三角形旋转全等常见模型

合集下载

模型构建专题:全等三角形中的常见八种模型(8类热点题型讲练)(解析版)--初中数学北师大版7年级下册

模型构建专题:全等三角形中的常见八种模型(8类热点题型讲练)(解析版)--初中数学北师大版7年级下册

第05讲模型构建专题:全等三角形中的常见八种模型(8类热点题型讲练)目录【模型一平移型模型】 (1)【模型二轴对称型模型】 (3)【模型三四边形中构造全等三角形解题】 (5)【模型四一线三等角模型】 (9)【模型五三垂直模型】 (13)【模型六旋转型模型】 (18)【模型七倍长中线模型】 (24)【模型八截长补短模型】 (30)【模型一平移型模型】例题:(2023上·福建福州·八年级统考期末)如图,点B,E,C,F在同一直线上,A D∠=∠,AB DE∥,=.BE CF求证:AB DE=.【答案】证明见解析【分析】本题考查了三角形全等的性质与判定的应用以及两直线平行的判定定理,解此题的关键是推出△△,注意全等三角形的对应边相等;根据AB DE≌ABC DEF∠=∠,又根据∠A=∠D,BE=CF∥可知B DEF可以判定ABC DEF ≌△△,即可求证AB DE =.【详解】解:∵AB DE ∥,∴B DEF ∠=∠,∵BE CF =,∴BC EF =,∴在ABC 和DEF 中,A DB DEF BCEF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC DEF ≌△△,∴AB DE =.【变式训练】1.(2023秋·浙江·八年级专题练习)如图,在ACD 和CEB 中,点A 、B 、C 在一条直线上,D E AD EC AD EC ∠=∠=,∥,.求证:ACD CBE ≌.【答案】见解析【分析】根据平行线的性质得出A ECB ∠=∠,再根据全等三角形的判定定理ASA 证明ACD CBE ≌.【详解】AD EC ∥ ,A ECB ∴∠=∠,在ACD 和CEB 中,A ECB AD ECDE ∠=∠⎧⎪=⎨⎪∠=∠⎩,(ASA)ACD CBE ∴△≌△.【点睛】本题考查了全等三角形的判定定理和平行线的性质,能熟记全等三角形的判定定理是解此题的关键.2.(2024上·新疆和田·八年级统考期末)如图,点A 、D 、C 、F 在同一条直线上,AD CF =,AB DE =,BC EF =.(1)求证:ABC DEF ≌△△;(2)若65A ∠=︒,82B ∠=︒,求F ∠的度数.【答案】(1)见解析(2)33︒【分析】本题考查了全等三角形的性质与判定,三角形内角和定理的应用,掌握全等三角形的性质与判定是解题的关键.(1)先证明AC DF =,然后根据SSS 证明ABC DEF ≌△△即可;(2)根据全等三角形的性质得出F ACB ∠=∠,进而根据三角形内角和定理即可求解.【详解】(1)证明:AC AD DC =+∵,DF DC CF =+,且AD CF =,AC DF =∴,在ABC 和DEF 中,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩,(SSS)ABC DEF ∴△≌△,(2)解:由(1)可知,ABC DEF ≌△△,F ACB ∠=∠∴,65A ∠=︒ ,82B ∠=︒,180()180(6582)33ACB A B ∴∠=︒-∠+∠=︒-︒+︒=︒,33F ACB ∴∠=∠=︒.【模型二轴对称型模型】例题:(2024上·云南昆明·八年级统考期末)线段AC 、BD 相交于点E ,D A ∠=∠,DE AE =,求证:C B ∠=∠.【答案】证明见解析.【分析】本题考查了全等三角形的判定和性质,根据ASA 可证ABE ≌DCE △,根据全等三角形的性质即可得证.【详解】证明: 在DEC 和AEB △中D A DE AE DEA AEB ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA DEC AEB ∴△≌△,ABE ∴ ≌()ASA DCE ,C B∴∠=∠【变式训练】1.(2023·湖南益阳·统考一模)如图,点D 在AB 上,点E 在AC 上,AB AC =,BD CE =.求证:ACD ABE ≌.【答案】见解析【分析】根据AB AC =,BD CE =推出AD AE =,即可根据SAS 进行求证.【详解】证明:,,,AB AC BD CE AD AB BD AE AC CE ===-=- ,AD AE ∴=.在ABE 和ACD 中,AD AE A A AC AB =⎧⎪∠=∠⎨⎪=⎩,()SAS ACD ABE ∴ ≌.【点睛】本题主要考查了三角形全等的判定,解题的关键是熟练掌握证明三角形全等的方法有SSS,SAS,AAS,ASA,HL .2.(2024上·山西阳泉·八年级统考期末)如图1是小宁制作的燕子风筝,燕子风筝的骨架图如图2所示,AB AE =,AC AD =,BAD EAC ∠=∠,40C ∠=︒,求D ∠的度数.【答案】40︒【分析】本题考查了全等三角形的判定与性质,先证明BAC EAD ∠=∠,再证明BAC EAD ≌,即可得到40D C ∠=∠=︒.【详解】解:∵BAD EAC ∠=∠,BAD DAC EAC DAC ∴∠+∠=∠+∠,即BAC EAD ∠=∠.在BAC 与EAD 中,,,,AB AE BAC EAD AC AD =⎧⎪∠=∠⎨⎪=⎩()SAS BAC EAD ∴V V ≌.C D ∴∠=∠.∵40C ∠=︒,40C D =∠=︒∴∠.【模型三四边形中构造全等三角形解题】例题:如图,在四边形ABCD 中,CB AB ⊥于点B ,CD AD ⊥于点D ,点E ,F 分别在AB ,AD 上,AE AF =,CE CF =.(1)若8AE =,6CD =,求四边形AECF 的面积;(2)猜想∠DAB ,∠ECF ,∠DFC 三者之间的数量关系,并证明你的猜想.AE ⎧⎪∴∠DFC+∠BEC=∠FCA+∠FAC+∠ECA+∠EAC=∠DAB+∠ECF.∴∠DAB+∠ECF=2∠DFC【点睛】本题考查了三角形全等的性质与判定,三角形的外角的性质,掌握三角形全等的性质与判定是解题的关键.【变式训练】1.在四边形ABDC中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°,E是AC上一点,F是AB延长线上一点,且CE=BF.(1)试说明:DE=DF:(2)在图中,若G在AB上且∠EDG=60°,试猜想CE,EG,BG之间的数量关系并证明所归纳结论.(3)若题中条件“∠CAB=60°,∠CDB=120°改为∠CAB=α,∠CDB=180°﹣α,G在AB上,∠EDG满足什么条件时,(2)中结论仍然成立?猜想CE 、EG 、BG 之间的数量关系为:证明:在ABD ∆和ACD ∆中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,ΔΔ()ABD ACD SSS ∴≅,【模型四一线三等角模型】【答案】探究:见解析;应用:61.已知CD 是经过BCA ∠顶点C 的一条直线,CA CB =.E 、F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)若直线CD 经过BCA ∠的内部,且E 、F 在射线CD 上,请解决下面问题:①如图1,若90BCA ∠=︒,90α∠=︒,求证:BE CF =;②如图2,若180BCA α∠+∠=︒,探索三条线段EF BE AF ,,的数量关系,并证明你的结论;(2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,题(1)②中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确的结论再给予证明.【答案】(1)①见解析;②EF BE AF =-,见解析(2)不成立,EF BE AF =+,见解析【分析】(1)①利用垂直及互余的关系得到ACF CBE ∠=∠,证明BCE ≌CAF V 即可;②利用三等角模型及互补证明ACF CBE ∠=∠,得到BCE ≌CAF V 即可;(2)利用互补的性质得到EBC ACF ∠=∠,证明BCE ≌CAF V 即可.【详解】(1)①证明:∵90EE CD AF CD ACB ⊥⊥∠=︒,,,∴90BEC AFC ∠=∠=︒,∴9090BCE ACF CBE BCE ∠+∠=︒∠+∠=︒,,∴ACF CBE ∠=∠,在BCE 和CAF V 中,EBC FCA BEC CFA BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BCE ≌CAF V ()AAS ,∴BE CF =;②解:EF BE AF =-.证明:∵180BEC CFA ACB αα∠=∠=∠∠+∠=︒,,∴180180CBE BCE ACF ACB BCE BCE αα∠=︒-∠-∠∠=∠-∠=︒-∠-∠,,∴ACF CBE ∠=∠,在BCE 和CAF V 中,EBC FCA BEC CFA BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BCE ≌CAF V ()AAS ,∴BE CF CE AF ==,,∴EF CF CE BE AF =-=-;(2)解:EF BE AF =+.理由:∵BEC CFA BCA αα∠=∠=∠∠=∠,,又∵180180EBC BCE BEC BCE ACF ACB ∠=∠=∠=︒∠+∠+∠=︒,,∴EBC BCE BCE ACF ∠+∠=∠+∠,∴EBC ACF ∠=∠,在BCE 和CAF V 中,EBC FCA BEC CFA BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BCE ≌CAF V ()AAS ,∴AF CE BE CF ==,,∵EF CE CF =+,∴EF BE AF =+.【点睛】本题主要考查三角形全等的判定及性质,能够熟练运用三等角模型快速证明三角形全等是解题关键.2.(2024上·湖南株洲·八年级校联考期末)(1)如图①,已知∶ABC 中,90,BAC AB AC ∠=︒=,直线m 经过点,A BD m ⊥于,D CE m ⊥于E ,求证∶ABD CAE △△≌;(2)拓展∶如图②,将(1)中的条件改为∶ABC 中,,AB AC D A E =、、三点都在直线m 上,并且BDA AEC BAC α∠=∠=∠=,α为任意锐角或钝角,请问结论DE BD CE =+是否成立?如成立,请证明;若不成立,请说明理由;(3)应用∶如图③,在ABC 中,BAC ∠是钝角,,AB AC BAD CAE =∠>∠,BDA AEC BAC ∠=∠=∠,直线m 与BC 的延长线交于点F ,若2,BC CF ABC = 的面积是12,求ABD △与CEF △的面积之和.【答案】(1)见解析;(2)成立,理由见解析;(3)6【分析】(1)先证明90BDA AEC BAC ∠=∠=∠=︒,DBA CAE ∠=∠,然后根据AAS 即可证明ABD CAE ≌ ;(2)先证明DBA CAE ∠=∠,再证明()AAS ABD CAE ≌,再利用全等三角形的性质可得结论;(3)同(2)可证()AAS ABD CAE ≌,得出ABD CEA S S = ,再由不同底等高的两个三角形的面积之比等于底的比,得出ACF S △即可得出结果.【详解】解:(1)∵90BDA AEC BAC ∠=∠=∠=︒,∴90BAD CAE ∠+∠=︒,且90DBA BAD ∠+∠=︒,∴DBA CAE ∠=∠,在ABD △和CAE V 中,【模型五三垂直模型】例题:(2023上·辽宁大连·八年级统考期中)通过对下面数学模型的研究学习,解决下列问题:(1)如图1,点A 在直线l 上,90,BAD AB AD ∠=︒=,过点B 作BC l ⊥于点C ,过点D 作DE l ⊥交于点E .得1D ∠=∠.又90BCA AED ∠=∠=︒,可以推理得到()ABC DAE AAS ≌.进而得到结论:AC =_____,BC =_____.我们把这个数学模型称为“K 字”模型或“一线三直角”模型;(2)如图2,∠90,,,BAD MAN AB AD AM AN BM l ∠=∠=︒==⊥于点C ,DE l ⊥于点E ,ND 与直线l 交于点P ,求证:NP DP =.【答案】(1)DE ,AE(2)见解析【分析】本题考查一线三直角全等问题,(1)由90CBA AED BAD ∠∠∠===︒,得12290D ∠∠∠∠+=+=︒,则1D ∠∠=,而AB DA =,即可证明ABC DAE ≌,得AC DE =,BC AE =,于是得到问题的答案;(2)作NF l ⊥于点F ,因为BM l ⊥于点C ,DE l ⊥于点E ,所以90ACM NFA NFP DEP ∠∠∠∠====︒,由(1)得AC DE =,因为90MAN ∠=︒,所以90CAM FAN FNA FAN ∠∠∠∠+=+=︒,则CAM FNA ∠∠=,而AM NA =,即可证明CAM FNA ≌,得AC NF =,所以NF DE =,再证明PFN PED ≌,则NP DP =.【详解】(1))解:BC l ⊥于点C ,DE l ⊥于点E ,∴90CBA AED ∠∠==︒,∵90BAD ∠=︒,∴12890D ∠∠∠∠+=+=︒,∴1D ∠∠=,在ABC 和DAE 中,1D BCA AED AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AAS ABC DAE ≌(),∴AC DE =,BC AE =,故答案为:DE ,AE .(2)证明:如图2,作NF l ⊥于点F ,∵BM l ⊥于点C ,DE l ⊥于点E ,∴90ACM NFA NFP DEP ∠∠∠∠====︒,由1AC DE=()得,同理(1)得AC NF =,∴NF DE =,在PFN 和PED 中,MFP DEF FPN EPD MF DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AAS PFN PED ≌(),∴NP DP =.【变式训练】1.在△ABC 中,∠BAC =90°,AC=AB ,直线MN 经过点A ,且CD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点A 旋转到图1的位置时,EAB DAC ∠+∠=度;(2)求证:DE=CD +BE ;(3)当直线MN 绕点A 旋转到图2的位置时,试问DE 、CD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】(1)90°(2)见解析(3)CD=BE +DE ,证明见解析【解析】【分析】(1)由∠BAC =90°可直接得到EAB DAC ∠+∠=90°;(2)由CD ⊥MN ,BE ⊥MN ,得∠ADC =∠BEA =∠BAC =90°,根据等角的余角相等得到∠DCA =∠EAB ,根据AAS 可证△DCA ≌△EAB ,所以AD =CE ,DC =BE ,即可得到DE =EA +AD =DC +BE .(3)同(2)易证△DCA ≌△EAB ,得到AD =CE ,DC =BE ,由图可知AE =AD +DE ,所以CD =BE +DE .(1)∵∠BAC =90°∴∠EAB +∠DAC =180°-∠BAC =180°-90°=90°故答案为:90°.(2)证明:∵CD ⊥MN 于D ,BE ⊥MN 于E∴∠ADC =∠BEA =∠BAC =90°∵∠DAC +∠DCA =90°且∠DAC +∠EAB =90°∴∠DCA =∠EAB∵在△DCA 和△EAB 中90ADC BEA DCA EAB AC AB ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴△DCA ≌△EAB (AAS )∴AD =BE 且EA =DC由图可知:DE =EA +AD =DC +BE .(3)∵CD ⊥MN 于D ,BE ⊥MN 于E∴∠ADC =∠BEA =∠BAC =90°∵∠DAC +∠DCA =90°且∠DAC +∠EAB =90°∴∠DCA =∠EAB∵在△DCA 和△EAB 中90ADC BEA DCA EAB AC AB ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴△DCA ≌△EAB (AAS )∴AD =BE 且AE =CD由图可知:AE =AD +DE∴CD =BE +DE .【点睛】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角,也考查了三角形全等的判定与性质.2.(2024上·吉林辽源·九年级统考期末)如图,在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到①的位置时,求证:①ADC CEB △△≌;②DE AD BE =+;(2)当直线MN 绕点C 旋转到②的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到③的位置时,试问DE 、AD 、BE 具有怎样的数量关系?请直接写出这个等量关系,不需要证明.【答案】(1)①见解析;②见解析(2)见解析(3)DE BE AD =-(或AD BE DE =-,BE AD DE =+).【分析】本题考查了几何变换综合题,需要掌握全等三角形的性质和判定,垂线的定义等知识点的应用,解此题的关键是推出证明ADC △和CEB 全等的三个条件.题型较好.(1)①已知已有两直角相等和AC BC =,再由同角的余角相等证明DAC BCE =∠∠即可证明()AAS ADC BEC ≌;②由全等三角形的对应边相等得到AD CE =,BE CD =,从而得证;(2)根据垂直定义求出BEC ACB ADC ∠=∠=∠,根据等式性质求出ACD CBE ∠=,根据AAS 证出ADC △和CEB 全等,再由全等三角形的对应边相等得到AD CE =,BE CD =,从而得证;(3)同样由三角形全等寻找边的关系,根据位置寻找和差的关系.【详解】(1)①证明:∵90ACB ∠=︒,90ADC ∠=︒,90BEC ∠=︒∴90ACD DAC ∠+∠=︒,90ACD BCE ∠+∠=︒,∴DAC BCE =∠∠,在ADC △与BEC 中,90ADC BEC DAC BCE AC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()AAS ADC BEC ≌;②由①知,ADC BEC △△≌,∴AD CE =,BE CD =,∵DE CE CD =+,∴DE AD BE =+;(2)证明:∵AD MN ⊥于D ,BE MN ⊥于E ,∴90ADC BEC ACB ∠=∠=∠=︒,∴90CAD ACD ∠+∠=︒,90ACD BCE ∠+∠=︒,∴CAD BCE ∠=∠,在ADC △与BEC 中,90ADC BEC DAC BCE AC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()AAS ADC CEB ≌.∴AD CE =,BE CD =,∴DE CE CD AD BE =-=-.(3)解:同(2)理可证()AAS ADC CEB ≌.∴AD CE =,BE CD =,∵CE CD DE=-∴AD BE DE =-,即DE BE AD =-;当MN 旋转到图3的位置时,AD 、DE 、BE 所满足的等量关系是DE BE AD =-(或AD BE DE =-,BE AD DE =+).【模型六旋转型模型】例题:如图,AB AC =,AE AD =,CAB EAD α∠=∠=.(1)求证:AEC ADB ≅△△1.如图,在△ABC中,AB=BC,∠ABC=120°,点D在边AC上,且线段BD绕着点B按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.(1)求证:AE=CD;(2)若∠DBC=45°,求∠BFE的度数.【答案】(1)AB⊥BE,AB=BD+BE;(2)图2中BE=AB+BD,图∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∵CA=CB,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∠CBE=∠A,∵CA=CB,∠ACB=90°,∴∠A=∠CBA=45°,∴∠CBE=∠A=45°,∴ABE=90°,∴AB⊥BE,∵AB=AD+BD,AD=BE,∴AB=BD+BE,故答案为AB⊥BE,AB=BD+BE.(2)①如图2中,结论:BE=AB+BD.理由:∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∵CA=CB,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∵AD=AB+BD,AD=BE,∴BE=AB+BD.②如图3中,结论:BD=AB+BE.理由:∵∠ACB =∠DCE =∴∠ACD =∠BCE ,【模型七倍长中线模型】例题:(2023秋·山东滨州·八年级统考期末)如图,BD 是ABC 的中线,10AB =,6BC =,求中线BD 的取值范围.【答案】28BD <<【分析】延长BD 到E ,使DE BD =,证明两边之和大于2BE BD =,两边之差小于2BE BD =,证明三角形全等,得到线段相等,等量代换得28BD <<.【详解】解:如图,延长BD 至E ,使DE BD =,连接CE ,∵D 为AC 中点,∴AD DC =,在ABD △和CED △中,BD DE ADB CDE AD CD =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABD CED ≌△△,∴10EC AB ==,在BCE 中,CE BC BE CE BC -<<+,即106106BE -<<+,∴416BE <<,∴4216BD <<,∴28BD <<.【点睛】本题考查了全等三角形的判定和性质,三角形三边之间的关系,解题的关键是作辅助线,构造全等三角形.【变式训练】1.如图,在ABC 中,AD 是BC 边上的中线.延长AD 到点E ,使DE AD =,连接BE .(1)求证:ACD EBD △△≌;(2)AC 与BE 的数量关系是:____________,位置关系是:____________;(3)若90BAC ∠=︒,猜想AD 与BC 的数量关系,并加以证明.【答案】(1)见解析(2)AC BE =,AC BE∥(3)2AD BC =,证明见解析【分析】(1)根据三角形全等的判定定理SAS ,即可证得;(2)由ACD EBD △△≌,可得AC BE =,C EBC ∠=∠,据此即可解答;(3)根据三角形全等的判定定理SAS ,可证得BAC ABE ≌,据此即可解答.【详解】(1)证明:AD 是BC 边上的中线,BD CD ∴=,在ACD △与EBD △中AD ED ADC EDB BD CD =⎧⎪∠=∠⎨⎪=⎩,()SAS ACD EBD ∴ ≌;(2)解:ACD EBD ≌,AC BE ∴=,C EBC ∠=∠,∴∥AC BE ,故答案为:AC BE =,AC BE ∥;(3)解:2AD BC=证明:ACD EBD ≌,AC BE ∴=,C EBC ∠=∠,∴∥AC BE ,90BAC ∠=︒90BAC ABE ∴∠=∠=︒在BAC △和ABE △中,90AB BA BAC ABE AC BE =⎧⎪∠=∠=︒⎨⎪=⎩()SAS BAC ABE ∴ ≌,2BC AE AD ∴==.【点睛】本题考查了全等三角形的判定与性质,平行线的判定与性质,熟练掌握和运用全等三角形的判定与性质是解决本题的关键.2.(2023上·江苏南通·八年级统考期中)课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若6AB =,4AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使DE AD =,连接BE .请根据小明的方法思考:(1)由已知和作图能得到ADC EDB V V ≌,得到BE AD =,在ABE 中求得2AD 的取值范围,从而求得取值范围是.方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.(2)如图2,AD 是ABC 的中线,AB AE =,AC AF =,180BAE CAF ∠+∠=︒,试判断线段关系,并加以证明;(3)如图3,在ABC 中,D ,E 在边BC 上,且BD CE =.求证:AB AC AD AE +>+【答案】(1)15AD <<CD BD ADC EDB AD ED =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ADC EDB ≌,∴4BE AC ==,∵在ABE 中,AB BE AE AB BE -<<+,即64264AD -<<+,∴15AD <<.故答案为:15AD <<(2)2EF AD =,理由:如图,延长AD 到M ,使得DM AD =,连接BM ,∴2AM AD DM AD =+=,∵AD 是ABC 的中线,∴BD CD =,在BDM 和CDA 中BD CD BDM CDA DM DA =⎧⎪∠=∠⎨⎪=⎩∴()SAS BDM CDA ≌,∴BM AC =,∵AC AF =,∴BM AF =,∵BDM CAD ≌,∴∠=∠MBD ACD ,∴BM AC ∥,∴180ABM BAC ︒∠+∠=,∵180BAE CAF ∠+∠=︒,∴()360360180180BAC FAE BAE CAF ∠+∠=︒-∠+∠=︒-︒=︒,∴ABM FAE ∠=∠,在ABM 和EAF △中AB AE ABM EAF BM AF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABM EAF ≌,∴AM EF =,∵2AM AD =,∴2EF AD =;(3)取BC 的中点为M ,连接AM 并延长至N ,使AM MN =,连接BN 、DN ,∵点M 是BC 的中点,∴CM BM =,在ACM △和NBM 中,CM BM AMC NMB AM NM =⎧⎪∠=∠⎨⎪=⎩∴()SAS ACM NBM ≌,∴AC NB=∵BD CE =,∴BM BD CM CE -=-,即=DM EM ,在AEM △和NDM 中,EM DM AME NMD AM NM =⎧⎪∠=∠⎨⎪=⎩∴()SAS AEM NDM ≌,∴AE ND =,延长AD 交BN 于F ,+>,则AB BF AD DF+>+,且FN DF DN+++>++,∴AB BF FN DF AD DF DN+>+,∴AB BN AD DN+>+.即AB AC AD AE【模型八截长补短模型】【点睛】本题是四边形综合题,考查了全等三角形的判定及性质的运用,等边三角形的性质的运用,解答时证明三角形全等是关键.【变式训练】(1)求证:CD BC DE =+;(2)若75B ∠=︒,求E ∠的度数.【答案】(1)见解析(2)105︒∵CA 平分BCD ∠,∴BCA FCA ∠=∠.在BCA V 和FCA △中,⎧⎪∠⎨⎪⎩【答案】(1)①见解析;②14x <<;(2)见解析【分析】(1)①根据三角形的中线得出BD CD =,再由对顶角相等得出②先由ABD ECD ≌,得出5CE =,再由ED AD =,得出可求出答案;(2)先根据SAS 判断出DEF DEH △≌△,得出EH EF =,BD CD ∴=,在ADB 和ECD 中,BD CD ADB CDE AD DE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABD ECD ∴△≌△;②解:由①知,ABD ECD ≌,CE AB ∴=,5AB = ,5CE ∴=,ED AD = ,AD x =,22AE AD x ∴==,在ACE △中,3AC =,根据三角形的三边关系得,53253x -<<+,14x ∴<<,故答案为:14x <<;(2)证明:如图2,延长FD ,截取DH DF =,连接BH ,EH ,DH DF = ,DE DF ⊥,即90EDF EDH ∠=∠=︒,DE DE =,∴()SAS DEF DEH ≌,EH EF ∴=,AD 是中线,BD CD ∴=,DH DF = ,BDH CDF ∠=∠,∴()SAS BDH CDF ≌,CF BH ∴=,∵BE BH EH +>,BE CF EF ∴+>.【点睛】此题是三角形综合题,主要考查了三角形中线的定义,全等三角形的判定和性质,三角形的三边【答案】(1)正确;(2)成立,见解析;(3)正确,见解析【分析】本题考查了三角形全等的判定与性质,正确做辅助线构造全等三角形是解题关键.(1)延长FD 到点G ,使DG BE =,连接AG ,先证明ADG ABE △△≌AEF AGF △△≌,可得EF GF =,进而得出EF BE DF =+,即可解题;(2)证明方法同(1):延长FD 到点G ,使DG BE =,连接AG ,先证明再证明AEF AGF △△≌,可得EF GF =,进而得出EF BE DF =+即可解题;∵90B ADF ∠=∠=︒,∴ADG ADF ∠=∠=∠在ABE 和ADG △中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE ADG ≌,∴AE AG =,BAE DAG ∠=∠,∵120BAD ∠=︒,60EAF ∠=︒,∴2BAD EAF ∠∠=,∴GAF DAG DAF BAE DAF BAD EAF EAF ∠=∠+∠=∠+∠=∠-∠=∠,在AEF △和AGF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS AEF AGF ≌,∴EF GF =,∵GF DG DF BE DF =+=+,∴EF BE DF =+,故答案为:正确;(2)解:上题中的结论依然成立;如图2,延长FD 到点G ,使DG BE =,连接AG ,∵110ADF ∠=︒,70B ∠=︒,∴18011070ADG B ∠=︒-︒=︒=∠,在ABE 和ADG △中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE ADG ≌,∴AE AG =,BAE DAG ∠=∠,∵180B ADF ∠+∠=︒,∴ADG B ∠=∠,在ABE 和ADG △中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE ADG ≌,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴()AEF AGF SAS ≌,∴EF GF =,∵GF DG DF BE DF =+=+,∴EF BE DF =+.。

