【经典高考】高考数学 圆锥曲线齐次式与点乘双根法
高考数学必考点 圆锥曲线解题方法归纳总结
圆锥曲线解题方法归纳总结知识储备:1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈②点到直线的距离d ③夹角公式:2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 2x=2y - (4)两条直线的位置关系①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且 2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:221(0,0)x y m n m n m n+=>>≠且2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅<距离式方程:||2a = (3)、三种圆锥曲线的通径你记得吗?22222b b p a a椭圆:;双曲线:;抛物线:方法储备1、点差法(中点弦问题) 设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =ba43-2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0∆≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。
圆锥曲线齐次式与点乘双根法
+ = y 圆锥曲线齐次式与点乘双根法一,圆锥曲线齐次式与斜率之积(和)为定值x 2 y 2例 1:Q 1 , Q 2 为椭圆 2b 2 + b2 线OD ,求 D 的轨迹方程.= 1上两个动点,且OQ 1 ⊥ OQ 2 ,过原点O 作直线Q 1Q 2 的垂解法一(常规方法):设Q 1 (x 1 , y 1 ),Q 2 (x 2 , y 2 ) , D (x 0 , y 0 ) ,设直线Q 1Q 2 方程为 y = kx + m ,⎧ y = kx + m⎪联立⎨ x 2 ⎪⎩ 2b 2 y 2b2 1 化简可得:(2b 2k 2 + b 2 )x 2 + 4kmb 2 x + 2b 2 (m 2 - b 2 ) = 0 ,所以x 1x 2 = 2b 2 (m 2 + b 2 ) 2b 2k 2 + b 2, y 1 y 2 = b 2 (m 2 - 2b 2k 2 ) 2b 2k 2 + b 2因为OQ 1 ⊥ OQ 2 所以2b 2 (m 2 + b 2 ) b 2 (m 2 - 2b 2k 2 ) 2(m 2 - b 2 )m 2 - 2b 2k 2x 1x 2 + y 1 y 2 = 2b 2k 2 + b 2 + 2b 2k 2 + b 2 = 2k 2+1 + 2k 2 +1 =0∴3m 2 = 2b 2 (1+ k 2 ) *又因为直线 Q Q 方程等价于为 y - y = - x0 (x - xx x 2) , 即 y = - 0 x + 0 + y对比于1 2 0y 0 y 0⎨ 20 00 0y y ⎧- x 0 = k y = kx + m ,则⎪ y 0x 代入* 中,化简可得: x 2 + y 2= 2b 2. 3 ⎪ 0 + y = m ⎪ y 0 ⎩ 0解法二(齐次式):⎧ mx + ny= 1 ⎧ mx + ny = 1 ⎪ ⎪ 设直线Q 1Q 2 方程为 mx + ny = 1,联立⎨ x 2 + y 2 =⇒ ⎨ x 2 + y 2- =⎪⎩ 2b2b21⎪⎩ 2b2 b21 0x 2 y22x 2 y 2 2 2 2 22b 2 + (m x + ny ) b 2= 0 化简可得: 2b 2 + m x b 2- n y- 2mnxy = 0 整理成关于 x , y x , y 的齐次式: (2 - 2b 2n 2 ) y 2 + (1- 2m 2b 2 ) x 2 - 4mnb 2xy = 0 ,进而两边同时除以 x 2,则2 2 2 2 2 21- 2m 2b 2(2 - 2b n )k - 4mnb k +1- 2m b= 0 ⇒ k 1k 2 =2 - 2b 2n 21- 2m 2b 2因为OQ 1 ⊥ OQ 2 OQ 1 ⊥ OQ 2 所以 k 1k 2 = -1,2 - 2b 2n2= -1∴3 = 2b 2 (m 2 + n 2 ) *又因为直线 Q Q 方程等价于为 y - y = - x0 (x - xx x 2) , 即 y = - 0 x + 0 + y 对比于1 2⎧x 0= my 0 y 0⎪ x 2 + y 22mx + ny = 1,则⎨ 0 0y 代入* 中,化简可得: x 2+ y 2= b 2 .3 0 = n ⎪ x 2 + y 2 ⎩ 0 0例 2:已知椭圆 x 2 + 24= 1,设直线l 不经过点P (0,1) 的直线交于 A , B 两点,若直线 PA , PB 的斜率之和为-1,证明:直线l 恒过定点.⎩ ⎩解:以点 P 为坐标原点,建立新的直角坐标系 x ' py ' ,如图所示:旧坐标 新坐标(x , y ) ⇒ (x ', y ')即(0,1) ⇒ (0, 0)⎧ x ' = x ⎧ A → A ' 所以⎨ y ' = y -1 ⇒ ⎨B → B '原来 k + k = -1⇒y 1 -1 + y 2 -1 = -1 则转换到新坐标就成为: y 1 ' + y 2 '= -1PAPBx x x ' x ' 1 21 2即k 1 '+ k 2 ' = -1设直线l 方程为: mx '+ ny ' = 1原方程: x 2 + 4 y 2 = 4 则转换到新坐标就成为: x '2 + 4( y '+1)2= 4展开得: x '2 + 4 y '2+ 8 y ' = 0⎨⎪x' ⎩ ⎩ 构造齐次式: x '2 + 4 y '2+ 8 y '(mx '+ ny ') = 0整理为: (4 + 8n ) y '2 + 8mx ' y '+ x '2= 0两边同时除以 x '2 ,则(4 + 8n )k '2+ 8mk '+1 = 0所以 k '+ k ' = -8m= -1 所以 2m - 2n = 1 ⇒ m = n + 1124 + 8n 21 x '而 mx '+ ny ' = 1 ∴(n + )x '+ ny ' = 1 ⇒ n (x '+ y ') + -1 = 0 对于任意 n 都成立.2 2⎧x '+ y ' = 0则: ⎪⇒ -1 = 0 ⎩ 2⎧ x ' = 2 ⎨ y ' = -2,故对应原坐标为⎧ x = 2 ⎨ y = -1所以恒过定点(2, -1) .x 2例 3:已知椭圆y 2+ = 1,过其上一定点 P (2,1) 作倾斜角互补的两条直线,分别交于椭 8 2圆于 A , B 两点,证明:直线 AB 斜率为定值.解:以点 P 为坐标原点,建立新的直角坐标系 x ' py ' ,如图所示:旧坐标新坐标(x , y ) ⇒ (x ', y ')即(2,1) ⇒ (0, 0)所以⎧x ' =x - 2⇒⎧A →A '⎨y '=y -1⎨B →B '⎩⎩原来k +k = 0 ⇒ y1-1+y2-1= 0 则转换到新坐标就成为:y1'+y2'= 0PA PB x - 2 x -1 x ' x '1 2 1 2即k1 '+k2' = 0设直线 AB 方程为: mx '+ny ' = 1原方程: x2 + 4 y2 = 8 则转换到新坐标就成为: (x '+ 2)2 + 4( y '+1)2 = 8 展开得: x '2 + 4 y '2 + 4x '+ 8 y ' = 0构造齐次式: x '2 + 4 y '2 + 4x '(mx '+ny ') + 8 y '(mx '+ny ') = 0整理为: y '2 (4 + 8n) +x ' y '(4n + 8m) + (1 + 4m)x '2 = 0两边同时除以 x '2 ,则(4 + 8n)k '2 + (4n + 8m)k '+1+ 4m = 0所以 k '+k ' =-4n + 8m= 0 所以 n =-2m1 2 4 +8n1而mx '+ny ' = 1 ∴mx '+ (-2m) y ' = 1 ⇒mx - 2my -1 = 0 .所以k =21平移变换,斜率不变,所以直线AB 斜率为定值.21 2 1 1 2 2 1 2 1 21 二,点乘双根法例 4:设椭圆中心在原点O ,长轴在 x 轴上,上顶点为 A ,左右顶点分别为 F 1 , F 2 ,线段OF 1 ,OF 2 中点分别为 B 1 , B 2 ,且△AB 1B 2 是面积为 4 的直角三角形.(1) 求其椭圆的方程(2) 过 B 1 作直线l 交椭圆于 P , Q 两点,使 PB 2 ⊥ QB 2 ,求直线l 的方程.x 2y 2解:(1) + = 20 4(2)易知:直线l 不与轴垂直,则设直线l 方程为: y = k (x + 2) , P (x 1, y 1 ), Q (x 2 , y 2 )因为 PB ⊥ QB,则,22PB 2 QB 2 =0所以(x - 2, y )(x - 2, y ) = 0 ⇒ (x - 2)(x - 2) + k 2(x + 2)(x + 2) = 0 *⎧ y = k (x + 2) ⎪2 2 2现联立⎨ x 2+ y 2 = ⇒ x ⎩ 20 4+ 5k (x + 2) - 20 = 0则方程 x 2 + 5k 2 (x + 2)2 - 20 = 0 可以等价转化(1+ 5k 2)( x - x )( x - x ) = 012即 x 2 + 5k 2 (x + 2)2 - 20 = (1+ 5k 2)(x - x )(x - x )令 x = 2 , 4 + 80k 2- 20 = (1+ 5k 2)( x 1 - 2)( x 2 - 2) ⇒ ( x 1 - 2)( x 2 - 2) =80k 2 -16 1+ 5k 2令 x = -2 , 4 + 0 - 20 = (1+ 5k 2)( x + 2)( x + 2) ⇒ ( x + 2)( x + 2) = -161 2 1 21+ 5k 21结合(x1 - 2)(x2- 2) +k (x1 + 2)(x2 + 2) = 0 *化简可得:80k 2 -161+ 5k 2+-16= 01+ 5k 280k 2 -16k 2 -16 = 0 ⇒ 64k 2 =16 ⇒k 2 =1∴k =±1 4 2所以直线l 方程为: y =± 1(x + 2) . 22。
齐次式法与圆锥曲线斜率有关的一类问题
“齐次式”法解圆锥曲线斜率有关的顶点定值问题定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线如何转化题目条件圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:例题、(07山东)已知椭圆C :13422=+y x 若与x 轴不垂直的直线l 与曲线C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解法一(常规法):m kx y l +=:设1122(,),(,)A x y B x y ,由223412y kx mx y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=,22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=,(*) 2222223(4)4(3)1640343434m k m mkk k k --+++=+++,(**)整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +--+-。
高中解析几何简化计算之点乘双根法
( Ⅰ)
设 P( m,0)
则→PA = ( →PA·P→B
x1 =(
,-Am( ,xy1 ,1 )y1,)P→,BB=(
x1 - m) ( x2 -
x2 ,y2 ) , ( x2 - m,y2 m) + y1 y2
), =(
x1
-
m)
(
x2
-
m) + k2 ( x1 - 1) ( x2 - 1) .
解题技巧与方法
JIETI JIQIAO YU FANGFA
131
高中解析几何简化计算之点乘双根法
◎陈俊健 ( 广西南宁市第三中学( 青山校区) ,广西 南宁 530021)
【摘要】高中解析几何在求解圆锥曲线与直线问题的时 候,通常需要联立方程,利用韦达定理去求解. 利用韦达定 理进行运算求解时,稍不注意就容易出错. 在求解点乘或者 斜率乘积为定值,甚至求 x1 x2 ,y1 y2 的时候,我们可以改进 解法,引入 点 乘 双 根 法,避 开 韦 达 定 理,简 化 计 算,减 少 失误.
C:
x2 a2
+
y2 b2
= 1 ( a > b > 0) 上,且椭圆的
离心率为
1 2
.
( 1) 求椭圆 C 的方程.
( 2) 若 M 为椭圆 C 的右顶点,点 A,B 是椭圆 C 上不同
的两点(
均异于
M)
且满足直线
MA
与
MB
斜率之积为
1 4
.
试判断直线 AB 是否过定点? 若是,求出定点坐标; 若不是,
定理进行繁杂计算的过程,达到简化计算、提高解题速度的
效果,下面举例说明.
例 1 ( 2018 年西南四省名校高三第一次大联考) 已知
高中数学圆锥曲线解题技巧方法总结及高考试题和答案
圆锥曲线1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如方程8=表示的曲线是_____(答:双曲线的左支)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么(ABC ≠0,且A ,B ,C 同号,A ≠B )。
若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___(答:)(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。
方程22Ax By C +=表示双曲线的充要条件是什么(ABC ≠0,且A ,B异号)。
如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。
2021高考《圆锥曲线齐次化》
2m 2n 1
mx ny 1过(2,2)
上移1个单位(2,1)
右移2个单位C ' : y2 2(x 2) l' : mx ny 1过(4,0)即4m 1, m 1
4 y2 2x 4 y2 2x(mx ny) 4(mx ny)2 y2 2mx2 2nxy 4(m2 x2 n2 y2 2mnxy) (1 4n2 ) y2 (8mn 2n)xy 2m2 x2 0 k1 k2 0 ABM ABN
x
x
(4n 2)k 2 4mk 1 0
mx ny 1过(1,2),m 2n 1
kAP kAQ 2
y x2 , y' x 1, x 2, M (2,1)
4
2
左移2个单位,下移1个单位C' : y 1 x 22 , A'B' : mx ny 1
4
4y 4 x2 4x 4
• 优点是:大大减小了计算量,提高准确率!如果你掌握这个方法,你会知道以前的方法有多么的low!
• 缺点:mx+ny=1不能表示过原点的直线!
