanβ=−tanαtanβ=1,故A 正确;对于B ,∵tanα=4>0,∴α为第一象限角或第三象限角,故B 错误; 对于C ,∵tanβ=−14,∴tan(β+π4)=1+tanβ1−tanβ=35,故C 正确;对于D ,∵tanα=4,tanβ=−14,∴tan2α=2tanα1−tan 2α=2×41−42=−815,tan2β=2×(−14)1−(−14)2=−815,故D 正确.故选:ACD12、设α是第三象限角,则α2所在象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限 答案:BD解析:用不等式表示第三象限角α,再利用不等式的性质求出α2满足的不等式,从而确定α2的终边所在的象限.∵α是第三象限角,∴k ⋅360°+180°<α<k ⋅360°+270°,k ∈Z , 则k ⋅180°+90°<α2<k ⋅180°+135°,k ∈Z ,令k =2n ,n ∈Z 有n ⋅360°+90°<α2<n ⋅360°+135°,n ∈Z ;在二象限;k =2n +1,n ∈z , 有n ⋅360°+270°<α2<n ⋅360°+315°,n ∈Z ;在四象限;故选:B D .小提示:本题考查象限角的表示方法,不等式性质的应用,通过角满足的不等式,判断角的终边所在的象限,属于容易题.13、下列化简正确的是A.tan(π+1)=tan1B.sin(−α)tan(360∘−α)=cosαC.sin(π−α)cos(π+α)=tanαD.cos(π−α)tan(−π−α)sin(2π−α)=1答案:AB解析:利用诱导公式,及tanα=sinαcosα,依次分析即得解利用诱导公式,及tanα=sinαcosαA选项:tan(π+1)=tan1,故A正确;B选项:sin(−α)tan(360o−α)=−sinα−tanα=sinαsinαcosα=cosα,故B正确;C选项:sin(π−α)cos(π+α)=sinα−cosα=−tanα,故C不正确;D选项:cos(π−α)tan(−π−α)sin(2π−α)=−cosα⋅(−tanα)−sinα=−cosα⋅sinαcosαsinα=−1,故D不正确故选:AB小提示:本题考查了诱导公式和同角三角函数关系的应用,考查了学生概念理解,转化划归,数学运算能力,属于基础题.填空题14、已知函数f(x)=3sin(ωx+π6)(ω>0)在(0,π12)上单调递增,则ω的最大值是____.答案:4分析:根据正弦型函数的单调性即可求解.由函数f(x)=3sin(ωx+π6)(ω>0)在区间(0,π12)上单调递增,可得ω⋅π12+π6≤π2,求得ω≤4,故ω的最大值为4,所以答案是:415、已知f(x)=2sin(2x+π3),若∃x1,x2,x3[0,3π2],使得f(x1)=f(x2)=f(x3),若x1+x2+x3的最大值为M,最小值为N,则M+N=___________.答案:23π6分析:作出f(x)在[0,3π2]上的图象,x1,x2,x3为f(x)的图象与直线y=m交点的横坐标,利用数形结合思想即可求得M和N﹒作出f(x)=2sin(2x+π3)在[0,3π2]上的图象(如图所示)因为f(0)=2sinπ3=√3,f(3π2)=2sin(π+π3)=−√3,所以当f(x)的图象与直线y=√3相交时,由函数图象可得,设前三个交点横坐标依次为x1、x2、x3,此时和最小为N,由2sin(2x+π3)=√3,得sin(2x+π3)=√32,则x1=0,x2=π6,x3=π,N=7π6;当f(x)的图象与直线y=−√3相交时,设三个交点横坐标依次为x1、x2、x3,此时和最大为M,由2sin(2x+π3)=−√3,得sin(2x+π3)=−√32,则x1+x2=7π6,x3=3π2,M=8π3;所以M+N=23π6.所以答案是:23π6.16、已知角α终边落在直线y=34x上,求值:sinα+1cosα=_______.答案:2或−12解析:由题意利用任意角的三角函数的定义,同角三角函数的基本关系,分类讨论,分别求得sinα和cosα的值,可得要求式子的值.解:当角α终边落在直线y =34x(x ⩾0)上,α为锐角,sinαcosα均为正值,且tanα=sinαcosα=34,再结合sin 2α+cos 2α=1,求得sinα=35,cosα=45, 则sinα+1cosα=35+145=2.当角α终边落在直线y =34x(x <0)上,α∈(π,3π2),sinαcosα均为负值,且tanα=sinαcosα=34,再结合sin 2α+cos 2α=1,求得sinα=−35,cosα=−45, 则sinα+1cosα=−35+1−45=−12,所以答案是:2或−12.小提示:本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,考查运算能力,属于基础题. 解答题17、已知0<α<π2,cos (α+π4)=13.(1)求sinα的值;(2)若−π2<β<0,cos (β2−π4)=√33,求α−β的值.答案:(1)4−√26(2)α−β=π4分析:(1)利用同角三角函数的基本关系结合两角差的正弦公式可求得sinα的值;(2)利用二倍角的余弦公式可求得sinβ的值,利用同角三角函数的基本关系以及两角差的余弦公式求出cos (α−β)的值,结合角α−β的取值范围可求得结果. (1)解:因为0<α<π2,∴π4<α+π4<3π4,又cos(α+π4)=13,所以sin(α+π4)=√1−(13)2=2√23,所以sinα=sin[(α+π4)−π4]=sin(α+π4)cosπ4−cos(α+π4)cosπ4=√22(2√23−13)=4−√26.(2)解:因为cos(β2−π4)=√33,sinβ=cos(β−π2)=cos[2(β2−π4)]=2cos2(β2−π4)−1=2×13−1=−13,又因为−π2<β<0,所以cosβ=√1−sin2β=2√23,由(1)知,cosα=cos[(α+π4)−π4]=cos(α+π4)cosπ4+sin(α+π4)sinπ4=4+√26,所以cos(α−β)=cosαcosβ+sinαsinβ=4+√26×2√23+4−√26×(−13)=√22.因为0<α<π2,−π2<β<0,则0<α−β<π,所以α−β=π4.18、已知函数f(x)=2sinxsin(π3−x)+2cos2x−12.(1)求函数f(x)的单调增区间;(2)当x∈(−π6,π4)时,函数g(x)=f2(x)−2mf(x)+m2−116有四个零点,求实数m的取值范围.答案:(1)[kπ−5π12,kπ+π12],k∈Z(2)2√3+14<m<4√3−14分析:(1)化简f(x)的解析式,根据正弦函数的增区间可得结果;(2)转化为ℎ(t)=t2−2mt+m2−116在(√32,√3)内有两个零点,根据二次函数列式可得结果.