七段LED数码管显示电路设计(精)

合集下载

七段数码管显示控制程序设计

七段数码管显示控制程序设计
根据本次实验要求,程序流程图如图2所示:


图2 程序流程图
3.2PLC程序设计
网络1为启动程序。
网络2至网络60为定时器定时程序,定时时间1秒。如“网络3”,数码管显示2。计时器由38至63、101至134。
网络61至67为数码管显示程序。如“网络61”,对应译码管A,译码表如表3所示:
表3 译码表
(2)数据字典的建立
根据课设要求建立数据字典,具体所建数据如图4所示:
图4 数据字典
(3)通信关联
关联方式如图5所示:
图5 通信关联
4.联合调试
当PLC运行的时候,打开组态王监控界面。通过虚拟界面实现对PLC的控制,图5和图6、7分别表示当PLC 启动、停止和复位,PLC与虚拟界面状态显示图。
图5 启动画面
七段数码管显示控制程序设计
xxxx大学
课 程 设 计
(论文)
题目七段数码管显示控制程序设计(三)
班 级
学 号
学 生 姓 名
指 导 教 师
七段数码管显示控制程序设计(三)
xxxxxxx大学自动化学院
摘要:本文主要设计一个西门子S7-200系列的PLC数码管显示与上位机监控。按照设计要求利用PLC做出相应的梯形程序图,然后通过合理的硬件线路连接将PLC运行的结果在数码管上正确的显示出来。通过上位机设计组态王监控界面,对PLC控制数码管的显示进行模拟,实现对PLC的监控功能。并对PLC和组态王的应用和特点做了相关介绍。关键字:西门子s7-200;数码管显示;组态王;监控系统。
1.3组态王
组态王开发监控系统软件,是新型的工业自动控制系统,它以标准的工业计算机软、硬平台构建的集成系统取代传统的封闭式系统。组态王具有适应性强、开放性好、易于扩展、经济、开发周期短等优点。方便地构成监控画面,并以动画方式显示控制设备的状态,具有报警窗口、实时趋势曲线等,可便利的生成各种报表。它还具有丰富的设备驱动程序和灵活的组态方式、数据链接功能。

七段数码管显示

七段数码管显示

七段数码管显示设计报告目录一、设计任务二、题目分析与整体构思三、硬件电路设计四、程序设计五、心得体会一.设计任务数码的显示方式一般有三种:第一种是字型重叠式;第二种是分段式;第三种是点阵式。

目前以分段式应用最为普遍,主要器件是七段发光二极管(LED)显示器。

它可分为两种,一是共阳极显示器(发光二极管的阳极都接在一个公共点上),另一是共阴极显示器(发光二极管的阳极都接在一个公共点上,使用时公共点接地)。

数码管动态扫描显示,是将所用数码管的相同段(a~g 和p)并联在一起,通过选位通信号分时控制各个数码管的公共端,循环依次点亮各个数码管。

当切换速度足够快时,由于人眼的“视觉暂留”现象,视觉效果将是数码管同时显示。

根据七段数码管的显示原理,设计一个带复位的七段数码管循环扫描程序,本程序需要着重实现两部分:1. 显示数据的设置:程序设定4 位数码管从左至右分别显示1、2、3、4;2. 动态扫描:实现动态扫描时序。

利用EXCD-1 开发板实现七段数码管的显示设计,使用EXCD-1 开发板的数码管为四位共阴极数码管,每一位的共阴极7 段数码管由7 个发光LED 组成,7 个发光LED 的阴极连接在一起,阳极分别连接至FPGA相应引脚。

四位数码管与FPGA 之间通过8 位拨码开关(JP1)进行连接。

二.题目分析与整体构思使用EXCD-1 开发板的数码管为四位共阴极数码管,每一位的共阴极7 段数码管由7个发光LED 组成,呈“”字状,7 个发光LED 的阴极连接在一起,阳极分别连接至FPGA 相应引脚。

SEG_SEL1、SEG_SEL2、SEG_SEL3 和SEG_SEL4 为四位7 段数码管的位选择端。

当其值为“1”时,相应的7 段数码管被选通。

当输入到7 段数码管SEG_A~ SEG_G 和SEG_DP 管脚的数据为高电平时,该管脚对应的段变亮,当输入到7 段数码管SEG_A~SEG_G 和SEG_DP 管脚的数据为低电平时,该管脚对应的段变灭。

2项目 LED七段数码管的显示控制(WZ)

2项目 LED七段数码管的显示控制(WZ)

任务一 采用基本逻辑指令编程的显示控制
用于分支回路的起点。 2)OUT指令是驱动线圈的输出指令,可以用于Y、M、C、T和S继 电器,但不能用于输入继电器。
3)并行的OUT指令可以使用多次,但不能串联使用。 4)OUT指令用于计数器、定时器和功能指令线圈时,必须设定合 适的常数,常数K的设定需用一个程序步。 (2)触点串联指令(AND、ANI) AND、ANI指令格式及表示方法见 表2-3,指令的使用方法如图2-6所示。 表2⁃3 AND、ANI指令
任务一 采用基本逻辑指令编程的显示控制
(1)逻辑“与”—触点串联 两个或多个触点与线圈串联的线路, 只有当所有触点都接通时线圈才得电,这种关系在逻辑线路中称 为“与”逻辑,如图2-1所示。
K=A· B
图2-1
“与”电路
(2)逻辑“或”—触点并联 两个或多个触点并联再与线圈连接的 线路,只要有一个触点接通,线圈就得电,这种关系在逻辑线路 中称为“或”逻辑,如图2-2所示。 K=A+B
6.通电运行调试
按图2⁃17所示的系统接线图正确连接好数码管,进行系统的调 试,观察数码管能否按控制要求显示。若不能正常显示,检查电路 并修改调试程序,直至数码管能按控制要求显示为止。
图2-20
题3图
任务三 抢答器的PLC控制
任务目标
1.学习梯形图中的互锁环节。 2.学习梯形图中的“起-保-停”环节。 3.进一步掌握通用辅助继电器“M”的运用方法。 任务分析 设计一个有四个参赛组的抢答器。其控制要求为:任一组抢先 按下后,显示器能显示该组的编号并使蜂鸣器发出响声,同时锁住 抢答器,其他组抢答无效。抢答器设有复位开关,复位后可重新抢 答。
任务一 采用基本逻辑指令编程的显示控制
(3)触点并联指令(OR、ORI)

