多元线性回归分析课件
合集下载
《多元线性回归》PPT课件
ˆ 0.7226 0.0003 15674 103 .172 1 ˆ β ˆ 0 . 0003 1 . 35 E 07 39648400 0 . 7770 2
x11 x x 1n x k1 x kn
假设6:回归模型是正确设定的
§3.2
多元线性回归模型的参数估计
一、普通最小二乘估计 二、参数估计量的性质 三、样本容量问题
参数估计的任务和方法
1、估计目标:回归系数βj、随机误差项方差б2 2、估计方法:OLS、ML或者MM * OLS:普通最小二乘估计 * ML:最大似然估计
E(X(Y Xβ )0
矩条件
*矩条件和矩估计量*
1、 E(X(Y Xβ ) 0 称为原总体回归方程的一组矩条件,表明了
原总体回归方程所具有的内在特征。
2、如果随机抽出原总体的一个样本,估计出的样本回归方程:
ˆ 能够近似代表总体回归方程的话,则应成立: ˆ X Y
1 ˆ)0 X (Y Xβ n
第三章
多元线性回归模型
§ 3.1 多元线性回归模型
§ 3.2 多元线性回归模型的参数估计 § 3.3 多元线性回归模型的统计检验 § 3.4 多元线性回归模型的预测 § 3.5 可线性化的多元非线性回归模型 § 3.6 受约束回归
§3.1
多元线性回归模型
一、模型形式 二、基本假定
一、模型形式
Yi 0 1 X 1i 2 X 2 i ... k X ki i 0 j X ji i
#参数估计的实例
例3.2.1:在例2.1.1的家庭收入-消费支出例中,
心理学研究方法多元回归分析PPT课件
save ——distance –勾上Cook’s和leverage 值
Plots-histogram 和 normal probability plot勾
上-把ZPRED放入Y,把ZRESID放入X轴——
.
12
OK
原始回归方程Y=0.0498X+0.441
标准化回归方程Zy=0.881Zx
β = (δy/ δx)*r =(0.41989/7.426)*0.881=0.04981
.
29
步骤同一元回归
补充步骤 在statistic勾上R square change,part and partial correlation(半偏 相关和偏相关), conlinerarity diagnostics (共线性判断)
.
30
分层回归方法
Enter:强制进入 Forward:前向选择法 Backward:反向删除法 Stepwise:逐步回归,最常用 把需要控制的变量用这种方法强制enter法
.
39
对强影响点的诊断和处理
同一元线性回归
.
40
多重共线性(conlinerarity diagnostics)
判断方法
✓ 相关系数矩阵:当相关系数>0.8,代表共线性 越大。
✓ 容忍度(tolerance):最大值为1。当值越小, 代表共线性越大。
✓ 特征值(eigenvalue):表示该因子所解释变 量的方差。如果很多变量的特征值<1,表示共 线性。
残差是否独立:用durbin-watson进行分析(取值 0<d<4)。如果独立,则d约等于2。如果相邻两点的 残差为正相关,d<2。当相邻两点的残差为负相关时, d>2。
11多元(重)线性回归精品PPT课件
编号
收缩压 年龄
(ID)
Y
X1
17
145
49
18
142
46
19
135
57
20
142
56
21
150
56
22
144
58
23
137
53
24
132
50
25
149
54
26
132
48
27
120
43
28
126
43
29
161
63
30
170
63
31
152
62
32
164
65
吸烟
X2
1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0
多元(重)线性回归
例子
人的体重与身高、胸围 血压值与年龄、性别、劳动强度、饮食习惯、
吸烟状况、家族史 糖尿病人的血糖与胰岛素、糖化血红蛋白、
血清总胆固醇、甘油三脂 射频治疗仪定向治疗脑肿瘤过程中,脑皮质
的毁损半径与辐射的温度、与照射的时间
32例40岁以上男性的年龄、吸烟、 体 重指数与收缩压
0.7967
Adj R-Sq (校正决定系数) 0.7749
Dependent Mean 应变量Y 的均值=144.43750
剩余标准差( Root MSE )
S Y|12...p (YYˆ)2 /(np1)
SS残(np1) MS残 46.044886.78564
反映了回归方程的精度,其值越小说明回归效果越好
2. 逐步选择法