(1)f(x)=2sinxsin(π3−x)+2cos2x−12=2sinx(sinπ3cosx−cosπ3sinx)+1+cos2x−12 =√3sinxcosx−sin2x+1+cos2x−12=√32sin2x+cos2x+cos2x−12=√32sin2x+1+cos2x2+cos2x−12=√32sin2x+32cos2x=√3sin(2x +π3),由2kπ−π2≤2x +π3≤2kπ+π2,k ∈Z , 得kπ−512π≤x ≤kπ+π12,k ∈Z ,所以函数f (x )的单调增区间为[kπ−5π12,kπ+π12],k ∈Z . (2)当x ∈(−π6,π4)时,2x +π3∈(0,5π6),f(x)=√3sin(2x +π3)∈(0,√3],因为函数g (x )=f 2(x )−2mf (x )+m 2−116有四个零点,令t =f(x),则t ∈(0,√3)且ℎ(t)=t 2−2mt +m 2−116在(√32,√3)内有两个零点, 所以{Δ=4m 2−4(m 2−116)>0√32<m <√3ℎ(√32)>0ℎ(√3)>0,即{ √32<m <√334−√3m +m 2−16>03−2√3m +m 2−16>0,解得{√32<m <√3m 〈2√3−14或m 〉2√3+14m 〈4√3−14或m 〉4√3+14,解得2√3+14<m <4√3−14,所以实数m 的取值范围是2√3+14<m <4√3−14. 小提示:方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.。
高中三角函数公式总结
高中三角函数公式总结高中三角函数公式总结高中三角函数公式总结锐角三角函数公式正弦:sinα=∠α的对边/斜边余弦:cosα=∠α的邻边/斜边正切:tan α=∠α的对边/∠α的邻边余切:cotα=∠α的邻边/∠α的对边二倍角公式sin2A=2sinAcosAcos2A=cos^A-sin^A=1-2sin^A=2cos^A-1tan2A=(2tanA)÷(1-tan^A)三倍角公式sin3α=4sinαsin(π/3+α)sin(π/3-α)cos3α=4cosαcos(π/3+α)cos(π/3-α)tan3a=tanatan(π/3+a)tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina=2sina(1-sin^2a)+(1-2sin^2a)sina=3sina-4sin^3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos^2a-1)cosa-2(1-cos^a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sin^2a)=4sina[(√3/2)^2-sin^2a]=4sina(sin^260°-sin^2a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cos^2a-3/4)=4cosa[cos^2a-(√3/2)^2]=4cosa(cos^2a-cos^230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))和差化积sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2k π+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2k π+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot (2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cot αcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin (3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot (3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan (3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)Asin(ωt+θ)+Bsin(ωt+φ)=√{(A^2+B^2+2ABcos(θ-φ)}sin{ωt+arcsin[(Asinθ+Bsinφ)/√{A^2+B^2;+2ABcos(θ-φ)}}√表示根号,包括{……}中的内容诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαsin(π/2+α)=cosαcos(π/2+α)=-sinαsin(π-α)=sinαcos(π-α)=-cosαsin(π+α)=-sinαcos(π+α)=-cos αtanA=sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan (π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式其它公式1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα) ^2(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC扩展阅读:高中三角函数公式汇总与解析高中三角函数公式汇总与解析三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=tanAtanB1-tanAtanBtanAtanBcotAcotB-1cotBcotAcotAcotB1cotBcotA1tanAtanBcot(A+B)=cot(A-B)=倍角公式tan2A=2tanA1tanA2Sin2A=2SinACosACos2A=Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A=3sinA-4(sinA)3cos3A=4(cosA)3-3cosAtan3a=tanatan(半角公式sin(A2A2A2A2A23+a)tan(3-a))=1cosA21cosA21cosA1cosA1cosA1cosA1cosAsinAcos()=tan()=cot(tan()=)=sinA1cosA=和差化积sina+sinb=2sinab2cosabsina-sinb=2cosab2sinab2cosa+cosb=2coscosa-cosb=-2sintana+tanb=ab2ab2cossinab2ab2sin(ab)cosacosb12121212积化和差sinasinb=-cosacosb=sinacosb=cosasinb=[cos(a+b)-cos(a-b)][cos(a+b)+cos(a-b)][sin(a+b)+sin(a-b)][sin(a+b)-sin(a-b)]诱导公式sin(-a)=-sinacos(-a)=cosasin(cos(sin(cos(2-a)=cosa-a)=sina+a)=cosa+a)=-sina222sin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosatgA=tanA=万能公式2tana2a2a2a2sinacosasina=1(tan1(tan)))22cosa=1(tan2tana2a2tana=1(tan)2其它公式asina+bcosa=(a2b2)×sin(a+c)[其中tanc=asin(a)-bcos(a)=1+sin(a)=(sin1-sin(a)=(sin1sina1cosaa2a2ba]ab(ab)×cos(a-c)[其中22tan(c)=]+cos)22a-cos)22a其他非重点三角函数csc(a)=sec(a)=双曲函数sinh(a)=e-e2ee2sinh(a)cosh(a)a-aa-acosh(a)=tgh(a)=公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2k