数字信号处理第2章习题答案 PPT
数字信号处理 第2章.ppt
X e (ej ) FT[xr (n)] xi (n)e jn n
X o (ej ) FT[ jxi (n)] j xi (n)e jn n
第2章 时域离散信号和系统的频域分析
上面两式中,xr(n)和xi(n)都是实数序列。容易证明:Xe(ejω) 满足(2.2.20)式,具有共轭对称性,它的实部是偶函数, 虚部是奇函数;Xo(ejω) 满足(2.2.21)式,具有共轭反对 称性质,它的实部是奇函数,虚部是偶函数。
(2.2.1)
第2章 时域离散信号和系统的频域分析
FT为Fourier Transform的缩写。FT[x(n)]存在的充 分必要条件是序列x(n)满足绝对可和的条件,即满足下式:
| x(n) |
n
(2.2.2)
X(ejω)的傅里叶反变换为
x(n) IFT[X (ej )] 1 π X (ej )d (2.2.3) 2π π
n0 n0
n0
第2章 时域离散信号和系统的频域分析
第2章 时域离散信号和系统的频域分析
【例2.2.1】 设x(n)=RN(n),求x(n)的傅里叶变换。
解
N 1
x(e j )
RN (n)e jn e j
n
n0
1 e jN e jN / 2 (e jN / 2 e jN / 2 ) 1 e j e j / 2 (e j / 2 e j / 2 )
X o (ej )
1 [ X (ej ) 2
X *(e j )]
(2.2.23)
有了上面的概念和结论,下面研究FT
第2章 时域离散信号和系统的频域分析
(1) 将序列x(n)分成实部xr(n)与虚部xi(n),即 x(n)=xr(n)+jxi(n)
数字信号处理第2章习题解答
e
n 0
e
j ( 0 )
n
1 1 e e j (0 )
当 e 1 0
2-9 求 x(n) R5 (n) 的傅里叶变换 解:X (e j )
5 j 2
n
j
x ( n )e j n e j n
1 1 1 z 2
1 1 1 2 1 z z 2 4 1
1 1 1 2 X ( z) 1 z z 2 4 n 1 n z 2 n 0
1 x(n ) u(n ) 2
n
1 1 1 z 2 1 1 z 2 1 1 1 2 z z 2 4 1 2 z 4
解:
1 由x1 ( n ) u( n ) 2
1 z 2
n
1 得 X 1 ( z ) ZT [ x1 ( n )] 1 1 1 z 2 n 1 由x2 ( n ) u( n ) 3 1 得 X 2 ( z ) ZT [ x2 ( n )] 1 1 1 z 3
1 z 3
z3 z 3z 5 1 1 1 1 1 z 1 z z 3 z 2 3 2
1 z 3 2
j x ( n ) X ( e ): 2-7 求以下序列 的频谱
(1) (n n0 )
X ( e j )
n j n ( n n ) e 0
0
1/ 4 Re[ z ]
当 n 1 时, F ( z )在围线c内有一 (n 1)阶极点 z 0 在围线c外有单阶极点 z 1/ 4, 且分母阶次高于分子阶次二阶以上
《数字信号处理》(2-7章)习题解答
第二章习题解答1、求下列序列的z 变换()X z ,并标明收敛域,绘出()X z 的零极点图。
(1) 1()()2nu n (2) 1()()4nu n - (3) (0.5)(1)nu n --- (4) (1)n δ+(5) 1()[()(10)]2nu n u n -- (6) ,01na a <<解:(1) 00.5()0.50.5nn n n zZ u n z z ∞-=⎡⎤==⎣⎦-∑,收敛域为0.5z >,零极点图如题1解图(1)。
(2) ()()014()1414n nn n z Z u n z z ∞-=⎡⎤-=-=⎣⎦+∑,收敛域为14z >,零极点图如题1解图(2)。
(3) ()1(0.5)(1)0.50.5nnn n zZ u n z z --=-∞-⎡⎤---=-=⎣⎦+∑,收敛域为0.5z <,零极点图如题1解图(3)。
(4) [](1Z n z δ+=,收敛域为z <∞,零极点图如题1解图(4)。