• 例1:(2017秋 重庆期末)已知抛物线C:y²=2px(p> 0)上一点A(2,a)到其焦点的距离为3. • (1)求抛物线C的方程; • (2)过点(4,0)的直线与抛物线C交于P,Q两点, O为坐标原点,证明:∠POQ =90°。
•
例如要 mx+ny=
证 1(
明 为
直 什
线 么
AP与A 这样设
Q斜率之和或者斜率之积为定值,将公共点A平移到原点,设平移后 ? 因 为 这 样 齐 次 化 更 加 方 便 ), 与 圆 锥 方 程 联 立 , 一 次 项 乘 以 mx+nay
第607期:抛砖引玉——圆锥曲线齐次式与点乘双根法
第607期:抛砖引玉——圆锥曲线齐次式与点乘双根法
往期好文
●抛砖引玉——圆锥曲线的第三定义
●抛砖引玉——一定二动斜率定值
●抛砖引玉——解析几何同解变形思想
其次式、点乘双根算法是解决解析几何问题的一种简便算法,多见于解析几何与向量相结合的题目中,与传统方法相比,它可以神奇的大幅减少计算量。
一:圆锥曲线齐次式与斜率之积(和)为定值
解法一:通解
解法二:其次法
二,点乘双ห้องสมุดไป่ตู้法
第11讲 点乘双根法(解析几何)(解析版)
第11讲 点乘双根法知识与方法在计算两个向量的数量积(即点乘)时,会遇到 (x 1−x 0)(x 2−x 0)+(y 1−y 0)(y 2−y 0)的结构, 常规 方法是将它展开, 再结合韦达定理化简整理,也可以利用“点乘双根法”进行整体处理, 达到简化运算, 快速解题的目的.1.方法介绍所谓的“点乘双根法”, 是指构建双根式,整体处理含 或 (x 1−x 0)(x 2−x 0)(y 1−y 0) 等类似结构的计算问题.(y 2−y 0)2.理论基础二次函数 的双根式. 若一元二次方程 f (x )=ax 2+bx +c ax 2+bx +c =0(a ≠0)有两根 , 则, 取 , 可得 x 1,x 2f (x )=a (x−x 1)(x−x 2)x =x 0f (x 0)=a (x 1−x 0)(x 2−x 0).3.适用类型, 或 等形式.x 1x 2, y 1y 2,(x 1−m )(x 2−m ),(y 1−m )(y 2−m )PA ⋅PB 4.解题步骤化双根式 赋值 整体代入.→→典型例题下面以一个例题来说明点乘双根法的解题步骤.【例1】 已知点 是拋物线 上一定点, 以M (x 0,y 0)y 2=2px (p >0)M 为直角顶点作该抛物线的内接直角三角形 , 则动直线 过定点 △MAB AB .(x 0+2p,−y 0)【证明】设 , 由 , 得 A (x 1,y 1),B (x 2,y 2)MA ⋅MB =0(x 1−x 0)(x 2−x 0)+(y 1−y 0)(y 2−y 0)=0(∗)显然直线 不与 轴平行,设其方程为 .AB x x =my +t 步骤 1: 化双根式联立 , 得 , 方程两根为 , 则 {y 2=2px x =my +ty 2−2pmy−2pt =0y 1,y 2(y 1−y )(y 2−y )=y 2−2pmy (1)−2pt 联立 , 得, 则 {y 2=2px x =my +t x 2−(2t +2m 2p )x +t 2=0(x 1−x )(x 2−x )=x 2−(2t +2m 2p )x +t 2(2)步骤 2: 赋值在(1)中, 令 , 则 (4)y =y 0(y 1−y 0)(y 2−y 0)=y 20−2pmy 0−2pt 在(2)中, 令 , 则 (5)x =x 0(x 1−x 0)(x 2−x 0)=x 20−(2t +2m 2p )x 0+t 2步骤 3: 整体代入即 ,t 2−(2p +2x 0)t +x 20−m 2y 20+y 20−2pmy 0=0即 ,[t−(x 0−my 0)]⋅[t−(x 0+my 0+2p )]=0所以 或 ,t =x 0−my 0t =x 0+my 0+2p 情形一:当 , 即 时, 说明点 在直线 上, 不合题意;t =x 0−my 0x 0=my 0+t M AB 情形二:当 , 即 时, 直线 过定点 t =2p +x 0+my 0x 0+2p =m (−y 0)+t x =my +t .(x 0+2p,−y 0)综上所述:直线 恒过定点 .AB (x 0+2p,−y 0)通过本例可以看到,利用点乘双根法处理这类问题时,看起来式子仍然不少, 实际上运算量已经減少了很多.【例2】 设椭圆中心在原点 , 长轴在 轴上,上顶点为 , 左右顶点分别为 O x A F 1,F 2,线段 中点分别为 , 且 是面积为 4 的直角三角形.OF 1,OF 2B 1,B 2△AB 1B 2(1) 求椭圆的方程;(2) 过 作直线 交椭圆于 两点, 使 , 求直线 的方程.B 1l P ,Q PB 2⊥QB 2l【解析】(1)设所求椭圆的标准方程为 , 右焦点为 .x 2a 2+y 2b 2=1(a >b >0)F 2(c ,0)因为 是直角三角形, 又 , 故 为直角, 因此 ,△AB 1B 2|AB 1|=|AB 2|∠B 1AB 2|OA |=|OB 2|得 .b =c2 结合 c2=a 2−b 2 得 4b 2=a 2−b 2, 故 a 2=5b 2,c 2=4b 2 , 所以离心率 e =在 中, , 故 2Rt ABB ∆12OA B B ⊥22,1221||||22MBB B cS B B OA OB OA b b =⋅=⋅=⋅=由题设条件 , 得 , 从而 .2,4AB B S ∆=24b =22520a b ==因比, 所求椭圆的标准方程为 ;221204x y +=(2) 显然直线 不与 轴垂直,设 的方程为 ,l x l ()()1122(2),,,,y k x P x y Q x y =+因为 , 则 ,22PB QB ⊥220PB QB ⋅=所以 ()()()()()()2112212122,2,022220(*)x y x y x x k x x -⋅-=⇒--+++=联立 22222(2)5(2)2001204y k x x k x x y =+⎧⎪⇒++-=⎨+=⎪⎩因为 是方程的两根, 所以 ,12,x x ()()()2222125(2)2015x k x k x x xx ++-=+--令 , 得 ,2x =()()()()()2221212280164802015222215k k k x x x x k -+-=+--⇒--=+令 , 得 ,2x =-()()()()()21212216402015222215k x xx x k -+-=+++⇒++=+代入 (*), 得,22280161601515k k k --+=++化简可得: , 所以 ,22221801616064164k k k k --=⇒=⇒=12k =±故直线 方程为: .l 1(2)2y x =±+【例3】 设 分别为椭圆 的左、右顶点, 过左焦点 且斜率为 ,A B 22132x y +=F 的直线与椭圆交于 两点. 若 , 求 的值.k ,C D 8AC DB AD CB ⋅+⋅=k 【答案】 k =【解析】设点 , 由 得直线 的方程为 ()()1122,,,C x y D x y (1,0)F -CD (1)y k x =+,由方程组 , 消去 , 整理得 .22(1)12y k x y x =+⎧⎪⎨+=⎪⎩y ()2222236360k x k x k +++-=由韦达定理可得 .22121222636,2323k k x x x x k k -+=-=++因为,(A B 所以AC DB AD CB⋅+⋅()()11222211,,x y x y xy x y =+⋅-+⋅--1212622x x y y =--()()2121262211x x k x x =--++8=由 , 得 .8AC DB AD CB ⋅+⋅=()()21212111x x k x x +++=-因为 是方程 的两根, 所以12,x x ()2222236360k x k x k +++-=()()()()()()()2222221212236362323k xk x k k x x x x k x x xx +++-=+--=+--令 , 则 , 所以 0x =()22123623k kx x -=+21223623k x x k -=+令 , 则 1x =-()()()()222212236362311k k k k x x+-+-=+++所以 ()()12241123x x k ++=-+因为 ,()()21212111x x k x x +++=-所以 , 解得222223641,22323k k k k k--=-=++k =【例4】设 为曲线 上两点, 与 的横坐标之和为 4 .,A B 2:4x C y =A B (1) 求直线 的斜率;AB(2) 设 为曲线 上一点, 在 处的切线与直线 平行, 且 , M C C M AB AM BM ⊥求直线 的方程.AB 【答案】 (1) 1; (2) 7y x =+【解析】(1) 设 , 则 ()()1122,,,A x y B x y 2212121212,,,444x x x x y y x x ≠==+=于是直线 的斜率 .AB 12121214y y x x k x x -+===-(2) 由 , 得 .24x y =2x y '=设 , 由題设知, 解得 , 于是 ()33,M x y 312x =32x =(2,1)M 因为 , 所以 , 即 .AM BM ⊥0MA MB ⋅=()()()()121222110x x y y --+--=设直线 的方程为 , 因为点 在直线 上,AB y x m =+,A B AB 所以 ,1122,y x m y x m =+=+所以 .()()()()121222110x x x m x m --++-+-=由 得 . 由 , 得 .24y x m x y =+⎧⎪⎨=⎪⎩2440x x m --=16(1)0m ∆=+>1m >-()()21244x x m x x x x --=--在 式中, 令 , 得 (1)2x =()()212242422m x x -⨯-=--在(1)式中, 令 , 得 1x m =-()()212(1)4(1)411m m m x m x m --⨯--=+-+-∴()()()()12122211x x x m x m --++-+-,222424(1)4(1)40m m m m =-⨯-+--⨯--=解得 , 或 (舍), 所以直线 的方程为 .7m =1m =-AB 7y x =+强化训练1. 椭圆 , 若直线 与椭圆 交于 两点 22:143x x C +=:l y kx m =+C ,A B (,A B 不是左右顶点), 且以直线 为直径的圆恒过椭圆 的右顶点. 求证:直线AB C 恒过定点, 并求出该点的坐标.l【答案】 2,07⎛⎫⎪⎝⎭【解析】设椭圆的右顶点为 ,()()1122(2,0),,,,C A x y B x y 则 ()()1212220,(*)CA CB x x y y ⋅=--+=联立 , 整理得: ,22143x y y kx m ⎧+=⎪⎨⎪=+⎩()()222348430k x mkx m +++-=因为 是方程 的两个根, 所以12,x x ()()222348430k x mkx m +++-=()()()()()2222123484334(1)k xmkx m k x x x x +++-=+--取 , 得 ,2x =()()()()()2221243416433422k mk m k x x +++-=+--所以 (2).()()22122161642234k mk m x x k++--=+取 , 并两边同时乘以 , 可得 m x k =-2k 2221212231234m m m k y y k x x k k k -⎛⎫⎛⎫=++= ⎪⎪+⎝⎭⎝⎭(3).将(2和(3)整体代入 (*), 得,2222221616431203434k mk m m k k k ++-+=++即 , 即 或 ,2241670k mk m ++=(72)(2)0,2m k m k m k ++=∴=-27m k =-当 时, 直线 过点 , 不合题意;2m k =-:(2),l y kx m k x l =+=-(2,0)C 当 时, 直线 , 显然 恒过定点 .27m k =-2:7l y kx m k x ⎛⎫=+=- ⎪⎝⎭l 2,07⎛⎫⎪⎝⎭2. 已知椭圆 的右焦点为 , 过 且与2222:1(0)x y E a b a b+=>>(1,0)F F x 轴垂直的弦长为 3 .(1) 求椭圆标准方程;(2) 直线 过点 与满圆交于 两点, 问 轴上是否存在点 , 使 l F ,A B x P PA PB ⋅为定值?若存在, 求出 的坐标; 若不存在, 说明理由.P【答案】 (1) ; (2) 见解析22143x y +=【解析】 (1)易得椭圆标准方程为 ;22143x y +=(2) 当直线 的斜率存在时, 设为 , 则直线 的方程为 ,l k l (1)y k x =-设 , 则()()1122(,0),,,,P m A x y B x y ()()()22221234(1)1234x k x k x x x x +--=+--(1).()()1122,,,PA x m y PB x m y =-=-()()()()()()21212121211(2)PA PB x m x m y y x m x m k x x ⋅=--+=--+--在(1)中令 , 得 , (3)x m =()()22212234(1)1234m k m x m x m k+----=+在(1)中令 , 得 , (4)1x =()()12291134x x k ---=+把(3)4代入(2)并整理得()()22224(1)931243m k m PA PB k --+-⋅=+ 所以, 得 , 此时 .()224(1)931243m m---=118m =13564PA PB ⋅=- 当直线 的斜率不存在时, , 仍有 .l 33111,,1,,,0228A B P ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13564PA PB ⋅=- 综上所述, 的坐标为 .P 11,08P ⎛⎫⎪⎝⎭3. 