π+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2k π+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot (2π-α)=-cotα公式六:2±α及232±α与α的三角函数值之间的关系:sin(cos(tan(cot(sin(cos(tan(cot(sin(cos(tan(cot(sin (+α)=cosα+α)=-sinα+α)=-cotα+α)=-tanα-α)=cosα-α)=sinα-α)=cotα-α)=tanα+α)=-cosα+α)=sinα+α)=-cotα+α)=-tanα-α)=-cosα222222232323232cos(tan(cot(323232-α)=-sinα-α)=cotα-α)=tanα(以上k∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用Asin(ωt+θ)+Bsin(ωt+φ)=A2B22ABcos()×sintarcsin[(AsinBsin)AB2ABcos()22三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a ≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有一个实根b2-4ac13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c"*h 正棱锥侧面积S=1/2c*h"正棱台侧面积S=1/2(c+c")h"圆台侧面积S=1/2(c+c")l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S"L注:其中,S"是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB 这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2 sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanAtanBtanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/ 2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)sin(B/2)sin(C/2)+1(4)sin2A+sin2B +sin2C=4sinAsinBsinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1已知sinα=msin(α+2β),|m|友情提示:本文中关于《高中三角函数公式总结》给出的范例仅供您参考拓展思维使用,高中三角函数公式总结:该篇文章建议您自主创作。
高中数学知识点总结大全
高中数学知识点总结大全高中数学课文总结大全高中数学知识点总结大全一一.三角函数基本知识一、基本概念、定义:1.角的概念推展终边角:2.弧度制:3.任意角的三角函数:②三角函数线:③同角三角函数关系式:④诱导公式:二、基本三角公式:1.和、差角公式2.二倍角公式倍角公式变形:降幂公式3.半角公式(书P45~46)4.万能公式:..应用领域公式解题的基本题型:基本技巧:三、三角函数性质四、y=Asin(ωx+ψ)的图像和性质:五、反三角定义:;六、数学思想方法:(1)数形结合思想,(2)整体思想,1.三角函数(约16课时)(1)任意角、弧度了解任意角的概念和弧度制,能进行弧度与角度的互化。
(2)三角函数①借助于单位圆理解任意角是角三角函数(正弦、余弦、正切)的定义。
②借助充分运用单位圆中的三角函数线推导出诱导公式(π/2±α,π±α的正弦、余弦、正切),能画出y=sinx,y=cosx,y=tanx的图像,了解三角函数的振荡。
③借助图像想像正弦函数、余弦函数在[0,2π],正切函数在(-π/2,π/2)上的性质(如单调性、最大和最小值、图像与x轴交点等)。
④理解同角无理数合数的基本关系式:sin2x+cos2x=1,sinx/cosx=tanx。
⑤结合具体实例,了解y=Asin(wx+f)的实际意义;能借助计算器或计算机画出y=Asin(wx+f)的图像,观察参数A,w,f对函数图像变化的影响。
⑥会用三角函数解决一些简单实际问题,切身感受三角函数是描述周期变化现象的重要三角函数函数模型。
二.函数与常见初等函数(1)函数①通过丰富实例,进一步体会函数是描述依赖之间的变量关系的重要数学模型,在此基础上学习用集合与对应的语言来函数,体会对应关系在刻画函数概念隔阂中的作用;了解构成函数的社会关系,会求一些简单函数值域的定义域和满射;了解映射的概念。
②在实际情境中,会根据不同的需要可以选择恰当的方法(如,图像法、列表法、解析法)表示函数。
(完整版)人教高中数学必修四第一章三角函数知识点归纳
三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。
高中数学三角函数知识点