全等三角形的九大经典模型(学生版)

全等三角形的九大经典模型(学生版)

全等三角形的九大经典模型【题型1平移模型】【题型2轴对称模型】【题型3旋转模型】【题型4一线三等角模型】【题型5倍长中线模型】【题型6截长补短模型】【题型7手拉手模型】【题型8角平分线模型】【题型9半角全等模型】【知识点1平移模型】【模型解读】把△ABC沿着某一条直线l平行移动,所得到△DEF与△ABC称为平移型全等三角形,图①,图②是常见的平移型全等三角线.【常见模型】【题型1平移模型】1(2023春·陕西咸阳·八年级统考期末)如图,将△ABC沿BC方向平移得到△DEF,使点B的对应点E恰好落在边BC的中点上,点C的对应点F在BC的延长线上,连接AD,AC、DE交于点O.下列结论一定正确的是()A.∠B=∠FB.AC⊥DEC.BC=DFD.AC、DE互相平分1.(2023·浙江·八年级假期作业)如图,△ABC的边AC与△CDE的边CE在一条直线上,且点C为AE的中点,AB=CD,BC=DE.(1)求证:△ABC≌△CDE;(2)将△ABC沿射线AC方向平移得到△A B C ,边B C 与边CD的交点为F,连接EF,若EF将CDE 分为面积相等的两部分,且AB=4,则CF=2.(2023春·重庆·八年级校考期中)如图,将△ABC沿射线BC方向平移得到△DCE,连接BD交AC于点F.(1)求证:△AFB≌△CFD;(2)若AB=9,BC=7,求BF的取值范围.3.(2023春·八年级课时练习)已知△ABC,AB=AC,∠ABC=∠ACB,将△ABC沿BC方向平移得到△DEF.如图,连接BD、AF,则BD AF(填“>”“<”或“=”),并证明.【知识点2轴对称模型】【模型解读】将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为轴对称型全等三角形,此类图形中要注意期隐含条件,即公共边或公共角相等.【常见模型】【题型2轴对称模型】1(2023春·河北邯郸·八年级校考期末)如图,在长方形ABCD中,点M为CD中点,将△MBC沿BM翻折至△MBE,若∠AME=α,∠ABE=β,则α与β之间的数量关系为()A.α+3β=180°B.β-α=20°C.α+β=80°D.3β-2α=90°1.(2023·全国·八年级专题练习)如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.BC边上的点,且∠EAF=122.(2023春·山东青岛·八年级统考期中)如图,在RtΔABC中,∠C=90°,将ΔABC沿AB向下翻折后,再绕点A按顺时针旋转α度(α<∠ABC).得到RtΔADE,其中斜边AE交BC于点F,直角边DE 分别AB、BC于点G,H1 请根据题意用实线补全图形;(不得用铅笔作图).2 求证:ΔAFB≅ΔAGE3.(2023春·山西临汾·八年级统考期末)阅读材料,并回答下列问题如图1,以AB为轴,把△ABC翻折180°,可以变换到△ABD的位置;如图2,把△ABC沿射线AC平移,可以变换到△DEF的位置.像这样,其中的一个三角形是另一个三角形经翻折、平移等方法变换成的,这种只改变位置,不改变形状大小的图形变换,叫三角形的全等变换.班里学习小组针对三角形的全等变换进行了探究和讨论(1)请你写出一种全等变换的方法(除翻折、平移外),.(2)如图2,前进小组把△ABC沿射线AC平移到△DEF,若平移的距离为2,且AC=5,则DC=.(3)如图3,圆梦小组展开了探索活动,把△ABC纸片沿DE折叠,使点A落在四边形BCDE内部点A′的位置,且得出一个结论:2∠A′=∠1+∠2.请你对这个结论给出证明.(4)如图4,奋进小组则提出,如果把△ABC纸片沿DE折叠,使点A落在四边形BCDE外部点A′的位置,此时∠A′与∠1、∠2之间结论还成立吗?若成立,请给出证明,若不成立,写出正确结论并证明.【知识点3旋转模型】【模型解读】将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形,识别旋转型三角形时,涉及对顶角相等、等角加(减)公共角的条件.【常见模型】【题型3旋转模型】1(2023春·全国·八年级期末)(1)问题引入:如图1,点F是正方形ABCD边CD上一点,连接AF,将△ADF绕点A顺时针旋转90°与△ABG重合(D与B重合,F与G重合,此时点G,B,C在一条直线上),∠GAF的平分线交BC于点E,连接EF,判断线段EF与GE之间有怎样的数量关系,并说明理由.(2)知识迁移:如图2,在四边形ABCD中,∠ADC+∠B=180°,AB=AD,E,F分别是边BC,CD延长线上的点,连接AE,AF,且∠BAD=2∠EAF,试写出线段BE,EF,DF之间的数量关系,并说明理由.(3)实践创新:如图3,在四边形ABCD中,∠ABC=90°,AC平分∠DAB,点E在AB上,连接DE,CE,且∠DAB=∠DCE=60°,若DE=a,AD=b,AE=c,求BE的长.(用含a,b,c的式子表示)1.(2023春·八年级课时练习)如图,等边△ABC中,∠AOB=115°,∠BOC=125°,则以线段OA,OB,OC为边构成的三角形的各角的度数分别为.2.(2023春·全国·八年级专题练习)已知,如图1,四边形ABCD是正方形,E,F分别在边BC、CD上,且∠EAF=45°.(1)在图1中,连接EF,为了证明结论“EF=BE+DF ”,小亮将ΔADF绕点A顺时针旋转90°后解答了这个问题,请按小亮的思路写出证明过程;(2)如图2,当∠EAF绕点A旋转到图2位置时,试探究EF与DF、BE之间有怎样的数量关系?3.(2023春·江苏·八年级专题练习)如图,在锐角ΔABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.【知识点4一线三等角模型】【模型解读】基本图形如下:此类图形通常告诉BD⊥DE,AB⊥AC,CE⊥DE,那么一定有∠B=∠CAE.【题型4一线三等角模型】1(2023春·山东菏泽·八年级校联考阶段练习)(1)如图1,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:△ABD≌△CAE;(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论△ABD≌△CAE是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.1.(2023·浙江·八年级假期作业)如图,在△ABC中,AB=AC=9,点E在边AC上,AE的中垂线交BC于点D,若∠ADE=∠B,CD=3BD,则CE等于()A.3B.2C.94D.922.(2023春·上海·八年级专题练习)通过对数学模型“K字”模型或“一线三等角”模型的研究学习,解决下列问题:[模型呈现]如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.求证:BC=AE.[模型应用]如图2,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积为.[深入探究]如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.若BC=21,AF=12,则△ADG的面积为.3.(2023春·八年级课时练习)(1)课本习题回放:“如图①,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=2.5cm,DE=1.7cm.求BE的长”,请直接写出此题答案:BE的长为.(2)探索证明:如图②,点B,C在∠MAN的边AM、AN上,AB=AC,点E,F在∠MAN内部的射线AD 上,且∠BED=∠CFD=∠BAC.求证:ΔABE≌ΔCAF.(3)拓展应用:如图③,在ΔABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠BED=∠CFD=∠BAC.若ΔABC的面积为15,则ΔACF与ΔBDE的面积之和为.(直接填写结果,不需要写解答过程)【知识点5倍长中线模型模型】【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.【常见模型】【题型5倍长中线模型】1(2023春·甘肃庆阳·八年级校考期末)小明遇到这样一个问题,如图1,△ABC中,AB=7,AC=5,点D 为BC的中点,求AD的取值范围.小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≅△CAD,经过推理和计算使问题得到解决.请回答:(1)小明证明△BED ≅△CAD 用到的判定定理是:(用字母表示);(2)AD 的取值范围是;(3)小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.参考小明思考问题的方法,解决问题:如图3,在△ABC 中,AD 为BC 边上的中线,且AD 平分∠BAC ,求证:AB =AC .1.(2023春·黑龙江哈尔滨·八年级哈尔滨风华中学校考期中)如图,△ABC 中,点D 在AC 上,AD =3,AB +AC =10,点E 是BD 的中点,连接CE ,∠ACB =∠ABC +2∠BCE ,则CD =.2.(2023春·全国·八年级阶段练习)如图,AB =AE ,AB ⊥AE ,AD =AC ,AD ⊥AC ,点M 为BC 的中点,AM =3,DE =.3.(2023·江苏·八年级假期作业)【观察发现】如图①,△ABC 中,AB =7,AC =5,点D 为BC 的中点,求AD 的取值范围.小明的解法如下:延长AD 到点E ,使DE =AD ,连接CE .在△ABD 与△ECD 中BD =DC∠ADB =∠EDCAD =DE∴△ABD ≅△ECD (SAS )∴AB =.又∵在△AEC 中EC -AC <AE <EC +AC ,而AB =EC =7,AC =5,∴<AE <.又∵AE =2AD .∴<AD <.【探索应用】如图②,AB∥CD,AB=25,CD=8,点E为BC的中点,∠DFE=∠BAE,求DF的长为.(直接写答案)【应用拓展】如图③,∠BAC=60°,∠CDE=120°,AB=AC,DC=DE,连接BE,P为BE的中点,求证:AP⊥DP.【知识点6截长补短模型】【模型解读】截长补短的方法适用于求证线段的和差倍分关系。