已知椭圆2222:1(0)x y E a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点, 直线 与椭圆 有且只有一个公共点 .:3l y x =-+E T (1) 求椭圆 的方程及点 的坐标;E T (2) 设 是坐标原点, 直线 平行于 , 与椭圆 交于不同的两点 , O l OT E ,A B 且与直线 交于点 . 证明: 存在常数 , 使得 , 并求 l P λ2||||||PT PA PB λ=⋅λ的值.【答案】 (1) (2) ,(2,1);45λ=【解析】 (1) , 点 坐标为 , 过程路.22163x y +=T (2,1)(2) 由已知可设直线 的方程为 ,l 1(0)2y x m m =+≠由方程组 可得 1,23y x m y x ⎧=+⎪⎨⎪=-+⎩223213m x m y ⎧=-⎪⎪⎨⎪=+⎪⎩所以 点坐标为 , 设点 的坐标分别为, P 222282,1,||339m m PT m ⎛⎫-+= ⎪⎝⎭,A B ,()()1122,,,A x y B x y 由方程组 , 可得 (1)2216312x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩()22344120x mx m ++-=而 是 的两根, 所以12,x x ()22344120x mx m ++-= (2)()()()2212344123x mx m x x x x ++-=--方程(2)的判别式为 , 由 , 解得 .()21692m ∆=-0∆>m <<由(2)得 212124412,33m m x x x x -+=-=所以1122||233m m PA x x ==-=-同理, 所以22||3m PB x =-1252222433m m PA PB x x ⎛⎫⎛⎫=----⎪⎪⎝⎭⎝⎭②中令,得223mx =-得()2212222232424123223333m m m m m m x x ⎛⎫⎛⎫⎛⎫⎛⎫-+-+-=---- ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭得 21222822339m m x x m ⎛⎫⎛⎫----= ⎪⎪⎝⎭⎝⎭,故存在,使得2109PA PB m =54λ=2||||||.{PT PA PB λ=⋅。
高考数学(简单版)-8圆锥曲线向量点乘-简单难度-讲义 (2)
圆锥曲线向量点乘知识讲解一、相关向量知识点1.三点共线: ①;②存在实数,使;③若存在实数,且,使. 2.给出,等于已知,即是直角; 给出,等于已知是钝角, 给出,等于已知是锐角.3.给出,等于已知是4.在中,给出垂心是三角形三条高的交点).5.如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行转化,还是选择向量的代数形式进行转化.二、垂直与角度1.垂直以AB 为直径的圆过原点O 121200OA OB x x y y ⇔⋅=⇔+=2212121212()()()y y kx m kx m k x x km x x m =++=+++ 21222221kmb x x ka b+=-+ 故222222222121212122222222(1)(1)0(1)()11m k m k b b x x y y k x x km x x m m k k a b a b +-=+=++++=-+++ A B C ,,//AB AC λAB AC λ=αβ,1αβ+=OC OA OB αβ=+0MA MB ⋅=MA MB ⊥AMB ∠0MA MB ⋅<AMB ∠0MA MB ⋅>AMB ∠MA MB MP MA MB λ⎛⎫⎪+= ⎪⎝⎭MP ∠ABC △OA OB OB OC OC OA ⋅=⋅=⋅两边同时乘以2221k a b+,整体处理得222222222221(1)(1)()0m k m k k m b b a b+--++= 消去高次项222k m b得2222210m m k b a --+=即找了,,,a b m k 的关系式. 推广:以AB 为直径的圆过焦点1F1112120()()0F A F B x c x c y y ⇔⋅=⇔+++=⇔可以看得出,同样可以采用整体法处理.2.角度问题成锐角或钝角原点O 在以AB 为直径的圆内0OA OB x ⇔⋅<⇔易得2222210m m k b a--+<原点O 在以AB 为直径的圆外易得2222210m m k b a--+>121200OA OB x x y y ⇔⋅>⇔+>经典例题一.选择题(共8小题)1.(2018•呼伦贝尔一模)设坐标原点为O,抛物线y2=2x与过焦点的直线交于A、B两点,则等于()A.B.﹣C.3 D.﹣32.(2018•保山二模)P为双曲线C:>上一点,F1,F2分别为双曲线的左、右焦点,∠F1PF2=60°,则|PF1||PF2|的值为()A.6 B.9C.18 D.363.(2018•新课标Ⅰ)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5 B.6C.7 D.84.(2018•全国)过抛物线y2=2x的焦点且与x轴垂直的直线与抛物线交于M、N 两点,O为坐标原点,则•=()A.B.C.﹣D.﹣5.(2018•潍坊二模)设P为双曲线右支上一点,F1,F2分别为该双曲线的左右焦点,c,e分别表示该双曲线的半焦距和离心率.若,直线PF2交y轴于点A,则△AF1P的内切圆的半径为()A.a B.bC.c D.e6.(2018•新华区校级模拟)若焦点为F,准线为l的抛物线C:x2=2py(p>0)上一点A(点A在第一象限),过点A作直线AA1⊥l,垂足为A1,三角形AA1F 是等边三角形,且三角形AA1F的面积为4,过点A作互相垂直的直线AM,AN分别交抛物线C于M,N两点,点P在直线MN上,且=0,点P的轨迹为()A.抛物线B.圆C.椭圆D.双曲线7.(2018•安阳一模)已知F1,F2分别是椭圆>>的左、右焦点,P为椭圆上一点,且(O为坐标原点),若,则椭圆的离心率为()A.B.C.D.8.(2018•遂宁模拟)已知P是双曲线﹣y2=1上任意一点,过点P分别作曲线的两条渐近线的垂线,垂足分别为A、B,则•的值是()A.﹣B.C.﹣D.不能确定二.填空题(共4小题)9.(2018•三明模拟)已知圆C1:(x﹣2)2+y2=4和抛物线C2:y2=2x,点P是C1与C2在第一象限的交点,F为抛物线C2的焦点,则=.10.(2018•凉山州模拟)在△ABC中,a、b、c为角A、B、C所对的边,若=(a+c,﹣b),=(a﹣c,b),且•=bc,则A=.11.(2018•亭湖区校级模拟)已知F1(﹣c,0),F2(c,0)为椭圆+=1(a >b>0)的两个焦点,P为椭圆上一点且•=c2,则此椭圆离心率的取值范围是.12.(2018•乐山二模)如图,在△ABC中,cos=,•=0,•(+)=0,则过点C,以A、H为两焦点的双曲线的离心率为.三.解答题(共5小题)13.在椭圆+=1(a>b>0)上取一点,P与长轴两端点A、B的连线分别交短轴所在直线于M,N两点,设O为原点,求证:|OM|•|ON|为定值.14.已知椭圆的焦点分别为F1(﹣4,0),F2(4,0),离心率e=0.8.(1)求椭圆的标准方程;(2)在椭圆上是否存在点P,使•=0,若存在,求出坐标.15.(2015•江苏模拟)如图,椭圆(a>b>0)过点,,其左、右焦点分别为F1,F2,离心率,M,N是椭圆右准线上的两个动点,且.(1)求椭圆的方程;(2)求MN的最小值;(3)以MN为直径的圆C是否过定点?请证明你的结论.16.已知椭圆C:+=1(a>b>0)的离心率为,其左、右焦点分别为F1,F2,点P是坐标平面内一点,且||=,•=﹣1其中O为坐标原点.(1)求椭圆C的方程;(2)已知在第一象限内,横坐标为1的点M在椭圆上,经过点M的直线l′与椭圆有且仅有一个公共点,A,B是椭圆上的两个不同的动点,记直线AB,l′的斜率分别为k1,k2,若直线MA,MB的倾斜角互补,求证:k1+k2为定值,并求出这个定值.17.(2018•全国一模)已知椭圆:>>过抛物线M:x2=4y的焦点F,F1,F2分别是椭圆C的左、右焦点,且.(1)求椭圆C的标准方程;(2)若直线l与抛物线M相切,且与椭圆C交于A,B两点,求△OAB面积的最大值.。
浅谈“双根法”在高考圆锥曲线大题的运用
浅谈“双根法”在高考圆锥曲线大题的运用四川泸州 黄忠海首先,一起回忆一下在初中我们已经学习过一元二次方程有三种形式 一般式:()200ax bx c a ++=≠ 顶点式:()()200a x h k a -+=≠交点式(双根式):()()()1200,0a x x x x a --=≠≥为我们介绍双根法出场作一下铺垫。
对于圆锥曲线大题第二问许多同学感觉最大的麻烦就是运算量大,成为其绊脚石难以做下去,甚至很多老师在平时的教学中教教同学们联立直线与圆锥曲线方程再使用韦达定理得一点步骤分也就知足了。
所以,在高考有限的时间里能否简化运算量就成其关键,那有没有什么好方法能简化运算量呢?下面就给大家分享双根法(大招)在高考圆锥曲线中的运用。
2012年重庆卷(文科)如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为12,F F ,线段12,OF OF 的中点分别为12,B B ,且12AB B ∆是面积为4的直角三角形. (Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过点1B 作直线l 交椭圆于M,N 两点,22MB NB ⊥,求直线l 的方程. 理科:(Ⅱ)过1B 作直线l 交椭圆于M,N 两点,22MB NB ⊥,求直线2PB Q 的面积.(Ⅰ)易求椭圆方程为221204x y+= (Ⅱ)方法1:(大联立)略(过程多,海哥编辑麻烦) 分情况设出直线l 的方程再使用韦达定理评析:此法乃通法,但运算繁琐.方法2:(大联立)点()12,0B -,设点()11,M x y ,()22,N x y ,直线l 的方程为2x my =-联立直线l 与椭圆的方程有2212042x y x my ⎧+=⎪⎨⎪=-⎩⇒()2254160m y my +--=由韦达定理有12212245165m y y m y y m ⎧+=⎪⎪+⎨-⎪=⎪+⎩,又22MB NB ⊥ 220B M B N ∴⋅=即:()()1212220x x y y --+=()()1212440my my y y ⇒--+=()()2121241160m y y m y y ∴-++++= ()22221611616055m mm m -+-∴++=++24m ∴= 即:2m =±评析:①设直线l 的方程为横截式从而避免讨论斜率不存在的情况达到简化运算的目的;②联立直线与圆锥曲线方程再使用韦达定理.方法3:(大招双根法)显然当直线l 垂直于x 轴时不满足题意点()12,0B -,设点()11,M x y ,()22,N x y ,直线l 的方程为()2y k x =+,联立直线l 与椭圆的方程有()2212042x y y k x ⎧+=⎪⎨⎪=+⎩ ⇒()22252200x k x ++-=12,x x 是方程()22252200x k x ++-=的两根∴()()()()222212522015x k x kx x x x ++-=+-- (*)又22MB NB ⊥,220B M B N ∴⋅= ⇒()()1212220x x y y --+=即:()()()()2121222220x x k x x --+++=在(*)中用2替换x 有 ()()212216802215k x x k -+--=+在(*)中用2-替换x 有 ()()122162215x x k -++=+∴222216801601515k k k k -+-+=++ ⇒ 214k = 即:12k =± 所以直线l 的方程为:()122y x =±+.评析:①使用双根法整体代换避免使用韦达定理带来的繁琐运算;②当然双根法不是万能的,在什么情况使用双根法这是关键,主要解决数量积为定值情况. 最后给大家一道高考题练习一下双根法的使用练习题:(2013年天津卷)已知椭圆方程为22132x y+=,,A B是椭圆的左右顶点,过左焦点F且斜率为k的直线l与椭圆相交于C,D两点,若8AC DB AD CB⋅+⋅=,求k的值.。
(完整版)圆锥曲线解题技巧和方法综合(经典)
圆锥曲线解题方法技巧归纳第一、知识储备:1. 直线方程的形式(1) 直线方程的形式有五件:点斜式、两点式、斜截式、截距式、 一般式。
(2) 与直线相关的重要内容①倾斜角与斜率 k tan , [0, )② 点 到 直 线 的 距 离 d Ax 0 By 0 CA 2B 2tan3)弦长公式直线 y kx b 上两点 A(x 1, y 1), B( x 2 , y 2 )间的距离: AB 1 k 2 x 1 x 2(1 k 2 )[( x 1 x 2)2 4x 1x 2] 或 AB 1 k 12 y 1 y 2 (4)两条直线的位置关系①l 1 l 2 k 1k 2=-1 ② l 1 //l 2 k 1 k 2且b 1 b 22、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:22x y1(m 0,n 0且 m n) mn 距离式方程:(x c)2 y 2 (x c)2 y 22a 参数方程:x acos ,y bsin(2)、双曲线的方程的形式有两种③夹角公式:k21222标准方程:x y1(m n 0)mn距离式方| (x c)2 y 2 (x c) 2 y 2 | 2a(3) 、三种圆锥曲线的通径你记得吗?椭圆:2b;双曲线:2b;抛物线:2 p aa(4) 、圆锥曲线的定义你记清楚了吗?b 2tan2 P 在双曲线上时, S F PF b cot| PF |2 | PF |2 4c 2 uuur uuuur uuur uuuur 其中 F 1PF 2,cos |PF 1||PF 1||P |F P 2F |2 | 4c ,u P u F ur1?u P u Fuur 2|u P uu F r 1 ||uu P u Fur2|cos(6) 、 记 住 焦 半 径 公 式 : ( 1 )椭圆焦点在 x 轴上时为 a ex 0 ;焦点在 y 轴上时为 a ey 0,可简记为“左加右减,上加下减”(2)双曲线焦点在 x 轴上时为 e|x 0 | a(3) 抛物线焦点在 x 轴上时为 | x 1 | 2p ,焦点在 y 轴上时为 | y 1 | 2p(6)、椭圆和双曲线的基本量三角形你清楚吗?第二、方法储备1、点差法(中点弦问题)2y1的弦 AB 中点则有3如: 已知 F 1、 22F2是椭圆 x4 y3 1的两个焦点, 平面内一个动点 M 足 MF 1MF 2 2 则动点 M 的轨迹是(A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线(5)、焦点三角形面积公式: P 在椭圆上时, S F 1PF 2设 A x 1, y 1B x 2,y 2 , M a,b 为椭圆 x42 2 2 2 2 2 2 2 x 1 y 1 1, x 2 y 2 1;两式相减得 x 1 x 2y 1 y 24 3 4 3 4 3x 1 x 2 x 1 x 2y 1 y 2 y 1 y 23a4 3kAB =4b2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到 一个二次方程, 使用判别式 0,以及根与系数的关系, 代入弦 长公式,设曲线上的两点 A( x 1, y 1), B(x 2 , y 2 ) ,将这两点代入曲线方 程得到 ○1 ○2 两个式子,然后 ○1-○2 ,整体消元······,若有两个 字母未知数, 则要找到它们的联系, 消去一个,比如直线过焦点, 则可以利用三点 A 、B 、 F 共线解决之。
