6水力学复习笔记1
水力学实验复习资料1
水力学实验复习资料1伯努利方程实验原理在实验管路中沿管内水流方向取n个过断面。
可以列出进口断面(1)至另一断面(i)的能量方程式(i=2,3,……,n)取a1=a2=…an=1,选好基准面,从已设置的各断面的测压管中读出值,测出通过管路的流量,即可计算出断面平均流速v及,从而即可得到各断面测管水头和总水头。
思考题1流量增大,测压管水头线有何变化?为什么?有如下二个变化:(1)流量增加,测压管水头线(P-P)总降落趋势更显著。
这是因为测压管水头,任一断面起始时的总水头E及管道过流断面面积A为定值时,Q增大,就增大,则必减小。
而且随流量的增加阻力损失亦增大,管道任一过水断面上的总水头E相应减小,故的减小更加显著。
(2)测压管水头线(P-P)的起落变化更为显著。
因为对于两个不同直径的相应过水断面有式中为两个断面之间的损失系数。
管中水流为紊流时,接近于常数,又管道断面为定值,故Q增大,H亦增大,(P-P)线的起落变化就更为显著。
2毕托管所测试的总水头线与实测(体积法测流)的总水头线,一般略有差异,试分析其原因。
与毕托管相连通的测压管有1、6、8、12、14、16,称总压管。
总压管液面的连续即为毕托管测量显示的总水头线,其中包含点流速水头。
而实际测绘的总水头是以实测的值加断面平均流速水头v2/2g绘制的。
据经验资料,对于园管紊流,只有在离管壁约0.12d的位置,其点流速方能代表该断面的平均流速。
由于本实验毕托管的探头通常布设在管轴附近,其点流速水头大于断面平均流速水头,所以由毕托管测量显示的总水头线,一般比实际测绘的总水线偏高。
因此,本实验由1、6、8、12、14、16管所显示的总水头线一般仅供定性分析与讨论,只有按实验原理与方法测绘总水头线才更准确。
3测压管水头线和总水头线的沿程变化有何不同?为什么?测压管水头线(P-P)沿程可升可降,线坡JP可正可负。
而总水头线(E-E)沿程只降不升,线坡J恒为正,即J>0。
水力学复习要点-华科
χ = b + 2h 1 + m 2 = 3 + 2 ×1.2 1 + 22 = 8.37m
i A5/3 6.485/3 Q= = = 3.09m3/s n χ2/3 50001/2 ×0.025×8.372/3
全课程完! 全课程完!
解
l12 V 2 λ = ∇1 − ∇ 2 d 2g
l23 V 2 V2 λ +ς = ∇ 2 − ∇3 d 2g 2g
l23 V2 ( ∇1 − ∇ 2 ) + ς = ∇ 2 − ∇3 l12 2g
l23 2 g ς = ( ∇ 2 − ∇3 ) − ( ∇1 − ∇ 2 ) 2 l12 V 2 2 × 9.8 = (1.25 − 0.4 ) − (1.5 − 1.25 ) × × 2 1 3 = 0.763
θ
h 2 − h1 a tan θ = = l g
h2 − h1 0.6 − 0.4 a= g= × 9.8 = 1.96m/s 2 l 1
θ
(2)
x p − p0 = ρ gh = ρ g h2 − ( h2 − h1 ) l
P = b∫ x p − p 0 )d x = ρ gh = ρ gb ∫ h2 − ( h2 − h1 ) d x ( 0 0 l ρ glb = ( h1 + h2 ) 2 1000 × 9.8 × 3 × 1 = × ( 0.4 + 0.6 ) 2 = 14709 N
τ =µ
V
W δ sin θ 100 × 0.0002 sin 30o µ= = = 0.0106 Pa ⋅ s 2 × 0.5 × 0.3π π dlV
δ π dlV W sin θ = π dlτ = µ δ
水力学常用知识讲解(笔记)
《水力学》学习指南第一章绪 论(一)液体的主要物理性质1.惯性与重力特性:掌握水的密度ρ和容重γ;2.粘滞性:液体的粘滞性是液体在流动中产生能量损失的根本原因。
描述液体内部的粘滞力规律的是牛顿内摩擦定律 :注意牛顿内摩擦定律适用范围:1)牛顿流体, 2)层流运动3.可压缩性:在研究水击时需要考虑。
4.表面张力特性:进行模型试验时需要考虑。
下面我们介绍水力学的两个基本假设: (二)连续介质和理想液体假设1.连续介质:液体是由液体质点组成的连续体,可以用连续函数描述液体运动的物理量。
2.理想液体:忽略粘滞性的液体。
(三)作用在液体上的两类作用力第二章 水静力学水静力学包括静水压强和静水总压力两部分内容。
通过静水压强和静水总压力的计算,我们可以求作用在建筑物上的静水荷载。
(一)静水压强:主要掌握静水压强特性,等压面,水头的概念,以及静水压强的计算和不同表示方法。
1.静水压强的两个特性:(1)静水压强的方向垂直且指向受压面(2)静水压强的大小仅与该点坐标有关,与受压面方向无关,2.等压面与连通器原理:在只受重力作用,连通的同种液体内, 等压面是水平面。
(它是静水压强计算和测量的依据)3.重力作用下静水压强基本公式(水静力学基本公式)p=p 0+γh 或 其中 : z —位置水头,p/γ—压强水头(z+p/γ)—测压管水头请注意,“水头”表示单位重量液体含有的能量。
4.压强的三种表示方法:绝对压强p ′,相对压强p , 真空度p v , ↑ 它们之间的关系为:p= p ′-p a p v =│p │(当p <0时p v 存在)↑相对压强:p=γh,可以是正值,也可以是负值。
要求掌握绝对压强、相对压强和真空度三者的概念和它们之间的转换关系。
1pa(工程大气压)=98000N/m 2=98KN/m2下面我们讨论静水总压力的计算。