初中数学全等三角形旋转模型知识归纳总结含答案

初中数学全等三角形旋转模型知识归纳总结含答案

初中数学全等三角形旋转模型知识归纳总结含答案一、全等三角形旋转模型1.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.解析:(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点, //PM CE ∴,12PM CE =,AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,22AM ∴=在Rt ABC ∆中,10AB AC ==,52AN =22522MN ∴=最大,222111149(72)22242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.2.问题提出:(1)如图1,在ABC 中,AB AC BC =≠,点D 和点A 在直线BC 的同侧,BD BC =,90BAC ∠=︒,30DBC ∠=︒,连接AD ,将ABD △绕点A 逆时针旋转90︒得到ACD ',连接BD '(如图2),可求出ADB ∠的度数为______.问题探究:(2)如图3,在(1)的条件下,若BAC α∠=,DBC β∠=,且120αβ+=︒,DBC ABC ∠<∠ ,①求ADB ∠的度数.②过点A 作直线AE BD ⊥,交直线BD 于点E ,7,2BC AD ==.请求出线段BE 的长.答案:A解析:(1)30°;(2)①30︒;②73-【分析】(1)由旋转的性质,得△ABD ≌ACD '∆,则ADB AD C '∠=∠,然后证明BCD '∆是等边三角形,即可得到30ADB AD C '∠=∠=︒;(2)①将ABD △绕点A 逆时针旋转,使点B 与点C 重合,得到'ACD △,连接'BD .与(1)同理证明D BC '∆为等边三角形,然后利用全等三角形的判定和性质,即可得到答案;②由解直角三角形求出3DE =【详解】解:(1)根据题意,∵AB AC BC =≠,90BAC ∠=︒,∴ABC ∆是等腰直角三角形,∴45ABC ACB ∠=∠=︒,∵30DBC ∠=︒,∴15ABD ∠=︒,由旋转的性质,则△ABD ≌ACD '∆,∴ADB AD C '∠=∠,15ABD ACD '∠=∠=︒,BC CD '=,∴60BCD '∠=︒,∴BCD '∆是等边三角形,∴60BD C '∠=︒,BD CD ''=∵AB AC =,AD AD ''=,∴ABD '∆≌ACD '∆,∴30AD B AD C ''∠=∠=︒,∴30ADB AD C '∠=∠=︒;(2)①DBC ABC ∠<∠,60120α︒︒∴<<.如图1,将ABD △绕点A 逆时针旋转,使点B 与点C 重合,得到'ACD △,连接'BD .AB AC =,ABC ACB ∴∠=∠,BAC α∠=, ()111809022ABC αα︒︒∴∠=-=-, 1902ABD ABC DBC αβ︒∴∠=∠-∠=--, 119090180()22D CB ACD ACB αβααβ''︒︒︒∴∠=∠+∠=--+-=-+. 120,αβ︒+=60D CB '︒∴∠=.,BD BC BD CD '==,,BC CD '∴=D BC '∴为等边三角形,D B D C ''∴=,AD B AD C ''∴≌,AD B AD C ''∴∠=∠,1302AD B BD C ''︒∴∠=∠=, 30ADB ︒∴∠=.②如图2,由①知,30ADB ︒∠=,在Rt ADE △中,30,2ADB AD ︒∠==, 3DE ∴=.BCD '是等边三角形,7BD BC '∴==,7BD BD '∴==,73BE BD DE ∴=-=-.【点睛】本题考查了解直角三角形,旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰直角三角形的性质,以及三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确利用旋转模型进行解题.3.如图,点B ,C ,D 在同一条直线上,△BCF 和△ACD 都是等腰直角三角形,连接AB ,DF ,延长DF 交AB 于点E .(1)如图1,若AD =BD ,DE 是∠ADB 的平分线,BC =1,求CD 的长度;(2)如图2,连接CE ,求证:DE =2CE +AE ;(3)如图3,改变△BCF 的大小,始终保持点在线段AC 上(点F 与点A ,C 不重合).将ED 绕点E 顺时针旋转90°得到EP ,取AD 的中点O ,连接OP .当AC =2时,直接写出OP 长度的最大值.解析:(1)21CD =;(2)证明见解析;(3)22+【分析】 (1)根据等腰直角三角形的性质,求出1FC BC ==,再判断出FA FB =,即可得出结论;(2)先判断出ABC DFC ≅△△,得出BAC CDF ∠=∠,进而判断出ACE DCH ≅△△,得出AE DH =,CE CH =,即可得出结论;(3)先判断出2OE OQ ==,再判断出OED QEP ≅△△,进而求出2PQ OD ==得出结论.【详解】(1)解:BCF 和ACD △都是等腰直角三角形,AC CD ∴=,1FC BC ==,2FB =,AD BD =,DE 是ABD ∆的平分线,DE ∴垂直平分AB ,2FA FB ∴==,21AC FA FC ∴=+=,21CD ∴=;(2)证明:如图2,过点C 作CH CE ⊥交ED 于点H ,BCF 和ACD △都是等腰直角三角形,AC DC ∴=,FC BC =,90ACB DCF ∠=∠=︒;()ABC DFC SAS ∴≅△△,BAC CDF ∴∠=∠,90ECH ∠=︒,90ACE ACH ∴∠+∠=︒,90ACD ∠=︒,90DCH ACH ∴∠+∠=︒,ACE DCH ∴∠=∠.在ACE 和DCH 中,BAC CDF AC DCACE DCH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ACE DCH ASA ∴≅△△,AE DH ∴=,CE CH =,2EH CE ∴=.2DE EH DH CE AE =+=+;(3)OP 的最大值是22+解:如图3,连接OE ,将OE 绕点E 顺时针旋转90︒得到EQ ,连接OQ ,PQ ,则2OQ OE =.由(2)知,90AED ABC CDF ABC BAC ∠=∠+∠=∠+∠=︒,在Rt AED △中,点O 是斜边AD 的中点,122222OE OD AD AC ∴===== 2222OQ OE ∴===,在OED 和QEP △中,OE QE OED QEP DE PE =⎧⎪∠=∠⎨⎪=⎩,()OED QEP SAS ∴≅△△,2PQ OD ∴==22OP OQ PQ +=+O 、P 、Q 三点共线时,取“=”号,OP ∴的最大值是22+【点睛】此题是几何变换综合题,主要等腰直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.4.如图1所示,在Rt ABC △中90BAC ∠=︒,AB AC =,2BC =,以BC 所在直线为x 轴,边BC 的垂直平分线为y 轴建立平面直角坐标系,将ABC 绕P 点0,1顺时针旋转.(1)填空:当点B 旋转到y 轴正半轴时,则旋转后点A 坐标为______;(2)如图2所示,若边AB 与y 轴交点为E ,边AC 与直线1y x =-的交点为F ,求证:AEF 的周长为定值;(3)在(2)的条件下,求AEF 内切圆半径的最大值.解析:(1)2,21;(2)见解析;(3)324【分析】 (1)作出图形,'''A B C 是ABC 绕 P 点0,1顺时针旋转,点B 旋转到y 轴正半轴时得到的图形,连接 BP ,CP ,根据2BC =,y 轴垂直平分BC , AB AC =,()0,1P -可证得四边形ABPC 是正方形,则有 '''2BP B PAB A B ,'0'21B B P PO ,可得点 A 坐标; (2)作BPQ CPF ∠=∠,交AB 延长线于Q 点,根据四边形ABPC 是正方形,得到90QBP FCP ∠=∠=︒,BP CP =,可证BPQ CPF ASA ≌△△,得BQ CF =,QP FP =,利用ASA 再可证得QPE FPE ≌△△,得QE FE =则AEF 的周长22AB AC =+=(3)设EF m =,AE n =,Rt AEF 的内切圆半径为r ,由(2)可得22AF m n =-则2AE AF EF r +-=222n m n m +--=2m =,当m 最小时,r 最大.得到22222n m n m 整理得:2224220nm n m ,关于n 的一元二次方程有解,即22244220m m 化简得24280m m +-≥,利用二次函数图像可得422m ≥-422m ≤--(不合题意,舍去)可得m 的最小值为42-r 2422324,则有AEF 内切圆半径的最大值为324.【详解】解:(1)如图示,'''A B C 是ABC 绕 P 点0,1顺时针旋转,点B 旋转到y 轴正半轴时得到的图形,连接 BP ,CP ,∵2BC =,y 轴垂直平分BC∴1BO CO ==又∵Rt ABC △中,AB AC =∴1AO =,2AB AC ==∵()0,1P -∴1PO =∴AO BO CO PO ===∴四边形ABPC 是正方形 ∴'''2BPB P AB A B ∴'0'21B B P PO ∴点A 坐标为2,21(2)如图2所示,作BPQ CPF ∠=∠,交AB 延长线于Q 点 ∵四边形ABPC 是正方形∴90QBP FCP ∠=∠=︒, BP CP = ∴BPQ CPF ASA ≌△△∴ BQ CF =,QP FP = ∵点F 在直线1y x =-∴45FPE ∠=︒∴ 45BPE FPC ∠+∠=︒ ∴45BPE BPQ ∠+∠=︒∴45QPE FPE ∠=∠=︒ ∵EP EP =∴QPE FPE ASA ≌△△∴ QE FE = ∴AEF 的周长AE EF AF AE QE AF =++=++ AE BE BQ AF AE BE FC AF =+++=+++22AB AC =+=(3)设EF m =,AE n =,Rt AEF 的内切圆半径为 r ,由(2)可得22AF m n =--则2AE AF EF r +-= 222n m n m +---= 2m =-∴当m 最小时,r 最大.∵在Rt AEF 中,222AE AF EF +=∴22222n m n m 整理得: 2224220n m nm ∵关于n 的一元二次方程有解∴22244220m m∴24280m m +-≥ 利用二次函数图像可得422m ≥-或422m ≤--(不合题意,舍去)∴m 的最小值为422-∴r 的最大值为2422324即AEF 内切圆半径的最大值为324-.【点睛】本题主要考查了一次函数的综合应用以及根的判别式、全等三角形的判定与性质、旋转、三角形内切圆等知识,能熟练应用相关性质是解题关键.5.如图1,在△ABC 和△ADE 中,∠DAE=∠BAC ,AD=AE ,AB=AC .(1)求证:△ABD ≌△ACE ;(2)如图2,在△ABC 和△ADE 中,∠DAE=∠BAC ,AD=AE ,AB=AC ,∠ADB=90°,点E 在△ABC 内,延长DE 交BC 于点F ,求证:点F 是BC 中点;(3)△ABC 为等腰三角形,∠BAC=120°,AB=AC ,点P 为△ABC 所在平面内一点,∠APB=120°,AP=2,BP=4,请直接写出 CP 的长.答案:D解析:(1)证明见详解;(2)证明见详解;(3)27或213.【分析】(1)因为∠DAE=∠BAC ,可以得到∠DAB=∠EAC ,因为AD=AE ,AB=AC ,即可得到△ABD ≌△ACE ;(2)连接CE ,延长EF 至点H ,取CF=CH ,连接CH ,由(1)可得△ABD ≌△ACE ,所以∠AEC=90°和CE=BD ,可以推出∠BDF=∠CEF ,再证明△DBF ≌△ECH ,所以BF=CH ,等量代换即可得到BF=FC ,即可解决;(3)点P 在△ABC 内部,将△ABP 逆时针旋转120°,得到ACP ∆',连接PP '和PC ,可以得到△PP C '是直角三角形,利用勾股定理即可求出PC 的值;当点P 在△ABC 外部,将△APB 绕点A 逆时针旋转120︒得到PDC ∆,连接PP '和PC ,过点P 作PD ⊥'CP 于点D ,连接PD 可以得到△PP D ',△PP D '是直角三角形和,利用勾股定理即可求出'DP 及PC 的值.【详解】解:(1)证明:∵∠DAE=∠BAC∴∠DAB=∠EAC∵AD=AE ,AB=AC∴△ABD ≌△ACE(2)证明:连接CE ,延长EF 至点H ,取CF=CH ,连接CH ,如图所示:∵△ADB ≌△AEC∴BD=EC ,∠ADB=∠AEC=90°∵AD=AE∴∠ADE=∠AED∵∠ADE+∠EDB=∠AED+∠CEH=90°∴∠EDB=∠CEH∵CF=CH∴∠CFH=∠CHF∴∠DFB=∠H∵CE=BD∴△DBF ≌△ECH∴BF=CH∴BF=CF∴点F 是BC 的中点(3)当点P 在△ABC 内部,如图所示,将△ABP 逆时针旋转120°,得到ACP ∆',连接PP '和PC∵将△ABP 旋转120°得到ACP ∆'∴∠PAP '=120°,AP='AP =2,BP=CP '=4∴PP '=23,∵∠AP C '=120°,∠AP P '=30°,∴∠PP C '=90°,∴PC=()2223427+=.当点P 在△ABC 外部,如图所示,将△APB 绕点A 逆时针旋转120︒到△'AP C ,过点P 作PD ⊥'CP 于点D ,连接PD , ∵将△ABP 旋转120°得到ACP ∆'∴∠PAP '=120°,AP='AP =2,BP=CP '=4,∴PP '3∵∠AP C '=120°,∠AP P '=30°,∴∠PP C '=150°,∴∠PP D '=30°,在Rt 'PDP 中,1'32PD PP ==, 22''3DP PP PD ∴=-=,''347DC DP P C ∴=+=+=,()222237213PC PD DC ∴=+=+=. 综上所述,27213PC =或【点睛】本题主要考查了全等三角形以及旋转,合理的作出辅助线以及熟练旋转的性质是解决本题的关键.6.如图,直线y=﹣x+c与x轴交于点B(3,0),与y轴交于点C,过点B,C的抛物线y=﹣x2+bx+c与x轴的另一个交点为A.(1)求抛物线的解析式和点A的坐标;(2)P是直线BC上方抛物线上一动点,PA交BC于D.设t=PDAD,请求出t的最大值和此时点P的坐标;(3)M是x轴上一动点,连接MC,将MC绕点M逆时针旋转90°得线段ME,若点E恰好落在抛物线上,请直接写出此时点M的坐标.答案:A解析:(1)y=﹣x2+2x+3,A(﹣1,0);(2)t的最大值为916,此时P(32,154);(3)M 933-,0933+0).【分析】(1)利用待定系数法解决问题即可;(2)连接AC,PC,PB,过点A作AE⊥BC于E,过等P作PF⊥BC于F.设P(m,﹣m2+2m+3).利用相似三角形的性质构建二次函数解决问题即可;(3)过点E作EH⊥x轴于H.设M(m,0),利用全等三角形的性质求出点E的坐标(用m表示),再利用待定系数法解决问题即可.【详解】解:(1)∵直线y=﹣x+c与x轴交于点B(3,0),与y轴交于点C,∴0=﹣3+c,解得c=3,∴C(0,3),∵抛物线经过B,C,∴9303b cc-++=⎧⎨=⎩,解得23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3,令y=0,得到﹣x2+2x+3=0,解得x=﹣1或3,∴A(﹣1,0);(2)如图,连接AC,PC,PB,过点A作AE⊥BC于E,过点P作PF⊥BC于F.设P(m,﹣m2+2m+3).∵AE∥PF,∴△PFD∽△AED,∴PDAD =PFAE,∵S△PBC=12•BC•PF,S△ACB=12•BC•AE,∴PDAD =PBCABCSS∆∆,∵S△ABC=12•AB•OC=12×4×3=6,∴t=PDAD =6PBCS∆=211133(23)332226m m m⨯⨯+⨯⨯-++-⨯⨯=﹣14m2+34m=﹣14(m﹣32)2+916,∵﹣14<0,∴m=32时,t有最大值,最大值为916,此时P(32,154);(3)如图,过点E作EH⊥x轴于H,∵∠COM =∠EHM =∠CME =90°,∴∠EMH +∠CMH =90°,∠EMH +∠MEH =90°,∴∠MEH =∠CMO ,∵MC =ME ,∴△COM ≌△MHE (AAS ),∴OC =MH =3,OM =EH ,设M (m ,0),则E (m ﹣3,﹣m ),把E (m ﹣3,﹣m )代入y =﹣x 2+2x +3,可得﹣(m ﹣3)2+2(m ﹣3)+3=﹣m , 整理得,m 2﹣9m +12=0,解得m =9332-或9332+, ∴M (9332-,0)或(9332+,0). 【点睛】本题考查的是二次函数综合题,涉及全等三角形的性质和判定,相似三角形的性质和判定,解题的关键是利用数形结合的思想,在二次函数图象上构造全等三角形或相似三角形,利用几何的性质进行点坐标的求解.7.如图,BC ⊥CA ,BC =CA ,DC ⊥CE ,DC =CE ,直线BD 与AE 交于点F ,交AC 于点G ,连接CF .(1)求证:△ACE ≌△BCD ;(2)求证:BF ⊥AE ;(3)请判断∠CFE 与∠CAB 的大小关系并说明理由.答案:C解析:(1)见解析;(2)见解析;(3)∠CFE =∠CAB ,见解析【分析】(1)根据垂直的定义得到∠ACB =∠DCE =90°,由角的和差得到∠BCD =∠ACE ,即可得到结论;(2)根据全等三角形的性质得到∠CBD =∠CAE ,根据对顶角的性质得到∠BGC =∠AGE ,由三角形的内角和即可得到结论;(3)过C 作CH ⊥AE 于H ,CI ⊥BF 于I ,根据全等三角形的性质得到AE =BD ,S △ACE =S △BCD ,根据三角形的面积公式得到CH =CI ,于是得到CF 平分∠BFH ,推出△ABC 是等腰直角三角形,即可得到结论.【详解】(1)证明:∵BC ⊥CA ,DC ⊥CE ,∴∠ACB =∠DCE =90°,∴∠BCD =∠ACE ,在△BCD 与△ACE 中,BC CA ACD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD ;(2)∵△BCD ≌△ACE ,∴∠CBD =∠CAE ,∵∠BGC =∠AGE ,∴∠AFB =∠ACB =90°,∴BF ⊥AE ;(3)∠CFE =∠CAB ,过C 作CH ⊥AE 于H ,CI ⊥BF 于I ,∵△BCD ≌△ACE ,∴ACE BCD AE BD,S S ∆∆==,∴CH =CI ,∴CF 平分∠BFH ,∵BF ⊥AE ,∴∠BFH =90°,∠CFE =45°,∵BC ⊥CA ,BC =CA ,∴△ABC 是等腰直角三角形,∴∠CAB =45°,∴∠CFE =∠CAB .【点睛】角的和差、对顶角的性质这些知识点在证明全等和垂直过程中经常会遇到,需要掌握。