组合电路——7段数码管显示驱动电路设计报告

组合电路——7段数码管显示驱动电路设计报告

实验一、组合电路——7段数码管显示驱动电路设计一、实验目的了解EDA实验箱7位八段数码管显示模块的工作原理,设计标准扫描驱动电路模块,以备后面实验用。

二、硬件要求主芯片为Cyclone V E,型号为EP4CE22F17C8,7位八段数码管显示器,四位拨码开关。

三、实验内容用四位拨码开关产生8421BCD码,用CPLD分别产生7段数码管扫描驱动电路,然后进行仿真,观察波形,正确后编程下载实验测试。

四、实验原理1、72、动信号a,b,c,d,e,f,g。

通过调节四位拨码开关的状态,数码管应显示与之对应的字符。

五、实验连线输入:将芯片管角a0~a3分别接4个拨码开关;输出:将芯片管角led7s0~7分别接到数码管7段驱动信号a、b、c、d、e、f、g上。

六、实验源程序:decl7s.vhdlibrary ieee;use ieee.std_logic_1164.all;entity decl7s isport(a:in std_logic_vector(3 downto 0);led7s:out std_logic_vector(6 downto 0));end;architecture one of decl7s isbeginprocess(a)begincase a iswhen "0000" => led7s<="0111111"; when "0001" => led7s<="0000110"; when "0010" => led7s<="1011011"; when "0011" => led7s<="1001111"; when "0100" => led7s<="1100110"; when "0101" => led7s<="1101101"; when "0110" => led7s<="1111101"; when "0111" => led7s<="0000111"; when "1000" => led7s<="1111111"; when "1001" => led7s<="1101111"; when "1010" => led7s<="1110111"; when "1011" => led7s<="1111100"; when "1100" => led7s<="0111001"; when "1101" => led7s<="1011110"; when "1110" => led7s<="1111001"; when "1111" => led7s<="1110001"; when others => null;end case;end process;end;七、波形仿真结果。

共阴极七段数码管的驱动

共阴极七段数码管的驱动

共阴极七段数码管的驱动共阴极七段数码管是一种常见的数字显示器件,主要由7个LED 组成,可以显示数字、字母和一些符号。

驱动七段数码管需要使用控制器或者驱动芯片,本文将介绍共阴极七段数码管的驱动原理及相关电路设计。

共阴极七段数码管的工作原理是通过控制各段LED的亮灭来显示不同的数字、字母和符号。

每一段LED都有一个负极和一个正极,而共阴极数码管的负极是共用的,因此被称作共阴极。

当需要显示某个数字或字母时,控制器或驱动芯片会向相应的LED段输送电流,使其亮起,其他未被选中的LED段则不发光。

常见的七段数码管有4位和8位两种,其中4位数码管的引脚分别为A、B、C、D、E、F、G和COM,COM是共阴极的引脚。

8位数码管则多了一个点阵位DP,用于显示小数点等符号。

驱动七段数码管需要使用控制器或驱动芯片,比如常见的CD4511、74LS47等芯片。

在使用控制器或驱动芯片驱动数码管时,需要根据芯片的引脚功能连接到数码管的相应引脚。

以CD4511为例,其引脚功能如下:1. A、B、C、D:用于输入待显示数字、字母等的BCD码;2. LT、BI、RBO、BL:用于控制亮度、错误指示等;3. LE:锁存使能端,用于在输入完BCD码后锁定,防止误操作;4. a、b、c、d、e、f、g、DP:用于输出数码管各段LED的控制信号;5. VCC、GND:芯片的电源引脚。

驱动数码管时,首先需要将待显示的数字、字母等转换为BCD码,然后通过A、B、C、D等输入端输入到芯片中。

此时需要将LE引脚拉低,锁存输入的BCD码。

然后通过控制a、b、c、d、e、f、g、DP等输出端的电平,控制数码管相应的LED段亮灭,从而显示出对应的数字、字母等。

总之,共阴极七段数码管的驱动需要控制器或驱动芯片的支持,并根据芯片的引脚功能连接到数码管的相应引脚。

通过输入BCD码和控制LED段的亮灭,实现显示不同的数字、字母和一些符号。

七段数码管动态显示控制

七段数码管动态显示控制

实验二七段数码管动态显示控制一、实验目的利用AT89S52和使用两位数码管显示器,循环显示两位数00-99。

其中P2.0和P2.1端口分别控制数码管的个位和十位的供电,当相应的端口变成低电平时,驱动相应的三极管会导通,+5V通过驱动三极管给数码管相应的位供电,这时只要P3口送出数字的显示代码,数码管就能正常显示数字。

二、实验要求1、使用两位数码管显示器,循环显示两位数00-99;2、具有电源开关和指示灯,有复位键;3、数码管动态显示,即扫描方式,每一位每间隔一段时间扫描一次。

字符的亮度及清晰度与每位点亮的停留时间和每位显示的时间内轮换导通次数有关。

三、实验电路四、实验器材AT89S52;动态扫描显示;共阳极数码管;电阻五、实验原理说明图1 AT89S52引脚图图2 共阳极七段数码管引脚图1AT89S52引脚图,说明如下:按照功能,AT89S52的引脚可分为主电源、外接晶体振荡或振荡器、多功能I/O 口、控制和复位等。

1.多功能I/O口AT89S52共有四个8位的并行I/O口:P0、P1、P2、P3端口,对应的引脚分别是P0.0 ~ P0.7,P1.0 ~ P1.7,P2.0 ~ P2.7,P3.0 ~ P3.7,共32根I/O线。

