三角形旋转全等常见模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、绕点型(手拉手模型)
(1)自旋转:
自旋转构造放方法:①遇60°旋60°,构造等边三角形;
②遇90°旋90°,构造等腰直角三角形;
③遇等腰旋转顶角,构造旋转全等;
④遇中点180°,构造中心对称。
(2)共旋转(典型的手拉手模型)
例1、在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC
(3) AE 与DC 的夹角为60。
(4) △AGB ≌△DFB (5) △EGB ≌△CFB (6) BH 平分∠AHC (7) GF ∥AC
变式练习1、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC
(3) AE 与DC 的夹角为60。
(4) AE 与DC 的交点设为H,BH 平分∠AHC
变式练习2、如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:Array (1)△ABE≌△DBC
(2)AE=DC
(3)AE与DC的夹角为60。
(4)AE与DC的交点设为H,BH平分∠AHC
(1)如图1,点C是线段AB上一点,分别以AC,BC为边在AB的同侧作等边△ACM和△CBN,连接AN,
BM.分别取BM,AN的中点E,F,连接CE,CF,EF.观察并猜想△CEF的形状,并说明理由.
(2)若将(1)中的“以AC,BC为边作等边△ACM和△CBN”改为“以AC,BC为腰在AB的同侧作等腰
△ACM和△CBN,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,
请说明理由.
例4、例题讲解:
1. 已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B,C重合),以AD为边作菱形ADEF(按A,D,E,F逆时针排列),使∠DAF=60°,连接CF.
(1) 如图1,当点D在边BC上时,求证:①BD=CF ‚②AC=CF+CD.
(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;
(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系。
2、半角模型
说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
例1、如图,正方形ABCD的边长为1,AB,AD上各存在一点P、Q,若△APQ的周长为2,求PCQ
的度数。
D
A
C
B
Q
P
例2、在正方形ABCD中,若M、N分别在边BC、CD上移动,且满足MN=BM +DN,求证:①∠MAN=45°;
②
△CMN 的周长=2AB ;③AM 、AN 分别平分∠BMN 和∠DNM 。
例3、在正方形ABCD 中,已知∠MAN=45°,若M 、N 分别在边CB 、DC 的延长线上移动:①试探究线段MN 、BM 、DN 之间的数量关系;②求证:AB=AH.
例4、在四边形ABCD 中,∠B+∠D=180°,AB=AD ,若E 、F 分别在边BC 、CD 且上,满足EF=BE+DF.求证:
BAD EAF ∠=
∠2
1
。