专题 全等三角形六种基本模型(学生版)

专题  全等三角形六种基本模型(学生版)

专题全等三角形六种基本模型通用的解题思路:模型一:一线三等角模型一线三等角指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。

或叫“K字模型”。

三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。

一般类型:基本类型:同侧“一线三等角”异侧“一线三等角”模型二:手拉手模型--旋转型全等一、等边三角形手拉手-出全等二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;题型三:倍长中线模型构造全等三角形倍长中线是指加倍延长中线,使所延长部分与中线相等,往往需要连接相应的顶点,则对应角对应边都对应相等。

常用于构造全等三角形。

中线倍长法多用于构造全等三角形和证明边之间的关系(通常用“SAS”证明) (注:一般都是原题已经有中线时用)。

三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.主要思路:倍长中线(线段)造全等在△ABC中AD是BC边中线延长AD到E,使DE=AD,连接BE作CF⊥AD于F,作BE⊥AD的延长线于E连接BE延长MD到N,使DN=MD,连接CD题型四:平行线+线段中点构造全等模型题型五:等腰三角形中的半角模型过等腰三角形顶点两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。

解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。

专题3 全等模型——手拉手

专题3   全等模型——手拉手

初中数学 ︵ 手拉手模型 ︶培优篇全等三角形在中考数学几何模块中占据着重要地位,也是必须掌握的一块内容,本专题就全等三角形中的重要模型(手拉手(旋转)模型)进行梳理及对应试题分析,方便掌握.【模型解读】将两个三角形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等.公共顶点A 记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”.对应操作:左手拉左手(即连结BD ),右手拉右手(即连结CE ),得△ABD≅△ACE.【常见模型及证法】 (等边)初中数学 ︵ 手拉手模型 ︶培优篇 (等腰直角)(等腰)例1.如图,点O 是等边三角形ABC 内的一点,BOC ,将△BOC 绕点C 顺时针旋转60°得△ADC ,连接OD .(1)当100 时,ODA °; (2)当120时,ODA°;(3)若150 ,8OB ,4OC ,则OA 的长为 .初中数学 ︵ 手拉手模型 ︶培优篇 例2.已知△ABC 中,∠BAC =60°,以AB 和BC 为边向外作等边△ABD 和等边△BCE .(1)连接AE 、CD ,如图1,求证:AE =CD ;(2)若N 为CD 中点,连接AN ,如图2,求证:CE =2AN ;(3)若AB ⊥BC ,延长AB交DE 于M ,DB 3,则BM =_______(直接写出结果)初中数学 ︵ 手拉手模型 ︶培优篇 例3.两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若△ABC 和△ADE 是顶角相等的等腰三角形,BC ,DE 分别是底边.求证:BD CE ;(2)解决问题:如图2,若△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE = 90°,点A ,D ,E 在同一条直线上,CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系并说明理由.图1 图2初中数学 ︵ 手拉手模型 ︶培优篇【模型解读】将两个多边形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个多边形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等.【常见模型及证法】如图,在任意△ABC 中,分别以AB 、AC 为边作正方形ABDE 、ACFG ,连接EC 、BG ,则△AEC ≌△ABG .例1.(1)作图发现:如图1,已知ΔABC ,小涵同学以AB 、AC 为边向ΔABC 外作等边ΔABD 和等边ΔACE ,连接BE 、CD .这时他发现BE 与CD的数量关系是.(2)拓展探究:如图2,已知ABC ,小涵同学以AB 、AC 为边向外作正方形ABFD 和正方形ACGE ,连接BE 、CD ,试判断BE 与CD 之间的数量关系,并说明理由.初中数学 ︵ 手拉手模型 ︶培优篇 例2.如图,ΔABD 和ΔACE 均为等边三角形,连接BE 、CD . (1)请判断:线段BE 与CD 的大小关系是 ;(2)观察图,当ΔABD 和ΔACE 分别绕点A 旋转时,BE 、CD 之间的大小关系是否会改变?(3)观察如图3和4,若四边形ABCD 、DEFG 都是正方形,猜想类似的结论是________,在如图中证明你的猜想.初中数学 ︵手拉手模型 ︶培优篇1.如图,在ABC 中,45,4,60ACB AB BAC ,D 是边BC 上的一个动点,连接AD ,并将线段AD 绕点A 逆时针旋转60 后得线段AD ,连接BD ,在点D 运动过程中,线段BD 长度的最小值是_________.初中数学 ︵ 手拉手模型 ︶培优篇(1)如图2,将△BDE 绕点B 逆时针旋转任意角度α,连接AD ,EC ,则线段EC 的关系是 ;(2)如图3,DE ∥BC ,连接AE ,判断△EAC 的形状,并求出EC 的长; (3)继续旋转△BDE ,当∠AEC =90°时,请直接写出EC 的长.初中数学 ︵ 手拉手模型 ︶培优篇 4.【问题发现】(1)如图1,△ABC 和△ADE 均为等边三角形,点B 、D 、E 在同一直线上,连接CE ,容易发现:①BEC 的度数为 ;②线段BD 、CE 之间的数量关系为 ;【类比探究】(2)如图2,△ABC 和△ADE 均为等腰直角三角形,∠BAC =∠DAE = 90°,点B ,D ,E 在同一直线上,连接CE ,试判断BEC 的度数以及线段BE 、CE 、DE 之间的数量关系,并说明理由;【问题解决】(3)如图3,90AOB ACB ,4OA ,8OB ,AC BC ,则2OC 的值为 .。

旋转中的三种全等模型(手拉手、半角、对角互补模型)—2023-2024学年九年级数学上册(解析版)

旋转中的三种全等模型(手拉手、半角、对角互补模型)—2023-2024学年九年级数学上册(解析版)

旋转中的三类全等模型(手拉手、半角、对角互补模型)本专题重点分析旋转中的三类全等模型(手拉手、半角、对角互补模型),结合各类模型展示旋转中的变与不变,并结合经典例题和专项训练深度分析基本图形和归纳主要步骤,同时规范了解题步骤,提高数学的综合解题能力。

模型1.手拉手模型【模型解读】将两个三角形(或多边形)绕着公共顶点旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等。

其中:公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。

手拉模型解题思路:SAS型全等(核心在于导角,即等角加(减)公共角)。

1)双等边三角形型条件:△ABC和△DCE均为等边三角形,C为公共点;连接BE,AD交于点F。

结论:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。

2)双等腰直角三角形型条件:△ABC和△DCE均为等腰直角三角形,C为公共点;连接BE,AD交于点N。

结论:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BFD。

3)双等腰三角形型条件:△ABC和△DCE均为等腰三角形,C为公共点;连接BE,AD交于点F。

结论:①△ACD≌△BCE;②BE=AD;③∠ACM=∠BFM;④CF平分∠BFD。

4)双正方形形型条件:△ABCFD和△CEFG都是正方形,C为公共点;连接BG,ED交于点N。

结论:①△△BCG≌△DCE;②BG=DE;③∠BCM=∠DNM=90°;④CN平分∠BNE。

【答案】(1)40;(2)60;(3)【分析】(1)证明△COD是等边三角形,得到∠ODC=60°,即可得到答案;∠=∠ADC-∠ODC求出答案;(3)由△BOC≌△ADC,推出∠ADC=∠BOC=150°,AD=OB=8,根据(2)利用ODA△COD 是等边三角形,得到∠ODC=60°,OD=4OC =,证得△AOD 是直角三角形,利用勾股定理求出.【详解】(1)解:∵CO=CD ,∠OCD=60°,∴△COD 是等边三角形;∴∠ODC=60°,∵∠ADC=∠BOC=100α=︒,∴ODA ∠=∠ADC -∠ODC=40°,故答案为:40;(2)∵∠ADC=∠BOC=120α=︒,∴ODA ∠=∠ADC -∠ODC=60°,故答案为:60;(3)解:当150α=︒,即∠BOC=150°,∴△AOD 是直角三角形.∵△BOC ≌△ADC ,∴∠ADC=∠BOC=150°,AD=OB=8,又∵△COD 是等边三角形,∴∠ODC=60°,OD=4OC =,∴∠ADO=90°,即△AOD 是直角三角形,∴OA =故答案为:【点睛】本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力. 备用图【答案】(1)△BEF 是等边三角形(2)证明见解析(3)131−【分析】(1)根据旋转即可证明△BEF 是等边三角形;(2)由△EBF 是等边三角形,可得FB=EB ,再证明∠FBA=∠EBC ,又因为AB=BC ,所以可证明△FBA ≌△EBC ,进而可得AF=CE ;(3)当点D ,E ,F 在同一直线上时,过B 作BM ⊥EF 于M ,再在Rt △BMD 中利用勾股定理列方程求解即可.(1)∵将线段EB 绕点E 顺时针旋转60°得到线段EF ,∴EB=EF ,60FEB =︒∠∴△BEF 是等边三角形(2)∵等边△ABC 和△BEF ∴BF=BE ,AB=BC ,60EBF ABC ∠=∠=︒∴EBF ABE ABC ABE ∠+∠=∠+∠即∠FBA=∠EBC∴△FBA ≌△EBC (SAS )∴AF=CE(3)图形如图所示:过B 作BM ⊥EF 于M ,∵△BEF 是等边三角形∴2BE EM =,BM =∵点D 是AB 的中点,∴142BD AB == 在Rt △BMD 中,222BM DM BD +=∵DE=2∴222)(2)4EM ++=解得EM 或EM =(舍去)∴21BE EM == 【点睛】本题考查了旋转的性质,全等三角形的判定和性质,勾股定理的运用,旋转的性质,等边三角形的判定和性质,解一元二次方程,利用手拉手模型构造全等三角形是解题的关键.例3.(2022·吉林·九年级期末)如图①,在ABC 中,90C ∠=︒,AC BC ==点D ,E 分别在边AC ,BC 上,且CD CE =AD BE =,AD BE ⊥成立.(1)将CDE △绕点C 逆时针旋转90︒时,在图②中补充图形,并直接写出BE 的长度;(2)当CDE △绕点C 逆时针旋转一周的过程中,AD 与BE 的数量关系和位置关系是否仍然成立?若成立,请你利用图③证明,若不成立请说明理由;(3)将CDE △绕点C 逆时针旋转一周的过程中,当A ,D ,E 三点在同一条直线上时,请直接写出AD 的长度.【答案】(1)补充图形见解析;BE =(2)AD BE =,AD BE ⊥仍然成立,证明见解析;(3)1AD或1=AD .【分析】(1)根据旋转作图的方法作图,再根据勾股定理求出BE 的长即可;(2)根据SAS 证明E ACD BC ≅∆∆得AD=BE ,∠1=∠2,再根据∠1+∠3+∠4=90°得∠2∠3+∠4=90°,从而可得出结论;(3)分两种情况,运用勾股定理求解即可.【详解】解:(1)如图所示,根据题意得,点D 在BC 上,∴BCE ∆是直角三角形,且由勾股定理得,BE ==(2)AD BE =,AD BE ⊥仍然成立. 证明:延长AD 交BE 于点H ,∵90ACB DCE ∠=∠=︒,ACD ACB BCD ∠=∠−∠,BCE DCE BCD ∠=∠−∠,∴ACD BCE ∠=∠,又∵CD CE =,AC BC =,∴ACD BCE ≅△△,∴AD BE =,12∠=∠,在Rt ABC 中,13490∠+∠+∠=︒,∴23490∠+∠+∠=︒,∴90AHB ∠=︒,∴AD BE ⊥.(3)①当点D 在AC 上方时,如图1所示,同(2)可得ACD BCE ≅△△∴AD=BE 同理可证BE AE ⊥在Rt △CDE 中,CD CE =2=在Rt △ACB 中,AC BC =AB ==设AD=BE=x ,在Rt △ABE 中,222BE AE AB +=∴222(2)x x ++=解得,1x ∴ 1AD =②当点D 在AC 下方时,如图2所示,同(2)可得ACD BCE ≅△△∴AD=BE 同理可证BE AE ⊥在Rt △CDE 中,CD CE =2=在Rt △ACB 中,AC BC =AB ==设AD=BE=x ,在Rt △ABE 中,222BE AE AB +=∴222(2)x x +−=解得,x = ∴ 1AD .所以,AD 1【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等知识,熟练解答本题的关键.例4.(2022·黑龙江·虎林市九年级期末)已知Rt △ABC 中,AC =BC ,∠ACB =90°,F 为AB 边的中点,且DF =EF ,∠DFE =90°,D 是BC 上一个动点.如图1,当D 与C 重合时,易证:CD 2+DB 2=2DF 2;(1)当D 不与C 、B ,CD 、DB 、DF 有怎样的数量关系,请直接写出你的猜想,不需证明.(2)当D 在BC 的延长线上时,如图3,CD 、DB 、DF 有怎样的数量关系,请写出你的猜想,并加以证明.【答案】(1)CD2+DB2=2DF2 ;(2)CD2+DB2=2DF2,证明见解析【分析】(1)由已知得222DE DF =,连接CF ,BE ,证明CDF BEF ∆≅∆得CD=BE ,再证明BDE ∆为直角三角形,由勾股定理可得结论;(2)连接CF ,BE ,证明CDF BEF ∆≅∆得CD=BE ,再证明BDE ∆为直角三角形,由勾股定理可得结论.【详解】解:(1)CD2+DB2=2DF2证明:∵DF=EF ,∠DFE =90°,∴222DF EF DE += ∴222DE DF =连接CF ,BE ,如图∵△ABC 是等腰直角三角形,F 为斜边AB 的中点∴CF BF =, CF AB ⊥,即90CFB ∠=︒ ∴45FCB FBC ∠=∠=︒,90CFD DFB ∠+∠=︒又90DFB EFB ∠+∠=︒ ∴CFD EFB ∠=∠在CFD ∆和BFE ∆中CF BF CFD BFE DF EF =⎧⎪∠=∠⎨⎪=⎩ ∴CFD ∆≅BFE ∆∴CD BE =,45EBF FCB ∠=∠=︒ ∴454590DBF EBF ∠+∠=︒+︒=︒ ∴222DB BE DE +=∵CD BE =,222DE DF =∴CD2+DB2=2DF2 ;(2)CD2+DB2=2DF2 证明:连接BE∵CF=BF ,DF=EF 又∵∠DFC+∠CFE=∠EFB+∠CFB=90°∴∠DFC=∠EFB ∴△DFC ≌△EFB ∴CD=BE ,∠DCF=∠EBF=135°∵∠EBD=∠EBF -∠FBD=135°-45°=90° 在Rt △DBE 中,BE2+DB2=DE2∵ DE2=2DF2 ∴ CD2+DB2=2DF2【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题.例5.(2022·山西大同·九年级期中)综合与实践:已知ABC 是等腰三角形,AB AC =.(1)特殊情形:如图1,当DE ∥BC 时,DB ______EC .(填“>”“<”或“=”);(2)发现结论:若将图1中的ADE 绕点A 顺时针旋转α(0180α︒<<︒)到图2所示的位置,则(1)中的结论还成立吗?请说明理由.(3)拓展运用:某学习小组在解答问题:“如图3,点P 是等腰直角三角形ABC 内一点,90BAC ∠=︒,且1BP =,2AP =,3CP =,求BPA ∠的度数”时,小明发现可以利用旋转的知识,将BAP △绕点A 顺时针旋转90°得到CAE V ,连接PE ,构造新图形解决问题.请你根据小明的发现直接写出BPA ∠的度数.【答案】(1)=;(2)成立,理由见解析;(3)∠BPA=135°.【分析】(1)由DE ∥BC ,得到∠ADE=∠B ,∠AED=∠C ,结合AB=AC ,得到DB=EC ;(2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ;(3)由旋转构造出△APB ≌△AEC ,再用勾股定理计算出PE ,然后用勾股定理逆定理判断出△PEC 是直角三角形,在简单计算即可.【详解】解:(1)∵DE ∥BC ,∴∠ADE=∠B ,∠AED=∠C ,∵AB=AC ,∴∠B=∠C ,∴∠ADE=∠AED AD=AE ,∴DB=EC ,故答案为:=;(2)成立.证明:由①易知AD=AE ,∴由旋转性质可知∠DAB=∠EAC ,在△DAB 和△EAC 中AD AE DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△DAB ≌△EAC (SAS ),∴DB=CE ;(3)如图,将△APB 绕点A 旋转90°得△AEC ,连接PE ,∴△APB ≌△AEC ,∴AE=AP=2,EC=BP=1,∠PAE=90°,∴∠AEP=∠APE=45°,在Rt △PAE 中,由勾股定理可得,在△PEC 中,PE2=(2=8,CE2=12=1,PC2=32=9,∵PE2+CE2=PA2,∴△PEC 是直角三角形,∴∠PEC=90°,∴∠AEC=135°,又∵△APB ≌△AEC ,∴∠BPA=∠CEA=135°.【点睛】本题主要考查了旋转的性质,平行线的性质,全等三角形的性质和判定,勾股定理及其逆定理,解本题的关键是构造全等三角形,也是本题的难点.【答案】(1)见解析;(2)48;(3)15︒【分析】(1)通过边角边判定三角形全等;(2)连接,BD GE ,设,BG DE 交于点O ,,DE CG 交于点M ,先证明DE BG ⊥,由勾股定理可得2222DG BE DB GE +=+;(3)作CK GE ⊥于点K ,则122CK GE ==,且1452GCK GCE ∠=∠=︒,由含30度角的直角三角形的性质求解.【详解】(1)四边形ABCE 与CEFG 为正方形,CG CE =,90BCG DCE ∠=∠=︒,90BCG α=∠︒+,90DCE α∠=︒+,BCG DCE ∴∠=∠,在BCG 和DCE △中,BC DC BCG DCECG CE =⎧⎪∠=∠⎨⎪=⎩BCG DCE ∴≌ (SAS), (2)连接,BD GE ,设,BG DE 交于点O ,,DE CG 交于点M ,90BCG α=∠︒+,90DCE α∠=︒+,BCG DCE ∴∠=∠, 在△BCG 和DCE △中,BC DC BCG DCE CG CE =⎧⎪∠=∠⎨⎪=⎩()SAS BCG DCE ∴△≌,BGC DEC ∠=∠,GMO EMC ∠=∠,18090GOM GMO BGC EMC DEC GCE ∴∠=︒−∠−∠=︒−∠−∠=∠=︒DE BG ∴⊥,由勾股定理得222DG DO GO =+,222BE OB OE =+,22222222DG BE DO GO OB OE DB GE ∴+=+++=+,4,AB CG ==,BD ∴==4GE ==,2222(448DG BE ++∴==,(3)作CK GE ⊥于点K ,如图,△CEG 为等腰直角三角形,122CK GE ==,且1452GCK GCE ∠=∠=︒,在Rt CDK 中,12CK CD =,30CDK ∴∠=︒,903060DCK ∴∠=︒−︒=︒, 604515DCG DCK GCK =∠−∠=︒−︒=︒∠.∴15α=︒.【点睛】本题考查四边形与三角形的综合问题,解题关键是熟练掌握正方形与直角三角形的性质,通过添加辅助线求解.模型2.半角模型【模型解读】半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半思想方法:通过旋转构造全等三角形,实现线段的转化1)正方形半角模型条件:四边形ABCD是正方形,∠ECF=45°;结论:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④∆AEF的周长=2AB;⑤CE、CF分别平分∠BEF和∠EFD。