计算静水总压力包括求力的大小、方向和作用点,受压面可以分为平面和曲面两类。
水力学复习重点 中南民族大学 本科
根据流场中位于同一流线上各质点的流速矢 量是否沿流程变化,可将总流分为均匀流和 非均匀流。 均匀流:同一流线上各质点的流速矢量沿程 不变。 渐变流:流速沿流线变化缓慢的流动。流线 近乎平行,且曲率很小。 急变流:流速沿流线急剧变化的流动。流线 的曲率较大,或流线间的夹角较大。
恒定流动的连续方程
头。
p g
断面上任一点的单位压能或压强水头。
v 2
2g
断面平均单位动能或流速水头。
液体从过水断面1流到断面2的平均单位机械 能损失或水头损失。
hw
水力坡度:单位长度流程上的水头损失,用 J表示。
测压管坡度:单位长度流程上测压管水头值, 用Jp表示。
恒定总流能量方程的应用条件
1. 液体是不可压缩的,流动是恒定的。
总水头线和测压管水头线的绘制
总水头线总是沿程下降的,而测压管水头线 可升可降。 总水头线在有局部水头损失的地方是突然下 降的,而在有沿程水头损失的管段中,总水 头线可假设为线性下降。
在管径不变的管段,流速水头相等,测压管 水头线平行于总水头线,从总水头线减去相 应断面的流速水头值,便可绘制出测压管水 头线。
O
B点绝对压强 p v pa pabs
绝对压强基准
O
静水压强分布图
把某一受压面上压强随水深的函数关系表示 成图形,称为静水压强分布图。 静水压强分布图的绘制规则: 压强的大小;
(1)按一定比例,用线段长度代表该点静水 (2)用箭头表示静水压强的方向,并与作用 面垂直。
作用于平面上的静水总压力
恒定总流动量方程
F Q( v
水力学总复习
端地形高程已知,管道末端自由水头已知,求水塔高? t H H z 0 hf 1 hf(2 hf 3) hf 4
42
第八章 明渠恒定流
明渠的分类
1.按纵向几何条件划分
棱柱型渠道 非棱柱型渠道
2.按横向几何条件划分
梯形渠道 矩形渠道
11
第三章 流体运动学
一. 描述液体运动的两种方法
拉格朗日法
dx dy dz dt ux uy uz
欧拉法
u u
x y
ux (x, uy (x,
y, z,t) y, z,t)
uz uz (x, y, z, t)
12
加速度分量形 式
质 点 加 速 度
ax
ux t
λ=f (Re ). 4.IV区,过渡粗糙区
λ=f (Re、 / d)
5.V区,紊流水力粗糙管区,λ=f ( / d). (阻力平方区)
29
七. 明渠沿程水头损失计算公式
经验公式
1. 谢才公式
v C RJ
2. 谢才系数C
C 1 R1/6 n
C 1 Ry n
曼宁公式
巴氏公式
8g
举例
7
四. 点压强的计算
1.找已知点压强; 2.找出等压面; 3.由静压强基本方程逐步推求未知点压强;
8
五. 作用在平面上的静水总压力
(1)作用在平面上的静水总压力大小:
P pc A ghc A
(2)压力中心(作用点):
yD
yc
Ic yc A
(3)方向:垂直指向受压面.
水力学重点
复习总结(标红或划线的需记住)0 绪论一、概念1、水力学:用实验和分析的方法,研究液体机械运动(平衡和运动)规律及其实际应用的一门科学。
2、密度和容重:ρ=V M γ=V Mgγ=ρg 纯净水1个标准大气压下,1atm 4℃时密度最大 ρ水=1000kg /m 3 γ水=9.80kN/m 3ρ水银=13.6×103 kg /m 3(1atm20℃) 1N=1kg m/s 2容重γ的概念一般新教材中多已不引用,但工程中仍采用,本教案中仍采用,3、粘滞性:液体质点抵抗相对运动的性质。
粘滞性是液体内摩擦力存在的表现,是液体运动中能量产生损失的根本原因。
4、理想液体:不考虑粘滞性、压缩性、热涨性、表面张力性质的液体称为理想液体。
τ=ηdydu 或T=ηAdyduη动粘 [ML -1T -1] Pa.s (帕.秒) 1 Pa=1N/m 2 1N=1kg ²m/s 2ν运粘 [L 2T -1] m 2/sν=η/ρ水的经验公式:ν=2000221.00337.0101775.0tt ++公式中ν单位为cm 2/s ,t 为水温℃。
5、连续介质模型:假定液体质点毫无空隙地充满所占空间,描述液体运动物理量(质量、速度、压力等)是时间和空间的连续函数,因而可用连续函数的分析方法来研究,这种假定对解决一般工程实际问题是有足够的精度的。
6、压缩性 一般不考虑热膨胀性 流动性二、 问题1、 牛顿内摩擦定律简单应用;2、 作用于液体上的力:质量力、表面力;3、 水力学研究方法:理论分析、科学试验、数值模拟4、 水力学应用(水利工程):1)确定水力荷载2)确定水工建筑物过水能力(管、渠、闸、堰 ) 3)分析水流流动形态4)确定水流能量消耗和利用 5)水工建筑物水力设计1 水静力学一、概念1、静水压强:p =AP A ∆∆→∆0lim=dAdP2、等压面:均质连通液体中,压强各点相等的点构成的面称为等压面。
水力学总复习一 - 副本
液体:不能保持固定的形状,能保持固定的体积 易流动变形,不易膨胀,不易压缩 不能承受拉、压、剪力
气体:不能保持固定的形状和体积, 易膨胀和易压缩 不能承受拉、压、剪力
2
4.量纲: 又叫做因次,物理的属性
(1)基本量纲:国际单位制中7个基本量纲 长度(L),质量(M),时间(T),电流(I), 温度(Θ),物质的量(N),发光强度(J);
13. 重力和惯性力同时作用下的液体平衡
等加速直线运动
等角速旋转器皿中液体的相对平衡
fx ?, f y ?, fz ?