高中数学齐次化妙解圆锥曲线问题 (解析版)
齐次化妙解圆锥曲线问题【微点综述】直线与圆锥曲线位置关系,是高考的一个难点,而其中一个难在于运算,本微专题的目标在于采用齐次化运算解决直线与圆锥曲线的一类:斜率之和或斜率之积的问题.本专题重难点:一是在于消元的解法,即怎么构造齐次化方程;二是本解法的适用范围.亮点是用平面几何的视角解决问题.圆锥曲线的定义、定值、弦长、面积,很多都可以转化为斜率问题,当圆锥曲线遇到斜率之和或者斜率之积,以往我们的常用解法是设直线y =kx +b ,与圆锥曲线方程联立方程组,韦达定理,再将斜率之和或之积的式子通分后,将x 1+x 2和x 1⋅x 2代入,得到关于k 、b 的式子.解法不难,计算量较为复杂.如果采用齐次化解决,直接得到关于k 的方程,会使题目计算量大大减少.“齐次”即次数相等的意思,例如f x =ax 2+bxy +cy 2称为二次齐式,即二次齐次式的意思,因为f x 中每一项都是关于x 、y 的二次项.如果公共点在原点,不需要平移.如果不在原点,先平移图形,将公共点平移到原点,无论如何平移,直线斜率是不变的.注意平移口诀是“左加右减,上减下加”,你没有看错,“上减下加”,因为是在等式与y 同侧进行加减,我们以往记的“上加下减”都是在等式与y 的异侧进行的.例:y =kx +b 向上平移1个单位,变为y =kx +b +1,即y -1=kx +b ,x 2a 2+y 2b 2=1向上平移1个单位,变为x 2a 2+y -1 2b 2=1.设平移后的直线为mx +ny =1(为什么这样设?∵这样齐次化更加方便,相当于“1”的妙用),与平移后的圆锥联立,一次项乘以mx +ny ,常数项乘以mx +ny 2,构造ay 2+bxy +cx 2=0,然后等式两边同时除以x 2(前面注明x 不等于0),得到a ⋅y x2+b ⋅y x +c =0,可以直接利用韦达定理得出斜率之和或者斜率之积,y 1x 1+y 2x 2=-b a ,y 1x 1⋅y 2x 2=c a ,即可得出答案.如果是过定点题目,还需要还原,之前如何平移,现在反平移回去.总结解法为:①平移;②联立并齐次化;③同除以x 2;④韦达定理.证明完毕,若过定点,还需要还原.优点:大大减小计算量,提高准确率!缺点:mx +ny =1不能表示过原点的直线,少量题目需要讨论.一、齐次化运算的前世--韦达定理1.韦达定理发展简史法国数学家弗朗索瓦·韦达(Fran çois Vi ète ,1540-1603)在著作《论方程的识别与订正》中改进了三、四次方程的解法,还对n =2,3的情形,建立了方程根与系数之间的关系,现代称之为韦达定理.证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性.2.韦达定理:设关于x 的一元二次方程ax 2+bx +c =0的两根为x 1,x 2,则x 1+x 2=-b a ,x 1x 2=c a .韦达定理是本微专题的理论基础..引例1.已知x1和x2是方程2x2+3x-4=0的两个根,求1x1+1x2的值.【解析】解法1:1x1+1x2=x1+x2x1⋅x2=-b aca=-b c=34.解法2:方程两边同除以x2,得-41x2+31x +2=0,∵1x1,1x2,∴由韦达定理得1x1+1x2=34.引例2.设x1,y1,x2,y2是方程组y=x-1,y2=4x的两组根,求y1x1+y2x2,y1x1⋅y2x2的值.【分析】如果可以建立关于以yx为未知数的一元二次方程Ayx2+B⋅y x+C=0,那么y1x1+y2x2,y1x1⋅y2x2就是对应方程的两根之和了.所以本运算的关键是如何通过消元得到:Ay2+Bxy+Cx2=0,再由x≠0,方程两边同时除以x2.消元得到方程Ay2+Bxy+Cx2=0是个二次齐次式,所以把本计算方法命名为:齐次化运算.观察y=x-1,y2=4x,发现y2已经为二次式,关键在于将4x化成二次式,由y=x-1可得1=x-y,∴y2=4x⋅1=4x⋅x-y,整理可得y2+4xy-4x2=0,显然x=0不是方程y2+4xy-4x2=0的根,方程y2+4xy-4x2=0两边同时除以x2可得:关于yx为未知数的一元二次方程:yx2+4⋅y x-4=0,则由韦达定理可得:y1x1+y2x2=-4,y1x1⋅y2x2=-4.二、齐次化运算的今生--韦达定理遇到笛卡尔解析几何例1.直线mx+ny=1与抛物线y2=4x交于A x1,y1,B x2,y2,求k OA+k OB,k OA⋅k OB.(用m,n表示)【解析】联立mx+ny=1y2=4x,齐次化得y2=4x mx+ny,等式两边同时除以x2,yx2-4n y x -4m=0,∴∴k OA+k OB=y1x1+y2x2=4n,k OA k OB=y1x1⋅y2x2=-4m.例2.直线mx+ny=1与椭圆x24+y23=1交于A x1,y1,B x2,y2,求k OA⋅k OB(用m,n表示).【解析】mx+ny=1 x24+y23=1齐次化联立得:x24+y23=mx+ny2,等式两边同时除以x2,12n2-4yx2+24mn y x +12m2-3=0,∴k OA⋅k OB=y1x1⋅y2x2=12m2-312n2-4.引例3.已知动直线l的方程为mx+ny=1.(1)若m=2n,求直线l的斜率;(2)若m=-12,求直线l所过的定点;(3)若m=2n+1,求直线l所过的定点;(4)若m=2n+2,求直线l所过的定点;(5)若6+3n4+12m=1,求直线l所过的定点.【解析】(1)k =-mn=-2.(2)-12x +ny =1,消去n ,令y =0,∴过定点-2,0 .(3)整理得m -2n =1∴过定点1,-2 .(4)整理得12m -n =1,∴过定点12,-1 .(5)整理得6m -32n =1,∴过定点6,-32 .例3.抛物线y 2=4x ,直线l 交抛物线于A 、B 两点,且OA ⊥OB ,求证:直线l 过定点.【解析】设直线AB 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =1y 2=4x 联立得y x 2-4n y x-4m =0,∵k OA k OB=y 1y 2x 1x 2,∴-4m =-1,∴m =14,∴直线AB :14x +ny =1过定点4,0 .例4.不过原点的动直线交椭圆x 24+y 23=1于A 、B 两点,直线OA 、AB 、OB 的斜率成等比数列,求证:直线l 的斜率为定值.【解析】设直线AB 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =1x 24+y 23=1联立得12n 2-4 y x 2+24mn y x+12m 2-3=0,于是k OA k OB =y 1x 1y 2x 2=12m 2-312n 2-4,又k AB =-m n ,∴12m 2-312n 2-4=m 2n 2,得k AB=-m n =±32.三、y -nx -m型怎么采用齐次化运算解决,平移是关键引例4.已知椭圆x 24+y 2=1,按照平移要求变换椭圆方程,并化简平移后的椭圆方程.(1)将椭圆向左平移1个单位,求平移后的椭圆;(2)将椭圆向右平移2个单位,求平移后的椭圆;(3)将椭圆向上平移3个单位,求平移后的椭圆;(4)将椭圆向下平移4个单位,求平移后的椭圆;(5)将椭圆向左平移1个单位,向下平移32个单位,求平移后的椭圆;(6)将椭圆向左平移2个单位,向下平移1个单位,求平移后的椭圆.【解析】(1)x +124+y 2=1,即4y 2+x 2+2x -3=0.(2)x -224+y 2=1,即4y 2+x 2-4x =0.(3)x 24+y -3 2=1,即4y 2+x 2-24y +32=0.(4)x 24+y +4 2=1,即4y 2+x 2+32y +60=0.(5)x +124+y +322=1,即4y 2+x 2+2x +43y =0.(6)x +224+y -1 2=1,即4y 2+x 2+4x -8y +4=0.例5.抛物线y 2=4x ,P 1,2 ,直线l 交抛物线于A 、B 两点,PA ⊥PB ,求证:直线l 过定点.【解析】将图形向左平移1个单位,向下平移2个单位,平移后的抛物线方程为y +2 2=4x +1 ,整理得y 2+4y -4x =0.设平移后直线A B 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =1,y 2+4y -4x =0联立得1+4n y x 2+4m -4n y x -4m =0,于是k P Ak PB=y 1x 1⋅y 2x 2=-4m1+4n=-1,整理得4m -4n =1,∴mx +ny =1过定点4,-4 ,右移1个,上移2个,直线AB 过定点5,-2 .例6.椭圆x 24+y 23=1,点P 1,32,A ,B 为椭圆上两点,k PA +k PB =0.求证:直线AB 斜率为定值.【解析】解法一:将图形向左平移1个单位,向下平移32个单位,平移后的椭圆为x +1 24+y +3223=1,整理得4y 2+3x 2+6x +12y =0,设平移后直线A B 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =14y 2+3x 2+6x +12y =0,联立得4y 2+3x 2+6x +12y mx +ny =0,12n +4 y2+62m +n xy +6m +3 x 2=0,同时除以x 2,12n +4 y x2+62m +n y x +6m +3 =0,k P A+k PB=y 1x 1+y 2x 2=-62m +n 12n +4=0,-62m +n =0,mx +ny =1的斜率-m n =12.解法二(换元法):设A x 1,y 1 ,B x 2,y 2 ,即化为y 1-32x 1-1⋅y 2-32x 2-1=0,即建立以y -32x -1为未知数的一元二次方程A y -32x -12+B⋅y -32x -1+C =0,即可解答.为了方便运算设x -1=s ,y -32=t ,代入椭圆x 24+y 23=1,得3s 2+4t 2+6t +12t =0,∴设直线ms +nt =6可方便运算,3s 2+4t 2+t (ms +nt )+2t (ms +nt )=0,化简得:4+2n t s 2+2m +n t s +(3+m )=0,∴y 1-32x 1-1⋅y 2-32x 2-1=t 1s 1⋅t 2s 2=2m +n 4+2n =0,x -1=s ,y -32=t ,n =-2m 代入ms +nt =6,得m (x -1)-2m y -32 =6,∴直线AB 的斜率是12.例7.双曲线x 22-y 22=1,P 2,0 ,A 、B 为双曲线上两点,且k PA +k PB =0.AB 不与x 轴垂直,求证:直线AB 过定点.【解析】将图形左平移2个单位,平移后的双曲线为x +222-y 22=1,整理得y 2-x 2-4x -2=0,设平移后直线A B 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =1y 2-x 2-4x -2=0 ,联立得y 2-x 2-4x mx +ny -2mx +ny 2=0,1-2n 2 y 2-4n +4mn xy -2m 2+4m +1 x 2=0,同时除以x 2,1-2n 2y x 2-4n +4mn y x -2m 2+4m +1 =0,k P A+k PB=y 1x 1+y 2x 2=4n +4mn 1-2n 2=0,4n +4mn =4n m +1 =0,n =0或m =-1,AB 不与x 轴垂直,n ≠0,∴m =-1,-x +ny =1过-1,0 ,右移2个单位,原直线过1,0 .四、齐次化在解析几何中的应用例8.(2021重庆期末)已知抛物线C :y 2=2px p >0 上一点A 2,a 到其焦点的距离为3.(Ⅰ)求抛物线C 的方程;(Ⅱ)过点4,0 的直线与抛物线C 交于P ,Q 两点,O 为坐标原点,证明:∠POQ =90°.【解析】解法1:(Ⅰ)由题意知:2--p2=3⇒p =2⇒y 2=4x .(Ⅱ)证明:设该直线为my =x -4,P 、Q 的坐标分别为x 1,y 1 、x 2,y 2 ,联立方程有:my =x -4y 2=4x⇒y 2-4my -16=0,OP ⋅OQ =x 1x 2+y 1y 2=y 21y 2216+y 1y 2=116×-16 2-16=0,∴∠POQ =90°.解法2:要证明∠POQ =90°,即证k PO ⋅k QO =-1,设PQ :mx +ny =1,过4,0 ,∴4m =1,m =14,y 2=4x mx +ny ,y 2-4nxy -4mx 2=0,同除以x 2得y x 2-4n y x -4m =0,k 1⋅k 2=-4m ,∵m =14,∴k 1⋅k 2=-1即∠POQ =90°.例9.如图,椭圆E :x 2a 2+y 2b 2=1a >b >0 经过点A 0,-1 ,且离心率为22.