全等三角形中的常见五种基本模型(原卷版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

全等三角形中的常见五种基本模型(原卷版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

模型介绍全等三角形的模型种类多,其中有关中点的模型与垂直模型在前面的专题已经很详细的讲解,这里就不在重复.模型一、截长补短模型①截长:在较长的线段上截取另外两条较短的线段。

如图所示,在BF上截取BM=DF,易证△BMC≌△DFC(SAS),则MC=FC=FG,∠BCM=∠DCF,可得△MCF为等腰直角三角形,又可证∠CFE=45°,∠CFG=90°,∠CFG=∠MCF,FG∥CM,可得四边形CGFM为平行四边形,则CG=MF,于是BF=BM+MF=DF+CG.②补短:选取两条较短线段中的一条进行延长,使得较短的两条线段共线并寻求解题突破。

如图所示,延长GC至N,使CN=DF,易证△CDF≌△BCN(SAS),可得CF=FG=BN,∠DFC=∠BNC=135°,又知∠FGC=45°,可证BN∥FG,于是四边形BFGN为平行四边形,得BF=NG,所以BF=NG=NC+CG=DF+CG.模型二、平移全等模型模型三、对称全等模型模型四、旋转全等模型模型五、手拉手全等模型例题精讲模型一、截长补短模型【例1】.如图,AD⊥BC,AB+BD=DC,∠B=54°,则∠C=.变式训练【变式1-1】.如图,点P是△ABC三个内角的角平分线的交点,连接AP、BP、CP,∠ACB =60°,且CA+AP=BC,则∠CAB的度数为()A.60°B.70°C.80°D.90°【变式1-2】.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.【变式1-3】.如图,△ABC为等腰直角三角形,AB=AC,∠BAC=90°,点D在线段AB 上,连接CD,∠ADC=60°,AD=2,过C作CE⊥CD,且CE=CD,连接DE,交BC 于F.(1)求△CDE的面积;(2)证明:DF+CF=EF.模型二、平移全等模型【例2】.如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.变式训练【变式2-1】.如图1,A,B,C,D在同一直线上,AB=CD,DE∥AF,且DE=AF,求证:△AFC≌△DEB.如果将BD沿着AD边的方向平行移动,如图2,3时,其余条件不变,结论是否成立?如果成立,请予以证明;如果不成立,请说明理由.【变式2-2】.如图,AD,BF相交于点O,AB∥DF,AB=DF,点E与点C在BF上,且BE=CF.(1)求证:△ABC≌△DFE;(2)求证:点O为BF的中点.【变式2-3】.如图,△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,∠ADC=60°,求CD的长.模型三、对称全等模型【例3】.如图,AD∥BC,∠D=90°,∠CPB=30°,∠DAB的角平分线与∠CBA的角平分线相交于点P,且D,P,C在同一条直线上.(1)求∠PAD的度数;(2)求证:P是线段CD的中点.变式训练【变式3-1】.如图,AB=AC,D、E分别是AB、AC的中点,AM⊥CD于M,AN⊥BE干N.求证:AM=AN.【变式3-2】.如图,已知点E、F分别是正方形ABCD中边AB、BC上的点,且AB=12,AE=6,将正方形分别沿DE、DF向内折叠,此时DA与DC重合为DG,求CF的长度.【变式3-3】.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.模型四、旋转全等模型【例4】.如图,已知:AD=AB,AE=AC,AD⊥AB,AE⊥AC.猜想线段CD与BE之间的数量关系与位置关系,并证明你的猜想.变式训练【变式4-1】.已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.(1)如图1,点E在BC上,求证:BC=BD+BE;(2)如图2,点E在CB的延长线上,求证:BC=BD﹣BE.【变式4-2】.如图所示,已知P是正方形ABCD外一点,且PA=3,PB=4,则PC的最大值是3+4.模型五、手拉手全等模型【例5】.如图,△ABC与△ADE是以点A为公共顶点的两个三角形,且AD=AE,AB=AC,∠DAE=∠CAB=90°,且线段BD、CE交于F.(1)求证:△AEC≌△ADB.(2)猜想CE与DB之间的关系,并说明理由.变式训练【变式5-1】.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③DE=DP;④∠AOB=60°.恒成立的结论有几个()A.1个B.2个C.3个D.4个【变式5-2】.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【变式5-3】.(1)如图1,等腰△ABC 与等腰△DEC 有公共点C ,且∠BCA =∠ECD ,连接BE 、AD ,若BC =AC ,EC =DC ,求证:BE =AD .(2)若将△DEC 绕点C 旋转至图2、图3、图4情形时,其余条件不变,BE 与AD 还相等吗?为什么?实战演练1.如图,已知AB AD =,BC DE =,且10CAD ∠=︒,25B D ∠=∠=︒,120EAB ∠=︒,则EGF ∠的度数为()A .120︒B .135︒C .115︒D .125︒2.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.13.如图,在△ABC中,∠BAC=30°,且AB=AC,P是△ABC内一点,若AP+BP+CP的最小值为4,则BC2=.4.正方形ABCD中,AB=6,点E在边CD上,CE=2DE,将△ADE沿AE折叠至△AFE,=6;延长EF交BC于点G,连接AG,CF.下列结论:①△ABG≌△AFG;②S△FGC③EG=DE+BG;④BG=GC.其中正确的有(填序号).5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿对角线AC折叠,点D落在D′处.(1)求证:AF=CF(2)求AF的长度.6.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.(1)求证:△ACD≌△BCE;(2)若AB=3cm,则BE=cm.(3)BE与AD有何位置关系?请说明理由.7.如图,在△ABC中,∠BAC=90°,AB=AC,点D是AB的中点,连接CD,过B作BE⊥CD交CD的延长线于点E,连接AE,过A作AF⊥AE交CD于点F.(1)求证:AE=AF;(2)求证:CD=2BE+DE.8.如图:在等腰直角三角形中,AB=AC,点D是斜边BC上的中点,点E、F分别为AB,AC上的点,且DE⊥DF.(1)若设BE=a,CF=b,满足+|b﹣5|=+,求BE及CF的长.(2)求证:BE2+CF2=EF2.(3)在(1)的条件下,求△DEF的面积.9.如图1,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB 的同侧作等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD=∠BCE=30°,连接AE 交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接CP.(1)线段AE与DB的数量关系为;请直接写出∠APD=;(2)将△BCE绕点C旋转到如图2所示的位置,其他条件不变,探究线段AE与DB的数量关系,并说明理由;求出此时∠APD的度数;(3)在(2)的条件下求证:∠APC=∠BPC.10.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在△ABC中,AB>AC(如图),怎样证明∠C>∠B呢?分析:把AC沿∠A的角平分线AD翻折,因为AB>AC,所以点C落在AB上的点C'处,即AC=AC',据以上操作,易证明△ACD≌△AC'D,所以∠AC'D=∠C,又因为∠AC'D >∠B,所以∠C>∠B.感悟与应用:(1)如图(a),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,试判断AC 和AD、BC之间的数量关系,并说明理由;(2)如图(b),在四边形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,①求证:∠B+∠D=180°;②求AB的长.11.如图甲,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1,求∠BPC的度数和等边三角形ABC的边长.(1)李明同学作了如图乙的辅助线,将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP',可说明△APP'是直角三角形从而问题得到解决.请你说明其中理由并完成问题解答.(2)如图丙,在正方形ABCD内有一点P,且AP=,BP=,PC=1:类比第一小题的方法求∠BPC的度数,并直接写出正方形ABCD的面积.12.在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,∠ADE的度数为.(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB=12,求CF的最大值.。

三角形旋转全等常见模型

三角形旋转全等常见模型

1、绕点型(手拉手模型)(1)自旋转:自旋转构造放方法:①遇60°旋60°,构造等边三角形;②遇90°旋90°,构造等腰直角三角形;③遇等腰旋转顶角,构造旋转全等;④遇中点180°,构造中心对称。

(2)共旋转(典型的手拉手模型)例1、在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC(3) AE 与DC 的夹角为60。

(4) △AGB ≌△DFB (5) △EGB ≌△CFB (6) BH 平分∠AHC (7) GF ∥AC变式练习1、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC(2) AE=DC(3) AE 与DC 的夹角为60。

(4) AE 与DC 的交点设为H,BH 平分∠AHC变式练习2、如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:Array(1)△ABE≌△DBC(2)AE=DC(3)AE与DC的夹角为60。

(4)AE与DC的交点设为H,BH平分∠AHC(1)如图1,点C是线段AB上一点,分别以AC,BC为边在AB的同侧作等边△ACM和△CBN,连接AN,BM.分别取BM,AN的中点E,F,连接CE,CF,EF.观察并猜想△CEF的形状,并说明理由.(2)若将(1)中的“以AC,BC为边作等边△ACM和△CBN”改为“以AC,BC为腰在AB的同侧作等腰△ACM和△CBN,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由.例4、例题讲解:1. 已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B,C重合),以AD为边作菱形ADEF(按A,D,E,F逆时针排列),使∠DAF=60°,连接CF.(1) 如图1,当点D在边BC上时,求证:① BD=CF ‚②AC=CF+CD.(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系。

全等三角形模型总结及经典练习题

全等三角形模型总结及经典练习题

全等三角形模型及习题练习第一部分全等模型图一、平移模型特征:可看成是三角形在一边所在直线上移动构成的,故在同一直线上的对应边的相等关系一般可由加(减)公共边证得,对应角的相等关系可由平行线的性质证得。

二、平行模型(X型)特征:平行线所形成的同位角、内错角相等三、折叠轴对称模型(翻转型,部分X型)特征:图形关于某一条直线对称,则这条直线两边的部分能完全重合,重合的顶点就是全等三角形的对应点。

图①中有公共角∠A;图②中对顶角相等(∠AOC=∠BOD);图③④中分别有公共边AB,BD四、旋转模型特征:可看成是以三角形某一个顶点为中心旋转构成的,故一般有一对相等的角隐含在对顶角、某些角的和或差中五、角平分线模型旋转有重叠特征:角平分线形成的两个角相等,若把角平分线看成一条公共边,在角的两边再截取相等的线段,就可根据SAS得到全等三角形(如图①,ΔA1BD1≌ΔC1BD1),或者利用角平分线上的点到角两边的距离相等找到一组相等的边,就可根据HL得到全等三角形(如图②,ΔA2BD2≌ΔC2BD2)六、双直角三角形模型特征:证明多数可以用到同(等)角的余角相等这个定理,相等的角就是对应角七、一线三等角模型(K型)特征:如图①,,三个等角指的是α(图②中,α=90°),利用外角定理可证得∠1=∠2或∠3=∠4第二部分精选例题例1.如图,已知AB∥CD,AD∥BC,F在DC的延长线上,AM=CF,FM 交DA的延长线上于E.交BC于N,求证:AE=CN.思路分析:欲证AE=CN.看它们在哪两个三角形中,设法证这两个三角形全等即可.结合图形可发现△AME≌△FCN可证.题设告知AM=CF,AD∥BC,AB∥CD.由两平行条件,可找两对角相等.∵∠1=∠2(对顶角相等)∴∠2=∠E(等量代换)∴AE=CN (全等三角形的对应边相等)例2.△ABC中,∠ACB=90°,AC=BC,过C的一条直线CE⊥AE于E,BD⊥CE的延长线于D,求证:AE=BD+DE.思路分析:从本例的结论知是求线段和的问题,由此入手,很难找到突破口.此时可迅速调整思维角度,可仔细观察图形,正确的图形是证题的“向导”,由此可发现△ACE与△CBD好像(猜测)全等.那么AE=CD=CE+DE.又BD=CE.那么,此时已水落石出.AC=BC(已知)∠1=∠3 (已证)∠AEC=∠CDB(已证)∴△ACE≌△CBD(AAS)∴BD=CE,AE=CD(全等三角形的对应边相等)∵AE=CE=CE+DE∴AE=BD+DE(等量代换)例3.如图,AD是△ABC的中线,DE,DF分别平分∠ADB和∠ADC,连接EF,求证:EF<BE+CF. 定对象:△ABC定角度:三角形全等分析:由结论EF<BE+CF很容易与定理“三角形两边之和大于第三边”联系在一块,观察图形,BE,CF,EF 条件分散,不在一个三角形中,必须设法(平移,旋转,翻转等)把三者集中在一个三角形中,是打开本例思路的关键.由角的平分线这一线索,可将△BDE沿角平分线翻转180°,即B点落在AD的点B'上(如图)(也就是在DA上截取DB'=BD),连结EB',B'F,此时△BDE与△B'DE完全重合,所以△BDE≌△B'DE(两个三角形能够完全重合就是全等三角形,所以BE=B'E(全等三角形的对应边相等).在△EFB'中,EF<B'E+B'F(三角形的两边之和大于第三边).∴EF<BE+CF(等量代换).例4 如图,已知CD⊥AB于D,BE⊥AC于E,△ABE≌△ACD,∠C= 20°,AB=10,AD= 4, G为AB延长线上一点.求∠EBG的度数和CE的长.定对象:如图定角度:三角形全等分析:(1)图中可分解出四组基本图形:有公共角的Rt△ACD 和Rt△ABE;△ABE≌△ACD,△ABE的外角∠EBG或∠ABE的邻补角∠EBG.例5已知:如图,△ABC≌△ADE,BC的延长线交DA于F,交 DE于G,∠ACB=105°,∠CAD=10°,∠D=25°.求∠EAC,∠DFB,∠DGB的度数.例6.在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=20 cm,则△DBE的周长等于多少?分析:对象:△DBE的周长角度:(1)BD,DE,BE的长解:因为DE⊥AB,所以AED ACD∠=∠因为AD是∠BAC的平分线,所以EAD CAD≅则AE=AC ∠=∠又因为AD为公共边所以AED ACD DE=DC所以△DBE的周长=BE+DE+BD=AB-AE+BC=20例7如图13—3—8所示,已知在△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.求证:EF⊥AD.分析:对象:△ABC 角度:(1)AD是∠BAC的平分线,(2)DE⊥AB于E,DF⊥AC于F证明:因为DE⊥AB于E,DF⊥AC于F,所以0∠=∠=又因AED AFD90为AD是∠BAC的平分线,所以EAD FAD∠=∠由于AD是公共边所以AED AFD≅则AE=AF 因为AD是∠BAC的平分线所以EF⊥AD。

一网打尽全等三角形模型-十个模型(解析版)

一网打尽全等三角形模型-十个模型(解析版)