dp fxdx fydy fzdz
自由液面位置坐标x、y、z
dp 0
直接积分,代入已知自由 液面压强p0和位置坐标
自由液面方程
液体内部静压分布 24
不同的。( ) • 4. 在平衡液体中,等压面即是等势面。() • 5. 在连续介质假设条件下,液体中各物理量的变
化是连续的。( )
36
• 判断
• 1.相对压强必为正值。( ×) • 2. 静止液体中存在压应力和切应力。( ×) • 3.液体表面压强Po,对液体内部不同点的影响是
不同的。( ×) • 4. 在平衡液体中,等压面即是等势面。(√) • 5. 在连续介质假设条件下,液体中各物理量的变
理论分析 科学试验 数值计算
12
二、水静力学
1.静水压力 静止(或相对平衡)液体作用在与之接触的
表面上的水压力,常以字母P(或Fp)表示。
2.静水压强★ 作用在单位面积上的静水压力。 p lim Fp A0 A
静水压力P的单位:牛顿(N); 静水压强p的单位:牛顿/米2(N/m2)、帕斯卡(Pa) 工程单位制中,压强常用Kgf/cm2(公斤力/cm2)
水力学 主要知识点
Px
第2章 液体运动的流束理论 1. 流线的特点:反映液体运动趋势的图线
流线的特征:流线不能相交;恒定流流线形状位置不变;恒定流 迹 线和流线重合。
2 .流动的分类:
液
非恒定流 均匀流
流 恒定流
非均匀流 渐变流
急变流 在均匀流和渐变流过水断面上,压强分布满足: z p c
hf
l 2
d 2g
达西公式
圆管
hf
l 2
4R 2g
λ—沿程水头损失系数
R—水力半径 R A 圆管 R d
局部水头损失
4
ζ—局部水头损失系数
hj
V2 2g
从沿程水头损失的达西公式可以知道,要计算沿程水头损失,
关键在于确定沿程水头损失系数λ。而λ值的确定与水流的
流态和边界的粗糙程度密切相关。
图解法:大小:P=Ωb, Ω--静水压强分布图面积
方向:垂直并指向受压平面 作用线:过压强分布图的形心,作用点位于对称轴上。
静水压强分布图是根据静水压强与水深成正比关系绘制的,只要用比例 线段分别画出平面上两点的静水压强,把它们端点联系起来,就是静水 压强分布图 解析法:大小:P=pcA, pc—形心处压强
g (二)液体运动基本方程
1.恒定总流连续方程
v 1A1= v 2A2
,
v2 A1 v1 A2
Q=vA
利用连续方程,已知流量可以求断面平均流速,或者通过两断面间
的几何关系求断面平均流速。
2.恒定总流能量方程
z1
p1g 1v12来自2gz2
p2
g
2v22
2g
hw
hw
《水力学》自己复习整理知识框架
《水力学》自己复习整理知识框架水力学是研究水流在各种流动条件下的物理规律的学科。
水力学的研究对象包括河流、湖泊、水库、海洋等自然水体的运动规律,以及水力工程中涉及的渠道、管道、泵站等的水流行为。
以下是水力学的知识框架及复习整理。
一、基本概念和基本方程1.水力学的研究对象、目标和意义2.水的物理性质及其在水力学中的应用3.流动的基本概念:流线、流量、流速、剖面平均流速、平均流速、瞬时流速、表观流速、临界流速等4.流体运动的宏观描述:物质守恒定律、动量守恒定律、能量守恒定律5.海森堡统一速度场二、流态分类和力学特性1.流态分类:层流和湍流2.湍流的产生和发展机制3.湍流的统计特性:平均流速、涡度、雷诺应力、雷诺应力公式等4.湍流的判别方法和湍流的传输性质三、流动的基本方程1.牛顿第二定律和欧拉方程2.曼宁公式和雨道公式3.马克斯韦方程组和势流理论4.控制体分析法和控制体微分形式四、流动的能量方程1.泊肃叶方程和能量守恒方程2.流动过程中的能量转化和能量损失3.流体摩擦和阻力的计算五、水力学实验和模型1.水力学原理实验、水工模型2.模型尺度和相似理论3.型流和真流的关系4.实测资料的处理和分析六、流动的计算方法1.数值方法在水力学中的应用2.一维水流数值模拟方法3.CFD在水力学中的应用4.流动的计算机模拟与可视化技术七、水动力学1.水体运动的动力学机制2.水体运动的力学特性3.溶解氧和氨氮的弥散4.水体温度和盐度的传输以上是《水力学》的知识框架和复习整理,通过掌握这些知识点,可以对水力学的基本概念、基本方程和流态分类等进行全面地理解和复习。
同时,了解水力学实验和模型、流动的计算方法以及水动力学等内容,可以为深入研究水力学提供一定的基础。
在复习过程中,可以结合教材、参考书籍和相关研究论文进行学习和理解,通过刷题和实践练习来提高对该学科的应用能力和实际问题解决能力。
《水力学》知识点
知识点 第0章 绪论1. 连续介质2.实际流体模型由质点组成的连续体,具有:易流动性、粘滞性、不可压缩性、不计表面张力的性质.3.粘滞性:牛顿内摩擦定律 dydu μτ= 4.理想流体模型:不考虑粘滞性。
5.作用在液体上的力:质量力、表面力例:1.在静水中取一六面体,分析其所受的外力:作用在该六面体上的力有 ( )(a )切向力、正压力 (b) 正压力(c) 正压力、重力 (d) 正压力、切向力、重力2.在明渠均匀流中取一六面体,其所受的外力:作用在该六面体上有 ( )(a )切向力、正压力 (b) 正压力(c) 正压力、重力 (d) 正压力、切向力、重力3. 理想流体与实际流体的区别仅在于,理想流体具有不可压缩性。