1. 前进法(forward selection) 2. 后退法(backward elimination) 3. 逐步回归法(stepwise regression)
《多元线性回归》课件
案例三:销售预测
总结词
利用多元线性回归模型预测未来销售情况,为企业制定 生产和销售计划提供依据。
详细描述
选取影响销售业绩的因素,如市场需求、竞争状况、产 品定价等,建立多元线性回归模型。通过分析历史销售 数据,预测未来销售趋势。在实际应用中,需要考虑市 场变化和不确定性因素,对模型进行动态调整和优化。
市场分析
在市场营销领域,多元线性回归可用于分析消费 者行为、市场趋势等,为企业制定营销策略提供 支持。
多元线性回归的基本假设
线性关系
自变量与因变量之间存在线性 关系,即随着自变量的增加或 减少,因变量也按一定比例变
化。
无多重共线性
自变量之间不存在多重共线性 ,即自变量之间没有高度的相 多元线性回归的 案例分析
案例一:股票价格预测
总结词
通过分析历史股票数据,利用多元线性回归 模型预测未来股票价格走势。
详细描述
选取多个影响股票价格的因素,如公司财务 指标、宏观经济指标、市场情绪等,建立多 元线性回归模型。通过训练数据拟合模型, 并使用测试数据评估模型的预测精度。在实 际应用中,需要考虑市场变化、政策影响等
特点
多元线性回归具有简单易用、可解释性强等优点,适用于探 索多个变量之间的相互关系,并能够提供可靠的预测结果。
多元线性回归的应用场景
1 2 3
经济预测
通过对多个经济指标进行多元线性回归分析,可 以预测未来的经济走势,为政策制定提供依据。
医学研究
在医学领域,多元线性回归常用于研究疾病发生 与多个风险因素之间的关系,为疾病预防和治疗 提供参考。
用于检验自变量与因变量之间是否存在线性关系。常用的方法包括散点图、趋 势线等。如果数据点在散点图上呈现一条直线,或者趋势线与水平线接近平行 ,则可以认为自变量与因变量之间存在线性关系。
《多元线性回归分析》PPT课件
的线性关系而使因变量Y 变异减小的部分;
SS回归 b1l1Y b2l2Y bmlmY biliy
SS剩余 表示剩余平方和,说明除自变量外,其它随机因素
对 Y 变异的影响。 SS剩余 SS总 SS回归
整理ppt
14
各变量的离差矩阵
b1 0.1424 , b2 0.3515 , b3 0.2706 , b4 0.6382
Y 的误差平方和Q (Y Yˆ)2 为最小值
的一组回归系数b1 ,b2 ,bm 值。
求回归系数 b1 ,b2 ,bm 的方法
是求解正规方程组(normal equations):
b1l11 b2l12 bml1m l1y
b1l21
b2l22
bml2m
l2y
b1lm1 b2lm2 bmlmm lmy
整理ppt
28
2.决定系数
决定系数(coefficient of determination)表示回归平 方和占总平方和的比例,反映各自变量对因变量回 归贡献的大小,用 R2 表示。 R2 SS回归
SS总
R2 无单位,取值在 0~1 之间。值越大,说明回归平 方和在总平方和中所占的比重越大,剩余平方和所占 比例越小,回归效果越好。
partial
regression
coefficient)。标准偏回归系数
b
' i
与
注 意
偏回归系数之间的关系为:
b
' i
=
bi
lii l yy
= bi
si sy
标准偏回归系数绝对值的大小,可用以衡量自变量对
因变量贡献的大小,即说明各自变量在多元回归方程
中的重要性。
多元线性回归分析简介ppt课件
动情况
回归平方和:SSR= ( yˆi y)2 ,是 SS 中由自变量的波动
引起的部分,即在 SS 中能用自变量解释的部分。
残差平方和:SSE= ( yi yˆi )2 ei2 ,由自变量之外
函数关系为 y 0 1x1 p xp ,其中 0 , 1, , p 待定,称 1, , p 为这个 p 元线性 回归函数的回归系数。
类似于一个自变量的情形,可以把自变量 x1, , xp 与因变量Y 之间的相关关系表示成 Y 0 1x1 p xp ,其中随机误差项
~ N 0, 2 。于是,Y ~ N 0 1x1 pxp, 2
为 y 关于 x 的多元线性经验回归方程(函数),它表示 p+1 维空间中的一个超平面(经验回归平面)。
引进矩阵的形式:
设
y
y1
y2
,
X
1
1
x1 p
则多元线性回归模型可表示为:
x1p
x2
p
,
1 2
,
xnp
n
y X
G
M
条件
一、多元线性回归的估计和检验
在实际问题中,往往要考虑多个自变量与一个 因变量之间的相关关系.例如,一个人的身高 不仅受到父亲身高的影响,还受到母亲等其他 直系长辈的影响.