一网打尽全等三角形模型(10个模型)目录模型梳理题型一倍长中线模型题型二一线三等角模型题型三半角模型2022·山东日照真题题型四手拉手模型2022·张家界真题2022·贵阳中考题型五对角互补+邻边相等模型题型六平行线夹中点模型题型七截长补短模型题型八绝配角模型2023·深圳宝安区二模2023·深圳中学联考二模题型九婆罗摩笈模型2022武汉·中考真题2020·宿迁中考真题题型十脚蹬脚模型(海盗埋宝藏)模型梳理模型1倍长中线模型(一)基本模型已知:在△ABC中,AD是BC边上的中线,延长AD到点E,使ED=AD,连接BE.结论1:△ACD≌△EBD.已知:在△ABC中,点D是BC边的中点,点E是AB边上一点,连接ED,延长ED到点F,使DF=DE,连接CF.结论2:△BDE≌△CDF.(二)结论推导结论1:△ACD≌△EBD.证明:∵AD是BC边上的中线,∴CD=BD.∵∠ADC=∠EDB,AD=ED,∴△ACD≌△EBD.结论2:△BDE≌△CDF.证明:∵点D是BC边的中点,∴BD=CD.∵∠BDE=∠CDF,DE=DF,∴△BDE≌△CDF.(三)解题技巧遇到中点或中线,则考虑使用“倍长中线模型”,即延长中线,使所延长部分与中线相等,然后连接相应的顶点,构造出全等三角形.模型2一线三等角模型(一)基本模型已知:点P在线段AB上,∠1=∠2=∠3,AP=BD(或AC=BP或CP=PD).结论1:△CAP≌△PBD.已知:点P在AB的延长线上,∠1=∠2=∠3,AP=BD(或AC=BP或CP=PD).结论2:△APC≌△BDP.(二)结论推导结论1:△CAP≌△PBD.证明:∵∠1+∠C+∠APC=180°,∠2+∠BPD+∠APC=180°,∠1=∠2,∴∠C=∠BPD.∵∠1=∠3,AP=BD(或AC=BP或CP=PD),∴△CAP≌△PBD.结论2:△APC≌△BDP.证明:∵∠1=∠C+∠APC,∠2=∠BPD+∠D,∠3=∠BPD+∠APC,∠1=∠2=∠3,∴∠C=∠BPD,∠APC=∠D.∵AP=BD(或AC=BP或CP=PD),∴△APC≌△BDP.(三)解题技巧在一条线段上出现三个相等的角,且有一组边相等时,则考虑使用一线三等角全等模型.找准三个等角,再根据平角性质、三角形内角和进行等角代换,判定三角形全等,然后利用全等三角形的性质解题.一线三等角模型常以等腰三角形、等边三角形、四边形(正方形或矩形)为背景,在几何综合题中考查.模型3半角模型(一)基本模型等边三角形含半角已知:△ABC是等边三角形,D为△ABC外一点,∠BDC=120°,BD=CD,点E,F分别在AB,AC上,∠EDF=60°.结论1:EF=BE+CF,∠DEB=∠DEF,∠DFC=∠DFE.正方形含半角已知:四边形ABCD是正方形,点E,F分别在BC,CD上,∠EAF=45°.结论2:EF=BE+DF,∠AEB=∠AEF,∠AFD=∠AFE.等腰直角三角形含半角已知:△ABC是等腰直角三角形,∠BAC=90°,点D,E在BC上,∠DAE=45°.结论3:DE2=BD2+CE2.(二)结论推导结论1:EF=BE+CF,∠DEB=∠DEF,∠DFC=∠DFE.证明:延长AC到点G,使CG=BE,连接DG.∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵∠BDC=120°,BD=CD,∴∠DBC=∠DCB=30°,∴∠DBE=∠DCF=90°,∴∠DBE=∠DCG=90°,∴△BDE≌△CDG,∴DE=DG,∠DEB=∠G,∠BDE=∠CDG.∵∠EDF=60°,∴∠BDE+∠CDF=60°,∴∠CDG+∠CDF=60°,即∠GDF=60°.∵DF=DF,∴△DEF≌△DGF,∴EF=FG,∠DEF=∠G,∠DFC=∠DFE.∴∠DEB=∠DEF.∵FG=CG+CF,∴EF=BE+CF.结论2:EF=BE+DF,∠AEB=∠AEF,∠AFD=∠AFE.证明:延长CB到点G,使BG=DF,连接AG.∵正方形ABCD,∴∠ABG=∠D=90°,AB=AD,∴△ABG≌△ADF,∴AG=AF,∠G=∠AFD,∠BAG=∠DAF.∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠BAE+∠BAG=45°,即∠EAG=45°.∵AE=AE,∴△AEF≌△AEG,∴EF=EG,∠AEB=∠AEF,∠AFE=∠G.∴∠AFD=∠AFE.∵EG=BE+BG,∴EF=BE+DF.结论3:DE2=BD2+CE2.证明:将△ABD绕点A逆时针旋转90°到△ACF,连接EF.∵△ABC是等腰直角三角形,∠BAC=90°,∴∠B=∠ACB=45°,∴∠ACF=∠B=45°,∴∠ECF=90°,∴EF2=CF2+CE2=BD2+CE2,∵∠DAE=45°,∴∠BAD+∠CAE=45°,∴∠CAF+∠CAE=45°,即∠FAE=45°.∵AE=AE,∴△AEF≌△AED,∴EF=DE,∴DE2=BD2+CE2.(三)解题技巧对于半角模型,一般情况下都需要做辅助线(延长或旋转),构造全等,通过等量代换得到相关的结论.模型4手拉手模型(一)基本模型已知:在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE相交于O,连接OA.结论1:△ABD≌△ACE,BD=CE,结论2:∠BOC=∠BAC,结论3:OA平分∠BOE.(二)结论推导结论1:△ABD≌△ACE,BD=CE.证明:∵∠BAC=∠DAE,∴∠BAD=∠CAE.∵AB=AC,AD=AE,∴△ABD≌△ACE,∴BD=CE.结论2:∠BOC=∠BAC.证明:设OB与AC相交于点F.∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠AFB=∠OFC,∴∠BOC=∠BAC.结论3:OA平分∠BOE.证明:过点A分别做BD,CE的垂线,垂足为G,H.∵△ABD≌△ACE,∴S△ABD=S△ACE,∴12BD⋅AG=12CE⋅AH.∵BD=CE,∴AG=AH,∴OA平分∠BOE.(三)解题技巧如果题目中出现两个等腰三角形,可以考虑连接对应的顶点,用旋转全等模型;如果只出现一个等腰三角形,可以用旋转的方法构造旋转全等.模型5对角互补+邻边相等模型模型解读:通过做垂线或者利用旋转构造全等三角形解决问题。

微专题 全等三角形的六种基本模型-2024年中考数学复习

微专题 全等三角形的六种基本模型-2024年中考数学复习

21
全等三角形的六种基本模型
模型应用
8.如图17, △ 是边长为1的等边三角形, = ,
∠ = 120∘ ,点 , 分别在 , 上,且
∠ = 60∘ .求 △ 的周长.
提示:如图16,延长 至点 ,使 = ,连接 .
图6
= ,
在 △ 和 △ 中, ቐ∠ = ∠, ∴ △≌△ SAS .
= ,
∠ = ∠ = 50∘ .
7
全等三角形的六种基本模型
模型三 旋转型
模型剖析
如图7,将三角形绕着公共顶
点旋转一定角度后,两个三角形能
够完全重合,这两个三角形称为旋
图3
在 △ 和△ 中, ∵ ∠ = ∠ , ∠ = ∠ , = ,
∴ △ ≌ △ AAS .
∴ = .
4
全等三角形的六种基本模型
模型二 对称型
模型剖析
如图4、图5,将所给图形沿某一条直线折叠后,直线两旁的部分能
够完全重合,这两个三角形称为对称型全等三角形,其中重合的顶点就
= , ∴ △ ≌ △ SAS . ∴ = ,
图17
图16
22
全等三角形的六种基本模型
∠ = ∠. ∵ ∠ = 120∘ , ∠ = 60∘ , ∴ ∠ +
∠ = 60∘ . ∴ ∠ + ∠ = 60∘ . ∴ ∠ = ∠ =
∴ ∠ = ∠ + ∠ = 110∘ .
∴ ∠ = ∠ .
= ,
图9
在 △ 和 △ 中, ቐ∠ = ∠ , ∴ △ ≌ △ .
= ,
∴ = .
11
全等三角形的六种基本模型

数学全等三角形旋转模型(讲义及答案)附解析

数学全等三角形旋转模型(讲义及答案)附解析

数学全等三角形旋转模型(讲义及答案)附解析一、全等三角形旋转模型1.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.答案:C解析:(1)CF=CG;(2)CF=CG,见解析【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º, ∴∠MCN=30º+30º=60º, ∴∠MCN=∠DCE ,∵∠MCF=∠MCN-∠DCN ,∠NCG=∠DCE-∠DCN , ∴∠MCF=∠NCG , 在△MCF 和△NCG 中,CMF CNG CM CNMCF NCG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF ≌△NCG (ASA ), ∴CF=CG (全等三角形对应边相等); 【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等 .2.我们定义:有一组对角为直角的四边形叫做“对直角四边形”.(1)如图①,四边形ABCD 为对直角四边形,∠B=90°,若AB 2-AD 2=4,求CD 2-BC 2的值; (2)如图②,四边形ABCD 中,∠ABC=90°,AB=BC ,若BD 平分∠ADC ,求证:四边形ABCD 为对直角四边形;(3)在(2)的条件下,如图③,连结AC ,若35ACD ABCS S=,求tan ∠ACD 的值.答案:A解析:⑴ 4;⑵见解析 ;⑶tan ∠ACD 的值为3或13. 【分析】(1)利用勾股定理即可解决问题;(2)如图②中,作BE ⊥CD 于E ,BF ⊥DA 交DA 的延长线于F .只要证明∠EBF=90°即可解决问题;(3)如图③中,设AD=x ,BD=y .根据35ACD ABCSS=,构建方程即可解决问题. 【详解】解:如图①中,∵四边形ABCD为对直角四边形,∠B=90°,∴∠D=∠B=90°,∴AC2=AB2+BC2=AD2+DC2,∴CD2-BC2=AB2-AD2=4.(2)证明:如图②中,作BE⊥CD于E,BF⊥DA交DA的延长线于F.∵BD平分∠ADC,BE⊥CD,BF⊥AD,∴BE=BF,∵∠BFA=∠BEC=90°,BA=BC,BF=BE,∴Rt△BFA≌Rt△BEC(HL),∴∠ABF=∠CBE,∴∠EBF=∠ABC=90°,∴ADC=360°-90°-90°-90°=90°,∵∠ABC=∠ADC=90°,∴四边形ABCD为对直角四边形.(3)解:如图③中,设AD=x,BD=y.∵∠ADC=90°,∴tan ∠ACD=xy,AC=22x y +, ∵AB=AC ,∠ABC=90°, ∴AB=BC=22•22x y +, ∵35ACD ABCS S=, ∴()22132154xy x y =+, 整理得:3x 2-10xy+3y 2,∴3(x y )2-10•xy +3=0,∴x y =3或13. ∴tan ∠ACD 的值为3或13. 【点睛】本题属于四边形综合题,考查了勾股定理,三角形的面积,全等三角形的判定和性质,角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数,构建方程解决问题,属于中考压轴题.3.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.解析:(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论. 【详解】 解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点, //PM CE ∴,12PM CE =, AB AC =,AD AE =, BD CE ∴=, PM PN ∴=, //PN BD ,DPN ADC ∴∠=∠, //PM CE ,DPM DCA ∴∠=∠, 90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒, PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥; (2)PMN ∆是等腰直角三角形. 由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =,利用三角形的中位线得,12PN BD =,12PM CE =,PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE , DPM DCE ∴∠=∠,同(1)的方法得,//PN BD , PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠, MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠, 90BAC ∠=︒,90ACB ABC ∴∠+∠=︒, 90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大, //DE BC ∴且DE 在顶点A 上面, MN ∴最大AM AN =+, 连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒, 22AM ∴=在Rt ABC ∆中,10AB AC ==,52AN = 22522MN ∴=最大,222111149(72)22242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大, ∴点D 在BA 的延长线上, 14BD AB AD ∴=+=, 7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大.【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大. 4.问题提出:(1)如图1,在ABC 中,AB AC BC =≠,点D 和点A 在直线BC 的同侧,BD BC =,90BAC ∠=︒,30DBC ∠=︒,连接AD ,将ABD △绕点A 逆时针旋转90︒得到ACD ',连接BD '(如图2),可求出ADB ∠的度数为______. 问题探究:(2)如图3,在(1)的条件下,若BAC α∠=,DBC β∠=,且120αβ+=︒,DBC ABC ∠<∠ , ①求ADB ∠的度数.②过点A 作直线AE BD ⊥,交直线BD 于点E ,7,2BC AD ==.请求出线段BE 的长.答案:A解析:(1)30°;(2)①30︒;②73-【分析】(1)由旋转的性质,得△ABD ≌ACD '∆,则ADB AD C '∠=∠,然后证明BCD '∆是等边三角形,即可得到30ADB AD C '∠=∠=︒;(2)①将ABD △绕点A 逆时针旋转,使点B 与点C 重合,得到'ACD △,连接'BD .与(1)同理证明D BC '∆为等边三角形,然后利用全等三角形的判定和性质,即可得到答案;②由解直角三角形求出3DE =【详解】解:(1)根据题意,∵AB AC BC =≠,90BAC ∠=︒, ∴ABC ∆是等腰直角三角形, ∴45ABC ACB ∠=∠=︒, ∵30DBC ∠=︒, ∴15ABD ∠=︒,由旋转的性质,则△ABD ≌ACD '∆,∴ADB AD C '∠=∠,15ABD ACD '∠=∠=︒,BC CD '=, ∴60BCD '∠=︒, ∴BCD '∆是等边三角形, ∴60BD C '∠=︒,BD CD ''= ∵AB AC =,AD AD ''=, ∴ABD '∆≌ACD '∆, ∴30AD B AD C ''∠=∠=︒, ∴30ADB AD C '∠=∠=︒; (2)①DBC ABC ∠<∠,60120α︒︒∴<<.如图1,将ABD △绕点A 逆时针旋转,使点B 与点C 重合,得到'ACD △,连接'BD .AB AC =,ABC ACB ∴∠=∠, BAC α∠=,()111809022ABC αα︒︒∴∠=-=-,1902ABD ABC DBC αβ︒∴∠=∠-∠=--,119090180()22D CB ACD ACB αβααβ''︒︒︒∴∠=∠+∠=--+-=-+.120,αβ︒+=60D CB '︒∴∠=.,BD BC BD CD '==,,BC CD '∴=D BC '∴为等边三角形, D B D C ''∴=, AD B AD C ''∴≌, AD B AD C ''∴∠=∠,1302AD B BD C ''︒∴∠=∠=,30ADB ︒∴∠=.②如图2,由①知,30ADB ︒∠=,在Rt ADE △中,30,2ADB AD ︒∠==,3DE ∴=.BCD '是等边三角形, 7BD BC '∴==, 7BD BD '∴==,73BE BD DE ∴=-=-.【点睛】本题考查了解直角三角形,旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰直角三角形的性质,以及三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确利用旋转模型进行解题.5.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起. (1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ; (2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由; (3)解决问题:如图③,90ACB AED ∠∠︒==,25AC =,AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.答案:C解析:(1)60BD CE ,=;(2)452CEB BD CE ∠︒=,=,理由见解析;(3)CE 的长为2或2 【分析】(1)证明ACE ABD ≌,得出CE =BD ,AEC ADB ∠=∠,即可得出结论;(2)证明ACE ABD ∽,得出AEC ADB ∠=∠,BD =,即可得出结论;(3)先判断出BD =,再求出AB =:①当点E 在点D 上方时,先判断出四边形APDE 是矩形,求出AP =DP =AE =2,再根据勾股定理求出,BP =6,得出BD =4;②当点E 在点D 下方时,同①的方法得,AP =DP =AE =1,BP =6,进而得出BD =BP +DP =8,即可得出结论. 【详解】解:(1)ABC 为等腰三角形,60AC BC ACB ∠︒=,=,∴ABC 是等边三角形, 同理可得ADE 是等边三角形6018012060BAD DAC DAC CAE BAD CAEAD AE AB ACEAC DAB ACE ABD SAS BD CEAEC ADB ADE AEC AED CEB CEB ∠+∠=∠+∠=︒∴∠=∠=⎧⎪=⎨⎪∠∠⎩∴∴=∠=∠=︒-∠=︒∠=∠+∠∴∠=︒=≌()故答案为:60CEB BD CE ∠=︒=;. (2)45CEB BD ∠︒=,,理由如下: 在等腰三角形ABC 中,AC =BC ,90ACB ∠︒=,45AB CAB ∴∠︒,= ,同理,45AD ADE DAE ∠∠︒,==,∴AE ACAD AB=,DAE CAB ∠∠=, EAC DAB ∴∠∠=, ACE ABD ∴∽ ,∴BD ADCE AE==∴AEC ADB BD ∠∠=,,点B 、D 、E 在同一条直线上:180135ADB ADE ∴∠︒-∠︒==135AEC ∴∠︒=45CEB AEC AED ∴∠∠-∠︒==;(3)由(2)知,ACE ABD ∽, 2BD CE ∴=, 在Rt ABC 中,25AC =,2210AB AC ∴== ,①当点E 在点D 上方时,如图③,过点A 作AP BD ⊥交BD 的延长线于P ,DE BD ⊥,PDE AED APD ∴∠∠∠==,∴四边形APDE 是矩形,AE DE = ,∴矩形APDE 是正方形,2AP DP AE ∴===,在Rt APB △中,根据勾股定理得,226BP AB AP -==,4BD BP AP ∴-==,1222CE BD ∴==; ②当点E 在点D 下方时,如图④同①的方法得,AP =DP =AE =2,BP =6,∴BD =BP +DP =8,122CE BD ∴==4, 综上CE 的长为22或42.【点睛】本题是几何变换的综合题,主要考查了旋转的性质,全等三角形的判定和定理,相似三角形的判定和性质,勾股定理,等边三角形的性质,判断出三角形ACE 和三角形ABD 相似是关键.6.如图.四边形ABCD 、BEFG 均为正方形.(1)如图1,连接AG 、CE ,请直接写出.....AG 和CE 的数量和位置关系(不必证明).(2)将正方形BEFG 绕点B 顺时针旋转β角(0180β︒︒<<),如图2,直线AG 、CE 相交于点M .①AG 和CE 是否仍然满足(1)中的结论?如果是,请说明理由:如果不是,请举出反例:②连结MB ,求证:MB 平分AME ∠.(3)在(2)的条件下,过点A 作AN MB ⊥交MB 的延长线于点N ,请直接写出.....线段CM 与BN 的数量关系.答案:A解析:(1)AG=EC ,AG ⊥EC ;(2)①满足,理由见解析;②见解析;(3)2.【分析】(1)由正方形BEFG 与正方形ABCD ,利用正方形的性质得到两对边相等,一对直角相等,利用SAS 得出三角形ABG 与三角形CBE 全等,利用全等三角形的对应边相等,对应角相等得到CE=AG ,∠BCE=∠BAG ,再利用同角的余角相等即可得证;(2)①利用SAS 得出△ABG ≌△CEB 即可解决问题;②过B 作BP ⊥EC ,BH ⊥AM ,由全等三角形的面积相等得到两三角形面积相等,而AG=EC ,可得出BP=BH ,利用到角两边距离相等的点在角的平分线上得到BM 为角平分线;(3)在AN 上截取NQ=NB ,可得出三角形BNQ 为等腰直角三角形,利用等腰直角三角形的性质得到2BN ,接下来证明BQ=CM ,即要证明三角形ABQ 与三角形BCM 全等,利用同角的余角相等得到一对角相等,再由三角形ANM 为等腰直角三角形得到NA=NM ,利用等式的性质得到AQ=BM ,利用SAS 可得出全等,根据全等三角形的对应边相等即可得证.【详解】解:(1)AG=EC ,AG ⊥EC ,理由为:∵正方形BEFG ,正方形ABCD ,∴GB=BE ,∠ABG=90°,AB=BC ,∠ABC=90°,在△ABG 和△BEC 中,BG BE ABC EBC BA BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABG ≌△BEC (SAS ),∴CE=AG ,∠BCE=∠BAG ,延长CE 交AG 于点M ,∴∠BEC=∠AEM ,∴∠ABC=∠AME=90°,∴AG=EC ,AG ⊥EC ;(2)①满足,理由是:如图2中,设AM 交BC 于O .∵∠EBG=∠ABC=90°,∴∠ABG=∠EBC ,在△ABG 和△CEB 中,AB BC ABG CBE BG EB =⎧⎪∠=∠⎨⎪=⎩,∴△ABG ≌△CEB (SAS ),∴AG=EC ,∠BAG=∠BCE ,∵∠BAG+∠AOB=90°,∠AOB=∠COM ,∴∠BCE+∠COM=90°,∴∠OMC=90°,∴AG ⊥EC .②过B 作BP ⊥EC ,BH ⊥AM ,∵△ABG ≌△CEB ,∴S △ABG =S △EBC ,AG=EC , ∴12EC•BP=12AG•BH , ∴BP=BH ,∴MB 平分∠AME ;(3)CM=2BN ,理由为:在NA 上截取NQ=NB ,连接BQ ,∴△BNQ 为等腰直角三角形,即BQ=2BN ,∵∠AMN=45°,∠N=90°,∴△AMN 为等腰直角三角形,即AN=MN ,∴MN-BN=AN-NQ ,即AQ=BM ,∵∠MBC+∠ABN=90°,∠BAN+∠ABN=90°,∴∠MBC=∠BAN ,在△ABQ 和△BCM 中,AQ BM BAN MBC AB BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABQ ≌△BCM (SAS ),∴CM=BQ ,则CM=2BN .【点睛】此题考查了正方形,全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线的判定,熟练掌握正方形的性质是解本题的关键.7.如图,ABD △和ACE △都是等边三角形.(1)连接CD 、BE 交于点P ,求∠BPD ;(2)连接PA ,判断线段PA 、PB 、PD 之间的数量关系并证明;(3)如图,等腰ABC 中AB =AC ,∠BAC =α(0<α<90),在ABC 内有一点M ,连接MA 、MB 、MC .当MA +MB +MC 最小时,∠ABM = (用含α的式子表示)答案:D解析:(1)60BPD ∠=︒(2)PD PB PA =+,证明见详解(3)1602α︒-【分析】(1)证明()DAC BAE SAS ≅,得ADC ABE ∠=∠,就可以证明60BPD DAB ∠=∠=︒;(2)在DP 上截取PF=PB ,连接BF ,证明()DBF ABP SAS ≅,得DF PA =,即可证明PD PB PA =+;(3)分别以AB 和AC 为边,向两边作等边三角形ABD 和等边三角形ACE ,连接BE 和CD ,交于点M ,连接AM ,此时MA MB MC ++最小,然后利用等腰三角形ADC ,求出ADC ∠的度数,即可得到ABM ∠的度数.【详解】解:(1)∵ABD △和ACE △是等边三角形,∴AD AB =,AC AE =,60DAB CAE ∠=∠=︒,∵DAB BAC CAE BAC ∠+∠=∠+∠,∴DAC BAE ∠=∠,在DAC △和BAE △中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴()DAC BAE SAS ≅,∴ADC ABE ∠=∠,∵ADC DAB ABE BPD ∠+∠=∠+∠,∴60BPD DAB ∠=∠=︒;(2)如图,在DP 上截取PF=PB ,连接BF ,∵60BPD ∠=︒,PF PB =,∴PFB △是等边三角形,∴BF BP =,60FBP ∠=︒,∴DBA FBP ∠=∠,∵DBA FBA FBP FBA ∠-∠=∠-∠,∴DBF ABP ∠=∠,在DBF 和ABP △中,DB AB DBF ABP BF BP =⎧⎪∠=∠⎨⎪=⎩,∴()DBF ABP SAS ≅,∴DF PA =,∵PD PF FD =+,∴PD PB PA =+;(3)如图,分别以AB 和AC 为边,作等边三角形ABD 和等边三角形ACE ,连接BE 和CD ,交于点M ,连接AM ,此时MA MB MC ++最小,由(2)中的结论可得MD MA MB =+,则当D 、M 、C 三点共线时MA MB MC ++最小,即CD 的长,由(1)得ADC ABM ∠=∠,∵AD AB AC ==,60DAC α∠=︒+,∴()1806016022ADC αα︒-︒+∠==︒-, ∴1602ABM α∠=︒-,故答案是:1602α︒-.【点睛】本题考查全等三角形的性质和判定,等边三角形的性质,解题的关键是做辅助线构造全等三角形来进行证明求解.8.在等腰Rt ABC △中,AB AC =、90BAC ∠=︒.(1)如图1,D ,E 是等腰Rt ABC △斜边BC 上两动点,且45DAE ∠=︒,将ABE △绕点A 逆时针旋转90后,得到AFC △,连接DF .①求证:AED AFD ≌.②当3BE =,9CE =时,求DE 的长.(2)如图2,点D 是等腰Rt ABC △斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt ADE △(E 点在直线BC 的上方),当3BD =,9BC =时,求DE 的长.答案:D解析:(1)①证明见解析;②5;(2)35或317【分析】(1)①证明∠DAE=∠DAF=45°即可利用SAS 证明全等;②由①中全等可得DE=DF ,再在Rt △FDC 中利用勾股定理计算即可;(2)连接BE ,根据共顶点等腰直角三角形证明全等,再利用勾股定理计算即可。