( )第1章 水静力学1.静压强的特性(1)垂直指向受压面。
(2)在同一点各方向的静压强大小与受压面方位无关. 2.等压面:等压面是水平面的条件 3.水静力学基本方程2. 基本概念位置水头、压强水头、测压管水头 、绝对压强、相对压强、真空压强。
C gpz =+ρghp p ρ+=03. 静压强分布图 5.点压强的计算利用:等压面、静压强基本方程。
解题思路:① 找等压面② 找已知点压强③利用静压强基本方程推求。
6 作用在平面上的静水总压力图解法:Ω=b P解析法:A gh P c ρ= A y I y y c cc D +=7. 作用在曲面上的静水总压力关键:压力体画法以曲面为底面,向自由液面(自由液面延长面)投影,曲面、铅锤面、自由液面所包围的水体为压力体。
压力体与水在同一侧为实压力体,铅锤分力方向向下。
反之,为虚压力体,铅锤分力方向向上。
例 1. 流体内部某点存在真空,是指 ( )(a )该点的绝对压强为正值 (b )该点的相对压强为正值 (c )该点的绝对压强为负值 (d )该点的相对压强为负值2. 流体内部某点压强为2个大气压,用液柱高度为 ( )a) 10米水柱 b) 22米水柱 c)20米水柱 d)25米水柱3. 无论流体作何种运动,流体内任何一个水平面都是等压面。
(完整版)水力学期末复习总结(考试时的宝典)
1.粘性是有分子间的相互吸引力和分子不规则运动的动量交换产生的;2.液体温度增高时粘性减小,这是因为液体分子间的相互吸引力随温度增高而减小,而分子动量交换对液体粘性的作用影响不大;3.气体粘性的决定性因素是分子不规则运动的动量交换产生的阻力,温度增高,动量交换加剧,因此气体粘性随温度增高而增大;4.动力粘度(Ns/㎡) 运动粘度=/(㎡/s )表面张力系数(N/m )5.内摩擦力T=dyduA 切应力/(N dy du㎡) 6.静水压强nz y x P P P P 7.如果流场中各空间点上的所有运动要素不随时间变化,这种流动称为恒定流;否则,称为非恒定流;8.迹线是表示一个质点在一段时间内流过的轨迹线;流线是表示某瞬时,在流场中,不同质点沿流动方向组成的一条空间曲线,流速方向为该曲线上切点的方向;恒定流是,迹线与流线重合;9.若液体运动时每个液体质点都不存在绕自身轴的旋转运动,即角速度ω=0,称为无旋流,反之,称为有旋流;10.在边壁沿流程无变化的均匀流流段上,产生的流动阻力称为沿程阻力;由于沿程阻力做功而引起的水头损失称为沿程水头损失;11.①层流与紊流的判别标准是临界雷诺数(Re=vd ),V<Vc 为层流,V>Vc 为紊流;②流态的判别数为弗劳德数(Fr=gh v ),Fr<1时,水流为缓流;Fr=1时,水流为临界流;Fr>1时,水流为急流;12.水跃水深)181(23'2'''gh q h h 13.沿程水头损失与切应力的关系为0=ρgRJ ;14.在恒定流动中某一点的流速的数值不是一个常数,而以某一常数为中心,不断地上下跳动,这种跳动叫做脉动;15.紊流中液体质点的脉动使相邻液层之间的质量交换形成动量交换,从而在液层分界面上产生了紊流附加切应力;16.紊流切应力22)(dy dv l dy dv xx17.断面单位能量(断面比能)22v hg e ,比能最小时为临界流;18.尼古拉兹曲线:第一区:层流区,λ与相对粗糙度Δ/d 无关,只是Re 的函数第二区:层流转变紊流过渡区,λ与相对粗糙度Δ/d 无关,只是Re 的函数第三区:紊流光滑区,λ与相对粗糙度Δ/d 无关,只是Re 的函数第四区:紊流过渡区,λ与相对粗糙度Δ/d 有关,又与Re 有关第五区:紊流粗糙区,λ与相对粗糙度Δ/d 有关,与Re 无关;19.明渠均匀流的水力特征:①明渠均匀流的断面流速分布、流量、水深和过水断面的形状大小沿程不变②明渠均匀流的总水头线坡度、测压管水头线和渠底坡度彼此相等;20.明渠均匀流的形成条件:①明渠水流恒定,流量沿程不变②渠道为长直的棱柱形顺坡渠道③底坡、粗糙系数沿程不变④渠道沿程设有建筑物或障碍物的局部干扰;21.无压缓流经障壁顶部溢流,上游壅水,然后水面降落,这一水力现象称为堰流,按H 分类:薄壁堰(H <0.67)、实用断面堰(0.67≤H <2.5)、宽顶堰(2.5≤H <10);22.堰流基本公式:Q=mb g 2H 023;23.薄壁堰按堰口形状不同,可分为矩形薄壁堰、三角形薄壁堰和梯形薄壁堰;24.流体在孔隙介质中的流动称为渗流,达西定律:Q=KAJ= - KA ds dH,其中KJ v 适合于Re ≤1;渗流中不透水的边界线是一条流线;25.液体平衡微分方程理想液体运动微分方程26.实际液体运动微分方程。
水力学(工程流体力学)复习要点
25
• 计算简图
1.计算简图是一在脱离体上标出了全部作用力及流速方向
的示意图 2.作用于脱离体上的力包括 (1)表面力: 1)两渐变流断面处相邻水体对脱离体的动水总压力 2)周界表面对脱离体的作用力(包括:作用于脱离体周 界表面上的动水总压力;脱离体侧表面上的液流阻力)