高中数学第四章-三角函数知识点汇总1. ①与(0°≤<360°)终边相同的角的会合(角与角的终边重合):| k 360 ,k Z▲y ②终边在x 轴上的角的会合:| k 180 ,k Z23sinx sinx③终边在y 轴上的角的会合:| k 180 90 ,k Z4cosx1cosxx④终边在座标轴上的角的会合:| k 90 , k Zcosx1sinx sinx c osx4⑤终边在y=x 轴上的角的会合:| k 180 45 , k Z 2 3SIN COS三角函数值大小关系图⑥终边在y x 轴上的角的会合:| k 180 45 , k Z 1、2、3、4表示第一、二、三、四象限一半所在地区⑦若角与角的终边对于x 轴对称,则角与角的关系:360 k⑧若角与角的终边对于y 轴对称,则角与角的关系:360 k 180⑨若角与角的终边在一条直线上,则角与角的关系:180 k⑩角与角的终边相互垂直,则角与角的关系:360 k 902. 角度与弧度的交换关系:360°=2 180°= 1°=0.01745 1=57.30 °=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度交换公式:1rad=180 °≈°=57°18ˊ.1°=≈(rad)1803、弧长公式:l | | r . 扇形面积公式:1 1s扇形lr | | r2 224、三角函数:设是一个随意角,在的终边上任取(异于原点的)一点P(x,y )P与原点的距离为r ,则ysin ;rcos ;xrytan ;xc ot x ;yrsec ;.xrcsc .y5、三角函数在各象限的符号:(一全二正弦,三切四余弦)y a的终边yy y- +++ + -oo oxx- +- +- -余弦、正割正切、余切正弦、余割xyO M A xP(x,y )TPro x6、三角函数线正弦线:MP; 余弦线:OM; 正切线:AT.16. 几个重要结论:y (2)(1)y|sinx|>|cosx|7. 三角函数的定义域:s inx>cosx|cosx|>|sinx|O x O |cosx|>|sinx|xcosx>sinx|sinx|>|cosx| (3) 若o<x<2,则sinx<x<tanx高中数学三角函数知识点1sin sin 2 cos sintan(2 tan2 22 2tancos cos 2 cos cos1 21 tansin(2 222cos cos 2 sin sin2 2sin , ,tan 15 cot 75 2 3 ,. tan 75 cot 15 2 315 cos 756 24 sin))75cotcoscos156 2410. 正弦、余弦、正切、余切函数的图象的性质:y sin x y cos x y tan x y cot x y A sin x (A 、>0)1定义域R R Rx ,2| x R且x k k Z x | x R且x k ,k Z值域[ 1, 1] [ 1, 1] R RA, A 周期性 2 2 2奇偶性奇函数偶函数奇函数奇函数当0,非奇非偶当0, 奇函数[2k 2k ]1,;k , k2 2k , k 1 上为减函数(k Z )[ 2k ,2k22( A),上为增函上为增函数数(k Z )[2k2k ]2上为增函,2k12 ( A)数;2k 1 ]单一性[2k2k,]22 上为减函数(k Z )上为增函数;2k22k323上为减函( A),( A) 数(k Z )上为减函数(k Z )注意:①y sin x与y sin x 的单一性正好相反;y cosx 与y cos x 的单一性也相同相反.一般地,若y f (x)在[a, b] 上递加(减),则y f (x) 在[a,b] 上递减(增).▲y ②y sin x 与y cosx 的周期是.③y sin( x ) 或y cos( x ) (0 )的周期2T . xOxy 的周期为2 (T T 2 ,如图,翻折无效).tan2④y sin( x ) 的对称轴方程是x k (k Z ),对称中心(k ,0);y cos( x ) 的对称轴方程是x k2kk 1 );y tan( x ) 的对称中心(,0(k Z ),对称中心(,022).原点对称y cos 2x y cos( 2x) cos 2 x⑤当tan ·tan 1, k ( ) ;tan ·tan 1, ( )k Z k k Z .2 2⑥y cos x 与y sin x 2k 是同一函数,而y ( x ) 是偶函数,则21y .( x ) sin( x k ) cos( x)2⑦函数y tan x在R 上为增函数.(×)[ 只好在某个单一区间单一递加. 若在整个定义域,y tanx为增函数,相同也是错误的].⑧定义域对于原点对称是f (x) 拥有奇偶性的必需不充足条件(. 奇偶性的两个条件:一是定义域对于原点对称(奇偶都要),二是知足奇偶性条件,偶函数: f ( x) f (x) ,奇函数: f ( x) f (x))1奇偶性的单一性:奇同偶反. 比如:y tan x是奇函数,)y 是非奇非偶.(定义域不对于原点对称)tan( x3奇函数特有性质:若0 x的定义域,则f (x) 必定有 f (0) 0.(0 x的定义域,则无此性质)▲y ▲y⑨y sin x 不是周期函数;y sin x 为周期函数(T );x1/2y cos 是周期函数(如图);y cos x 为周期函数(T );xxy= cos|x|图象y=| cos2x+1/2| 图象1y 的周期为(如图),并不是全部周期函数都有最小正周期,比如:cos 2x2y f (x) 5 f ( x k), k R.⑩ b2 有a 2 b2 y .2y a cos b sin a b sin( ) cosa11、三角函数图象的作法:1)几何法:2)描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).3)利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y=Asin(ωx+φ)的振幅|A| ,周期 2 ,频次 1 | |T f| | T 2,相位x ; 初相(即当x=0 时的相位).(当 A >0,ω>0 时以上公式可去绝对值符号),由y=sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到本来的|A|倍,获得y=Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.(用y/A 替代y)由y=sinx 的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到本来的 1| |倍,获得y=sinωx 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.(用ωx 替代x)由y=sinx 的图象上全部的点向左(当φ>0)或向右(当φ<0)平行挪动|φ|个单位,获得y=sin(x+φ)的图象,叫做相位变换或叫做沿x 轴方向的平移.(用x+φ替代x)由y=sinx 的图象上全部的点向上(当b>0)或向下(当b<0)平行挪动|b|个单位,获得y=sinx+b 的图象叫做沿y 轴方向的平移.(用y+(-b) 替代y)由y=sinx 的图象利用图象变换作函数y=Asin (ωx+φ)(A>0,ω>0)(x∈R)的图象,要特别注意:当周期变换和相位变换的先后次序不一样时,原图象延x 轴量伸缩量的差别。
高中三角函数知识点大全