(Ⅰ)求椭圆E 的方程;(Ⅱ)经过点1,1 ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 斜率之和为2.【解析】解法1:(Ⅰ)由题设知,c a =22,b =1,结合a 2=b 2+c 2,解得a =2,∴x 22+y 2=1.(Ⅱ)证明:由题意设直线PQ 的方程为y =k x -1 +1k ≠0 ,代入椭圆方程x 22+y 2=1,可得1+2k 2 x 2-4k k -1 x +2k k -2 =0,由已知得1,1 在椭圆外,设P x 1,y 1 ,Q x 2,y 2 ,x 1x 2≠0,则x 1+x 2=4k k -1 1+2k 2,x 1x 2=2k k -21+2k 2,且Δ=16k 2k -1 2-8k k -2 1+2k 2 >0,解得k >0或k <-2.则有直线AP ,AQ 的斜率之和为k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k +2-k 1x 1+1x 2 =2k +2-k ⋅x 1+x 2x 1x 2=2k +2-k ⋅4k k -12k k -2=2k -2k -1 =2.即有直线AP 与AQ 斜率之和为2.解法2:(2)上移一个单位,椭圆E 和直线L :x 22+y -12=1mx +ny =1,mx +ny =1过点1,2 ,m +2n =1,m =1-2n ,x 2+2y -1 2=2,x 2+2y 2-4y =0,2y 2+x 2-4y mx +ny =0,-4n +2 y2-4mxy +x 2=0,∵x ≠0,同除x 2,得-4n +2 y x2-4m yx+1=0,k 1+k 2=-4m -4n +2=2m 1-2n =2mm=2.例10.设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【解析】(1)设A x 1,x 214 ,B x 2,x 224为曲线C :y =x 24上两点,则直线AB 的斜率为k =x 214-x 224x 1-x 2=14x 1+x 2 =14×4=1.(2)解法1:设直线AB 的方程为y =x +t ,代入曲线C :y =x 24,可得x 2-4x -4t =0,即有x 1+x 2=4,x 1x 2=-4t ,再由y =x 24的导数为y=12x ,设M m ,m 24 ,可得M 处切线的斜率为12m ,由C 在M 处的切线与直线AB 平行,可得12m =1,解得m =2,即M 2,1 ,由AM ⊥BM 可得,k AM ⋅k BM =-1,即为x 214-1x 1-2⋅x 224-1x 2-2=-1,化为x 1x 2+2x 1+x 2 +20=0,即为-4t +8+20=0,解得t =7,则直线AB 的方程为y =x +7.解法2:y =x 24,y =x 2=1,x =2,∴M 2,1 ,左移2个单位,下移1个单位C:y +1=x +2 24,A B :mx +ny =1,4y +4=x 2+4x +4,x 2+4x -y mx +ny =0,x 2+4mx 2+nxy -mxy -ny 2 =0,1+4m x2+4n -m xy -4ny 2=0,x ≠0,同除以x 2,得-4n y x2+4n -m yx+1+4m =0,4nk 2-4n -m k -1+4m =0,mx +ny =1,斜率-mn =1,m =-n ,k 1k 2=-1+4m 4n=-1,1+4m =4n ,n =18,m =-18,-18x +18y =1,x -y +8=0右2,上1,x -2 -y -1 +8=0,x -y +7=0.例11.(2017年全国卷理)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 ,四点P 11,1 ,P 20,1 ,P 3-1,32 ,P 41,32 中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.【解析】(1)解:根据椭圆的对称性,P 3-1,32 ,P 41,32两点必在椭圆C 上,又P 4的横坐标为1,∴椭圆必不过P 11,1 ,∴P 20,1 ,P 3-1,32,P 41,32 三点在椭圆C 上,把P 20,1 ,P 3-1,32 代入椭圆C ,得:1b 2=11a 2+34b 2=1,解得a 2=4,b 2=1,∴椭圆C 的方程为x 24+y 2=1.(2)证法1:①当斜率不存在时,设l :x =m ,A m ,y A ,B m ,-y A ,∵直线P 2A 与直线P 2B 的斜率的和为-1,∴k P 2A +k P 2B =y A -1m +-y A -1m =-2m=-1,解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l :y =kx +t ,t ≠1 ,A x 1,y 1 ,B x 2,y 2 ,联立y =kx +tx 2+4y 2-4=0 ,整理,得1+4k 2 x 2+8ktx +4t 2-4=0,x 1+x 2=-8kt 1+4k 2,x 1x 2=4t 2-41+4k 2,则k P 2A +k P 2B =y 1-1x 1+y 2-1x 2=x 2kx 1+t -x 2+x 1kx 2+t -x 1x 1x 2=8kt 2-8k -8kt 2+8kt 1+4k 24t 2-41+4k 2=8k t -14t +1 t -1=-1,又t ≠1,∴t =-2k -1,此时Δ=-64k ,存在k ,使得Δ>0成立,∴直线l 的方程为y =kx -2k -1,当x =2时,y =-1,∴l 过定点2,-1 .证法2:下移1个单位得E:x 24+y +1 2=1,A B :mx +ny =1,x 24+y 2+2y =0,x 2+4y 2+8y mx +ny =0,8n +4 y 2+8mxy +x 2=0,∵x ≠0同除以x 2,8n +4 y x 2+8m y x +1=0,8n +4 k 2+8mk +1=0,k 1+k 2=-8m 8n +4=-1,8m =8n +4,2m -2n =1,∴mx +ny =1过2,-2 ,上移1个单位2,-1 .例12.(2018全国一文)设抛物线C :y 2=2x ,点A 2,0 ,B -2,0 ,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:∠ABM =∠ABN .【解析】(1)当l 与x 轴垂直时,x =2,代入抛物线解得y =±2,∴M 2,2 或M 2,-2 ,直线BM 的方程:y =12x +1,或y =-12x -1.(2)解法1:证明:设直线l 的方程为l :x =ty +2,M x 1,y 1 ,N x 2,y 2 ,联立直线l 与抛物线方程得y 2=2xx =ty +2 ,消x 得y 2-2ty -4=0,即y 1+y 2=2t ,y 1y 2=-4,则有k BN +k BM =y 1x 1+2+y 2x 2+2=y 222×y 1+y 212×y 2+2y 1+y 2 x 1+2 x 2+2 =y 1+y 2 y 1y 22+2 x 1+2 x 2+2=0,∴直线BN 与BM 的倾斜角互补,∴∠ABM =∠ABN .解法2:(2)右移2个单位C :y 2=2x -2 ,l :mx +ny =1过4,0 即4m =1,m =14,y 2=2x -4,y 2=2x mx +ny -4mx +ny 2,y 2=2mx 2+2nxy -4m 2x 2+n 2y 2+2mnxy ,1+4n 2y2+8mn -2n xy +4m 2-2m x 2=0,∵x ≠0,同除以x 2,得1+4n 2 k 2+8mn -2n k +4m 2-2m =0,k 1+k 2=-8mn -2n 1+4n 2=-2n 4m -1 1+4n 2=0,∴∠ABM =∠ABN .例13.(2018全国一卷理)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为2,0 .(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:∠OMA =∠O MB .【解析】(1)c =2-1=1,∴F 1,0 ,∵l 与x 轴垂直,∴x =1,由x =1x 22+y 2=1 ,解得x =1y =22 或x =1y =-22,∴A 1,22 ,或1,-22 ,∴直线AM 的方程为y =-22x +2,y =22x -2.(2)证明:解法1:当l 与x 轴重合时,∠OMA =∠O MB =0°,当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴∠OMA =∠O MB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k x -1 ,k ≠0,A x 1,y 1 ,B x 2,y 2 ,则x 1<2,x 2<2,直线MA ,MB 的斜率之和为k MA ,k MB 之和为k MA +k MB =y 1x 1-2+y 2x 2-2,由y 1=kx 1-k ,y 2=kx 2-k 得k MA +k MB =2kx 1x 2-3x 1+x 2 +4k x 1-2 x 2-2 ,将y =k x -1 代入x 22+y 2=1可得2k 2+1 x 2-4k 2x +2k 2-2=0,∴x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1,∴2kx 1x 2-3k x 1+x 2 +4k =12k 2+14k 3-4k -12k 3+8k 3+4k =0,从而k MA +k MB =0,故MA ,MB 的倾斜角互补,∴∠OMA =∠O MB ,综上∠OMA =∠O MB .解法2:左移2个单位C:x +222+y 2=1,l :mx +ny =1过-1,0 即-m =1.m =-1,x 2+4x +2y 2+2=0,x 2+4x mx +ny +2y 2+2mx +ny 2=0,2+2n 2y2+4n +4mn xy +1+4m +2m 2 x 2=0,∵x ≠0,同除以x 2,得2+2n 2 k 2+4n +4mn k +1+4m +2m 2=0,k 1+k 2=4n +4mn-2+2n 2=0,∴∠OMA =∠O MB .例14.(2020·新课标Ⅰ)已知A ,B 分别为椭圆E :x 2a 2+y 2=1a >1 的左、右顶点,G 为E 的上顶点,AG ⋅GB =8.P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)由题意A -a ,0 ,B a ,0 ,G 0,1 ,∴AG =a ,1 ,GB =a ,-1 ,AG ⋅GB =a 2-1=8,解得:a =3,故椭圆E 的方程是x 29+y 2=1.(2)证法1:由(1)知A -3,0 ,B 3,0 ,设P 6,m ,则直线PA 的方程是y =m9x +3 ,联立x 29+y 2=1y =m 9x +3⇒9+m 2 x 2+6m 2x +9m 2-81=0,由韦达定理-3x c =9m 2-819+m 2⇒x c =-3m 2+279+m 2,代入直线PA 的方程为y =m 9x +3 得:y c=6m9+m 2,即C -3m 2+279+m 2,6m9+m 2,直线PB 的方程是y =m3x -3 ,联立方程x 29+y 2=1y =m 3x -3⇒1+m 2 x 2-6m 2x +9m 2-9=0,由韦达定理3x D =9m 2-91+m 2⇒x D =3m 2-31+m 2,代入直线PB 的方程为y =m 3x -3 得y D =-2m 1+m 2,即D 3m 2-31+m 2,-2m1+m 2 ,则①当x c =x D 即27-3m 29+m 2=3m 2-3m 2+1时,有m 2=3,此时x c =x D=32,即CD 为直线x =32.②x C ≠x D 时,直线CD 的斜率K CD =y C -y D x C -x D =4m33-m 2 ,∴直线CD 的方程是y --2m 1+m 2=4m 33-m 2 x -3m 2-31+m 2 ,整理得:y =4m 33-m 2x -32 ,直线CD 过定点32,0 .综合①②故直线CD 过定点32,0 .证法2:设P 6,t ,A -3,0 ,B 3,0 ,则k AC =k AP =t 9,k BD =k BP =t 3,根据椭圆第三定义(本书后面有详细讲解),k AD ⋅k BD =b 2a2=-19,∴k AD =-13t ,则k AC ⋅k AD =-127,将图像向右移动3个单位,则椭圆E 和直线l CD :x -329+y 2=1mx +ny =1,联立得:x 2-6x +9y 2=0,x 2-6x mx +ny +9y 2=0,即9y 2-6nxy +1-6m x 2=0,两边同时除以x 2,得:9y 2x2-6n yx +1-6m =0,则k AC ⋅k AD =1-6m 9=-127,解得m =29,则直线过定点92,0 ,则平移前过32,0 .例15.(2020·山东)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的离心率为22,且过点A 2,1 .(1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【解析】(1)∵离心率e =c a =22,∴a =2c ,又a 2=b 2+c 2,∴b =c ,a =2b ,把点A 2,1 代入椭圆方程得,42b 2+1b 2=1,解得b 2=3,故椭圆C 的方程为x 26+y 23=1.(2)证法1:①当直线MN 的斜率存在时,设其方程为y =kx +m ,联立y =kx +mx 26+y 23=1,得2k 2+1 x 2+4km x +2m 2-6=0,由Δ=4km 2-42k 2+1 2m 2-6 >0,知m 2<6k 2+3,设M x 1,y 1 ,N x 2,y 2 ,则x 1+x 2=-4km 2k 2+1,x 1x 2=2m 2-62k 2+1,∵AM ⊥AN ,∴AM ⋅AN=x 1-2,y 1-1 ⋅x 2-2,y 2-1 =0,即k 2+1 x 1x 2+km -k -2 x 1+x 2 +m 2-2m +5=0,∴k 2+1 ⋅2m 2-62k 2+1+km -k -2 -4km 2k 2+1+m 2-2m +5=0,化简整理得,4k 2+8km +3m 2-2m -1=2k +m -1 2k +3m +1 =0,∴m =1-2k 或m =-2k +13,当m =1-2k 时,y =kx -2k +1,过定点A 2,1 ,不符合题意,舍去;当m =-2k +13时,y =kx -2k +13,过定点23,-13.