(2)质量力:脱离体内液体的重力
动水压强(或动水压 力),断面平均流速、 流量、断面之间的压 强差、平均动能差、 机械能损失、水流流 向等
不涉及 边界对 液流的 作用力 (或称 边界反 力)
方程本 身不涉 及能量 损失
动量 方程
恒定、均质、不可压 缩的液体;作用于脱 离体上的质量力仅有 重力,脱离体两端为 渐变流断面
反映了液流与边 界上作用力之间 的关系
Hg gh p1 gh1
p1 Hg 则 h h1 13 .6 0.2 0.72 2 (mH2O) g
p1 V12 p 2 V22 列1-1和2-2断面的能量方程 z1 z2 g 2 g g 2 g
29
d2 由连续性方程:V1 V 2 d 1
h 障碍物。已知 1 2.0 m3 Q 道通过能力 1.5 s 击力R。 h2 b m, 0.5 m,渠宽 1.5 m,渠 ,试求水流对障碍物通水间的冲
解: 取图示控制体,并进行受力分析。
建立xoz坐标系。 在x方向建立动量方程(取 1 2 1.0 )。
P P2 F Qv2 v1 1
3.待求未知力可预先假定方向,若解出的结果为正,则假 定正确。否则,说明该力的方向与原假定方向相反
26
• 坐标系 1.坐标系一般为直角坐标系; 2.坐标系的方位可以任意选取,原则上以使方程 中未知项少为宜。应用中往往总是将一轴与某一向 量(力或流速)相平行;
西北农林-水力学考研笔记
流体体积的相对减小值: 体 积 压 缩 系 数 的 倒 数 为 体 积 弹 性 系 数 K。 五、液体的表面张力 表面张力: 液体表面由于分子引力不均衡而产生的沿表面作用于任一界线上力.用表面张力系数 (N/m) 表示, 是指自由液面上单位长度所受到的表面张力。 六、作用于液体上的力 按作用方式分类: 质量力:质量力是作用于液体的每个质点上且与液体质量成正比的力。如重力、惯性力。单位质量液体 所受的质量力称为单位质量力,坐标投影分别为:X、Y、Z。 表面力:表面力是作用在液体表面或截面上并与作用面的面积成正比的力,表面力可分为垂直与作用面 的压力和平行于作用面的切力。
(2)能量方程应用注意事项: 三选:选择统一基准面便于计算 选典型点计算测压管水头: 选计算断面使未知量尽可能少 ( 压强计算采用统一标准) (3)能量方程的应用:它经常与连续方程联解求 :断面平均流速,管道压强,作用水头等。 文丘里流量计是利用能量方程确定管道流量的仪器。毕托管则是利用能量方程确定明渠(水槽) 流速的仪器。当我们需要求解水流与固体边界之间的作用力时,必须要用到动量方程。 3.恒定总流动量方程 F Q 2 2 1 投影形式
绝对压强:是以绝对真空状态下的压强(绝对零压强)为基准计量的压强,用
表示,总是
正值。相对压强:是以当地大气压强作为零点计量的压强,用 p 表示,可正可负。 二者相差一个大气压强, 真空及真空度:当液体某点的绝对压强小于当地大气 表示,
压强时,该点相对压强为负值,称为负压,或说该点存在真空,大小用真空度
第二章
水静力学
第一节 静水压强及其特性 静水压力与静水压强 1. 静 水 压 力 P:静 止 ( 或 相 对 平 衡 状 态 ) 液 体 作 用 于 与 之 相 接 触 的 表 面 上 的 水 压 力 。
《水力学》课程复习提纲汇总
《水力学》课程复习提纲2010-2•第1章绪论考核知识点:1.液体运动的基本特征,连续介质和理想液体的概念;2.液体主要物理性质:惯性、万有引力特性(重力)、粘滞性、可压缩性和表面力特性;3.物理量量纲的概念和单位;4.作用在液体上的两种力:质量力、表面力。
考核要求:1.了解液体的基本特征,理解连续介质与理想液体的概念和在水力学研究中的作用;2.理解液体5个主要物理性质及其特征值和度量单位,重点掌握液体粘滞性及粘滞系数、牛顿内摩擦定律及其适用条件。
了解什么情况下需要考虑液体的可压缩性和表面张力特性;3.了解量纲的概念,并且能表示各种物理量的量纲和单位;4.了解质量力、表面力的定义,理解单位表面力(压强、切应力)和单位质量力的物理意义。
• 第2章静力学考核知识点:1.静水压强及其两个特性,等压面概念;2.静水压强基本公式及其物理意义;3.静水压强的表示方法、单位和水头的概念;4.静水压强的量测和计算;5.作用于平面上静水总压力的计算;6.作用在曲面上静水总压力的计算。
1.理解静水压强的两个特性和等压面的概念和性质;2.掌握静水压强基本公式,理解公式的物理意义;3.理解静水压强三种表示方法(绝对压强,相对压强,真空度)及它们间的相互关系,注意真空度的概念,理解表示压强的单位和位置水头、压强水头、测压管水头的概念;4.了解静水压强量测原理和方法,掌握静水压强的计算;5.掌握绘制静水压强分布图和计算作用在平面上静水总压力的图解法和解析法。
6.掌握压力体剖面图的绘制和计算作用在曲面上的静水总压力水平分力和铅垂分力的方法。
•第3章液体运动的基本理论考核知识点:1.描述液体运动的两种方法:拉格朗日法和欧拉法;2.液体运动的分类和基本概念;3.恒定总流连续性方程及其应用;4.恒定总流能量方程及其应用;5.有势流动和有涡流动的概念。