(5) 由题可知,101010910109(0.5)[()(10)](0.5)()(0.5)(10)0.50.50.50.50.50.5(0.5)n n nZ u n u n Z u n Z u n z z z z z z z z z z z --⎡⎤⎡⎤⎡⎤--=--⎣⎦⎣⎦⎣⎦⋅=-----==--收敛域为0z >,零极点图如题1解图(5)。
(6) 由于()(1)nn n a a u n a u n -=+--那么,111()(1)()()()nn n Z a Z a u n Z a u n z z z a z a z a a z a z a ----⎡⎤⎡⎤⎡⎤=---⎣⎦⎣⎦⎣⎦=----=-- 收敛域为1a z a <<,零极点图如题1解图(6)。
(1) (2) (3)(4) (5) (6)题1解图2、求下列)(z X 的反变换。
数字信号处理答案2和3章(DOC)
合工大《数字信号处理》习题答案第2章习 题2.1)1()()1()2(2)4()(-+++-+++=n n n n n n x δδδδδ)6(2)4(5.0)3(4)2(2-+-+-+-+n n n n δδδδ2.3 (1)31420=ωπ,所以周期为14。
(2)πωπ1620=,是无理数,所以)(n x 是非周期的。
2.4 设系统分别用下面的差分方程描述,)(n x 与)(n y 分别表示系统输入和输出,判断系统是否是线性非时变的。
(1))()(0n n x n y -=(2))()(2n x n y =(3))sin()()(n n x n y ω=(4))()(n x e n y =2.4 (1)由于)()]([0n n x n x T -=)()()]([0m n y n m n x m n x T -=--=-所以是时不变系统。
)()()()()]()([21020121n by n ay n n bx n n ax n bx n ax T +=-+-=+所以是线性系统。
(2))()()]([2m n y m n x m n x T -=-=-,所以是时不变系统。
)()()]()([)]()([2122121n by n ay n bx n ax n bx n ax T +≠+=+,所以是非线性系统。
(3))()sin()()]([m n y n m n x m n x T -≠-=-ω,所以不是时不变系统。
)()()sin()]()([)]()([212121n by n ay n n bx n ax n bx n ax T +=+=+ω,所以是线性系统。
(4))()()]()([21)()()]()([212121n by n ay e e en bx n ax T n bx n ax n bx n ax +≠==++,所以是非线性系统。
)()]([)(m n y e m n x T m n x -==--,所以是时不变系统。
数字信号处理 第二章习题
1 为因果序列,故收敛域为: z 2
8
(2) (n n0 ) n0 0
解:
X ( z)
n
x(n) z n
n
(n n0 ) z n
X ( z) z
n0
1 n n0 (n n0 ) 0 other
1 n0 z
z 0.5 左边序列 0.5 z 2 双边序列 右边序列 z 2
16
采用围线积分法求解:
3 2 X ( z) 1 1 0.5 z 1 2 z 1 3(1 2 z 1 ) 2(1 0.5 z 1 ) 5 7 z 1 1 1 (1 0.5 z )(1 2 z ) (1 0.5 z 1 )(1 2 z 1 )
z1 1, z2 2
X(z)的收敛域为
左边序列 z 1 1 z 2 双边序列 z 2 右边序列
24
F ( z) X ( z) z
n 1
z ( z 3) ( z 3) n 1 z zn ( z 1)( z 2) ( z 1)( z 2)
z 2
21
当收敛域为: z 2 0.5
1 n n 1 x(n) 3( ) u (n) 2 u (n 1) 2
22
收敛域为: z 2
右边序列
n 0 ,围线c内有2个1阶极点
x(n) Re s[( z 0.5) F ( z), 0.5] Re s[( z 2) F ( z), 2] ( z 0.5) 5z 7 zn ( z 0.5)( z 2) ( z 2)