设D x 0,y 0 ,则y 0=kx 0+m ,(i )若k ≠0,∵AD ⊥MN ,∴k ⋅kx 0+m -1x 0-2=-1,解得x 0=2k 2+4k +63k 2+3,y 0=3k 2+4k -13k 2+3,∴x 0-432+y 0-132=-2k 2+4k +23k 2+3 2+2k 2+4k -23k 2+3 2=8k 4+2k 2+1 9k 2+12=89,∴点D 在以43,13 为圆心,223为半径的圆上,故存在Q 43,13 ,使得DQ =223,为定值.(ii )若k =0,则直线MN 的方程为y =-13,∵AD ⊥MN ,∴D 2,-13 ,∴DQ =43-22+13+132=223,为定值.②当直线MN 的斜率不存在时,设其方程为x =t ,M t ,s ,N t ,-s ,且t 26+s 23=1,∵AM ⊥AN ,∴AM ⋅AN =t -2,s -1 ⋅t -2,-s -1 =t 2-4t -s 2+5=32t 2-4t +2=0,解得t =23或2(舍2),∴D 23,1 ,此时DQ =43-232+13-1 2=223,为定值.综上所述,存在定点Q 43,13,使得DQ 为定值,且该定值为223.证法2:将图像向左移动两个单位,向下移动一个单位,那么平移后的C 和直线M N :x +226+y +123=1mx +ny =1,联立得:x 2+2y 2+4x +4y mx +ny =0,两边同时除以x 2:4n +2 y 2+4m +4n xy +4m +1 x 2=0,得:4n +2 k 2+4m +4n k +4m +1 =0,∵AM ⊥AN ,∴k AM ⋅k AN =-1,∴4m +14n +2=-1,4m +1=-4n -2,即-43m +-43n =1,M N 过定点-43,--43 ,则平移前该直线过定点P 23,-13 .在△ADP 中,AD ⊥DP ,则D 点的轨迹是以AP 为直径,∵A 为定点,P 为定点,则AP 为定值,则Q 为AP 中点,此时DQ 为定值,∵A 2,1 ,P 23,-13,则Q 43,13 ,DQ =12AP =223.例16.(2022惠州模拟)已知左焦点为F -1,0 的椭圆过点E 1,233,过点P 1,1 分别作斜率为k 1,k 2的椭圆的动弦AB ,CD ,设M ,N 分别为线段AB ,CD 的中点(1)求椭圆的标准方程;(2)若P 为线段AB 的中点,求k 1;(3)若k 1+k 2=1,求证:直线MN 恒过定点,并求出定点坐标【解析】(1)由题意c =1,且右焦点F 1,0 ,∴2a =EF +EF =23,b 2=a 2-c 2=2,∴所求椭圆方程为x 23+y 22=1.(2)设A x 1,y 1 ,B x 2,y 2 ,则x 213+y 212=1①,x 223+y 222=1②②-①,可得k 1=y 2-y 1x 2-x 1=-2x 2+x 1 3y 2+y 1=-23.(3)证法1:由题意,k 1≠k 2,设M x M ,y M ,直线AB 的方程为y -1=k 1x -1 ,即y =k 1x +k 2,代入椭圆方程并化简得2+3k 21 x 2+6k 1k 2x +3k 22-6=0,∴x M =-3k 1k 22+3k 21,y M =2k 22+3k 21,同理,x N =-3k 1k 22+3k 22,y N =2k 12+3k 22,当k 1k 2≠0时,直线MN 的斜率k =y M -y N x M -x N =10-6k 1k 2-9k 1k 2,直线MN 的方程为y -2k 22+k 21=10-6k 1k 2-9k 1k 2x --3k 1k 22+3k 21,即y =10-6k 1k 2-9k 1k 2x -23,此时直线过定点0,-23 .当k 1k 2=0时,直线MN 即为y 轴,此时亦过点0,-23.综上,直线MN 恒过定点,且坐标为0,-23.证法2:设过点P 的弦的中点坐标为x 0,y 0 ,由点差法得y 0-1x 0-1⋅y 0x 0=-23,即中点的轨迹方程为2x 2-x +3y 2-y =0,将点P 平移到原点,整体左移1个单位,下移1个单位,设平移后的MN 方程为mx +ny =1,曲线为2x +1 2-x +1 +3y +1 2-y +1 =0,2x 2+3y 2+3y mx +ny +2x mx +ny =0,3+3n y 2+2n +3m xy +2+2m x 2=0,同除以x 2,得3+3n k 2+2n +3m k +2+2m =0,∵k 1+k 2=1,∴-2n +3m 3+3n =1,-m -35n =1,∴过定点-1,-53,则平移前的MN 过定点0,-23 .例17.(2022武汉模拟)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左右顶点分别为A ,B ,过椭圆内点D 23,0 且不与x 轴重合的动直线交椭圆C 于P ,Q 两点,当直线PQ 与x 轴垂直时,PD =BD =43.(1)求椭圆C 的标准方程;(2)设直线AP ,AQ 和直线l :x =t 分别交于点M ,N ,若MD⊥ND 恒成立,求t 的值.【解析】(Ⅰ)由BD =43得a =23+43=2,故C 的方程为x 24+y 2b2=1,此时P 23,43 ,代入方程19+169b2=1,解得b 2=2,故C 的标准方程为x 24+y 22=1.(Ⅱ)解法1:设直线PQ 的方程为:x =my +23,与椭圆联立得m 2+2 y 2+4m 3y 329=0,设P x 1,y 1 ,Q x 2,y 2 ,则y 1+y 2=-4m 3m 2+2 y 1y 2=-329m 2+2,①此时直线PA 的方程为y =y 1x 1+2x +2 ,与x =t 联立,得点M t ,t +2 y 1x 1+2 ,同理,N t ,t +2 y 2x 2+2 ,由MD ⊥ND ,则k MD ⋅k ND =-1,即t +2 y 1t -23 x 1+2 ⋅t +2 y 2t -23 x 2+2=-1,∴t +2 2y 1y 2+t -23 2my 1+83 my 2+83 =0,即t +2 2y 1y 2+t -232m 2y 1y 2+8m 3y 1+y 2 +649 =0,把①代入得-32t +2 29m 2+2+t -23 2-32m 29m 2+2 -32m 29m 2+2 +649 =0,化简得-32t +2 2+t -23 2-32m 2-32m 2+64m 2+2 =0,即t +2 2-4t -23 2=0,t +2=±2t -23 ,解得t =-29或t =103.解法2:公共点A -2,0 ,右移2个单位后P O :mx +ny =1过D 83,0 ,∴83m +0n =1,m =38,C :x -2 24+y 22=1P O :mx +ny =1 ,x 2+2y 2-4x mx +ny =0,2y 2-4nxy +1-4m x 2=0,等式两边同时除以x ,2y x 2-4n y x +1-4m =0,k AP ⋅k AQ =k AM ⋅k AN =1-4m 2=-14,∵MD ⊥ND ,∴k MD ⋅k ND =-1,k DM ⋅k DN k AM ⋅k AN =-1-14=4,直线MN :x =t ,MTt -23⋅-NT t -23 MT t +2⋅-NT t +2=4,t +2 2t -23 2=4,解得t =-29或t =103.五、齐次化运算为什么不是解决圆锥曲线的常规武器通过上面分析,我们可以发现,齐次化运算比传统的设而不求运算量大大的降低,但为什么齐次化运算并不是常规武器呢?首先我们总结一下齐次化运算步骤f x ,y =0,g x ,y =0 ⇒A y x 2+B ⋅y x +C =0⇒y 1x 1+y 2x 2=-B A ,y 1x 1⋅y 2x 2=C A ⇒k 1+k 2=-B A ,k 1k 2=C A .通过上面的步骤可以看出,本方法适用于斜率的相关问题,有较大的局限性,当然,还有一个难点在于方程消元的基本思路是消未知数,而本方法是消去常数,这也是学生不适应之处.但更大的难点是如果通过审题,转化为斜率之积、之和问题.下面通过两道题来说明:例18.A ,B 分别是椭圆E :x 29+y 2=1左右顶点,P 是直线x =6的动点,PA 交E 于另一点C ,PB 交E 于另一点D .求证:直线CD 过定点.思路一:本问题没有直接的提到斜率之和(积),而且很容易入手,分别设直线PA ,PB ,与椭圆方程联立,消去x 得到关于y 的常数项为0的方程,即可解出C ,D 坐标,然后写出CD 方程.在实际运算中,C ,D 坐标,CD 过定点运算量巨大.本方法少思、多算.解答如下:证法一:设P 6,y 0,则直线AP 的方程为:y =y 0-06--3 x +3 ,即:y =y 09x +3 ,联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9,将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9,所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1.当y 20≠3时,直线CD 的方程为:y --2y 0y 02+1 =6y 0y 02+9--2y 0y 02+1 -3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04 x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1,整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32 ,所以直线CD 过定点32,0 .当y 20=3时,直线CD :x =32,直线过点32,0 .故直线CD 过定点32,0 .思路二:连接CB ,由椭圆第三定义得,k CA k CB =-19,而k CA k CB =-19, k CA =PQ AQ,k BD =k BP =PQ BQ =13,可得:k BC k BD =-13,就可以采用本方法解答.证法二:设交点C x 1,y 1 ,D x 2,y 2 ,即化为y 1x 1-3⋅y 2x 2-3=-13,设x -3=t ,得t 2+9y 2+6t =0, 故设6=mt +ny 易算.计算如下:9y t 2+n ⋅y t +m +1 =0⇒k 1k 2=m +19=-13⇒m =-4⇒-4x -3 +ny =6,可知直线CD 过定点32,0 .例19.A ,B 分别是椭圆E :x 24+y 2=1下上两顶点,过(1,0)的直线l 交于E 的C ,D ,设直线AC ,BD 的斜率为k 1,k 2,k 1=2k 2,求直线l 的方程.【分析】已知给出了k 1=2k 2,但还是没有斜率之积(和)为定值,还是要用到椭圆的第三定义,k AD k BD =-14,得到k AC k AD =-12,即可采用齐次化运算了.【简解】设交点C x 1,y 1 ,D x 2,y 2 ,即化为y 1x 1+1⋅y 2x 2+1=-12,设y +1=t ,得x 2+4t 2-8t =0, 所以设8=mx +n (y +1)=mx +nt 易算.计算如下:4-n t x 2-m ⋅t x +1=0,∴k 1k 2=14-n ,∴14-n =-12,∴n =6,又l 过(1,0),得m =2,∴直线l 的方程的方程:y =13x -13.六、为什么斜率为会是定值,从平面几何看众所周知,直径所对的圆周角为直角,其实圆相交弦的还有如下性质.如图圆中,AB 为直径,CD 与AB 交于F ,则有如下性质:tan αtan β=BF AF =PQ AQ ,tan ηtan β=-PQ AQ.引入坐标系,如图建系,设A (-a ,0),B (a ,0),F (m ,0),则k BC k BD =m +a m -a ,k AC k BD =a -m m +a ,且AB 与CD 的交点在直线x =a 2m 上.【简证】tan αtan β=sin αsin βcos αcos β=sin αsin βsin γsin η,分别在ΔACF ,ΔBCF ,由正弦定理得:sin αsin β=CF AF ,sin γsin η=BF CF ,所以tan αtan β=sin αsin β⋅cos αcos β=sin αsin β⋅sin γsin η=CF AF ⋅BF CF =BF AF,tan α=PQ AQ ,tan β=PQ BQ ,tan αtan β=BQ AQ,而tan ηtan β=-tan βtan α=-AQ BQ .那么椭圆怎么有这些性质呢?如图,圆的方程为x 2+y 2=a 2,椭圆方程为:x 2a 2+y 2b 2=1,设B x 1,y 1 ,D x 2,y 2 ,B x 1,y 1b ,D x 2,y 2b ,则k A Dk C B=k AD k CB ,k B A k B C=-b 2a 2,更具一般性质的椭圆的内接四边形性质如如下:在椭圆中,O 为椭圆的中心,A ,C 是椭圆上两点且关于O 对称,直线A C 上一点M ,过M 的直线交椭圆于B ,D ,则如果M 为定点,则k A D k B C为定值,反之亦成立.例20.A,B分别是椭圆E:x29+y2=1左右顶点,P是直线x=6的动点,PA交E于另一点C,PB交E于另一点D.求证:直线CD 过定点.【分析】用几何法,k ACk BD=BQAQ=EBAE,得BE=32,所以过32,0.例21.A,B分别是椭圆E:x24+y2=1下上两顶点,过(1,0)的直线l交于E的C,D,设直线AC,BD的斜率为k1,k2,k1=2k2,求直线l 的方程.【分析】用几何法,k1k2=k ACk BD=AEBE,得BE=23,所以E13,0,所以直线l的方程的方程:y=13x-13.【评注】用平面几何的视角,对本问题进行证明,使代数,解析几何,平面几何三者融合.