考核要求:1.了解描述液体运动的拉格朗日方法和欧拉法;2.理解液体流动的分类和基本概念(恒定流与非恒定流,均匀流与非均匀流,渐变流与急变流;流线与迹线,元流,总流,过水断面,流量与断面平均流速,一维流动、二维流动和三维流动等),并能在分析水流运动时进行正确判断和应用;3.掌握恒定总流连续性方程的不同形式和应用;4.掌握恒定总流能量方程的形式、应用条件和注意事项,理解能量方程的物理意义、水头线绘制方法和水力坡度的概念,能熟练应用恒定总流能量方程进行计算;5.掌握恒定总流投影形式的动量方程、应用条件和注意事项,正确分析作用在控制体上的作用力和确定作用力及流速投影分量的正负号,能熟练应用恒定总流动量方程、能量方程和连续方程求解实际工程中的水力学问题;6.了解有势流动和有涡流动的概念及特点。
水力学复习重点(可编辑修改word版)
水力学复习重点1绪论1、作用在液体上力的分类:表面力、质量力2、流体的粘性:牛顿内摩擦定律,粘滞系数3、什么是理想液体?4、什么是牛顿液体?1.与牛顿内摩擦定律直接有关的因素是)。
切应力和压强切应力和剪切变形速度切应力和剪切变形 2.液体的粘性是液体具有抵抗剪切变形的能力。
( √ )3.作用于液体上的力可以分为质量力和表面力两类。
惯性力属于质量力。
4.液体流层之间的内摩擦力与液体所承受的压力有关。
( ×) 粘度为常数无粘性不可压缩符合pRT 5.凡符合牛顿内摩擦定律的液体均为牛顿液体。
( √ ) 6.自然界中存在着一种不具有粘性的液体,即为理想液体。
( × )2流体静力学欧拉平衡微分方程1、液体平衡微分方程的表达式及其理解2、等压面概念,静止液体形成等压面的条件;质量力与等压面正交3、重力作用下流体压强分布规律;静止液体压强基本方程及其应用; 4、测压管水头概念及其理解1.在重力作用下静止液体中,等压面是水平面的条件是。
同一种液体,相互连通相互连通不连通同一种液体2.等压面不一定和单位质量力相互垂直。
( ×) 3.在重力作用下平衡的液体中,各点的单位势能相等。
( √) 4.静止液体中某一点的测压管水头是)。
测压管的液柱高度测压管液面到测点的高差测压管液面到基准面的高差点的位置与基准面的高差 5.一密闭容器内下部为水,上部为空气,液面下米处的测压管高度为,则容器内液面的相对压强为-2m 水柱。
水5.液体平衡微分方程为X1p1p1p,Y ,Z 。
xzy液体压强的测量1、绝对压强、相对压强、真空度2、金属测压计和真空计的区别1.某点的真空度为65000Pa,当地大气压为,该点的绝对压强为 35000 Pa 。
2.水力学中的真空现象是指该处没有任何物质。
( ×)3.水中某点的绝对压强 pabs=55kPa,其相对压强 p =-43 kPa ,真空高度hv= m 。
水力学复习知识点
水力学复习知识点水力学是研究液体的运动和行为的学科,主要研究液体在管道中的流动、流体的力学性质以及与流体运动相关的现象。
下面将介绍水力学的一些重要知识点。
1.流体的性质:-流体的密度:单位体积流体的质量,通常用ρ表示。
-流体的粘度:流体阻止流动的性质,通常用μ表示。
-流体的压力:单位面积上流体对物体施加的作用力,通常用P表示。
2.流体静力学:- 流体压力:与深度有关,可以通过P = ρgh计算,其中ρ为液体密度,g为重力加速度,h为液体的高度。
-流体静力学定律:流体静力学定律包括帕斯卡定律、阿基米德原理和斯托克斯定律。
3.流体动力学:-流体的运动:流体可以分为层流和湍流。
层流是指流体的分子按照规则的、平行的和层层叠加的方式运动。
湍流是指流体的分子按照混乱无序的方式运动。
-流速:指流体在单位时间内通过其中一截面的体积,通常用v表示。
-流量:指流体在单位时间内通过其中一截面的质量,通常用Q表示,流量Q=Av,其中A为截面积。
-连续性方程:流体质量守恒定律,即当流体连续流动时,进出流体质量需要保持一致,表达式为A1v1=A2v2,其中A为截面积,v为流速。
- 能量守恒方程:描述了流体的能量转化和损失,表达式为P1 +0.5ρv1^2 + ρgh1 = P2 + 0.5ρv2^2 + ρgh2,其中P为压力,ρ为密度,v为流速,h为高度。
-流体动力学定律:主要包括伯努利定律、托利少定律和勒让德定律。
伯努利定律描述了流体在不同压力下的流动,托利少定律描述了流体在曲线壁面上的流动,勒让德定律描述了固体颗粒在流体中的运动。
4.管道流动:-管道流动类型:包括层流和湍流两种。
-管道流动速度分布:在层流中,流速沿半径方向呈线性分布;在湍流中,流速分布更复杂,通常是非线性的。
-管道流量与压力损失:管道流量与压力损失之间存在一定的关系,通常可以通过流体动力学定律来计算。
-管道流动的实际应用:管道流动广泛应用于供水、排水、油气输送管道等领域,对于基础设施建设和工程设计具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《水力学》复习指南第一章绪 论(一)液体的主要物理性质1.惯性与重力特性:掌握水的密度ρ和容重γ;2.粘滞性:液体的粘滞性是液体在流动中产生能量损失的根本原因。