高中三角函数正弦函数、余弦函数和正切函数的图象与性质:三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+ 倍角公式 tan2A =Atan 12tanA 2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=AA cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=AA cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a -cosa+cosb = 2cos2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 诱导公式sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =aa cos sin 万能公式 sina=2)2(tan 12tan2a a+ cosa=22)2(tan 1)2(tan 1a a +-tana=2)2(tan 12tan2a a- 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2 其他非重点三角函数 csc(a) =asin 1 sec(a) =acos 1 双曲函数 sh(a)=sinh(a)=2e -e -aa ch(a)=cosh(a)=2e e -aa + th(a)=tg h(a)=)cosh()sinh(a a 公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinαcos (π+α)= -cosαtan (π+α)= tanαcot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinαcos (-α)= cosαtan (-α)= -tanαcot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinαcos (π-α)= -cosαtan (π-α)= -tanαcot (π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinαcos (2π-α)= cosαtan (2π-α)= -tanαcot (2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosαcos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα 物理常用公式 A•sin(ωt+θ)+ B•sin(ωt+φ) =sin )cos(2)]Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A ×)cos(222ϕθ⋅++AB B A。
关于高中数学《三角函数》公式总结(精选13篇)
关于高中数学《三角函数》公式总结〔精选13篇〕篇1:关于高中数学《三角函数》公式总结锐角三角函数公式sin =的对边 / 斜边cos =的邻边 / 斜边tan =的对边 / 的邻边cot =的邻边 / 的对边倍角公式Sin2A=2SinA?CosACos2A=CosA2-SinA2=1-2SinA2=2CosA2-1tan2A=(2tanA)/(1-tanA2)(注:SinA2 是sinA的平方 sin2(A) )三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asin+Bcos=(A2+B2)(1/2)sin(+t),其中sint=B/(A2+B2)(1/2)cost=A/(A2+B2)(1/2)tant=B/AAsin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B降幂公式sin2=(1-cos(2))/2=versin(2)/2cos2=(1+cos(2))/2=covers(2)/2tan2=(1-cos(2))/(1+cos(2))[关于高中数学《三角函数》公式总结]篇2:高中数学反三角函数公式总结 y=arccot(x),定义域(-∞,+∞),值域(0,π)。
sin(arcsinx)=x,定义域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx。
三角函数是根本初等函数之一,是以角度〔数学上最常用弧度制,下同〕为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
也可以等价地用与单位圆有关的各种线段的`长度来定义。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的根底数学工具。
在数学分析^p 中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
高中三角函数公式大全
必修四常考公式及高频考点第一部分 三角函数与三角恒等变换考点一 角的表示方法 1.终边相同角的表示方法:所有与角α终边相同的角,连同角α在内可以构成一个集合:{β|β= k ·360 °+α,k ∈Z } 2.象限角的表示方法:第一象限角的集合为{α| k ·360 °<α<k ·360 °+90 °,k ∈Z }第二象限角的集合为{α| k ·360 °+90 °<α<k ·360 °+180 °,k ∈Z } 第三象限角的集合为{α| k ·360 °+180 °<α<k ·360 °+270 °,k ∈Z } 第四象限角的集合为{α| k ·360 °+270 °<α<k ·360 °+360 °,k ∈Z } 3.终边在某条射线、某条直线或两条垂直的直线上(如轴线角)的表示方法:(1)若所求角β的终边在某条射线上,其集合表示形式为{β|β= k ·360 °+α,k ∈Z },其中α为射线与x 轴非负半轴形成的夹角(2)若所求角β的终边在某条直线上,其集合表示形式为{β|β= k ·180 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角(3)若所求角β的终边在两条垂直的直线上,其集合表示形式为{β|β= k ·90 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角 例:终边在y 轴非正半轴上的角的集合为{α|α= k ·360 °+270 °,k ∈Z }终边在第二、第四象限角平分线上的集合为{α|α= k ·180 °+135 °,k ∈Z } 终边在四个象限角平分线上的角的集合为{α|α= k ·90 °+45 °,k ∈Z } 易错提醒:区别锐角、小于90度的角、第一象限角、0~90、小于180度的角 考点二 弧度制有关概念与公式 1.弧度制与角度制互化π=︒180,1801π=︒,1弧度︒≈︒=3.57180π2.扇形的弧长和面积公式(分别用角度制、弧度制表示方法)弧长公式:R Rn l απ==180, 其中α为弧所对圆心角的弧度数 扇形面积公式:lR R n S 213602==π=12 R 2|α|, 其中α为弧所对圆心角的弧度数 易错提醒:利用S=12R 2|α|求解扇形面积公式时,α为弧所对圆心角的弧度数,不可用角度数规律总结:“扇形周长、面积、半径、圆心角”4个量,“知二求二”,注意公式选取技巧考点三 任意角的三角函数 1.