七、微专题小结齐次化运算在解析几何中的运算,只可以处理斜率之和(积)的问题,基本步骤如下:f x,y=0,g x,y=0⇒A yx2+B⋅y x+C=0⇒y1x1+y2x2=-BA,y1x1⋅y2x2=CA⇒k1+k2=-B A,k1k2=C A,重点一在于通过分析题意,明确能不能用本方法,二在于直线方程的设元技巧,三在于消元中的齐次化运算.【针对训练训练】(2022阎良区期末)1.已知抛物线C:x2=2py p>0,直线l经过抛物线C的焦点,且垂直于抛物线C的对称轴,直线l与抛物线C交于M,N两点,且MN=4.(1)求抛物线C的方程;(2)已知点P2,1,直线m:y=k x+2与抛物线C相交于不同的两点A,B,设直线PA与直线PB的斜率分别为k1和k2,求证:k1⋅k2为定值.2.已知直线l与抛物线C:y2=4x交于A,B两点.(1)若直线l的斜率为-1,且经过抛物线C的焦点,求线段AB的长;(2)若点O为坐标原点,且OA⊥OB,求证:直线l过定点.(2022滁州期末)3.已知点A在圆C:x-2,线段AB的垂直平分线与AC相交于点D.2+y2=16上,B-2,0,P0,2(1)求动点D的轨迹方程;(2)若过点Q0,-1的直线l斜率存在,且直线l与动点D的轨迹相交于M,N两点.证明:直线PM与PN的斜率之积为定值.4.已知椭圆M:x2a2+y2b2=1(a>b>0)经过点P3,12,且椭圆M的上顶点与右焦点所在直线的斜率为-33.(1)求椭圆M的方程;(2)设B、C是椭圆上异于左顶点A的两个点,若以BC为直径的圆过点A,求证:直线BC过定点.(2022醴陵市期中)5.已知椭圆C1:x2a2+y2b2=1a>b>0的左右顶点是双曲线C2:x24-y2=1的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为215 5.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.6.椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l平行于x轴时,直线l被椭圆C截得线段长为26.(1)求椭圆C的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案:1.(1)x 2=4y (2)证明见解析【分析】(1)将MN 用p 表示,得出p 的值,进而得抛物线方程;(2)联立直线与抛物线的方程,根据斜率计算公式结合韦达定理即可得结果.(1)由题意可得2p =4,得p =2,∴抛物线C :x 2=4y .(2)证明:m :y =k x +2 ,联立y =k x +2 x 2=4y,得x 2-4kx -8k =0.由Δ=16k 2+32k >0,得k >0或k <-2,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=4k ,x 1x 2=-8k ,∴k 1k 2=y 1-1x 1-2⋅y 2-1x 2-2=x 214-1x 1-2⋅x 224-1x 2-2=x 1+2 x 2+216=x 1x 2+2x 1+x 2 +416=-8k +8k +416=14.2.(1)8(2)证明见解析【分析】(1)联立直线与抛物线的方程,根据抛物线的焦点弦公式结合韦达定理即可得解;(2)直线AB 方程为:x =my +n ,由向量数量积公式结合韦达定理可得n 的值,进而可得结果.(1)抛物线为y 2=4x ,∴焦点坐标为1,0 ,直线AB 斜率为-1,则直线AB 方程为:y =-x +1,设A x 1,y 1 ,B x 2,y 2 ,由y =-x +1y 2=4x 得:x 2-6x +1=0,可得x 1+x 2=6,由抛物线定义可得AB =x 1+x 2+2,∴AB =8.(2)设直线AB 方程为:x =my +n ,设A x 1,y 1 ,B x 2,y 2 ,∵OA ⊥OB ,∴OA ⋅OB =0,∴x 1x 2+y 1y 2=0,由x =my +n y 2=4x得:y 2-4my -4n =0,∴y 1y 2=-4n ;x 1x 2=n 2;∴n 2-4n =0,解得n =0或n =4,当n=0时,直线AB过原点,不满足题意;当n=4时,直线AB过点4,0.故当OA⊥OB时,直线AB过定点4,0.3.(1)x24+y22=1;(2)-32-2.【解析】(1)由圆的方程可得:圆心C(2,0),半径r=4,|DA|=|DB|,|DB|+|DC|=|DA|+|DC|=|AC|=r=4>|BC|=22,由椭圆的定义即可求解;(2)设l:y=kx-1,M(x1,y1),N(x2,y2),联立直线与椭圆的方程,利用根与系数的关系计算x1+x2,x1x2,再计算k1k2=y1-2x1⋅y2-2x2=(kx1-2-1)x1⋅(kx2-2-1)x2即可求解.【详解】(1)由C:x-22+y2=16得,圆心C(2,0),半径r=4,∵点D在线段AB的垂直平分线上,∴|DA|=|DB|,∴|DB|+|DC|=|DA|+|DC|=|AC|=r=4>|BC|=22,由椭圆的定义可得动点D的轨迹是以B(-2,0),C(2,0)为焦点,长轴长为2a=4的椭圆.从而a=2,c=2,b2=a2-c2=2,故所求动点D的轨迹方程为x24+y22=1.(2)设l:y=kx-1,M(x1,y1),N(x2,y2)由y=kx-1x24+y22=1消去y得(2k2+1)x2-4kx-2=0,显然Δ=(-4k)2+8(2k2+1)=k2+8>0∴x1+x2=4k2k2+1,x1x2=-22k2+1.∵x1≠0,x2≠0,∴可设直线PM与PN的斜率分别为k1,k2则k1k2=y1-2x1⋅y2-2x2=(kx1-2-1)x1⋅(kx2-2-1)x2=k2x1x2-(2+1)k(x1+x2)+22+3x1x2=k2+-(2+1)k×4k2k2+1+22+3-22k2+1=k2+2k2+3+22-2=-32-2即直线PM与PN的斜率之积为定值.【点睛】方法点睛:求轨迹方程的常用方法(1)直接法:如果动点满足的几何条件本身就是一些几何量,如(距离和角)的等量关系,或几何条件简单明了易于表达,只需要把这种关系转化为x,y的等式,就能得到曲线的轨迹方程;(2)定义法:某动点的轨迹符合某一基本轨迹如直线、圆锥曲线的定义,则可根据定义设方程,求方程系数得到动点的轨迹方程;(3)几何法:若所求轨迹满足某些几何性质,如线段的垂直平分线,角平分线的性质,则可以用几何法,列出几何式,再代入点的坐标即可;(4)相关点法(代入法):若动点满足的条件不变用等式表示,但动点是随着另一动点(称之为相关点)的运动而运动,且相关点满足的条件是明显的或是可分析的,这时我们可以用动点的坐标表示相关点的坐标,根据相关点坐标所满足的方程,求得动点的轨迹方程;(5)交轨法:在求动点轨迹时,有时会出现求两个动曲线交点的轨迹问题,这类问题常常通过解方程组得出交点(含参数)的坐标,再消去参数即可求出所求轨迹的方程.4.(1)x 24+y 2=1;(2)证明见解析【分析】(1)由椭圆的定义,性质列方程,求出a ,b 的值,再得到椭圆的方程;(2)设出直线BC 方程,与椭圆联立,由题可得AB ⊥AC ,利用AB ⋅AC =0建立关系可得.【详解】(1)由已知设椭圆的上顶点的坐标为(0,b ),右焦点为(c ,0),则由已知可得-b c =-333a 2+14b 2=1a 2=b 2+c 2,解得a =2,b =1,所以椭圆方程为x 24+y 2=1;(2)可得A (-2,0),设直线BC 方程为x =my +n ,代入椭圆方程可得4+m 2 y 2+2mny +n 2-4=0,设B x 1,y 1 ,C x 2,y 2 ,则y 1+y 2=-2mn 4+m 2,y 1y 2=n 2-44+m 2,∴x 1+x 2=m y 1+y 2 +2n =8n 4+m 2,x 1x 2=my 1+n my 2+n =m 2y 1y 2+mn y 1+y 2 +n 2=4n 2-m 2 4+m 2,∵以BC 为直径的圆过点A ,∴AB ⊥AC ,即AB ⋅AC =0,∴x 1+2,y 1 ⋅x 2+2, y 2 =x 1x 2+2x 1+x 2 +4+y 1y 2=5n 2+16n +124+m 2=0,解得n =-2或n =-65,又A (-2,0),故n =-65,所以直线BC 方程为x =my -65,故直线BC 过定点-65,0 .【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为A x 1,y 1 ,B x 2,y 2 ;(2)联立直线与曲线方程,得到关于x(或y)的一元二次方程;(3)写出韦达定理;(4)将所求问题或题中关系转化为x1+x2,x1x2形式;(5)代入韦达定理求解.5.(1)x24+y23=1;(2)存在,-4,0.【分析】(1)由双曲线顶点求出a,再由点到直线距离求出b作答.(2)设出直线l的方程,与双曲线方程联立,利用韦达定理及斜率坐标公式计算、推理作答.(1)双曲线C2:x24-y2=1的顶点坐标为(±2,0),渐近线方程为x±2y=0,依题意,a=2,椭圆上顶点为0,b到直线x±2y=0的距离2b5=2155,解得b=3,所以椭圆的方程为x24+y23=1.(2)依题意,设直线l的方程为y=kx+m,A x1,y1、B x2,y2,点F-1,0,由x24+y23=1y=kx+m消去y并整理得3+4k2x2+8km x+4m2-12=0,则x1+x2=-8km3+4k2,x1⋅x2=4m2-123+4k2,直线FA、FB的斜率之和为y1x1+1+y2x2+1=kx1+mx1+1+kx2+mx2+1=2kx1x2+(k+m)(x1+x2)+2m(x1+1)(x2+1)=0,即2kx1x2+k+mx1+x2+2m=0,有2k⋅4m2-123+4k2+k+m-8km3+4k2+2m=0,整理得m=4k,此时Δ=64k2m2-16(4k2+3)(m2-3)=48(4k2+3-m2)=144(1-4k2),k≠0,否则m=0,直线l 过F点,因此当Δ>0且k≠0,即-12<k<12且k≠0时,直线l与椭圆C1交于两点,直线l:y=k(x+4),所以符合条件的动直线l过定点(-4,0).6.(Ⅰ)x28+y24=1;(Ⅱ)存在定点Q(0,4)满足题意.【详解】试题分析:(1)由椭圆C的离心率是22,直线l被椭圆C截得的线段长为26列方程组求出b 2=4,a 2=8,从而可得椭圆C 的标准方程;(2)设直线l 方程为y =kx +1,由x 2+2y 2=8y =kx +1 得2k 2+1 x 2+4kx -6=0,Δ=16k 2+242k 2+1 >0,根据韦达定理及斜率公式可得k QA +k QB =2k+1-t-4k -6=2k 4-t 3,令4-t =0,可得t =4符合题意.试题解析:(1)∵e =22,e 2=c 2a2=12,∴a 2=2c 2=b 2+c 2,b =c ·a 2=2b 2,椭圆方程化为:x 22b 2+y 2b2=1,由题意知,椭圆过点6,1 ,∴62b 2+1b 2=1,解得b 2=4,a 2=8,所以椭圆C 的方程为:x 28+y 24=1;(2)当直线l 斜率存在时,设直线l 方程:y =kx +1,由x 2+2y 2=8y =kx +1得2k 2+1 x 2+4kx -6=0,Δ=16k 2+242k 2+1 >0,设A x 1,y 1 ,B x 2,y 2 ,x 1+x 2=-4k 2k 2+1x 1x 2=-62k 2+1,假设存在定点Q 0,t (t 不为2)符合题意,∵∠PQA =∠PQB ,∴k QA =-k QB ,∴k QA +k QB =y 1-t x 1+y 2-t x 2=x 2y 1+x 1y 2-t x 1+x 2 x 1x 2=x 2kx 1+1 +x 1kx 2+1 -t x 1+x 2 x 1x 2=2kx 1x 2+1-t x 1+x 2 x 1x 2=2k +1-t -4k -6=2k 4-t 3=0,∵上式对任意实数k 恒等于零,∴4-t =0,即t =4,∴Q 0,4 ,当直线l 斜率不存在时,A ,B 两点分别为椭圆的上下顶点0,-2 ,0,2 ,显然此时∠PQA =∠PQB ,综上,存在定点Q 0,4 满足题意.。
齐次化妙解圆锥曲线(学生版)
齐次化妙解圆锥曲线题型1定点在原点的斜率问题题型2定点在原点转化成斜率问题题型3定点不在原点之齐次化基础运用题型4定点不在原点的斜率问题题型5定点不在原点转化为斜率问题题型6定点不在原点之二级结论第三定义的使用题型7齐次化妙解之等角问题题型8点乘双根法的基础运用题型9点乘双根法在解答题中的运用题型1定点在原点的斜率问题圆锥曲线的定义、定值、弦长、面积,很多都可以转化为斜率问题,当圆锥曲线遇到斜率之和或者斜率之积,以往我们的常用解法是设直线y=kx+b,与圆锥曲线方程联立方程组,韦达定理,再将斜率之和或之积的式子通分后,将x1+x2和x1⋅x2代入,得到关于k、b的式子.解法不难,计算量较为复杂.如果采用齐次化解决,直接得到关于k的方程,会使题目计算量大大减少.“齐次”即次数相等的意思,例如f x =ax2+bxy+cy2称为二次齐式,即二次齐次式的意思,因为f x 中每一项都是关于x、y的二次项.如果公共点在原点,不需要平移.1直线mx+ny=1与抛物线y2=4x交于A x1 , y1,求k OA+k OB , k OA⋅k OB.(用m , n表 , B x2 , y2示)1直线mx+ny=1与椭圆x24+y23=1交于A x1 , y1 , B x2 , y2,求k OA⋅k OB(用m , n表示).2抛物线y2=4x,直线l交抛物线于A、B两点,且OA⊥OB,求证:直线l过定点.3不过原点的动直线交椭圆x24+y23=1于A、B两点,直线OA、AB、OB的斜率成等比数列,求证:直线l的斜率为定值.4已知直线y=kx+4交椭圆x24+y2=1于A,B两点,O为坐标原点,若k OA+k OB=2,求该直线方程.5设Q1,Q2为椭圆x22b2+y2b2=1上两个动点,且OQ1⊥OQ2,过原点O作直线Q1Q2的垂线OD,求D的轨迹方程.题型2定点在原点转化成斜率问题圆锥曲线齐次化原理是:过程中为了式子整齐好记,所以将它齐次化。
「高中数学技巧提升篇」圆锥曲线中点乘双根法具体步骤及典型例题
「高中数学技巧提升篇」圆锥曲线中点乘双根法具体步骤及典
型例题
圆锥曲线的题目计算量很大,你是知道的,所以在原方法的基础上,给出另外的计算方式
给你的解题思路多一点灵感
一道例题的解法,利用圆锥曲线点乘双根法解的!