一般地,我们需要研究 p 个自变量 x1, , xp 与 因变量Y 之间相关关系的数量表示。假定自变
量 x1, , xp 与因变量Y 的均值 E Y y 之间的
j 1
三、回归方程的显著性检验---F 检验 在 p 元回归分析问题中,回归系数的显著性检验 问题是要检验 : H0 : 1 p 0
F-检验是根据平方和分解公式,直接从 回归效果来检验回归方程的显著性。和 一元情形类似
回归平方和:SSR= ( yˆi y)2 ,是 SS 中由自变量的波动
引起的部分,即在 SS 中能用自变量解释的部分。
残差平方和:SSE= ( yi yˆi )2 ei2 ,由自变量之外
函数关系为 y 0 1x1 p xp ,其中 0 , 1, , p 待定,称 1, , p 为这个 p 元线性 回归函数的回归系数。
类似于一个自变量的情形,可以把自变量 x1, , xp 与因变量Y 之间的相关关系表示成 Y 0 1x1 p xp ,其中随机误差项
~ N 0, 2 。于是,Y ~ N 0 1x1 pxp, 2
为 y 关于 x 的多元线性经验回归方程(函数),它表示 p+1 维空间中的一个超平面(经验回归平面)。
引进矩阵的形式:
设
y
y1
y2
,
X
1
1
x1 p
则多元线性回归模型可表示为:
x1p
x2
p
,
1 2
,
xnp
n
y X
G
M
条件
一、多元线性回归的估计和检验
在实际问题中,往往要考虑多个自变量与一个 因变量之间的相关关系.例如,一个人的身高 不仅受到父亲身高的影响,还受到母亲等其他 直系长辈的影响.
一般地,我们需要研究 p 个自变量 x1, , xp 与 因变量Y 之间相关关系的数量表示。假定自变
量 x1, , xp 与因变量Y 的均值 E Y y 之间的
j 1
三、回归方程的显著性检验---F 检验 在 p 元回归分析问题中,回归系数的显著性检验 问题是要检验 : H0 : 1 p 0
F-检验是根据平方和分解公式,直接从 回归效果来检验回归方程的显著性。和 一元情形类似
多元线性回归课件
误差项之间不存在自相关性。
线性关系
自变量与因变量之间存在线性 关系。
无异方差性
误差项的方差在所有观测值中 保持恒定。
无异常值
数据集中没有异常值。
02
多元线性回归的参 数估计
最小二乘法
最小二乘法是一种数学优化技术,其 基本思想是寻找一个函数,使得该函 数与已知数据点的总误差(或总偏差 )的平方和最小。
最小二乘法通过构建残差平方和பைடு நூலகம்数 学模型,并对其求最小值来估计参数 ,这种方法具有简单、直观和易于计 算的特点。
在多元线性回归中,最小二乘法的目 标是找到最佳参数值,使得实际观测 值与通过模型预测的值之间的残差平 方和最小。
参数的估计值与估计量的性质
参数的估计值是通过最小二乘法 或其他优化算法从样本数据中得
多元线性回归课件
目录
CONTENTS
• 多元线性回归概述 • 多元线性回归的参数估计 • 多元线性回归的评估与诊断 • 多元线性回归的进阶应用 • 多元线性回归的软件实现 • 多元线性回归的案例分析
01
多元线性回归概述
定义与模型
定义
多元线性回归是一种统计学方法,用于 研究多个自变量与因变量之间的线性关 系。
决定系数(R^2)
衡量模型解释变量变异程度的指标,值越接近1表示模型拟合度越好。
调整决定系数(Adjusted R^2)
考虑了模型中自变量的增加,对R^2进行调整后的拟合度指标。
均方误差(MSE)
衡量模型预测误差大小的指标,值越小表示模型预测精度越高。
变量的显著性检验
t检验
通过t统计量检验自变量对因变量 的影响是否显著,值越大表明该 变量越重要。
用于判断自变量之间是否存在多重共线性的指标,值小于阈值时可能存在多重共线性问 题。