每根线可以单独用作输入或输出。

①P0端口,该口是一个8位漏极开路的双向I/O口。

在作为输出口时,每根引脚可以带动8个TTL输入负载。

当把“1”写入P0时,则它的引脚可用作高阻抗输入。

当对外部程序或数据存储器进行存取时,P0可用作多路复用的低字节地址/数据总线,在该模式,P0口拥有内部上拉电阻。

在对Flash存储器进行编程时,P0用于接收代码字节;在校验时,则输出代码字节;此时需要外加上拉电阻。

②P1端口,该口是带有内部上拉电阻的8位双向I/O端口,P1口的输出缓冲器可驱动(吸收或输出电流方式)4个TTL输入。

对端口写“1”时,通过内部的上拉电阻把端口拉到高电位,此时可用作输入口。

可编程逻辑器件实验EDA-七段数码管显示电路

可编程逻辑器件实验EDA-七段数码管显示电路

实验四 七段数码管显示电路
一、实验目的
实现十六进制计数显示。

二、硬件需求
EDA/SOPC 实验箱一台。

三、实验原理
七段数码管分共阳极与共阴极两种。

共阳极数码管其工作特点是,当笔段电极接低电平,公共阳极接高电平时,相应笔段可以发光。

共阴极数码管则与之相反,它是将发光二极管的阴极短接后作为公共阴极,当驱动信号为高电平、公共阴极接低电平时,才能发光。

图2-13为共阳极数码管和共阴极数码管的内部结构图。

a b c d e f g h
a
b
c
d
e
f
g
h
a b c d e f g h
DIG
DIG
共阴极七段数码管
共阳极七段数码管
图2-13 共阳极数码管和共阴极数码管的内部结构图
用七段数码管除了可以显示0~9的阿拉伯数字外,还可以显示一些英语字母。

下表是常见的字母与7段显示关系(共阴极数码管)。

编写一个0~F 轮换显示的电路(注意:选用实验箱中的共阳数码管DP1A ,FPGA 上
P25引脚连接50MHz时钟。

实验时为了便于观察,要将50MHz时钟经过分频得到1Hz时钟)。

五、实验步骤
(1)实验程序
(2)仿真结果
为方便观察程序功能,分频改为6分频,从上图可以看出数码管输出能够连续变化,同时输出正确稳定的七位码。

(3)管脚绑定
(4)实验实际结果
从实际的上电结果可以看出,每过一秒,数码管数值增1,并发生跳变显示。

BCD七段显示译码器电路图

BCD七段显示译码器电路图

BCD七段显示译码器电路图发布:2011-08-30 | 作者: | 来源: tangyaohua | 查看:3641次| 用户关注:BCD七段显示译码器发光二极管(LED)由特殊的半导体材料砷化镓、磷砷化镓等制成,可以单独使用,也可以组装成分段式或点阵式LED显示器件(半导体显示器)。

分段式显示器(LED数码管)由7条线段围成字型,每一段包含一个发光二极管。

外加正向电压时二极管导通,发出清晰的光,有红、黄、绿等色。

只要按规律控制各发光段的亮、灭,就可以显示各种字形或符号。

LED数码管有共阳、共阴之分。

图4-17(a)是共阴式LED数码管的原理图,图4-17(b)是BCD七段显示译码器发光二极管(LED)由特殊的半导体材料砷化镓、磷砷化镓等制成,可以单独使用,也可以组装成分段式或点阵式LED显示器件(半导体显示器)。

分段式显示器(LED数码管)由7条线段围成字型,每一段包含一个发光二极管。

外加正向电压时二极管导通,发出清晰的光,有红、黄、绿等色。

只要按规律控制各发光段的亮、灭,就可以显示各种字形或符号。

LED数码管有共阳、共阴之分。

图4 - 17(a)是共阴式LED数码管的原理图,图4-17(b)是其表示符号。

使用时,公共阴极接地,7个阳极a~g由相应的BCD七段译码器来驱动(控制),如图 4 - 17(c)所示。

BCD七段译码器的输入是一位BCD码(以D、C、B、A表示),输出是数码管各段的驱动信号(以F a~F g表示),也称4—7译码器。

若用它驱动共阴LED数码管,则输出应为高有效,即输出为高(1)时,相应显示段发光。

例如,当输入8421码DCBA=0100时,应显示,即要求同时点亮b、c、f、g段,熄灭a、d、e段,故译码器的输出应为F a~F g=0110011,这也是一组代码,常称为段码。

同理,根据组成0~9这10个字形的要求可以列出8421BCD 七段译码器的真值表,见表4 - 12(未用码组省略)。

实验四 七段数码管显示实验报告

实验四 七段数码管显示实验报告

实验四七段数码管显示实验一、实验目的掌握数码管显示数字的原理。

二、实验内容1.静态显示:数码管为共阴极,通过BCD码译码驱动器CD4511驱动,其输入端A~D输入4位BCD码,位码输入低电平选中。

按图4-1连接好电路,将8255的A口PA0~PA3与七段数码管LED1的BCD码驱动输入端A1~D1相连,8255的A口PA4~PA7与七段数码管LED2的BCD码驱动输入端A2~D2相连,8255的B口PB0~PB3与七段数码管LED3的BCD码驱动输入端A3~D3相连,8255的B口PB4~PB7与七段数码管LED4的BCD码驱动输入端A4~D4相连,8255的C口PC0~PC3分别与七段数码管LED4~LED4的位驱动输入端DG1~DG4相连。

编程从键盘上每输入4个0~9数字,在七段数码管LED4~LED4上依次显示出来。

图4-12.动态显示:数码管为共阴极,段码采用相同驱动,输入端加高电平,选中的数码管对应段点亮,位码采用同相驱动,位码输入端低电平选中,按图4-2连接好电路,图中只画了2个数码管,实际是8个数码管,将8255的A口PA0~PA7分别与七段数码管的段码驱动输入端a~g相连(32TCI0模块上的J1连32LED8模块J2),8255的C口的PC0~PC7接七段数码管的段码驱动输入(32TCI0模块上的J3连32LED8模块J1),跳线器K1连2和3。