任意角的三角函数定义设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么sin y r α=,cos x r α=,tan y x α=(22||r OP x y ==+);化简为xyx y ===αααtan ,cos ,sin . 2.三角函数值符号规律总结:利用三角函数定义或“一全正、二正弦、三正切、四余弦”口诀记忆象限角或轴线角的三角函数值符号. 3.特殊角三角函数值SIN15º=SIN(60º-45º)=SIN60ºCOS45º-SIN45ºCOS60º=(√6-√2)/4 COS15º=COS(60º-45º)=COS60ºCOS45º+SIN60ºSIN45º=(√6+√2)/4除此之外,还需记住150、750的正弦、余弦、正切值 4.三角函数线经典结论: (1)若(0,)2x π∈,则sin tan x x x <<(2)若(0,)2x π∈,则1sin cos 2x x <+≤(3)|sin ||cos |1x x +≥考点四 三角函数图像与性质y OxyOxα终边yOx yOx P M A TPM A T正弦线余弦线 正切线PP MA TP MA T α终边α终边α终边sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min1y=-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z 对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴考点五 正弦型(y=Asin(ωx +φ))、余弦型函数(y=Acos(ωx +φ))、正切性函数(y=Atan(ωx +φ))图像与性质 1.解析式求法字母 确定途径 说明A 由最值确定 A =最大值-最小值2B 由最值确定B =最大值+最小值2ω 由函数的周期确定相邻的最高点与最低点的横坐标之差的绝对值为半个周期,最高点(或最低点)的横坐标与相邻零点差的绝对值为0.25个周期φ由图象上的特殊点确定可通过认定特殊点是五点中的第几个关键点,然后列方程确定;也可通过解简单三角方程确定A 、B 通过图像易求,重点讲解φ、ω求解思路: ①φ求解思路:函数性质代入图像的确定点的坐标.如带入最高点),(11y x 或最低点坐标),(22y x ,则)(221Z k k x ∈+=+ππϕω或)(2232Z k k x ∈+=+ππϕω,求ϕ值. 易错提醒:y=Asin(ωx+φ),当ω>0,且x=0时的相位(ωx+φ=φ)称为初相.如果不满足ω>0,先利用诱导公式进行变形,使之满足上述条件,再进行计算.如y=-3sin(-2x+600)的初相是-600②ω求解思路:利用三角函数对称性与周期性的关系,解ω.相邻的对称中心之间的距离是周期的一半;相邻的对称轴之间的距离是周期的一半;相邻的对称中心与对称轴之间的距离是周期的四分之一. 2.“一图、两域、四性” “一图”:学好三角函数,图像是关键。
高一数学必修一三角函数知识点
高一数学必修一中的三角函数知识点是高中数学学习的基础,也是考试中经常考查的重点内容。
下面就介绍一下三角函数的相关知识点。
一、正弦、余弦、正切的定义。
正弦函数和余弦函数分别是把一个角的弧度分解成其正弦和余弦,其定义分别为:角度θ对应的正弦值为sinθ,余弦值为cosθ;正切函数则是把一个角度θ分解成它的正切值,其定义为:角度θ对应的正切值为tanθ。
二、三角函数的基本关系。
三角函数之间有若干基本关系,例如:sin2θ+cos2θ=1,sinθ/cosθ=tanθ,cotθ=1/tanθ等,并且还有各种变形关系,例如,sin2θ=2sinxcosx,cos2θ=cos2x-sin2x等,都是必须掌握的。
三、求反三角函数的方法。
求反三角函数是指求出正弦函数、余弦函数和正切函数的倒数函数,也就是求出θ的值。
要求反三角函数,可以采用两种方法:一是根据定义求解,即把函数式代入公式,求出θ;二是使用三角函数表,根据三角函数表查找对应的值。
四、求解三角形的边长和角度。
三角函数还可以用来求解三角形的边长和角度,例如求已知两边长及其夹角求第三边的长度,可以利用余弦定理:a^2=b^2+c^2-2bc·cosA;求已知两边长及其夹角求第三个角度,可以利用余弦定理:cosA=(a^2-b^2-c^2)/2bc,两种情况都要用到三角函数。
五、三角函数的图形。
三角函数的图形可以用极坐标系和直角坐标系表示,极坐标系可以用点(r,θ)表示,其中r是极坐标系中的点到原点的距离,θ是极坐标系中的点到横轴的夹角;直角坐标系也可以用点(x,y)表示,其中x是点在x轴的横坐标,y是点在y轴的纵坐标。
以上就是高一数学必修一中三角函数的基本知识点,希望以上介绍能够帮助大家更好的学习和理解三角函数的相关知识点,掌握它们的应用,取得好的成绩。
高考三角函数知识点归纳
高考三角函数知识点归纳三角函数是高中数学中的一大重要内容,也是高考数学中的重点难点。
下面将围绕高考数学三角函数知识点进行归纳。
1.弧度制与角度制:-角度制:一个圆的周长定义为360度,1度等于圆周长的1/360。
-弧度制:一个圆的半径为1时,一个弧长等于半径的弧度数为1弧径(弧度)。
弧度应该是弧长和半径数的比值。
2.正弦、余弦、正切:- 正弦:在直角三角形中,对于一个锐角,将其对边的长度除以斜边的长度,所得的比值称为这个锐角的正弦,记作sin。
- 余弦:在直角三角形中,对于一个锐角,将其邻边的长度除以斜边的长度,所得的比值称为这个锐角的余弦,记作cos。
- 正切:在直角三角形中,对于一个锐角,将其对边的长度除以邻边的长度,所得的比值称为这个锐角的正切,记作tan。
3.基本三角函数的基本性质:- 周期性:sin和cos的周期都为2π,tan的周期为π。
- 奇偶性:sin是奇函数,cos是偶函数,tan是奇函数。
- 五个特殊值:sin0=0,sin30°=1/2,sin45°=√2/2,sin60°=√3/2,sin90°=1;cos0°=1,cos30°=√3/2,cos45°=√2/2,cos60°=1/2,cos90°=0;tan0°=0,tan30°=1/√3,tan45°=1,tan60°=√3,tan90° 不存在。
4.三角恒等式:- 余弦的平方加正弦的平方等于1:cos²x + sin²x = 1;- 倒角公式:sin(2x)=2sin(x)cos(x),cos(2x)=cos²(x)-sin²(x);- 和差公式:sin(x+y)=sinxcosy+cosxsiny, cos(x+y)=cosxcosy-sinxsiny。
三角函数的周期性、奇偶性、对称性-高考数学复习
π
直线 x = 对称,则函数 g ( x )=
6
sin x + a cos x 的图象(
C )
(1)因为函数 f ( x )= a sin x + cos x ( a 为常数, x ∈R)的图象关于直线 x
π
π
= 对称,所以 f (0)= f
6
3
= sin x +
3
2 3
cos x =
sin
3
3
,所以1=
π
= k π, k ∈Z,即φ= k π- , k ∈Z.