线性关系
自变量与因变量之间存在线性 关系。
无异方差性
误差项的方差在所有观测值中 保持恒定。
无异常值
数据集中没有异常值。
02
多元线性回归的参 数估计
最小二乘法
最小二乘法是一种数学优化技术,其 基本思想是寻找一个函数,使得该函 数与已知数据点的总误差(或总偏差 )的平方和最小。
最小二乘法通过构建残差平方和பைடு நூலகம்数 学模型,并对其求最小值来估计参数 ,这种方法具有简单、直观和易于计 算的特点。
在多元线性回归中,最小二乘法的目 标是找到最佳参数值,使得实际观测 值与通过模型预测的值之间的残差平 方和最小。
参数的估计值与估计量的性质
参数的估计值是通过最小二乘法 或其他优化算法从样本数据中得
多元线性回归课件
目录
CONTENTS
• 多元线性回归概述 • 多元线性回归的参数估计 • 多元线性回归的评估与诊断 • 多元线性回归的进阶应用 • 多元线性回归的软件实现 • 多元线性回归的案例分析
01
多元线性回归概述
定义与模型
定义
多元线性回归是一种统计学方法,用于 研究多个自变量与因变量之间的线性关 系。
决定系数(R^2)
衡量模型解释变量变异程度的指标,值越接近1表示模型拟合度越好。
调整决定系数(Adjusted R^2)
考虑了模型中自变量的增加,对R^2进行调整后的拟合度指标。
均方误差(MSE)
衡量模型预测误差大小的指标,值越小表示模型预测精度越高。
变量的显著性检验
t检验
通过t统计量检验自变量对因变量 的影响是否显著,值越大表明该 变量越重要。
用于判断自变量之间是否存在多重共线性的指标,值小于阈值时可能存在多重共线性问 题。
多元线性回归分析课件
注意:似然函数取对数是一个单调变换,不会影响参 数估计值的最优解。
42
极大似然估计的优化一阶条件:
结论: 回归系数的ML估计量与OLS估计量完全等价。 在有限样本下是有偏的,大样本下具有一致性。
43
二、参数约束的似然比检验
例子:柯布-道格拉斯生产函数
无约束方程: 受约束方程:
待检验假设:
无约束方程进行 ML估计,得到极大对数似然函数值:
回忆:P值是检验结论犯第一类“弃真”错误的概率。 P值非常小的含义是什么呢?
17
二、随机误差项方差的估计
的无偏估计量可以表述为:
自由度为什么是N-(K+1)? 多元回归模型的OLS估计中,我们基于正规方程 组中的K+1个约束估计了K+1个回归系数,所以损失 了K+1个自由度,独立的观测信息只剩下N-(K+1)个。
34
3 :参数的线性约束检验: F检验一般形式
对于多元线性回归模型:
参数的多个约束:
待检验假设:
原假设中至少有一个约束条件不成立。
35
检验统计量
基于 和 有
,在原假设成立的情况下,
如果原假设为真,我们会倾向于得到较小的F值。
反之,我们会倾向于得到较大的F值。
判定:若F值大于临界值,或p值小于显著性水平, 则拒绝原假设。
36
4 :经济关系的结构稳定性检验: F检验的一 个例子——邹检验
n 例:中国宏观生产函数在1992年前后是否不同? 无约束回归:参数可以不同
1978~1992年: 1993~2006年:
受约束回归:参数不变 1978~2006年:
37
待检验假设:
: 原假设中约束条件至少有一个不成立。
42
极大似然估计的优化一阶条件:
结论: 回归系数的ML估计量与OLS估计量完全等价。 在有限样本下是有偏的,大样本下具有一致性。
43
二、参数约束的似然比检验
例子:柯布-道格拉斯生产函数
无约束方程: 受约束方程:
待检验假设:
无约束方程进行 ML估计,得到极大对数似然函数值:
回忆:P值是检验结论犯第一类“弃真”错误的概率。 P值非常小的含义是什么呢?