描述液体内部的粘滞力规律的是牛顿内摩擦定律 :注意牛顿内摩擦定律适用范围:1)牛顿流体, 2)层流运动 3.可压缩性:在研究水击时需要考虑。
4.表面张力特性:进行模型试验时需要考虑。
下面我们介绍水力学的两个基本假设: (二)连续介质和理想液体假设1.连续介质:液体是由液体质点组成的连续体,可以用连续函数描述液体运动的物理量。
2.理想液体:忽略粘滞性的液体。
(三)作用在液体上的两类作用力第二章 水静力学水静力学包括静水压强和静水总压力两部分内容。
通过静水压强和静水总压力的计算,我们可以求作用在建筑物上的静水荷载。
(一)静水压强:主要掌握静水压强特性,等压面,水头的概念,以及静水压强的计算和不同表示方法。
1.静水压强的两个特性:(1)静水压强的方向垂直且指向受压面(2)静水压强的大小仅与该点坐标有关,与受压面方向无关,2.等压面与连通器原理:在只受重力作用,连通的同种液体内, 等压面是水平面。
(它是静水压强计算和测量的依据)3.重力作用下静水压强基本公式(水静力学基本公式)p=p 0+γh 或 其中 : z —位置水头,p/γ—压强水头(z+p/γ)—测压管水头请注意,“水头”表示单位重量液体含有的能量。
4.压强的三种表示方法:绝对压强p ′,相对压强p , 真空度p v , ↑ 它们之间的关系为:p= p ′-p a p v =│p │(当p <0时p v 存在)↑相对压强:p=γh,可以是正值,也可以是负值。
要求掌握绝对压强、相对压强和真空度三者的概念和它们之间的转换关系。
1pa(工程大气压)=98000N/m 2=98KN/m2下面我们讨论静水总压力的计算。
计算静水总压力包括求力的大小、方向和作用点,受压面可以分为平面和曲面两类。
根据平面的形状:对规则的矩形平面可采用图解法,任意形状的平面都可以用解析法进行计算。
(一)静水总压力的计算 1)平面壁静水总压力c pz =+γd y d u μτ=(1)图解法:大小:P=Ωb, Ω--静水压强分布图面积方向:垂直并指向受压平面作用线:过压强分布图的形心,作用点位于对称轴上。
静水压强分布图是根据静水压强与水深成正比关系绘制的,只要用比例线段分别画出平面上俩点的静水压强,把它们端点联系起来,就是静水压强分布图。
(2)解析法:大小:P=p c A, p c —形心处压强方向:垂直并指向受压平面作用点D :通常作用点位于对称轴上,在平面的几何中心之下。
求作用在曲面上的静水总压力P ,是分别求它们的水平分力P x 和铅垂分力P z ,然后再合成总压力P 。
(3)曲面壁静水总压力1)水平分力:P x =p c A x =γh c A x水平分力就是曲面在铅垂面上投影平面的静水总压力,它等于该投影平面形心点的压强乘以投影面面积。
要求能够绘制水平分力P x 的压强分布图,即曲面在铅垂面上投影平面的静水压强分布图。
2〕铅垂分力:P z =γV ,V---压力体体积。
在求铅垂分力P z 时,要绘制压力体剖面图。
压力体是由自由液面或其延长面,受压曲面以及过曲面边缘的铅垂平面这三部分围成的体积。
当压力体与受压面在曲面的同侧,那么铅垂分力的方向向下;当压力体与受压面在曲面的两侧,则铅垂分力的方向向上。
3〕合力方向:α=arctg下面我们举例来说明作用在曲面上的压力体和静水总压力。
例5图示容器左侧由宽度为b 的直立平面AB 和半径为R 的1/4圆弧曲面BC 组成。
容器内装满水,试绘出AB 的压强分布图和BC 曲面上的压力体剖面图及水平分力的压强分布图,并判别铅垂作用力的方向, 铅垂作用力大小如何计算?解:(1)对AB 平面,压强分布如图所示。
总压力P=1/2γH 2b ; (2)对曲面BC ,水平分力的压强分布如图所示, 水平分力P X =1/2[γH+γ(H+R )]Rb :压力体是由受压曲面、过受压曲面周界作的铅垂面、向上或向下与自由表面或它的延长面相交围成的体积。
因此,以1/4圆弧面BC 为底(闪动 曲面),以曲面两端点向上作铅垂线,与水面线相交,围成压力体。
由于与水接触的受压面与压力体在曲面BC 的同一侧,因此铅垂作用力的方向是向下的。
铅垂方向作用力的大小:F z = γV=γ[(H+R)R -1/4πR 2]b第三章 液体运动基本概念和基本方程这一章主要掌握液体运动的基本概念和基本方程,并且应用这些基本方程解决实际工程问题。
下面我们首先介绍有关液体运动的基本概念: (一)液体运动的基本概念1.流线的特点:反映液体运动趋势的图线 。
流线的性质:流线不能相交;流线不能转折。
2 .流动的分类非恒定流 均匀流:过水断面上xz P P 液流恒定流 非均匀流 渐变流 急变流在均匀流和渐变流过水断面上,压强分布满足: 另外断面平均流速和流量的概念要搞清。
(二)液体运动基本方程1. 恒定总流连续方程v 1A 1= v 2A 2 ,Q=vA 利用连续方程,已知流量可以求断面平均流速,或者通过两断面间的几何关系求断面平均流速。
2. 恒定总流能量方程J= —水力坡度 ,表示单位长度流程上的水头损失。