双边序列
n 0 ,围线c内有1个1阶极点
数字信号处理高西全课后答案ppt
详细描述
线性时不变系统是指系统的输入和输出之间存在线性关系,并且系统的特性不随时间变化而变化。这种系统的行为可以用线性常系数微分方程来描述,同时它的输出不依赖于输入的时间函数,只依赖于输入的初始状态。
线性时不变系统
VS
频域分析可以揭示信号的频率成分和频率域中的每个成分与原始信号之间的关系。通过在频域中对信号进行分析和处理,可以实现信号的滤波、去噪、压缩和恢复等功能。
频域分析在信号处理、图像处理、通信系统等领域得到广泛应用。例如,在图像处理中,频域分析可以用于图像滤波、边缘检测等任务;在通信系统中,频域分析可用于调制解调、频谱分析等。
详细描述
04
第四章 傅里叶变换与频域分析
傅里叶变换的定义
傅里叶变换是一种将时间域信号转换到频域的方法,通过将信号分解成一系列不同频率的正弦和余弦函数的线性组合。
傅里叶变换的性质
傅里叶变换具有一些重要性质,包括线性、对称性、可逆性、Parseval等式等。这变换的定义与性质
离散时间信号
定义
如果信号仅在离散时间点上有定义,则该信号称为离散时间信号。
例子
数字音频、图像数据等。
数学表示方法
通常使用序列形式来表示,例如y[n] = sin(n)。
01
03
02
连续时间信号的数学表示方法
离散时间信号的数学表示方法
其他表示方法
信号的数学表示方法
03
第三章 系统分析基础
总结词
快速傅里叶变换(FFT)算法的基本思想
根据算法实现方式的不同,可以分为按时间抽取(DIT)和按频率抽取(DFT)两种FFT算法。
数字信号处理课后答案课件
傅里叶变换的性质
线性性质
若离散信号x(n)和y(n)的 傅里叶变换分别为 X(e^jωn)和Y(e^jωn), 则对于任意实数a和b,有 aX(e^jωn) + bY(e^jωn) 的傅里叶变换等于 aX(e^jωn)和bY(e^jωn) 的傅里叶变换之和。
从而实现信号的分离、抑制或提 取。
滤波器分类
根据不同的特性,滤波器可分为 低通、高通、带通和带阻滤波器,
每种滤波器都有各自的应用场景 和特点。
滤波器原理
滤波器的原理是基于频率响应, 即不同频率的信号经过滤波器后, 其幅度和相位会发生不同的变化。
IIR滤波器设计
IIR滤波器概述
IIR滤波器设计方法
IIR滤波器稳定性
在设计IIR滤波器时,需要考虑其稳定 性。如果系统函数的极点位于单位圆 外,则系统不稳定,可能会导致无穷 大的输出。因此,在设计过程中需要 进行稳定性分析。
FIR滤波器设计
FIR滤波器概述
FIR(Finite Impulse Response)滤 波器是一种具有有限冲击响应的数字 滤波器,其系统函数可以表示为有限 项之和。
插值法
对于非周期性的连续时间信号,可以通过插值法得到离散时间信号。常用的插值方法包括 线性插值、多项式插值、样条插值等。
傅里叶变换法
对于任何连续时间信号,可以通过傅里叶变换将其转换为频域表示形式,然后对频域表示 形式进行采样,得到离散时间信号。再通过逆傅里叶变换将其转换回时域表示形式。
05 第五章 信号的分 析与合成
抽样定理的充分性
对于任何连续时间信号,如果其最高频率分量小于等于fmax,则可 以通过其抽样信号无失真地重建出原信号。
数字信号处理(第三版)第2章习题答案
第2章 时域离散信号和系统的频域分析
2.3
求信号与系统的频域特性要用傅里叶变换。 但分析频 率特性使用Z变换却更方便。 我们已经知道系统函数的极、 零点分布完全决定了系统的频率特性, 因此可以用分析极、 零点分布的方法分析系统的频率特性, 包括定性地画幅频 特性, 估计峰值频率或者谷值频率, 判定滤波器是高通、 低通等滤波特性, 以及设计简单的滤波器(内容在教材第5 章)等。
X e (e j ) FT[xr (n)]
Hale Waihona Puke 1 1 ej2 1 e j2 1 (1 cos 2)
24
4
2
因为 所以
Xe
(e j
)
1 2
[X
(e j
)
X
(e j
)]
X(ejω)=0π≤ω≤2π
X(e-jω)=X(ej(2π-ω))=0 0≤ω≤π