编程在8个数码管上显示“12345678”。

按任意键推出运行。

图4-2三、编程提示1.由于DVCC卡使用PCI总线,所以分配的IO地址每台微机可能都不用,编程时需要了解当前的微机使用那段IO地址并进行处理。

2.对实验内容1,七段数码管字型代码与输入的关系如下表:四、参考流程图1.实验内容一的参考流程图图4-3 2.实验内容二的参考流程图图4-4五、参考程序1.内容一的参考程序源程序清单如下:data segmentioport equ 0c400h-0280hio8255a equ ioport+288hio8255b equ ioport+289hio8255c equ ioport+28ahio8255k equ ioport+28bhled db 3fh,06h,5bh,4fh,66h,6dh,7dh,07h,7fh,6fhmesg1 db 0dh,0ah,'Input a num (0--9),other key is exit:',0dh,0ah,'$'bz db ?cz db 04hdata endscode segmentassume cs:code,ds:datastart: mov ax,datamov ds,axmov dx,io8255k ;使8255的A口为输出方式mov ax,80hout dx,alsss0: mov si,offset bzmov cx,04hsss1: mov dx,offset mesg1 ;显示提示信息mov ah,09hint 21hmov ah,01 ;从键盘接收字符int 21hcmp al,'0' ;是否小于0jl exit ;若是则退出cmp al,'9' ;是否大于9jg exit ;若是则退出sub al,30h ;将所得字符的ASCII码减30Hmov [si],al ;存入显示缓冲区inc si ;显示缓冲区指针加1dec cx ;判断输入满4个数字吗?jnz sss1 ;不满继续mov si,offset bz ;从显示缓冲区取第一个数字的BCD 码mov al,[si]and al,0fh ;屏蔽高四位暂存ALinc si ;显示缓冲区指针加1mov ah,[si] ;取第二个数字的BCD码到AHsal ah,4h ;右移4次到高四位add al,ah ;两个BCD码合并成一个字节mov bl,al ;暂存入BLinc simov al,[si] ;取第三个数字的BCD码and al,0fhinc simov ah,[si] ;取第四个数字的BCD码到AHsal ah,4hadd ah,almov al,ahmov dx,io8255a ;从8255的A口输出(后两个数字)out dx,almov al,blmov dx,io8255b ;从8255的B口输出(前两个数字)out dx,almov al,0f0hmov dx,io8255c ;从8255的C口输出位码out dx,almov dl,0ffhmov ah,06int 21hje sss0 ;有键按下则退出exit: mov ah,4ch ;返回int 21hcode endsend start2.内容二的参考程序源程序清单如下:data segmentioport equ 0C400h-0280hio8255c equ ioport+28ahio8255k equ ioport+28bhio8255a equ ioport+288hled db 3fh,06h,5bh,4fh,66h,6dh,7dh,07h,7fh,6fh ;段码buffer1 db 01h,02h,03h,04h,05h,06h,07h,08h ;存放要显示的十位和个位con db ? ;位码data endscode segmentassume cs:code, ds:datastart: mov ax,datamov ds,axmov dx,io8255k ;将8255设为A口C口输出mov al,80hout dx,alloop2: mov al,08h ;设置数码管位计数器初值到CON mov byte ptr con,almov si,offset buffer1 ;置显示缓冲器指针SImov ah,7fh ;置位码初值disp0: mov cx,0ffffhmov bl,ds:[si] ;取显示缓冲区显示值存BXmov bh,0hpush simov dx,io8255c ;位码从C口输出mov al,ahout dx,almov dx,io8255amov si,offset led ;置led数码表偏移地址为SIadd si,bx ;求出对应的led数码mov al,byte ptr [si]out dx,al ;段码从A口输出disp1: loop disp1 ;延时mov cx,0ffffhdisp2: loop disp2ror ah,01h ;位码右移1位pop siinc si ;显示缓冲区指针加1mov al,byte ptr condec almov byte ptr con,aljnz disp0 ;数码管位计数器减1为0吗?,不为0继续mov dx,io8255a ;为0,关数码管显示mov al,0out dx,almov dl,0ffhmov ah,06int 21hje loop2 ;有键按下则退出mov ah,4ch ;返回int 21hcode endsend start实验总结:通过这次试验,我了解到自定义数据类型可以根据自己的需要方便设定,有很大的灵活性。

设计一个能驱动七段共阴极LED数码管的译码电路

设计一个能驱动七段共阴极LED数码管的译码电路

能驱动七段共阴极LED数码管的译码电路一、设计要求:(1)要求:输入变量A、B、C来自计数器,按顺序000~111计数。

当ABC=000时,数码管全灭;以后要求依次显示H、O、P、E、F、U、L七个字母。

(2)要求:输入变量A、B、C来自计数器,按顺序000~111计数。

当ABC=000时,数码管全灭;以后要求依次显示1、0、0、8、1、0、1(或1008102、103、104、105、111)七个数字(根据自己的班级号)。

二、设计方案:1.设计原理及设计方案选择(宋体五号字)(1)设计原理①用一片74LS161芯片结合逻辑关系构成一个8进制计数器,其中最高位QD用非门输入到CLR端口,反馈复位构成8进制计数器。

②通过逻辑关系,设计出电路图,其真值表如下:脉冲次数QC QB QA U7 U4 U61 0 0 0 0 不显示不显示2 0 0 1 1 1 H3 0 1 0 2 0 O4 0 1 1 3 0 P5 1 0 0 4 8 E6 1 0 1 5 1 F7 1 1 0 6 0 U8 1 1 1 7 5 L③3-8译码器74LS138将输入信号QA、QB、QC译成输出信号Y0~Y7。