能量方程是应用最广泛的方程,能量方程中的最后一项h w 是单位重量液体从1断面流到2断面的平均水头损失,在第四章专门讨论它的变化规律和计算方法,(1)能量方程应用条件:恒定流,只有重力作用,不可压缩 渐变流断面,无流量和能量的出入(2)能量方程应用注意事项:三选:选择统一基准面便于计算 选典型点计算测压管水头 : 选计算断面使未知量尽可能少 ( 压强计算采用统一标准)(3)能量方程的应用:它经常与连续方程联解求 :断面平均流速,管道压强,作用水头等。
文丘里流量计是利用能量方程确定管道流量的仪器。
毕托管则是利用能量方程确定明渠(水槽)流速的仪器。
当我们需要求解水流与固体边界之间的作用力时,必须要用到动量方程。
3.恒定总流动量方程 ∑F x =ρQ (β2 v 2x -β1 v 1x )投影形式 ∑F y =ρQ (β2 v 2y -β1 v 1y ) ∑F z =ρQ (β2 v 2z -β1 v 1z )β—动量修正系数,一般取β=1.0式中:∑F x 、∑F y 、∑F z 是作用在控制体上所有外力沿各坐标轴分量的合力,V 1i ,V 2i 是进口和出口断面上平均流速在各坐标轴上投影的分量。
动量方程的应用条件与能量方程相似,恒定流和计算断面应位于渐变流段。
应用动量方程特别要注意下面几个问题: (2)动量方程应用注意事项: a)动量方程是矢量方程,要建立坐标系。
(所建坐标系应使投影分量越多等于0为好,这样可以2112A Av v =wh gv p z gv p z +++=++222222221111αγαγ()υβυβρ122-=∑Q F cpz =+γγpz +简化计算过程。
)b)流速和力矢量的投影带正负号。
(当投影分量与坐标方向一致为正,反之为负) c)流出动量减去流入动量。
d)正确分析作用在水体上的力,一般有重力、压力和边界作用力(作用在水体上的力通常有重力、压力和边界作用力) e)未知力的方向可以任意假设。
(计算结果为正表示假设正确,否则假设方向与实际相反) 通常动量方程需要与能量方程和连续方程联合求解。
下面我们举例说明液体动量方程的应用:例3 水平床面河道上设一弧形闸门,闸前渐变流断面1的水深为H ,闸下收缩断面2的水深h c ,闸门段水头损失为1断面流速水头的1.2倍,,求水流对弧形闸门的作用力F ?解:根据题意,求水流对边界的作用力,显然要应用动量方程求解,由于流速流量未知,首先要利用连续方程和能量方程把动量方程中的所需的流速v 、流量Q 计算出来。
) 解:(1)连续方程(2)能量方程求p 2 (建立1—1,2—2断面的能量方程)取河床水平面为基准面,代表点选在水面,则p 1=p 2=0,水头损失h w =1.2v 21/2g. 取α1=α2=1.0∴Q=v 1A 1=V 1×B ×H(3)用动量方程求水流对弧形闸门的作用力(取包括闸门段水体进行示力分析,建立图示坐标,因水体仅在X 方向有当动量变化,故设闸门对水体的反作用力为水平力R x ,方向如图所示,作用在水体上的重力沿x 方向为零) x 方向的动量方程:P 1- P 2- R x =ρQ (v 2-v 1) ∴ R x = P 1 - P 2 -ρQ (v 2-v 1)对于所取的两渐变流断面:P 1=1/2γH 2B ; P 2=1/2γh c 2B水流对弧形闸门的作用力F 与R x 大小相等,方向相反,作用在水体上) 下面我们简单介绍液体运动三元流分析的基础。
(三)三元流分析的基础 液体微团运动的基本形式: 平移、线变形、角变形、旋转 2. 有旋流动与无旋流动的区别。
1125)(v h Hv v c⨯==wh gv p z gv p z +++=++222222221111αγαγ)(22.2522.12250201212121c c h H g v gvg v h g v H -⨯=+++=++当ωx =ωy =ωz =0,为无旋流动或称有势流动。
3.平面势流的特点满足无旋条件: =0—存在势函数φ满足连续方程: 0第四章 流态与水头损失在讨论恒定总流能量方程时我们曾经介绍过,水头损失h w 是非常复杂的一项内容,我们将就讨论水头损失以及与水头损失有关的液体的流态。
(一)水头损失的计算方法1. 总水头损失: h w = ∑h f + ∑h j(1)沿程水头损失:达西公式圆管 λ—沿程水头损失系数R —水力半径 圆管 (2)局部水头损失δ—局部水头损失系数从沿程水头损失的达西公式可以知道,要计算沿程水头损失,关键在于确定沿程水头损失系数λ。
而λ值的确定与水流的流态和边界的粗糙程度密切相关。
下面我们就首先讨论液体的流态。
(二)液体的两种流态和判别(1)液体的两种流态:雷诺实验层流 —液体质点互相不混掺的层状流动。
h f ∝ V 1.0紊流 —存在涡体质点互相混掺的流动。
h f ∝ V1.75-2当流速比较小的时候,各流层的液体质点互相不混掺,定义为层流。
当流速比较大的时候,各流层内存在涡体,并且流层间的质点互相混掺,定义为紊流。
那么液体的流态怎样进行判别呢?(2).流态的判别:雷诺数Re ,明槽: Re k =500 圆管: ,Re k =2000流态的判别的概化条件:Re <Re k 层流 ;Re >Re k 紊流判别水流流态的雷诺数是重要的无量纲数,它的物理意义表示惯性力与粘滞力的比值。