第2章 时域离散信号和系统的频域分析
当0≤ω≤π时,
用留数定理求其逆变换, 或者将z=ejω代入X(ejω)中, 得到X(z)函数, 再用求逆Z变换的方法求原序列。 注意收 敛域要取能包含单位圆的收敛域, 或者说封闭曲线c可取 单位圆。
第2章 时域离散信号和系统的频域分析
例如, 已知序列x(n)的傅里叶变换为
X
(e
j
)
1
1 ae
j
a 1
1 求其反变换x(n)。 将z=ejω代入X(ejω)中, 得到 X (z) 1 az 1
三种变换互有联系, 但又不同。 表征一个信号和系统 的频域特性是用傅里叶变换。 Z变换是傅里叶变换的一种推 广, 单位圆上的Z变换就是傅里叶变换。
第2章 时域离散信号和系统的频域分析
数字信号处理 刘顺兰第二章完整版习题解答
即 0 不在采样点上时,
X (k )
1 e
1 e
b 当 ○
j ( 0
1 e 1 e
j 0 N 2 k) N
j ( 0
sin[(
0
2
N
k)N ] e ) N
j(
0
2 N
k )( N 1)
sin(
0
2
k
0
X (1) 2 2 j
nk N
x(n)W
n 0
N 1
k 2k 3k 1 jW N WN jW N ,
可求得 X (0) 0,
N 1 n 0
X (1) 4, X (2) 0 , N ( k ) c 1 N 1 c c 1 k cW N
(3) x( n) c , 0 n N 1
n
解: (1) X ( k )
x(n)W
n 0
3
nk 4
1 W4k W42 k W43k , k 0,1,2,3 X (2) 0, X (3) 2 2 j N 4
可求得 X (0) 0, (2) X ( k )
1 N 1 j ( k ' k ) n N 1 j N ( k k ') n X ( k ) [ e N e ] 2 n 0 n 0 N , 2 0 ,
(3) X ( k )
N 1 N 1 n 0
2
2
k k ' 及k N k ' 其它
k N
1 k N 1
即
N ( N 1) , 2 X (k ) N k , W N 1
数字信号处理答案2和3章(DOC)
数字信号处理答案2和3章(DOC)合工大《数字信号处理》习题答案第2章 习 题2.1)1()()1()2(2)4()(-+++-+++=n n n n n n x δδδδδ)6(2)4(5.0)3(4)2(2-+-+-+-+n n n n δδδδ 2.3 (1)31420=ωπ,所以周期为14。
(2)πωπ1620=,是无理数,所以)(n x 是非周期的。
2.4 设系统分别用下面的差分方程描述,)(n x 与)(n y 分别表示系统输入和输出,判断系统是否是线性非时变的。
(1))()(0n n x n y -=(2))()(2n xn y =(3))sin()()(n n x n y ω= (4))()(n x e n y =2.4 (1)由于)()]([0n n x n x T -=)()()]([0m n y n m n x m n x T -=--=-所以是时不变系统。
)()()()()]()([21020121n by n ay n n bx n n ax n bx n ax T +=-+-=+所以是线性系统。
(2))()()]([2m n y m n x m n x T -=-=-,所以是时不变系统。
)()()]()([)]()([2122121n by n ay n bx n ax n bx n ax T +≠+=+,所以是非线性系统。
(3))()sin()()]([m n y n m n x m n x T -≠-=-ω,所以不是时不变系统。
)()()sin()]()([)]()([212121n by n ay n n bx n ax n bx n ax T +=+=+ω,所以是线性系统。
(4))()()]()([21)()()]()([212121n by n ay e e en bx n ax T n bx n ax n bx n ax +≠==++,所以是非线性系统。
数字信号处理第二章 ppt课件
分析信号在频率分布上的特性 和运算:这给了我们换个视角 观察信号的机会,我们会发现 许多在时间域上得不到的特性 和运算。