专题 五大常考的全等模型

专题 五大常考的全等模型

专题四
五大常考的全等模型
(1)证明:∵AD⊥BC, ∴∠ADB=∠ADC=90°. ∵∠ABC=45°, ∴∠BAD=45°. ∴∠ABC=∠BAD, ∴AD=BD. 在△BDE和△ADC中,
BD=AD
∠EDB=∠CDA
DE=DC
∴△BDE≌△ADC(SAS). ∴BE=AC;
专题四
五大常考的全等模型
AF,EF,且∠EAF=45°,求证:BE+DF=EF. 【思维教练】延长CD到点G,使DG=BE,将BE,DF转化在一条直线上,再 证EF=GF即可.
例4题图
专题四
五大常考的全等模型
证明:如解图,延长CD到点G,使
DG=BE, 在正方形ABCD中,AB=AD,
∠B=∠ADC=90°, ∴∠ADG=∠B. 在△ABE和△ADG中, AB AD B ADG , BE DG ∴△ABE≌△ADG(SAS). ∴AG=AE,∠DAG=∠BAE.
五大常考的全等模型
针对训练
7. 在等边△ABC中,∠BDC=120°,BD=CD,∠EDF=60°点D和点E分别 在边AB和AC上,连接EF,试猜想∠EFD和∠DFE应满足的数量关系,并写 出推理过程.
专题四
五大常考的全等模型
综合训练
1. 如图①,△ABD,△ACE都是等边三角形,
(1)求证:△ABE≌△ADC;
例6题解图
专题四
五大常考的全等模型
基本模型
图示
等边三角 形含半角 (∠BDC=120°)
等腰直角三 角形含半角
专题四
五大常考的全等模型
图示
正方形含半角
模型总结
当一个角包含着这个角的半角,常将半角两边的三角形通过 旋转到一边合并形成新的三角形,从而进行等量代换,然后 证明与半角形成的三角形全等.

三角形旋转全等常见模型

三角形旋转全等常见模型

1•绕点型(手拉手模型)(1 )自旋转:自旋转构造放方法:①遇60°旋60°,构造等边三角形;②遇90°旋90°,构造等腰直角三角形;③遇等腰旋转顶角,构造旋转全等;④遇中点180°,构造中心对称。

(2)共旋转(典型的手拉手模型)例1、在直线ABC的同一侧作两个等边三角形4ABD和aBCE,连接AE与CD,证明:(1)A ABE^A DBC(2)) AE=DC(3)AE与DC的夹角为60。

(4)A AGB^A DFB(5)A EGB^A CFB(6)BH 平分N AHC(7)GFllAC变式练习1、如果两个等边三角形4ABD和aBCE,连接AE与CD,证明:(1) A ABE^A DBC(2 ) AE=DC(3)AE与DC的夹角为60。

(4)AE与DC的交点设为H,BH平分N AHC变式练习2、如果两个等边三角形MBD和aBCE,连接AE与CD,证明:⑴MBE空4DBC(2)AE=DC(3)AE与DC的夹角为60。

(4)AE与DC的交点设为H,BH平分N AHC(1)如图1,点C是线段AB上一点,分别以AC, BC为边在AB的同侧作等边MCM和4BN,连接AN,BM .分别取BM , AN的中点E,F,连接CE,CF,EF .观察并猜想^CEF的形状,并说明理由.(2)若将(1)中的“以AC, BC为边作等边MCM和482 改为“以AC, BC为腰在AB的同侧作等腰4ACM和4BN,〃如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由.例4、例题讲解:1.已知^ABC为等边三角形,点D为直线BC上的一动点(点D不与B,C重合),以AD为边作菱形ADEF(按A,D,E,F逆时针排列),使NDAF=60°,连接CF.⑴如图1,当点D在边BC上时,求证:①BD=CF ,②AC=CF+CD.(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系。

全等三角形八大基本模型

全等三角形八大基本模型

全等三角形八大基本模型摘要:1.全等三角形的定义与性质2.全等三角形的八大基本模型1.手拉手模型2.一线三垂直模型3.一线三等角模型4.等腰三角形中边边角模型5.背对背模型6.半角旋转模型7.角分线模型8.正方形手拉手模型正文:全等三角形是指两个三角形的对应边和对应角分别相等的三角形。

在解决全等三角形问题时,我们需要了解全等三角形的定义和性质,同时掌握一些常用的模型。

本文将介绍全等三角形的八大基本模型,希望能帮助大家更好地理解和解决全等三角形问题。

1.手拉手模型:两个三角形通过一个公共边,并且这个公共边的两个相邻角分别相等。

2.一线三垂直模型:两个三角形有一个公共边,并且这个公共边的两个相邻角分别相等,同时还有另一条公共边上的一个角与另一个角的补角相等。

3.一线三等角模型:两个三角形有一个公共边,并且这个公共边上的三个角分别相等。

4.等腰三角形中边边角模型:两个等腰三角形,其中一个等腰三角形的底边与另一个等腰三角形的腰相等,同时这两个等腰三角形的底角分别相等。

5.背对背模型:两个三角形分别有一个角和另一个角的补角相等,且这两个三角形的另一条边分别相等。

6.半角旋转模型:两个三角形有一个公共边,并且这个公共边的两个相邻角中有一个角是另一个角的一半。

7.角分线模型:两个三角形有一个公共边,并且这个公共边上的一个角平分另一个角。

8.正方形手拉手模型:两个正方形,其中一个正方形的边与另一个正方形的对角线相等。

在解决全等三角形问题时,我们可以根据题目所给的条件,结合全等三角形的性质和八大基本模型,通过适当的变换和推理,证明两个三角形全等。

全等三角形的相关模型总结汇总

全等三角形的相关模型总结汇总

全等的相关模型总结一、角平分线模型应用1.角平分性质模型: 辅助线:过点G 作GE ⊥射线AC(1).例题应用:①如图1,在中ABC ∆,,cm 4,6,900==∠=∠BD cm BC CAB AD C 平分,那么点D 到直线AB 的距离是 cm.②如图2,已知,21∠=∠,43∠=∠.BAC AP ∠平分求证:.图1 图2①2 (提示:作DE ⊥AB 交AB 于点E )②21∠=∠ ,PN PM =∴,43∠=∠ ,PQ PN =∴,BAC PA PQ PM ∠∴=∴平分,.(2).模型巩固:练习一:如图3,在四边形ABCD 中,BC>AB ,AD=CD ,BD 平分BAC ∠..求证:︒=∠+∠180C A图3练习二:已知如图4,四边形ABCD 中,..,1800BAD AC CD BC D B ∠==∠+∠平分求证:图4练习三:如图5,,,900CAB AF D AB CD ACB ABC Rt ∠⊥=∠∆平分,垂足为,中,交CD 于点E ,交CB 于点F.(1)求证:CE=CF.(2)将图5中的△ADE 沿AB 向右平移到'''E D A ∆的位置,使点'E 落在BC 边上,其他条件不变,如图6所示,是猜想:'BE 于CF 又怎样的数量关系?请证明你的结论.图5 图6练习四:如图7,90A AD BC =︒,∠∥,P 是AB 的中点,PD 平分∠ADC. 求证:CP 平分∠DCB.图7练习五:如图8,AB >AC ,∠A 的平分线与BC 的垂直平分线相交于D ,自D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F .求证:BE=CF .图8练习六:如图9所示,在△ABC 中,BC 边的垂直平分线DF 交△BAC 的外角平分线AD 于点D ,F 为垂足,DE ⊥AB 于E ,并且AB>AC 。