④由逻辑关系对3-8译码器的输出信号进行逻辑计算,对数码管U4和U6进行控制。

⑥外加一个数码管,起计数作用,可对QA、QB、QC输出的信号进行直接观测。

(2)设计方案3-8译码器真值表:C B A Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y70 0 0 0 1 1 1 1 1 1 10 0 1 1 0 1 1 1 1 1 10 1 0 1 1 0 1 1 1 1 10 1 1 1 1 1 0 1 1 1 11 0 0 1 1 1 1 0 1 1 11 0 1 1 1 1 1 1 0 1 11 1 0 1 1 1 1 1 1 0 11 1 1 1 1 1 1 1 1 1 0要显示出“1008105”和“HOPEFUL ”,驱动数码管的引脚如下: 显示“1008105”:显示内容 A B C D E F G 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 8 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0 51 0 1 1 0 1 1则可得: A=D=E=Y 0Y 1Y 5,B=Y 0Y 7,C=Y 0,F=Y 0Y 1Y 5Y 7 ,G=74Y Y显示“HOPEFUL ”:显示内容A B C D E F G H 0 1 1 0 1 1 1 O 1 1 1 1 1 1 0 P 1 1 0 0 1 1 1 E 1 0 0 1 1 1 1 F 1 0 0 0 1 1 1 U 0 1 1 1 1 1 0 L0 0 0 1 1 1 0则可得:A=Y 0Y 1Y 6Y 7,B=Y 0Y 4Y 5Y 7,C=621Y Y Y ,D=Y 0Y 1Y 3Y 5,E=F=Y 0,G=Y 0Y 2Y 6Y 7(3)各部分电路①时钟信号电路时钟信号可由555集成电路组成,但在仿真时可直接由时 钟电压源提供所需信号电压源。

(完整)7段数码管显示电路

(完整)7段数码管显示电路

4.4 显示模块4。

4。

1 7段数码管的结构与工作原理7段数码管一般由8个发光二极管组成,其中由7个细长的发光二极管组成数字显示,另外一个圆形的发光二极管显示小数点。

当发光二极管导通时,相应的一个点或一个笔画发光。

控制相应的二极管导通,就能显示出各种字符,尽管显示的字符形状有些失真,能显示的数符数量也有限,但其控制简单,使有也方便.发光二极管的阳极连在一起的称为共阳极数码管,阴极连在一起的称为共阴极数码管,如图4.9所示.4。

4.2 7段数码管驱动方法发光二极管(LED 是一种由磷化镓(GaP)等半导体材料制成的,能直接将电能转变成光能的发光显示器件.当其内部有一一电流通过时,它就会发光.7段数码管每段的驱动电流和其他单个LED 发光二极管一样,一般为5~10mA ;正向电压随发光材料不同表现为1.8~2.5V 不等。

7段数码管的显示方法可分为静态显示与动态显示,下面分别介绍。

(1) 静太显示所谓静态显示,就是当显示某一字符时,相应段的发光二极管恒定地寻能可截止。

这种显示方法为每一们都需要有一个8位输出口控制。

对于51单片机,可以在并行口上扩展多片锁存74LS573作为静态显示器接口。

静态显示器的优点是显示稳定,在发光二极管导通电注一定的情况下显示器的亮度高,控制系统在运行过程中,仅仅在需要更新显示内容时,CPU 才执行一次显示更新子程序,这样大大节省了CPU 的时间,提高了CPU 的工作效率;缺点是位数较多时,所需I/O 口太多,硬件开销太大,因此常采用另外一种显示方式——动态显示。

(2)动态显示所谓动态显示就是一位一位地轮流点亮各位显示器(扫描),对于显示器的每一位而言,每隔一段时间点亮一次。

虽然在同一时刻只有一位显示器在工作(点亮),但利用人眼的视觉暂留效应和发光二极管熄 灭共阴极7段数码管内部字段LED 和引脚分 共阳极图4.9 7段数码管结构图时的余辉效应,看到的却是多个字符“同时”显示.显示器亮度既与点亮时的导通电流有关,也与点亮时间和间隔时间的比例有关。

第五节 七段数码管的使用.

第五节 七段数码管的使用.

第五节数码管的使用5.1 数码管简介同学们!相信你的流水灯也做的不错了吧,现在能玩出几种花样了?但是工程师们设计这么一个单片机,并不是只为了让它做流水灯的,那样也太浪费点了吧... ^_^ 。

数码管的一种是半导体发光器件,7段LED数码管是利用7个LED(发光二极管)外加一个小数点的LED组合而成的显示设备,可以显示0~9等10个数字和小数点,使用非常广泛,数码管可以分为一位和多位它的外观如图5-1所示。

图5-15.2 数码管的显示原理数码管可以分为共阳极与共阴极两种,共阳极就是把所有LED的阳极连接到共同接点com,使用时com接正5伏电源,而每个LED的阴极分别为a、b、c、d、e、f、g及dp(小数点);共阴极则是把所有LED的阴极连接到共同接点com,使用时com要将其接地。

而每个LED的阳极分别为a、b、c、d、e、f、g及dp(小数点),8个LED的分布方式如图5-2所示。

图中的8个LED分别与上面那个图中的A~DP各段相对应,通过控制各个LED 的亮灭来显示数字。

那么,实际的数码管的引脚是怎样排列的呢?对于单个数码管来说,从它的正面看进去,左下角那个脚为1脚,以逆时针方向依次为1~10脚,左上角那个脚便是10脚了,上面两个图中的数字分别与这10个管脚一一对应。

注意,3脚和8脚是连通的,这两个都是公共脚。

它对应的引脚分布为图5-3所示。

图5-2 图5-3数码管的8段,对应一个字节的8位,a对应最低位,dp(小数点)对应最高位。

所以如果想让数码管显示数字0,那么共阴数码管的字符编码为00111111,即0x3f;共阳数码管的字符编码为11000000,即0xc0。

可以看出两个编码的各位正好相反。

如图5-4所示。

图5-4那么,一位数码管要显示字符0~F,则对应的编码如表2所示。

一个八段数码管称为一位,多个数码管并列在一起可构成多位数码管,它们的段选线(即a,b,c,d,e,f,g,dp)连在一起,而各自的公共端称为位选线。

八位七段数码管动态显示电路设计

八位七段数码管动态显示电路设计

八位七段数码管动态显示电路的设计一七段显示器介绍七段显示器,在许多产品或场合上经常可见。

其内部结构是由八个发光二极管所组成,为七个笔画与一个小数点,依顺时针方向为A、B、C、D、E、F、G与DP等八组发光二极管之排列,可用以显示0~9数字及英文数A、b、C、d、E、F。