返回
2.2 时域离散信号的傅里叶变换
2.2.1 时域离散信号的傅里叶变换的定义 2.2.2 周期信号的离散傅里叶级数 2.2.3 周期信号的傅里叶变换 2.2.4 时域离散信号傅里叶变换的性质
X ~(k)N 1~ x(n)ej2 N k n k n0
上式的求和号中的每一项都是复指数序列,其中第K项
即为第K次谐波
1 X~(k)ej2Nkn Nr
的傅里叶变换根据
其周期性能够表示为:
F[1 T X ~ (k )ej2 N k]n 2X ~ (k )( 2k 2r)
N
N r N
换。
解: 将 x ( n ) 用欧拉公式展开为
x(n)1(ej0n ej0n)
2
由
FT[ej0n] 2(02r)
r
得余弦序列的傅里叶变换为
X(ej)FT[cos0n]
1 22r [(02r)(02r)]
[(02r) (02r)]
r
;
返回
回到本节
上式表明,余弦信号的傅里叶变换是在 0处的冲激函 数,强度为 ,同时以2 为周期进行周期性延拓,如下图
;
返回
回到本节
2.2.1 时域离散信号的傅里叶变换的定义
定义
X(ej) x(n)ejn
(2.2.1)
n
为时域离散信号x(n)的傅里叶变换,简称FT(Fourier
Transform)。上式成立的条件是序列绝对可和,或者
说序列的能量有限,即满足下面的公式:
x(n)zn
n
对于不满足上式的信号,可以引入奇异函数,使之能够
数字信号处理chapter272页PPT
2
2.1 Fourier Transform
Signal Analysis and Processing (1)Time Domain Analysis: t-A (2)Frequency Domain Analysis: f-A
Fourier Transform
x t in time-domain x xt sin n2 2 5 f0 0t t2randn
2020/4/17
7
4) Conclusion
(1)Sampling in time domain brings periodicity in frequency domain.
(2)Sampling in frequency domain brings periodicity in time domain.
Q3: HOW to DFT?
HOW to realize DFT? How to use DFT to solve the practical problems?
2020/4/17
1
Basic contents of this chapter
2.1 Review of Fourier Transform 2.2 Discrete Fourier Series 2.3 Discrete Fourier Transform 2.4 Relationship between DFT, z-Transform and sequence’s
Three Questions about Discrete Fourier Transform
Q1: WHAT is DFT?
WHAT is relationship between DFT and other kinds of Fourier Transform?
《数字信号处理原理及实现》第2章讲课提纲及习题答案
n
x(n)
第2章
时域离散信号和系统的频域分析
(2) 若y(n)=x(n)*h(n), 则
Y (e
j
) X (e
j
) H (e
j
)
这是时域卷积定理。
第2章
时域离散信号和系统的频域分析
(3) 若y(n)=x(n)h(n), 则
Y (e
j
)
1 2π
H (e
j
) X (e
n x(n) 2 N n 0
求x(n)的Z变换。
第2章
时域离散信号和系统的频域分析
解: 题中x(n)是一个三角序列, 可以看做两个相同的矩
形序列的卷积。 设y(n)=RN(n)*RN(n), 则
0 0≤n≤N-1 n 1 y (n) R N (n) R N (n) N≤n≤2N-1 2 N ( n 1) 2N≤n 0
)
e
j2
1 4
e
j2
1 2
(1 cos 2 )
1 2
[ X (e