17
二、随机误差项方差的估计
的无偏估计量可以表述为:
自由度为什么是N-(K+1)? 多元回归模型的OLS估计中,我们基于正规方程 组中的K+1个约束估计了K+1个回归系数,所以损失 了K+1个自由度,独立的观测信息只剩下N-(K+1)个。
34
3 :参数的线性约束检验: F检验一般形式
对于多元线性回归模型:
参数的多个约束:
待检验假设:
原假设中至少有一个约束条件不成立。
35
检验统计量
基于 和 有
,在原假设成立的情况下,
如果原假设为真,我们会倾向于得到较小的F值。
反之,我们会倾向于得到较大的F值。
判定:若F值大于临界值,或p值小于显著性水平, 则拒绝原假设。
36
4 :经济关系的结构稳定性检验: F检验的一 个例子——邹检验
n 例:中国宏观生产函数在1992年前后是否不同? 无约束回归:参数可以不同
1978~1992年: 1993~2006年:
受约束回归:参数不变 1978~2006年:
37
待检验假设:
: 原假设中约束条件至少有一个不成立。
多元线性回归分析 ppt课件
Y ˆ b 0 b 1 X 1 b 2 X 2 b m X m
2.对回归方程及各Xj作假设检验。
8
二、多元线性回归方程的建立
9
Y
Y ˆ abX
X
Y ˆ b0b1X1
10
Y ˆ b0b1X1
b(XX)(YY)lXY aYbX
(XX)2
lXX
b1
l1Y l 11
l11 b1 l1Y
b0 Yb1X1
13
Y ˆ b 0 b 1 X 1 b 2 X 2 b m X m
l 1 b 1 1 l 1 b 2 2 l 1 m b m l 1 Y l2b 1 1 l2b 2 2 l2 m b m l2 Y l m 1 b 1 l m 2 b 2 l m b m m l mY
第15章
多元线性回归分析
Multiple Linear Regression Analysis
流行病学与卫生统计学系
Email:
1
讲课内容
第一节 多元线性回归(重点) 第二节 自变量选择方法(重点) 第三节 多元线性回归的应用及注
意事项
2
第一节 多元线性回归
一、多元线性回归模型
3
表 15-2 27 名糖尿病人的血糖及有关变量的测量结果
在其它自变量保持不变时,Xj增加或减少 一个单位时Y的平均变化量。
e 去除m个自变量对Y影响后的随机误差。
6
多元线性回归模型应用条件:
1.Y与X1,X2, ,Xm之间具有线性关系; 2.各个Yi间相互独立; 3.e服从均数为0、方差为2的正态分布。
7
多元线性回归分析步骤:
1.根据样本数据求得模型参数估计值:
序号 i
总胆固醇 甘油三酯
2.对回归方程及各Xj作假设检验。
8
二、多元线性回归方程的建立
9
Y
Y ˆ abX
X
Y ˆ b0b1X1
10
Y ˆ b0b1X1
b(XX)(YY)lXY aYbX
(XX)2
lXX
b1
l1Y l 11
l11 b1 l1Y
b0 Yb1X1
13
Y ˆ b 0 b 1 X 1 b 2 X 2 b m X m
l 1 b 1 1 l 1 b 2 2 l 1 m b m l 1 Y l2b 1 1 l2b 2 2 l2 m b m l2 Y l m 1 b 1 l m 2 b 2 l m b m m l mY
第15章
多元线性回归分析
Multiple Linear Regression Analysis
流行病学与卫生统计学系
Email:
1
讲课内容
第一节 多元线性回归(重点) 第二节 自变量选择方法(重点) 第三节 多元线性回归的应用及注
意事项
2
第一节 多元线性回归
一、多元线性回归模型
3
表 15-2 27 名糖尿病人的血糖及有关变量的测量结果
在其它自变量保持不变时,Xj增加或减少 一个单位时Y的平均变化量。
e 去除m个自变量对Y影响后的随机误差。
6
多元线性回归模型应用条件:
1.Y与X1,X2, ,Xm之间具有线性关系; 2.各个Yi间相互独立; 3.e服从均数为0、方差为2的正态分布。
7
多元线性回归分析步骤:
1.根据样本数据求得模型参数估计值:
序号 i
总胆固醇 甘油三酯
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)各观测值Y j j 1,2,,n 之间相互独立; (3)残差 服从均数为 0、方差为 2 的正态分布,