求证:BE -AC=AE 。

练习七: 如图10,D 、E 、F 分别是△ABC 的三边上的点,CE=BF ,且△DCE 的面积与△DBF 的面积相等,求证:AD 平分∠BAC 。

全等三角形 六大模型

全等三角形 六大模型

全等三角形六大模型学生版【题型1 平移模型】【模型解读】把△ABC沿着某一条直线l平行移动,所得到△DEF与△ABC称为平移型全等三角形,图①,图②是常见的平移型全等三角线.【常见模型】【例1】(2020秋•襄城区期末)如图,点B、E、C、F四点在一条直线上,∠A=∠D,AB∥DE,老师说:再添加一个条件就可以使△ABC≌△DEF.下面是课堂上三个同学的发言,甲说:添加AB=DE;乙说:添加AC∥DF;丙说:添加BE=CF.(1)甲、乙、丙三个同学说法正确的是;(2)请你从正确的说法中选择一种,给出你的证明.【变式1-1】(2020秋•苏州期末)如图,AD,BF相交于点O,AB∥DF,AB=DF,点E与点C在BF上,且BE=CF.(1)求证:△ABC≌△DFE;(2)求证:点O为BF的中点.【变式1-2】(2020秋•富顺县校级月考)如图1,A,B,C,D在同一直线上,AB=CD,DE∥AF,且DE =AF,求证:△AFC≌△DEB.如果将BD沿着AD边的方向平行移动,如图2,3时,其余条件不变,结论是否成立?如果成立,请予以证明;如果不成立,请说明理由.【变式1-3】(2021春•雁塔区校级期中)如图①点A、B、C、D在同一直线上,AB=CD,作CE⊥AD,BF ⊥AD,且AE=DF.(1)证明:EF平分线段BC;(2)若△BFD沿AD方向平移得到图②时,其他条件不变,(1)中的结论是否仍成立?请说明理由.【题型2 轴对称模型】【模型解读】将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为轴对称型全等三角形,此类图形中要注意期隐含条件,即公共边或公共角相等.【常见模型】【例2】(2020秋•杭州校级月考)如图,在△ABC和△BAD中,AC与BD相交于点E,已知AD=BC,另外只能从下面给出的三个条件①∠DAB=∠CBA,②∠D=∠C③∠DBA=∠CAB选择其中的一个用来证明在△ABC和△BAD全等,这个条件是.(填写编号),并证明△ABC≌△BAD.【变式2-1】如图,AB=AC,BE⊥AC于E,CD⊥AB于D,BE、CD交于点O,求证:OB=OC.【变式2-2】(2020秋•海珠区校级期中)如图,PB⊥AB,PC⊥AC,PB=PC,D是AP上一点.求证:∠BDP=∠CDP.【变式2-3】如图,AB=AC,D、E分别是AB、AC的中点,AM⊥CD于M,AN⊥BE干N.求证:AM=AN.【题型3 旋转模型】【模型解读】将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形,识别旋转型三角形时,涉及对顶角相等、等角加(减)公共角的条件.【常见模型】【例3】(2020秋•渝水区校级期中)如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:∠ABD=∠ACE.【变式3-1】(2020秋•怀宁县期末)如图,已知:AD=AB,AE=AC,AD⊥AB,AE⊥AC.猜想线段CD与BE之间的数量关系与位置关系,并证明你的猜想.【变式3-2】(2020秋•合江县月考)已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.(1)如图1,点E在BC上,求证:BC=BD+BE;(2)如图2,点E在CB的延长线上,求证:BC=BD﹣BE.【变式3-3】(2021春•浦东新区期末)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE =90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.【题型4 一线三等角模型】【模型解读】基本图形如下:此类图形通常告诉BD⊥DE,AB⊥AC,CE⊥DE,那么一定有∠B=∠CAE.【常见模型】【例4】(2020秋•覃塘区期中)已知:D,A,E三点都在直线m上,在直线m的同一侧作△ABC,使AB =AC,连接BD,CE.(1)如图①,若∠BAC=90°,BD⊥m,CE⊥m,求证:△ABD≌△ACE;(2)如图②,若∠BDA=∠AEC=∠BAC,请判断BD,CE,DE三条线段之间的数量关系,并说明理由.【变式4-1】(2020春•香坊区期末)如图,在△ABC中,点D是边BC上一点,CD=AB,点E在边AC上,且AD=DE,∠BAD=∠CDE.(1)如图1,求证:BD=CE;(2)如图2,若DE平分∠ADC,在不添加辅助线的情况下,请直接写出图中所有与∠ADE相等的角(∠ADE除外).【变式4-2】(2020春•历下区期中)CD是经过∠BCA定点C的一条直线,CA=CB,E、F分别是直线CD 上两点,且∠BEC=∠CF A=∠β.(1)若直线CD经过∠BCA内部,且E、F在射线CD上,①若∠BCA=90°,∠β=90°,例如图1,则BE CF,EF|BE﹣AF|.(填“>”,“<”,“=”);②若0°<∠BCA<180°,且∠β+∠BCA=180°,例如图2,①中的两个结论还成立吗?并说明理由;(2)如图3,若直线CD经过∠BCA外部,且∠β=∠BCA,请直接写出线段EF、BE、AF的数量关系(不需要证明).【变式4-3】(2020秋•余杭区月考)如图①,点B、C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF.应用:如图②,在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD 上.∠1=∠2=∠BAC,若△ABC的面积为15,求△ABE与△CDF的面积之和.【题型5 倍长中线模型】【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.【常见模型】【例5】(2020秋•津南区校级期中)已知:在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF.【变式5-1】(2020春•大庆期末)如图.AB=AE,AB⊥AE,AD=AC.AD⊥AC,点M为BC的中点,求证:DE=2AM.【变式5-2】(2020秋•西城区校级期中)如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=CG.【变式5-3】(2020秋•安陆市期中)八年级一班数学兴趣小组在一次活动中进行了探究试验活动,请你和他们一起活动吧.【探究与发现】(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接BE,写出图中全等的两个三角形【理解与应用】(2)填空:如图2,EP是△DEF的中线,若EF=5,DE=3,设EP=x,则x的取值范围是.(3)已知:如图3,AD是△ABC的中线,∠BAC=∠ACB,点Q在BC的延长线上,QC=BC,求证:AQ=2AD.【题型6 截长补短模型】【模型解读】截长补短的方法适用于求证线段的和差倍分关系.截长,指在长线段中截取一段等于已知线段;补短,指将短线段延长,延长部分等于已知线段.该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程【例6】(2020秋•涪城区校级月考)如图,AB∥CD,E为AD上一点,且BE、CE分别平分∠ABC,∠BCD.求证:AE=DE.【变式6-1】(2020秋•蕲春县期中)如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,若E在AD上.求证:(1)BE⊥CE;(2)BC=AB+CD.【变式6-2】(2020秋•新抚区校级月考)如图所示,在五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:DA平分∠CDE.【变式6-3】(2020秋•北流市期中)已知△ABC中,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O.(1)直接写出∠BOC与∠A的数量关系;(2)若∠A=60°,利用(1)的关系,求出∠BOC的度数;(3)利用(2)的结果,试判断BE,CD,BC的数量关系,并证明.全等三角形六大模型教师版【题型1 平移模型】【例1】(2020秋•襄城区期末)如图,点B、E、C、F四点在一条直线上,∠A=∠D,AB∥DE,老师说:再添加一个条件就可以使△ABC≌△DEF.下面是课堂上三个同学的发言,甲说:添加AB=DE;乙说:添加AC∥DF;丙说:添加BE=CF.(1)甲、乙、丙三个同学说法正确的是;(2)请你从正确的说法中选择一种,给出你的证明.【解题思路】(1)根据平行线的性质,由AB∥DE可得∠B=∠DEC,再加上条件∠A=∠D,只需要添加一个能得出边相等的条件即可证明两个三角形全等,添加AC∥DF不能证明△ABC≌△DEF;(2)添加AB=DE,然后再利用ASA判定△ABC≌△DEF即可.【解答过程】解:(1)说法正确的是:甲、丙,故答案为:甲、丙;(2)证明:∵AB∥DE,∴∠B=∠DEC,在△ABC 和△DEF 中 {∠A =∠DAB =DE ∠B =∠DEF, ∴△ABC ≌△DEF (ASA ).【变式1-1】(2020秋•苏州期末)如图,AD ,BF 相交于点O ,AB ∥DF ,AB =DF ,点E 与点C 在BF 上,且BE =CF .(1)求证:△ABC ≌△DFE ; (2)求证:点O 为BF 的中点.【变式1-2】(2020秋•富顺县校级月考)如图1,A ,B ,C ,D 在同一直线上,AB =CD ,DE ∥AF ,且DE =AF ,求证:△AFC ≌△DEB .如果将BD 沿着AD 边的方向平行移动,如图2,3时,其余条件不变,结论是否成立?如果成立,请予以证明;如果不成立,请说明理由.【变式1-3】(2021春•雁塔区校级期中)如图①点A 、B 、C 、D 在同一直线上,AB =CD ,作CE ⊥AD ,BF ⊥AD ,且AE =DF .(1)证明:EF 平分线段BC ;(2)若△BFD 沿AD 方向平移得到图②时,其他条件不变,(1)中的结论是否仍成立?请说明理由.【题型2 轴对称模型】【例2】(2020秋•杭州校级月考)如图,在△ABC 和△BAD 中,AC 与BD 相交于点E ,已知AD =BC ,另外只能从下面给出的三个条件①∠DAB =∠CBA ,②∠D =∠C ③∠DBA =∠CAB 选择其中的一个用来证明在△ABC 和△BAD 全等,这个条件是 .(填写编号),并证明△ABC ≌△BAD .【解题思路】选择条件①,根据全等三角形的判定定理SAS 进行证明即可. 【解答过程】解:这个条件是:①,证明如下: 在△ABD 与△BAC 中, {BC =AD∠CBA =∠DAB BA =AB, ∴△ABC ≌△BAD (SAS ).【变式2-1】如图,AB =AC ,BE ⊥AC 于E ,CD ⊥AB 于D ,BE 、CD 交于点O ,求证:OB =OC .【变式2-2】(2020秋•海珠区校级期中)如图,PB ⊥AB ,PC ⊥AC ,PB =PC ,D 是AP 上一点.求证:∠BDP =∠CDP .【变式2-3】如图,AB=AC,D、E分别是AB、AC的中点,AM⊥CD于M,AN⊥BE干N.求证:AM=AN.【题型3 旋转模型】【例3】(2020秋•渝水区校级期中)如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:∠ABD=∠ACE.【解题思路】根据等式的性质得出∠BAD =∠CAE ,利用SAS 证明△ABD 与△ACE 全等,进而解答即可. 【解答过程】证明:∵∠BAC =∠DAE , ∴∠BAC ﹣∠CAD =∠DAE ﹣∠CAD , ∴∠BAD =∠CAE , 在△ABD 与△ACE 中, {AB =AC∠BAD =∠CAE AD =AE, ∴△ABD ≌△ACE (SAS ), ∴∠ABD =∠ACE .【变式3-1】(2020秋•怀宁县期末)如图,已知:AD =AB ,AE =AC ,AD ⊥AB ,AE ⊥AC .猜想线段CD 与BE 之间的数量关系与位置关系,并证明你的猜想.【变式3-2】(2020秋•合江县月考)已知△ABC 和△ADE 均为等腰三角形,且∠BAC =∠DAE ,AB =AC ,AD =AE .(1)如图1,点E 在BC 上,求证:BC =BD +BE ;(2)如图2,点E 在CB 的延长线上,求证:BC =BD ﹣BE .【变式3-3】(2021春•浦东新区期末)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE =90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.【题型4 一线三等角模型】【例4】(2020秋•覃塘区期中)已知:D,A,E三点都在直线m上,在直线m的同一侧作△ABC,使AB =AC,连接BD,CE.(1)如图①,若∠BAC=90°,BD⊥m,CE⊥m,求证:△ABD≌△ACE;(2)如图②,若∠BDA=∠AEC=∠BAC,请判断BD,CE,DE三条线段之间的数量关系,并说明理由.【解题思路】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA;(2)由∠BDA=∠AEC=∠BAC,就可以求出∠BAD=∠ACE,进而由ASA就可以得出△BAD≌△ACE,就可以得出BD =AE ,DA =CE ,即可得出结论.【解答过程】解:(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°, ∴∠BAD +∠CAE =90°, ∵BD ⊥m ,CE ⊥m , ∴∠ADB =∠CEA =90°, ∴∠BAD +∠ABD =90°, ∴∠ABD =∠CAE , 在△ABD 和△ACE 中, {∠ADB =∠AEC ∠ABD =∠CAE AB =AC, ∴△ABD ≌△ACE (AAS ); (2)DE =BD +CE .理由是:如图②,∵∠BDA =∠AEC =∠BAC , ∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE , ∴∠ABD =∠CAE ,∠BAD =∠ACE , 在△ABD 和△ACE 中, {∠ABD =∠CAE AB =AC ∠BAD =∠ACE, ∴△ABD ≌△ACE (ASA ), ∴BD =AE ,AD =CE , ∴DE =AD +AE =BD +CE .【变式4-1】(2020春•香坊区期末)如图,在△ABC 中,点D 是边BC 上一点,CD =AB ,点E 在边AC 上,且AD =DE ,∠BAD =∠CDE . (1)如图1,求证:BD =CE ;(2)如图2,若DE 平分∠ADC ,在不添加辅助线的情况下,请直接写出图中所有与∠ADE 相等的角(∠ADE 除外).【变式4-2】(2020春•历下区期中)CD是经过∠BCA定点C的一条直线,CA=CB,E、F分别是直线CD 上两点,且∠BEC=∠CF A=∠β.(1)若直线CD经过∠BCA内部,且E、F在射线CD上,①若∠BCA=90°,∠β=90°,例如图1,则BE CF,EF|BE﹣AF|.(填“>”,“<”,“=”);②若0°<∠BCA<180°,且∠β+∠BCA=180°,例如图2,①中的两个结论还成立吗?并说明理由;(2)如图3,若直线CD经过∠BCA外部,且∠β=∠BCA,请直接写出线段EF、BE、AF的数量关系(不需要证明).【变式4-3】(2020秋•余杭区月考)如图①,点B、C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF.应用:如图②,在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD 上.∠1=∠2=∠BAC,若△ABC的面积为15,求△ABE与△CDF的面积之和.【题型5 倍长中线模型】【例5】(2020秋•津南区校级期中)已知:在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于F ,求证:AF =EF .【解题思路】根据点D 是BC 的中点,延长AD 到点G ,得到△ADC ≌△GDB ,利用全等三角形的对应角相等,对应边相等进行等量代换,得到△AEF 中的两个角相等,然后用等角对等边证明AE 等于EF . 【解答过程】证明:如图,延长AD 到点G ,使得AD =DG ,连接BG . ∵AD 是BC 边上的中线(已知), ∴DC =DB ,在△ADC 和△GDB 中, {AD =DG∠ADC =∠GDB(对顶角相等)DC =DB∴△ADC ≌△GDB (SAS ), ∴∠CAD =∠G ,BG =AC 又∵BE =AC , ∴BE =BG ,∴∠BED=∠G,∵∠BED=∠AEF,∴∠AEF=∠CAD,即:∠AEF=∠F AE,∴AF=EF.【变式5-1】(2020春•大庆期末)如图.AB=AE,AB⊥AE,AD=AC.AD⊥AC,点M为BC的中点,求证:DE=2AM.【变式5-2】(2020秋•西城区校级期中)如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=CG.【变式5-3】(2020秋•安陆市期中)八年级一班数学兴趣小组在一次活动中进行了探究试验活动,请你和他们一起活动吧.【探究与发现】(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接BE,写出图中全等的两个三角形【理解与应用】(2)填空:如图2,EP是△DEF的中线,若EF=5,DE=3,设EP=x,则x的取值范围是.(3)已知:如图3,AD是△ABC的中线,∠BAC=∠ACB,点Q在BC的延长线上,QC=BC,求证:AQ=2AD.【题型6 截长补短模型】【例6】(2020秋•涪城区校级月考)如图,AB∥CD,E为AD上一点,且BE、CE分别平分∠ABC,∠BCD.求证:AE=DE.【解题思路】作BE的延长线交CD的延长线于F,结合条件可证明△FCE≌△BCE,得出EF=BE,BC =FC,进一步可得出△AEB≌△DEF,可得出结论.【解答过程】证明:如图,延长BE交CD的延长线于F,∵CE是∠BCD的平分线,∴∠BCE=∠FCE,∵AB∥CD,∴∠F =∠FBA ,∵BE 是∠ABC 的平分线,∴∠ABF =∠FBC ,∴∠FBC =∠F .在△FCE 和△BCE 中{∠F =∠FBC ∠FCE =∠BCE CE =CE,∴△FCE ≌△BCE (AAS ),∴EF =BE ,BC =FC ,在△AEB 和△DEF 中,{∠AEB =∠DEF BE =EF ∠FBA =∠F,∴△AEB ≌△DEF (ASA ),∴AE =ED .【变式6-1】(2020秋•蕲春县期中)如图,AB ∥CD ,BE 平分∠ABC ,CE 平分∠BCD ,若E 在AD 上.求证:(1)BE ⊥CE ;(2)BC =AB +CD .【变式6-2】(2020秋•新抚区校级月考)如图所示,在五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:DA 平分∠CDE .【变式6-3】(2020秋•北流市期中)已知△ABC中,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O.(1)直接写出∠BOC与∠A的数量关系;(2)若∠A=60°,利用(1)的关系,求出∠BOC的度数;(3)利用(2)的结果,试判断BE,CD,BC的数量关系,并证明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、绕点型(手拉手模型)
(1)自旋转:
自旋转构造放方法:①遇60°旋60°,构造等边三角形;
②遇90°旋90°,构造等腰直角三角形;
③遇等腰旋转顶角,构造旋转全等;
④遇中点180°,构造中心对称。

(2)共旋转(典型的手拉手模型)
例1、在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC
(3) AE 与DC 的夹角为60。

(4) △AGB ≌△DFB (5) △EGB ≌△CFB (6) BH 平分∠AHC (7) GF ∥AC
变式练习1、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC
(3) AE 与DC 的夹角为60。

(4) AE 与DC 的交点设为H,BH 平分∠AHC
变式练习2、如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:Array (1)△ABE≌△DBC
(2)AE=DC
(3)AE与DC的夹角为60。

(4)AE与DC的交点设为H,BH平分∠AHC
(1)如图1,点C是线段AB上一点,分别以AC,BC为边在AB的同侧作等边△ACM和△CBN,连接AN,
BM.分别取BM,AN的中点E,F,连接CE,CF,EF.观察并猜想△CEF的形状,并说明理由.
(2)若将(1)中的“以AC,BC为边作等边△ACM和△CBN”改为“以AC,BC为腰在AB的同侧作等腰
△ACM和△CBN,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,
请说明理由.
例4、例题讲解:
1. 已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B,C重合),以AD为边作菱形ADEF(按A,D,E,F逆时针排列),使∠DAF=60°,连接CF.
(1) 如图1,当点D在边BC上时,求证:①BD=CF ‚②AC=CF+CD.
(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;
(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系。

2、半角模型
说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

例1、如图,正方形ABCD的边长为1,AB,AD上各存在一点P、Q,若△APQ的周长为2,求PCQ
的度数。

D
A
C
B
Q
P
例2、在正方形ABCD中,若M、N分别在边BC、CD上移动,且满足MN=BM +DN,求证:①∠MAN=45°;

△CMN 的周长=2AB ;③AM 、AN 分别平分∠BMN 和∠DNM 。

例3、在正方形ABCD 中,已知∠MAN=45°,若M 、N 分别在边CB 、DC 的延长线上移动:①试探究线段MN 、BM 、DN 之间的数量关系;②求证:AB=AH.
例4、在四边形ABCD 中,∠B+∠D=180°,AB=AD ,若E 、F 分别在边BC 、CD 且上,满足EF=BE+DF.求证:
BAD EAF ∠=
∠2
1。

相关文档
最新文档