j
) X (e
j
)]
因为 所以
X(ejω)=0π≤ω≤2π
X(e-jω)=X(ej(2π-ω))=0
0≤ω≤π
第2章
时域离散信号和系统的频域分析
X e (e
j
当0≤ω≤π时,
j
)
1 2
X ( e, )
j
故
(1 cos 2 )
X e (e
)
1 2
X (e
j
)
1 2
X (e
j
数字信号处理习题答案国家.ppt
并分别用图表示。
解:
xe (n)
1 2
(R4 (n)
R4 (n))
xo
(n)
1 2
(R4
(n)
R4
(n))
181h,
第2章 时域离散信号和系统的频域分析
xe(n)和xo(n)的波形如题8解图所示。
题8解图
181h,
第2章 时域离散信号和系统的频域分析
13. 已知xa(t)=2 cos(2πf0t), 式中f0=100 Hz, 以采样频率fs=400 Hz对xa(t)进行
=y′(n)
故该系统是非时变系统
181h,
第1章 时域离散信号与时域离散系统
因为
y(n)=T[ax1(n)+bx2(n)
=ax1(n)+bx2(n)+2[ax1(n-1)+bx2(n-1)]+3[ax1(n-2)+bx2(n-2)]
a T[x1(n)]=ax1(n)+2ax1(n-1)+3ax1(n-2)
解 (1)
7
X (e j0 ) x(n) 6
n3
(4) 因为傅里叶变换的实部对应序列的共轭对称部分, 即
Re[X (e j )] xe (n)ejn n
1 xe (n) 2 (x(n) x(n))
181h,
第2章 时域离散信号和系统的频域分析
按照上式画出xe(n)的波形如题5解图所示。
由于
x(n)*δ(n)=x(n) x(n)*Aδ(n-k)=Ax(n-k) 故 y(n)=x(n)*h(n)
=x(n)*[2δ(n)+δ(n-1)+ δ(n-2) =2x(n)+x(n-1)+x(n-2) 将x(n)的表示式代入上式, 得到 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(n)+2δ(n-1)+δ(n-2) +4.5δ(n-3)+2δ(n-4)+δ(n-5)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据零、 极点分布可定性画幅频特性。 当频率由0到2π 变化时, 观察零点矢量长度和极点矢量长度的变化, 在极点 附近会形成峰。 极点愈靠进单位圆, 峰值愈高; 零点附近形 成谷, 零点愈靠进单位圆, 谷值愈低, 零点在单位圆上则 形成幅频特性的零点。 当然, 峰值频率就在最靠近单位圆的 极点附近, 谷值频率就在最靠近单位圆的零点附近。
列, 常用以求序列的xe(n)和xo(n)。
(5)
X(z) x(n)zn n
x(n)1 X (z)zn 1dz 2π jc
c (R x,R x)
这两式分别是序列Z变换的正变换定义和它的逆Z变 换定义。
(6)
x(n)21 X(ej)2d
n
2π 2
n x (n)y(n)21πcX(v)Y(v1)dvv
1Байду номын сангаас
1
maRxx,R [y]vmiRnx,[Ry]
RxRy1RxRy
前两式均称为巴塞伐尔定理, 第一式是用序列的傅 里叶变换表示, 第二式是用序列的Z变换表示。 如果令 x(n)=y(n), 可用第二式推导出第一式。
(7) 若x(n)=a|n|, 则
X(z)(1a1z)1(a2az1)
a z a1
例如, 已知序列x(n)的傅里叶变换为
X(ej)1a1ej
a 1
1
求其反变换x(n)。 将z=ejω代入X(ejω)中,
得到
X(z) 1az1
因极点z=a, 取收敛域为|z|>|a|, 由X(z)很容易得到x(n)=anu(n)。
(2) ZT的逆变换为
x(n)1 X (z)zn 1 dz 2π jc
2.3
求信号与系统的频域特性要用傅里叶变换。 但分析频 率特性使用Z变换却更方便。 我们已经知道系统函数的极、 零点分布完全决定了系统的频率特性, 因此可以用分析极、 零点分布的方法分析系统的频率特性, 包括定性地画幅频 特性, 估计峰值频率或者谷值频率, 判定滤波器是高通、 低通等滤波特性, 以及设计简单的滤波器(内容在教材第5 章)等。