目前常用的七段显示器通常附有小数点,如此使其得以显示阿拉伯数之小数点部份。

七段显示器的脚位和线路图如下图4.1所示( 其第一支接脚位于俯视图之左上角)。

图4.1、七段显示器俯视图由于发光二极管只有在顺向偏压的时候才会发光。

因此,七段显示器依其结构不同的应用需求,区分为低电位动作与高电位动作的两种型态的组件,另一种常见的说法则是共阳极( 低电位动作)与共阴极( 高电位动作)七段显示器,如下图4.2所示。

( 共阳极) ( 共阴极)图4.2、共阳极(低电位动作)与共阴极(高电位动作)要如何使七段显示器发光呢?对于共阴极规格的七段显示器来说,必须使用“ Sink Current ”方式,亦即是共同接脚COM为VCC,并由Cyclone II FPGA使接脚成为高电位,进而使外部电源将流经七段显示器,再流入Cyclone II FPGA的一种方式本实验平台之七段显示器模块接线图如下图4.5所示。

此平台配置了八组共阳极之七段显示器,亦即是每一组七段显示器之COM接脚,均接连至VCC电源。

而每一段发光二极管,其脚位亦均与Cyclone II FPGA接连。

四位一体的七段数码管在单个静态数码管的基础上加入了用于选择哪一位数码管的位选信号端口。

八个数码管的a、b、c、d、e、f、g、h、dp都连在了一起,8个数码管分别由各自的位选信号来控制,被选通的数码管显示数据,其余关闭。

图4.5、七段显示器模块接线图七段显示器之常见应用如下➢可作为与数值显示相关之设计。

⏹电子时钟应用显示⏹倒数定时器⏹秒表⏹计数器、定时器⏹算数运算之数值显示器二七段显示器显示原理七段显示器可用来显示单一的十进制或十六进制的数字,它是由八个发光二极管所构成的( 每一个二极管依位置不同而赋予不同的名称,请参见图4.1 ) 。

共阳七段数码管显示数字0到9

共阳七段数码管显示数字0到9

共阳七段数码管是一种常用的数码管显示器件,具有显示数字0到9的功能。

本文将从结构、工作原理、应用场景等方面详细介绍共阳七段数码管。

一、结构共阳七段数码管由七个发光二极管(LED)组成,每个LED对应显示数字的一部分。

将它们按照数字的显示形状组合在一起,就可以显示出任意数字。

共阳七段数码管还包括一个共阳极,用于控制LED的亮暗状态。

二、工作原理共阳七段数码管的工作原理是通过外部电路向共阳极加电压,控制七个LED的亮暗状态。

共阳极接通时,显示的数字为0;当接通其他七段数码管的阳极时,根据所加电压的不同,可以显示出数字1至9。

三、电路连接连接共阳七段数码管的典型电路由驱动芯片、限流电阻和共阳极组成。

其中驱动芯片用于控制LED的亮暗,限流电阻用于限制LED的电流,避免过流损坏。

共阳极则是整个电路的控制中心,通过对其加电压来控制LED的状态。

四、显示原理共阳七段数码管通过将不同的发光二极管组合在一起,可以显示出任意数字。

比如数字1由bc两段显示,数字2由abged显示,数字3由abgcd显示,以此类推。

通过控制每个LED的亮灭状态,便可以实现数字的显示。

五、应用场景共阳七段数码管广泛应用于各种计时器、电子秤、仪器仪表以及工业控制系统中。

它具有结构简单、稳定可靠、功耗低等优点,是目前常见的数字显示器件之一。

在日常生活中,我们可以看到共阳七段数码管在各种电子设备中的身影,如微波炉、电子闹钟等。

六、优缺点共阳七段数码管的优点是结构简单、使用方便,适用于对数字显示精度要求不高的场景。

它的功耗较低,可以长时间稳定工作。

但是,共阳七段数码管只能显示有限的数字,且对字体显示有一定限制,不能显示复杂的字符或图形。

七、结语共阳七段数码管作为一种常见的数字显示器件,在各种电子设备中都有着重要的应用。

通过控制七个LED的亮暗状态,它可以显示出数字0到9,适用于各种计时计数等场景。

随着科技的不断进步,相信共阳七段数码管在未来会有更广泛的应用。

(完整word版)七段共阴极数码管

(完整word版)七段共阴极数码管

共阴极数码管的应用
•共阴极数码管是一类数字形式的显示屏,通过对其不同的管脚输入相对的电流,会使其发亮,从而显示出数字能够显示时间、日期、温度等所有可用数字表示的参数。

由于它的价格便宜、使用简单、在电器,特别是家电领域应用极为广泛,空调、热水器、冰箱等等。

绝大多数热水器用的都是数码管,其他家电也用液晶屏与荧光屏.
共阴极结构:
LED显示器有共阴极和共阳极两种结构,下面只介绍共阴极结构。

见图3,在共阴极结构中,各段发光二极管的阴极连在一起,将此公共点接地,某一段发光二极管的阴极为高电平时,该段发光.
共阴极字段码:
LED显示0~9某个字符时,则要求在a~dp送固定的字段码,如要使LED显示“0”,则要求a、b、
c、d、f各引脚为高电平,g和dp为低电平,字段码为“3fh” 。

dp g f e d c b a
0 0 1 1 1 1 1 1 3fh
共阴极字符0~9七段码如下:
字符:0 1 2 3 4 5 6 7 8 9
字段码:3fh 06h 5bh 4fh 66h 6dh 7dh 07h 7fh 6fh 限流电阻R计算:
普通的LED的平均电流工作为3mA左右(高亮度型为1mA),LED压降如果按1。