另外,在洪老师的高中高考提分资料库中,我们的数学老师针对高一到高三数学汇总了63个常用常见的考点的额解题方法资料。
如有需要高一到高三常用常考解题方法大全可以发送私信063。
:点此进入洪老师的高考必备资料,底下有个“666”按钮,点进去有相关提示哦
高一到高三解题方法大全目录
下面是我们先来熟悉一下点乘双根法的具体步骤:
例题和两个解法。
2020年高考数学圆锥曲线齐次式与点乘双根法
一,圆锥曲线齐次式与斜率之积(和)为定值例1:12,Q Q 为椭圆222212x y b b+=上两个动点,且12OQ OQ ⊥,过原点O 作直线12Q Q 的垂线OD ,求D 的轨迹方程.解法一(常规方法):设111222(,),(,)Q x y Q x y ,00(,)D x y ,设直线12Q Q 方程为y kx m =+,联立222212y kx mx y b b=+⎧⎪⎨+=⎪⎩化简可得: 22222222(2)42()0b k b x kmb x b m b +++-=,所以222222212122222222()(2),22b m b b m b k x x y y b k b b k b +-==++因为12OQ OQ ⊥所以2222222222221212222222222()(2)2()2=0222121b m b b m b k m b m b k x x y y b k b b k b k k +---+=+=+++++22232(1)m b k ∴=+*L又因为直线12Q Q 方程等价于为0000()x y y x x y -=--,即200000x x y x y y y =-++对比于y kx m =+,则00200x k y x y my ⎧-=⎪⎪⎨⎪+=⎪⎩代入*中,化简可得:2220023x y b +=.解法二(齐次式):设直线12Q Q 方程为1mx ny +=,联立222222221111022mx ny mx ny x y x y b b b b+=+=⎧⎧⎪⎪⇒⎨⎨+=+-=⎪⎪⎩⎩ 22222()02x y mx ny b b +-+=化简可得:22222222202x y m x n y mnxy b b+---= 整理成关于,x y ,x y 的齐次式:2222222(22)(12)40b n y m b x mnb xy -+--=,进而两边同时除以2x ,则22222222122212(22)412022m b b n k mnb k m b k k b n---+-=⇒=- 因为12OQ OQ ⊥12OQ OQ ⊥所以121k k =-,222212122m b b n -=-- 22232()b m n ∴=+*L又因为直线12Q Q 方程等价于为0000()x y y x x y -=--,即200000x x y x y y y =-++对比于1mx ny +=,则0220002200x mx y y n x y ⎧=⎪+⎪⎨⎪=⎪+⎩代入*中,化简可得:2220023x y b +=. 例2:已知椭圆2214x y +=,设直线l 不经过点(0,1)P 的直线交于,A B 两点,若直线,PA PB 的斜率之和为1-,证明:直线l 恒过定点.解:以点P 为坐标原点,建立新的直角坐标系''x py ,如图所示:旧坐标 新坐标(,)(',')x y x y ⇒即(0,1)(0,0)⇒所以'''1'x x A A y y B B =→⎧⎧⇒⎨⎨=-→⎩⎩原来12121111PA PB y y k k x x --+=-⇒+=-则转换到新坐标就成为:1212''1''y y x x +=- 12''1k k +=-即设直线l 方程为:''1mx ny +=原方程:2244x y +=则转换到新坐标就成为:22'4('1)4x y ++=展开得:22'4'8'0x y y ++=构造齐次式:22'4'8'('')0x y y mx ny +++=整理为:22(48)'8'''0n y mx y x +++=两边同时除以2'x ,则2(48)'8'10n k mk +++=所以128''148m k k n +=-=-+所以12212m n m n -=⇒=+而''1mx ny +=1'()''1('')1022x n x ny n x y ∴++=⇒++-=对于任意n 都成立. 则:''0'2''2102x y x x y +=⎧=⎧⎪⇒⎨⎨=--=⎩⎪⎩,故对应原坐标为21x y =⎧⎨=-⎩所以恒过定点(2,1)-.例3:已知椭圆22182x y +=,过其上一定点(2,1)P 作倾斜角互补的两条直线,分别交于椭圆于,A B 两点,证明:直线AB 斜率为定值.解:以点P 为坐标原点,建立新的直角坐标系''x py ,如图所示:旧坐标 新坐标(,)(',')x y x y ⇒即(2,1)(0,0)⇒所以'2''1'x x A A y y B B =-→⎧⎧⇒⎨⎨=-→⎩⎩ 原来1212110021PA PB y y k k x x --+=⇒+=--则转换到新坐标就成为:1212''0''y y x x += 12''0k k +=即设直线AB 方程为:''1mx ny +=原方程:2248x y +=则转换到新坐标就成为:22('2)4('1)8x y +++=展开得:22'4'4'8'0x y x y +++=构造齐次式:22'4'4'('')8'('')0x y x mx ny y mx ny +++++=整理为:22'(48)''(48)(14)'0y n x y n m m x +++++=两边同时除以2'x ,则2(48)'(48)'140n k n m k m +++++=所以1248''048n mk k n++=-=+所以2n m =-而''1mx ny +='(2)'1210mx m y mx my ∴+-=⇒--=.所以1=2k 平移变换,斜率不变,所以直线AB 斜率为定值12.二,点乘双根法例4:设椭圆中心在原点O ,长轴在x 轴上,上顶点为A ,左右顶点分别为12,F F ,线段12,OF OF 中点分别为12,B B ,且12AB B △是面积为4的直角三角形.(1)求其椭圆的方程(2)过1B 作直线l 交椭圆于,P Q 两点,使22PB QB ⊥,求直线l 的方程.解:(1)221204x y +=(2)易知:直线l 不与轴垂直,则设直线l 方程为:(2)y k x =+,1122(,),(,)P x y Q x y因为22PB QB ⊥,则22=0PB QB u u u u r u u u u r g, 所以211221212(2,)(2,)0(2)(2)(2)(2)0x y x y x x k x x --=⇒--+++=*L现联立22222(2)5(2)2001204y k x x k x x y =+⎧⎪⇒++-=⎨+=⎪⎩则方程2225(2)200x k x ++-=可以等价转化212(15)()()0k x x x x +--=即2222125(2)20(15)()()x k x k x x x x ++-=+--令2x =,22212122801648020(15)(2)(2)(2)(2)15k k k x x x x k -+-=+--⇒--=+令2x =-,212122164020(15)(2)(2)(2)(2)15k x x x x k -+-=+++⇒++=+结合21212(2)(2)(2)(2)0x x k x x --+++=*L 化简可得:22280161601515k k k --+=++2222118016160641642k k k k k --=⇒=⇒=∴=±所以直线l 方程为:1(2)2y x =±+.。
高考数学 解题方法攻略 圆锥曲线2 理
特级教师高考理数圆锥曲线题型全方位归纳总结第一、知识储备: 1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈②点到直线的距离d ③夹角公式:2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:2AB x =-= 或2AB y =- (4)两条直线的位置关系①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且 2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:221(0,0)x y m n m n m n+=>>≠且2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅<距离式方程:||2a = (3)、三种圆锥曲线的通径你记得吗?22222b b p a a椭圆:;双曲线:;抛物线:(4)、圆锥曲线的定义你记清楚了吗?如:已知21F F 、是椭圆13422=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则动点M 的轨迹是( )A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线 (5)、焦点三角形面积公式:122tan2F PF P b θ∆=在椭圆上时,S 122cot2F PF P b θ∆=在双曲线上时,S(其中2221212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠==•=⋅u u ur u u u u r u u u r u u u u r )(6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一,圆锥曲线齐次式与斜率之积(和)为定值
例1:12,Q Q 为椭圆22
2212x y b b
+=上两个动点,且12OQ OQ ⊥,过原点O 作直线12Q Q 的垂
线OD ,求D 的轨迹方程.
解法一(常规方法):设111222(,),(,)Q x y Q x y ,00(,)D x y ,设直线12Q Q 方程为y kx m =+,
联立22
221
2y kx m
x y b
b =+⎧⎪⎨+=⎪⎩化简可得: 22222222(2)42()0b k b x kmb x b m b +++-=,所以 22222221212222222
2()(2)
,22b m b b m b k x x y y b k b b k b
+-==++ 因为12OQ OQ ⊥所以
222222222222
121222222222
2()(2)2()2=0222121
b m b b m b k m b m b k x x y y b k b b k b k k +---+=+=+++++ 22232(1)
m b k ∴=+*
又因为直线12Q Q 方程等价于为0
000()x y y x x y -=--,即200000
x x y x y y y =-++
对比于
y kx m =+,则00200
x k y x y m
y ⎧-=⎪⎪⎨⎪+=⎪⎩代入*中,化简可得:22
20023x y b +=.
解法二(齐次式):
设直线12Q Q 方程为1mx ny +=,联立222
2
222211
11022mx ny mx ny x y x y b b b b
+=+=⎧⎧⎪⎪⇒⎨⎨+=+-=⎪⎪⎩⎩ 222
22()02x y mx ny b b +-+=化简可得:22222222202x y m x n y mnxy b b
+---= 整理成关于,x y ,x y 的齐次式:2222222(22)(12)40b n y m b x mnb xy -+--=,进而两边同时除以2
x ,则
222
2
2
2
22
1222
12(22)412022m b b n k mnb k m b k k b n
---+-=⇒=- 因为12OQ OQ ⊥12OQ OQ ⊥所以121k k =-,22
22
12122m b b n
-=-- 22232()
b m n ∴=+*
又因为直线12Q Q 方程等价于为0
000()x y y x x y -=--,即200000x x y x y y y =-++对比于
1mx ny +=,则0
2200022
00
x m x y y n x y ⎧=⎪+⎪⎨⎪=⎪+⎩代入*中,化简可得:22
20023x y b +=.
例2:已知椭圆2
214
x y +=,设直线l 不经过点(0,1)P 的直线交于,A B 两点,若直线,PA PB
的斜率之和为1-,证明:直线l 恒过定点.
解:以点P 为坐标原点,建立新的直角坐标系''x py ,如图所示:
旧坐标 新坐标
(,)(',')x y x y ⇒
即(0,1)(0,0)⇒
所以''
'1'x x A A y y B B =→⎧⎧⇒⎨
⎨
=-→⎩⎩
原来12121111PA PB y y k k x x --+=-⇒
+=-则转换到新坐标就成为:1212''
1''
y y x x +=- 12''1k k +=-即
设直线l 方程为:''1mx ny +=
原方程:2244x y +=则转换到新坐标就成为:22'4('1)4x y ++=
展开得:22'4'8'0x y y ++=
构造齐次式:22'4'8'('')0x y y mx ny +++=
整理为:22(48)'8'''0n y mx y x +++=
两边同时除以2
'x ,则2(48)'8'10n k mk +++=
所以128''148m k k n +=-
=-+所以1
2212
m n m n -=⇒=+
而''1mx ny +=1
'
()''1('')102
2
x n x ny n x y ∴++=⇒++
-=对于任意n 都成立. 则:''0
'2''2102
x y x x y +=⎧=⎧⎪
⇒⎨⎨=--=⎩⎪⎩,故对应原坐标为21x y =⎧⎨=-⎩所以恒过定点(2,1)-. 例3:已知椭圆22
182
x y +=,过其上一定点(2,1)P 作倾斜角互补的两条直线,分别交于椭圆于,A B 两点,证明:直线AB 斜率为定值.
解:以点P 为坐标原点,建立新的直角坐标系''x py ,如图所示:
旧坐标 新坐标
(,)(',')x y x y ⇒
即(2,1)(0,0)⇒
所以'2''1'x x A A y y B B =-→⎧⎧⇒⎨⎨
=-→⎩⎩
原来1212110021PA PB y y k k x x --+=⇒
+=--则转换到新坐标就成为:1212''
0''
y y x x += 12''0k k +=即
设直线AB 方程为:''1mx ny +=
原方程:2248x y +=则转换到新坐标就成为:22('2)4('1)8x y +++=
展开得:22'4'4'8'0x y x y +++=
构造齐次式:22'4'4'('')8'('')0x y x mx ny y mx ny +++++=
整理为:22'(48)''(48)(14)'0y n x y n m m x +++++=
两边同时除以2
'x ,则2(48)'(48)'140n k n m k m +++++=
所以1248''048n m
k k n
++=-
=+所以2n m =-
而''1mx ny +='(2)'1210mx m y mx my ∴+-=⇒--=.所以1=
2
k 平移变换,斜率不变,所以直线AB 斜率为定值12
.
二,点乘双根法
例4:设椭圆中心在原点O ,长轴在x 轴上,上顶点为A ,左右顶点分别为12,F F ,线段
12,OF OF 中点分别为12,B B ,且12AB B △是面积为4的直角三角形.
(1)求其椭圆的方程
(2)过1B 作直线l 交椭圆于,P Q 两点,使22PB QB ⊥,求直线l 的方程.
解:(1)
22
1204x y +=
(2)易知:直线l 不与轴垂直,则设直线l 方程为:(2)y k x =+,1122(,),(,)P x y Q x y 因为22PB QB ⊥,则22=0PB QB ,
所以211221212(2,)(2,)0(2)(2)(2)(2)0
x y x y x x k x x --=⇒--+++=*
现联立22222(2)5(2)200
1204y k x x k x x y =+⎧⎪
⇒++-=⎨+
=⎪⎩
则方程2225(2)200x k x ++-=可以等价转化212(15)()()0k x x x x +--= 即2222125(2)20(15)()()
x k x k x x x x ++-=+--
令2x =,22
2
12122801648020(15)(2)(2)(2)(2)15k k k x x x x k -+-=+--⇒--=
+
令2x =-,2
12122164020(15)(2)(2)(2)(2)15k x x x x k -+-=+++⇒++=
+
结合2
1212(2)(2)(2)(2)0
x x k x x --+++=*化简可得:222
801616
01515k k k --+=++
222211
8016160641642k k k k k --=⇒=⇒=∴=±
所以直线l 方程为:1
(2)2
y x =±
+.。