4
π
++
4
π
为奇函数,所以φ+
4
因此,选项D正确.
3.
π
(2024·河北衡水模拟)已知 x 0= 是函数 f ( x )=
6
cos
π
2
− 3 cos φ+
cos 3 x sin φ的一个极小值点,则 f ( x )的一个单调递增区间是(
+
则f
π
−
4
=- 2 sin 2 −
π
4
= 2 cos 2 x ,为偶函数,A正确.
π
π
令2 x = + k π, k ∈Z,则 x = + π, k ∈Z,
2
4
2
π
即 f ( x )的对称轴为 x = + π, k ∈Z,B错误.
4
2
因为 x ∈
π
π
,
3
2
,所以2 x ∈
所以 f ( x )单调递增,C正确.
(1)(2024·江苏苏州模拟)已知函数 f ( x )= cos (π- x )- cos
C. π
三角函数基本知识点
三角函数基本知识点三角函数是中学数学中的一个重要概念,是研究角和角度的函数关系的数学工具。
它是高中数学的基础,也是理工科学习的重要基础知识点。
本文将重点介绍三角函数的基本概念、性质和应用。
一、三角函数的基本概念1.角度和弧度制度量:角度是研究角的大小的度量单位,以°表示;弧度是角的大小的度量单位,以弧长与半径相等的单位弧长表示。
2. 基本三角函数:常用的三角函数有正弦函数sinθ、余弦函数cosθ、正切函数tanθ,它们分别表示角θ的正弦值、余弦值和正切值。
三角函数的定义可以通过单位圆在平面直角坐标系中的投影来理解。
3. 三角函数的周期性:正弦函数和余弦函数的最小正周期为2π,即sin(θ+2π)=sinθ,cos(θ+2π)=cosθ;正切函数的最小正周期为π,即tan(θ+π)=tanθ。
二、三角函数的性质1. 三角函数的奇偶性:正弦函数是奇函数,即sin(-θ)=-sinθ;余弦函数是偶函数,即cos(-θ)=cosθ;正切函数是奇函数,即tan(-θ)=-tanθ。
2.三角函数的正负关系:在单位圆上,正弦函数在0到π/2之间为正,余弦函数在0到π之间为正,正切函数在0到π/2之间为正。
3. 三角函数的周期关系:对于正弦函数和余弦函数,sin(θ+2kπ)=sinθ,cos(θ+2kπ)=cosθ,其中k为整数;对于正切函数,tan(θ+πk)=tanθ,其中k为整数。
4.三角函数的互等关系:通过对三角函数的定义进行代数运算,可以得到一些重要的三角函数互等关系,如正切函数与正弦函数、余弦函数的关系等。
三、三角函数的应用1.三角函数在几何图形中的应用:三角函数在三角形的边与角、面积和高、周长和半周长等方面有广泛应用,如利用正弦定理和余弦定理求解三角形的边长和角度。
2.三角函数在物理学中的应用:三角函数在物理学中有许多应用,如在匀速圆周运动中,利用正弦函数和余弦函数可以描述物体的位置、速度和加速度等随时间变化的关系。
高中数学重点公式总结分享
高中数学重点公式总结分享高中数学是同学们接触到的第一门较为深入的数学课程,其中包含许多重点公式,这些公式在以后的学习中也会频繁使用。
下面是本文笔者的一些总结,分享给同学们学习参考。
一、三角函数公式:1、正弦定理在任意三角形ABC中,有:$\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C}$其中,a、b、c分别为三角形ABC中的三条边,A、B、C为其对应的角。
2、余弦定理在任意三角形ABC中,有:$a^2 = b^2 + c^2 - 2bc\cos A$$b^2 = a^2 + c^2 - 2ac\cos B$$c^2 = a^2 + b^2 - 2ab\cos C$其中,a、b、c分别为三角形ABC中的三条边,A、B、C为其对应的角。
3、三角函数和差公式$\sin(A \pm B) = \sin A\cos B \pm \cos A\sin B$$\cos(A \pm B) = \cos A\cos B \mp \sin A\sin B$$\tan(A \pm B) = \dfrac{\tan A \pm \tan B}{1 \mp \tan A\tan B}$ 其中,A、B为任意两个角。
二、导数公式:1、基本导数公式$(k)' = 0$(k为常数);$(x^n)' = nx^{n - 1}$(n为正整数);$(e^x)' = e^x$;$(a^x)' = a^x\ln a$(a为正实数);$(\log_a x)' = \dfrac{1}{x\ln a}$(a为正实数,不等于1);2、导数的运算法则$(cf(x))' = cf'(x)$(c为常数);$(f(x) \pm g(x))' = f'(x) \pm g'(x)$;$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$;$(\dfrac{f(x)}{g(x)})' = \dfrac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$(其中,g(x)不等于0);三、微积分公式:1、牛顿-莱布尼茨公式如果函数f(x)在区间[a,b]上可积,那么:$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a)$其中,F(x)是函数f(x)的一个原函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点高中三角函数知识点总结————————————————————————————————作者:————————————————————————————————日期:高中数学-三角函数考试内容:角的概念的推广.弧度制.任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式.两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角. 正弦定理.余弦定理.斜三角形解法.考试要求:(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义. (3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式. (4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义.(6)会由已知三角函数值求角,并会用符号arcsinx\arc-cosx\arctanx 表示. (7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形. (8)“同角三角函数基本关系式:sin2α+cos2α=1,sin α/cos α=tan α,tan α•cos α=1”.§. 三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββο②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|οββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|οοββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90|οββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180|οοββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180|οοββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαkyx▲SIN \COS 三角函数值大小关系图sinxcosx 1、2、3、4表示第一、二、三、四象限一半所在区域12341234sinxsinx sinx cosxcosx cosx2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57.30°=57°18ˊ. 1°=180π≈0.01745(rad )3、弧长公式:r l ⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 ry =αsin ; rx=αcos ; x y =αtan ; yx =αcot ; x r =αsec ;. yr =αcsc .5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割-----+++++-+正弦、余割o o o x yx yxy6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.7. 