7V计算,则R=U/I=(5V—2)/0.01=300(Ω)。

七段数码管数字显示

七段数码管数字显示

永城职业学院项目设计七段数码管数字显示班 级:082班专 业:矿山机电姓名:倪开放指导老师:马红雷日期:2010年6月8日目录摘要 (2)关键词: (2)1、PLC概况 (3)1.1 PLC的特点 (3)1.2 PLC应用领域 (3)1.3 PLC的发展 (4)2、控制要求 (4)3、硬件控制设计 (4)3.1 PLC的选型 (4)3.2 I/O设备的选择 (5)4软件控制设计 (6)4.1I/O接线图及I/O分配图 (6)4.2波形图 (7)4.3逻辑表达式 (9)4.4梯形图 (9)4.5程序显示工作原理 (11)4.6流程图 (11)4.7助记符 (13)4.8程序的调试 (14)5、心得体会 (16)参考文献 (17)评分标准 (18)摘要七段数码管广泛应用于医院、学校及一些商业机构。

7段LED数码管,则在一定形状的绝缘材料上,利用单只LED组合排列成“8”字型的数码管,分别引出它们的电极,点亮相应的点划来显示出0-9的数字。

本次设计就是利用这个特点显示自己的学号,选用的是松下FP0系列进行控制的。

本次设机采用的是共阴极七段数码管数码管。

关键词:PLC 控制设计工作原理1、PLC概况1.1 PLC的特点PLC即可编程控制器(Programmable logic Controller,是指以计算机技术为基础的新型工业控制装置。

“PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。

它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。

具体特点如下:(1)可靠性高,抗干扰能力强(2)配套齐全,功能完善,适用性强(3)易学易用,深受工程技术人员欢迎(4)系统的设计、建造工作量小,维护方便,容易改造(5)体积小,重量轻,能耗低1.2 PLC应用领域目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况大致可归纳为如下几类: a:开关量的逻辑控制b:模拟量控制c:运动控制d:过程控制e:数据处理f:通信与联网1.3 PLC的发展PLC技术的发展,其中有两个趋势方向,一方面,PLC已经不再是自成体系的封闭系统,而是迅速向开放式系统发展,各大品牌PLC除了形成自己各具特色的PLC系统,完成设备控制任务之外,还可以与上位计算机管理系统,实现信息交流,成为整个信息管理系统的一部分。

vhdl七段数码管显示0到9计数器显示电路设计 -回复

vhdl七段数码管显示0到9计数器显示电路设计 -回复

vhdl七段数码管显示0到9计数器显示电路设计-回复如何设计一个能够显示0到9的计数器的七段数码管显示电路。

文章长度:1500-2000字一、引言(100字左右)计数器是数字电路中非常常见的一个组件,而七段数码管则是用于显示数字的一种常用装置。

本文将详细介绍如何设计一个能够实现0到9的计数器,并利用七段数码管进行显示的电路。

二、理论基础(200字左右)在开始设计电路之前,我们需要掌握一些基本的理论知识。

七段数码管是由七个LED组成的,每个LED被称为一个段,分别用a、b、c、d、e、f、g表示。

通过控制七个段的亮灭可以显示不同的数字。

例如,要显示数字0,将a、b、c、d、e、f亮起,而要显示数字1,则只需将b、c 亮起。

三、设计电路(600字左右)1. 确定计数范围根据题目要求,我们需要设计一个能够显示0到9的计数器。

因此,计数范围为0到9,共有10个数字需要显示。

2. 确定计数位数根据题目要求,我们需要设计的是一个十进制计数器,因此需要三个计数位。

每个计数位都是一个0到9的计数器。

3. 设计逻辑电路我们可以使用JK触发器作为计数器的基本构建模块。

JK触发器有两个输入和两个输出,分别称为J、K和Q、~Q。

其中,J和K分别用于控制触发器状态的跳变,而Q和~Q是触发器的两个状态。

我们可以使用三个JK触发器构建一个三位的二进制计数器。

具体电路如下:第一个JK触发器的CLK输入连接计数器电路的时钟信号,J、K和第二个JK触发器的CLK端连接在一起,第二个JK触发器的Q输出连接第三个触发器的J输入,第一个触发器的Q输出连接了第三个触发器的K输入。

这样的设计将会实现三个触发器之间的互动。

4. 连接七段数码管根据七段数码管的布局,我们需要将七段的对应输入连接到计数器的输出。

根据计数器的输出值,我们可以设定哪些段需要亮起或熄灭。

连接七段数码管的具体方法可以参考其数据手册或规格说明。

四、测试与调试(400字左右)完成电路的设计之后,我们需要进行测试和调试,以确保电路能够正常显示0到9的数字。

EDA实验二八位七段数码管动态显示电路的设计

EDA实验二八位七段数码管动态显示电路的设计

EDA实验二八位七段数码管动态显示电路的设计八位七段数码管动态显示电路是一种常用的显示电路,用于将数字信号转换成七段数码管的显示形式。

本文将详细介绍八位七段数码管动态显示电路的设计原理和实现方法。

首先,我们先介绍一下七段数码管的基本原理和工作方式。

一、七段数码管的基本原理和工作方式七段数码管通常由七个独立的LED组成,分别代表数字0到9和字母A到F。

这七个LED分别为a,b,c,d,e,f,g,用于显示不同的数字。

通过控制每个LED的亮灭状态,可以显示出不同的数字。

七段数码管通常采用共阳极或共阴极的方式控制。

在共阳极的情况下,数码管的共阳极引脚接Vcc,每个LED的阴极引脚分别通过控制芯片上的开关来控制灯的亮灭;在共阴极的情况下,数码管的共阴极引脚接GND,每个LED的阳极引脚通过控制芯片上的开关来控制灯的亮灭。