2.1.2 重要公式
(1)
X(ej) x(n)ejn n
x(n)21- ππX(ej)ejnd
这两式分别是傅里叶变换的正变换和逆变换的公式。 注意正变换存在的条件是序列服从绝对可和的条件, 即
x(n)
n
(2) 若y(n)=x(n)*h(n), 则
Y(ej)X(ej)H(ej)
这是时域卷积定理。
2.4 例
[例2.4.1] 已知IIR数字滤波器的系统函数
H(z)101.9z1
试判断滤波器的类型(低通、 高通、 带通、 带阻)。 (某
解: 将系统函数写成下式:
H(z)101 .9z1= zz0.9
系统的零点为z=0, 极点为z=0.9, 零点在z平面的原点, 不影响频率特性, 而惟一的极点在实轴的0.9处, 因此滤波 器的通带中心在ω=0处。 毫无疑问, 这是一个低通滤波器。
2.1.1
(1) 傅里叶变换的正变换和逆变换定义, 以及存在 条件。
(2)傅里叶变换的性质和定理: 傅里叶变换的周期性、 移位与频移性质、 时域卷积定理、 巴塞伐尔定理、 频域 卷积定理、 频域微分性质、 实序列和一般序列的傅里叶变 换的共轭对称性。
(3)Z变换的正变换和逆变换定义, 以及收敛域与序 列特性之间的关系。
x(n)=a|n|是数字信号处理中很典型的双边序列, 一 些测试题都是用它演变出来的。
2.2 FT和ZT
(1) FT的逆变换为
x(n)1 π X(ej)ejnd 2π- π
用留数定理求其逆变换, 或者将z=ejω代入X(ejω)中, 得到X(z)函数, 再用求逆Z变换的方法求原序列。 注意收 敛域要取能包含单位圆的收敛域, 或者说封闭曲线c可取 单位圆。
第2章 时域离散信号和系统的频域分析
2.1 学习要点与重要公式 2.2 FT和ZT的逆变换 2.3 分析信号和系统的频率特性 2.4 例题 2.5 习题与上机题解答
2.1
数字信号处理中有三个重要的数学变换工具, 即傅里 叶变换(FT)、 Z变换(ZT)。 利用它们可以将信号和系 统在时域空间和频域空间相互转换, 这大大方便了对信号 和系统的分析和处理。
(5) Z变换的定理和性质: 移位、 反转、 z域微分、 共轭序列的Z变换、 时域卷积定理、 初 值定理、 终值定理、 巴塞伐尔定理。
(6) 系统的传输函数和系统函数的求解。 (7) 用极点分布判断系统的因果性和稳定性。 (8) 零状态响应、 零输入响应和稳态响应的求解。 (9) 用零极点分布定性分析并画出系统的幅频特性。
两者种变换互有联系, 但又不同。 表征一个信号和系 统的频域特性是用傅里叶变换。 Z变换是傅里叶变换的一种 推广, 单位圆上的Z变换就是傅里叶变换。
在z域进行分析问题会感到既灵活又方便。 离散傅里叶 变换是离散化的傅里叶变换, 因此用计算机分析和处理信 号时, 全用离散傅里叶变换进行。 离散傅里叶变换具有快 速算法FFT, 使离散傅里叶变换在应用中更加方便与广泛。 但是离散傅里叶变换不同于傅里叶变换和Z变换, 它将信号 的时域和频域, 都进行了离散化, 这是它的优点。 但更 有它自己的特点, 只有掌握了这些特点, 才能合理正确地 使用DFT。 本章只学习前两种变换, 离散傅里叶变换及其 FFT将在下一章学习。
c (R x,R x)
求Z变换可以用部分分式法和围线积分法求解。 用围线积分法求逆Z变换有两个关键。 一个关键是知道 收敛域以及收敛域和序列特性之间的关系, 可以总结成几句 话: ① 收敛域包含∞点, 序列是因果序列; ② 收敛域在某 圆以内, 是左序列; ③ 收敛域在某圆以外, 是右序列; ④ 收敛域在整个z面, 是有限长序列; ⑤ 以上②、 ③、 ④均未 考虑0与∞两点, 这两点可以结合问题具体考虑。另一个关键 是会求极点留数。
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交
(3) 若y(n)=x(n)h(n), 则
Y(ej)1H(ej)X(ej) 2π
这是频域卷积定理或者称复卷积定理。
(4)
xe(n)12[x(n)x(n)]
xo(n)12[x(n)x(n)]
式中, xe(n)和xo(n)是序列x(n)的共轭对称序列和共轭反对称序