三角函数的定义域:三角函数定义域=)(x f sin x{}R x x ∈|=)(x f cos x{}R x x ∈|=)(x f tan x⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,21|ππ且=)(x f cot x{}Z k k x R x x ∈≠∈,|π且=)(x f sec x⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,21|ππ且=)(x f csc x{}Z k k x R x x ∈≠∈,|π且8、同角三角函数的基本关系式:αααtan cos sin =αααcot sin cos =roxya 的终边P (x,y )TMA OPxy(3) 若 o<x<π2,则sinx<x<tanx(2)(1)|sinx|>|cosx||cosx|>|sinx||cosx|>|sinx||sinx|>|cosx|sinx>cosxcosx>sinx16. 几个重要结论:OOxyxy1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限”三角函数的公式:(一)基本关系公式组二 公式组三x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-公式组四 公式组五 公式组六x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ x x x x x x x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan1cos 22ααα+-= 公式组一sin x ·csc x =1tan x =xx cos sin sin 2x +cos 2x =1cos x ·sec x x =xx sin cos 1+tan 2x =sec 2x tan x ·cot x =11+cot 2x =csc 2x=1()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos 2sin 2sin sin βαβαβα-+=+2sin2cos 2sin sin βαβαβα-+=-αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-2tan 12tan2tan 2ααα-=42675cos 15sin -==οο,42615cos 75sin +==οο,3275cot 15tan -==οο,3215cot 75tan +==οο.10. 正弦、余弦、正切、余切函数的图象的性质: ()ϕω+=x A y sin(A 、ω>0)定义域 RRR值域 ]1,1[+-]1,1[+-RR[]A A ,-周期性 π2π2ππωπ2奇偶性 奇函数偶函数奇函数 奇函数当,0≠ϕ非奇非偶 当,0=ϕ奇函数单调性]22,22[ππππk k ++-上为增函数;]223,22[ππππk k ++上为减函数(Z k ∈)()]2,12[ππk k -;上为增函数()]12,2[ππ+k k上为减函数(Z k ∈)⎪⎭⎫⎝⎛++-ππππk k 2,2上为增函数(Z k ∈)()()ππ1,+k k 上为减函数(Z k ∈)⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--+--)(212),(22A k A k ωϕππωϕππ上为增函数;⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--+-+)(232),(22A k A k ωϕππωϕππ上为减函数(Z k ∈)注意:①x y sin -=与x y sin =的单调性正好相反;x y cos -=与x y cos =的单调性也同样相反.一般地,若)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增).②x y sin =与x y cos =的周期是π.③)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .2tan xy =的周期为2π(πωπ2=⇒=T T ,如图,翻折无效).④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk );)cos(ϕω+=x y 的2cos 2cos 2cos cos βαβαβα-+=+2sin2sin2cos cos βαβαβα-+-=-⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,21|ππ且{}Z k k x R x x ∈≠∈,|π且x y cot =xy tan =xy cos =xy sin =ααπcos )21sin(=+ααπcot )21tan(-=+▲Oyx对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)tan(ϕω+=x y 的对称中心(0,2πk ). x x y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα.⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则)cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ∉0的定义域,则无此性质)⑨x y sin =不是周期函数;x y sin =为周期函数(π=T ); x y cos =是周期函数(如图);x y cos =为周期函数(π=T ); 212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如: R k k x f x f y ∈+===),(5)(.⑩abb a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22 有y b a ≥+22. 11、三角函数图象的作法: 1)、几何法:2)、描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).3)、利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y =Asin (ωx +φ)的振幅|A|,周期2||T πω=,频率1||2f T ωπ==,相位;x ωϕ+初相ϕ(即当x =0时的相位).(当A >0,ω>0 时以上公式可去绝对值符号),由y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.(用y/A▲yxy=cos |x|图象▲1/2yxy=|cos2x +1/2|图象替换y )由y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的1||ω倍,得到y =sin ω x 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.(用ωx替换x)由y =sinx 的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y =sin (x +φ)的图象,叫做相位变换或叫做沿x 轴方向的平移.(用x +φ替换x)由y =sinx 的图象上所有的点向上(当b >0)或向下(当b <0)平行移动|b |个单位,得到y =sinx +b 的图象叫做沿y 轴方向的平移.(用y+(-b)替换y )由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x 轴量伸缩量的区别。