根据实际需要选择共阳极或共阴极的七段数码管。

在七段数码管中,每个LED代表一个计算机的位数。

例如,数码管中的aLED表示计算机数据的最低位,而gLED表示计算机数据的最高位。

二、八位七段数码管动态显示电路的设计原理八位七段数码管动态显示电路的设计原理是将八个七段数码管连接在一起,通过改变每个数码管的亮灭状态,实现数字的动态显示。

具体的设计原理是通过一个计数器生成7个时序信号,然后再通过逻辑控制器将这些时序信号分配给各个数码管。

可以用三个个位计数器来实现生成的7个时序信号。

其中,一个计数器用于控制7个段的扫描,即a,b,c,d,e,f,g;另外两个计数器用于控制8位数码管中的8个数位,即1,2,3,4,5,6,7,8具体实现时,可以通过一个时钟信号来驱动计数器,每个计数器都有一个计数使能信号和一个计数复位信号。

通过适当的设计时钟信号的频率和计数使能/复位信号的控制,可以实现不同的动态显示效果。

三、八位七段数码管动态显示电路的实现方法八位七段数码管动态显示电路的实现方法可以分为三个步骤:计数器设计、逻辑控制器设计和电路布线。

实验四 八位七段数码管动态显示电路的设计

实验四 八位七段数码管动态显示电路的设计

八位七段数码管动态显示电路的设计一、实验目的1、了解数码管的工作原理。

2、学习七段数码管显示译码器的设计。

3、学习VHDL的CASE语句及多层次设计方法。

二、实验原理七段数码管是电子开发过程中常用的输出显示设备。

在实验系统中使用的是两个四位一体、共阴极型七段数码管。

其单个静态数码管如下图4-4-1所示。

图4-1 静态七段数码管由于七段数码管公共端连接到GND(共阴极型),当数码管的中的那一个段被输入高电平,则相应的这一段被点亮。

反之则不亮。

共阳极性的数码管与之相么。

四位一体的七段数码管在单个静态数码管的基础上加入了用于选择哪一位数码管的位选信号端口。

八个数码管的a、b、c、d、e、f、g、h、dp都连在了一起,8个数码管分别由各自的位选信号来控制,被选通的数码管显示数据,其余关闭。

三、实验内容本实验要求完成的任务是在时钟信号的作用下,通过输入的键值在数码管上显示相应的键值。

在实验中时,数字时钟选择1024HZ作为扫描时钟,用四个拨动开关做为输入,当四个拨动开关置为一个二进制数时,在数码管上显示其十六进制的值。

四、实验步骤1、打开QUARTUSII软件,新建一个工程。

2、建完工程之后,再新建一个VHDL File,打开VHDL编辑器对话框。

3、按照实验原理和自己的想法,在VHDL编辑窗口编写VHDL程序,用户可参照光盘中提供的示例程序。

4、编写完VHDL程序后,保存起来。

方法同实验一。

5、对自己编写的VHDL程序进行编译并仿真,对程序的错误进行修改。

6、编译仿真无误后,根据用户自己的要求进行管脚分配。

分配完成后,再进行全编译一次,以使管脚分配生效。

7、根据实验内容用实验导线将上面管脚分配的FPGA管脚与对应的模块连接起来。

如果是调用的本书提供的VHDL代码,则实验连线如下:CLK:FPGA时钟信号,接数字时钟CLOCK3,并将这组时钟设为1024HZ。

KEY[3..0]:数码管显示输入信号,分别接拨动开关的S4,S3,S2,S1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七七段LED数码管显示电路设计
一、实验目的
1.学习EDA软件的基本操作
2.学习使用原理图进行设计输入
3.初步掌握软件输入、编译、仿真和编程的过程
4.学习实验开发系统的使用方法
二、实验说明
本实验通过七段LED数码管显示电路的设计,初步掌握EDA 设计方法中的设计输入、编译、综合、仿真和编程的基本过程。

七段LED数码管显示电路有四个数据输入端(D0-D3),七个数据输出端(A-G。

三、实验要求
1、完成七段LED数码管显示电路的原理图输入并进行编译
2、对设计的电路经行仿真验证
3、编程下载并在实验开发系统上验证设计结果
四、实验步骤
1、新建工程
2、新建Verilog HDL文件
3、在文本输入窗口键入代码
4、保存HDL文件
5、编译文件直至没有错误
6、新建波形文件
7、添加观察信号
8、添加输入激励,保存波形文件
9、功能仿真
七段LED数码管显示电路真值表:
输入D3D2D1D0G F E D C B A 000000111111 100010000110 200101011011 300111001111 401001100110 501011101101 601101111101 701110001111 810001111111
910011101111 A10101110111 B10111111100 C11001111001 D110111011110 E11101111001 F11111110001五、电路原理图
啊Verilog代码描述:
module qiduan(data_in,data_out;
input [3:0]data_in;
output [6:0]data_out;
reg [6:0]data_out;
always @(data_in
begin
casex(data_in
4'b0000:data_out<=7'b0111111;
4'b0001:data_out<=7'b0000110; 4'b0010:data_out<=7'b1011011; 4'b0011:data_out<=7'b1001111; 4'b0100:data_out<=7'b1100110; 4'b0101:data_out<=7'b1101101; 4'b0110:data_out<=7'b1111100; 4'b0111:data_out<=7'b0000111; 4'b1000:data_out<=7'b1111111; 4'b1001:data_out<=7'b1100111; 4'b1010:data_out<=7'b1110111; 4'b1011:data_out<=7'b1111100; 4'b1100:data_out<=7'b0111001; 4'b1101:data_out<=7'b1011110; 4'b1110:data_out<=7'b1111001; 4'b1111:data_out<=7'b1110001; default:data_out<=7'b0000000; endcase
end
endmodule
仿真波形:
六、实验体会
七段LED数码管显示电路是常用的数码管之一,它有四个数据输入端(D0-D3),七个数据输出端(A-G。

通过七段LED数码管显示电路的设计,使我们更加熟悉Quartus II软件进行系统设计的步骤,并掌握七段LED数码管显示电路的逻辑功能和设计原理,逐步理解功能仿真和时序仿真波形。

相关文档
最新文档