它等价于对于任意一组自变量 X 1 , X 2 , X m ,应
变量Y 均服从正态分布且方差齐。
注意:虽然模型要求因变量是连续数值变量,但对自变量的类型不限。若 自变量是分类变量,特别是无序分类变量,要转化为亚变量才能分析。对 于自变量是分类变量的情形,需要用广义线性回归模型分析。
SS回归=b1l1y+ b2l2y + b3l3y + b4l4y =0.1424×67.6962+0.3515×89.8025+0.2706×142.4347+0.6382 ×84.5570 =133.7107;
ν回归=m=4
多元线性回归分析
1、对模型的假设检验—F检验
b0 11.9259 0.1424 5.8126 0.3515 2.8407 0.2706 6.1467 0.6382 9.1185
= 5.9433
线性回归方程模型为:
Yˆ 5.9433 0.1424X1 0.多3元5线1性5回X归分2析 0.2706X3 0.6382X 4
的线性关系而使因变量Y 变异减小的部分;
SS回归 b1l1Y b2l2Y bmlmY biliy
SS剩余 表示剩余平方和,说明除自变量外,其它随机因素
对 Y 变异的影响。 SS剩余 SS总 SS回归
多元线性回归分析
各变量的离差矩阵
b1 0.1424 , b2 0.3515 , b3 0.2706 , b4 0.6382
多元线性回归分析
多元回归分析数据格式
编号 X 1
X2
┅
1
X 11
X 12
┅
2
X 21
X 22
┅
┇
┇
┇
┇
Xj
┅
X1j
┅
X2j ┅
┇
┇
Xm Y
X 1m
Y1
X 2m Y2
┇
┇
i
X i1
X i2
┅
X ij
┅
X im
Yi
┇
┇
┇
┇
┇
┇
┇
┇
n
X n1
Xn2 ┅
Xnj ┅
X nm Yn
注:患者编号为 i (i 1,2,, n) ;变量个数为 j ( j 1,2,, m)
多元线性回归分析
各变量的离差矩阵
多元线性回归分析
求解后得 b1 0.1424 , b2 0.3515 , b3 0.2706 , b4 0.6382
各变量均值分别为: X1 5.8126 , X 2 2.8407 , X 3 6.1467 , X 4 9.1185 ,Y 11.9259 , 则常数项:
多元线性回归分析
二、多元线性回归分析的步骤
(一)估计各项参数,建立多元线性回归方程模型 (二)对整个模型进行假设检验,模型有意义的前提下,再分 别对各偏回归系数进行假设检验。 (三)计算相应指标,对模型的拟合效果进行评价。
多元线性回归分析
方程求方组回程中归中:系参数lij 数b1l,的bji2估,计(bXm可的i 用方X最法i )小(X二j 乘X法j )求得X,i X j [(Xi )(X j )]/ n
(二)对模型及偏回归系数的假设检验 1、对模型的假设检验—F检验 2、对偏回归系数的假设检验—F检验和t 检验 3、标准偏化回归系数
多元线性回归分析
1、对模型的假设检验—F检验
检验统计量为 F : F
SS回归 / m
SS剩余 /( n m 1)
SS回归 为回归项的平方和,反映由于方程中 m 个自变量与因变量Y
是也求就解是正求规liy出方程能(组使X(i估no计Xrmi值)a(lYYeˆqu和aYti实)on际s):观Xi察Y 值[(Xi )(Y)]/ n
Y的bb11ll误1211 差bb22平ll1222方和Qbbmmll12m(m (Y一l1l2yy)Yˆ)模2 为型最的小参值数估计
的一组回归系数
b1lm1 b2lm2
变量保持不变的条件下,自变量 X改i 变一个单位时因变量Y
的平均改变量。 为随机误差,又称残差(residual),它表
示 的Y变化中不能由自变量
Xii1,2,解 m 释的部分。
多元线性回归分析
y
Y ˆb0b1X1b2X2
x1
x2
多元线性回归分析
应用条件:
多元线性回归模型应满足以下条件:
(1) Y 与 X 1 , X 2 , X m 之间具有线性关系;
多元线性回归分析
一、多元线性回归方程模型
假定因变量Y与自变量 X1,X2,Xm间存在如下关系:
Y 0 1 X 1 2 X 2 m X m
式中, 0 是常数项, 1,2,m 称为偏回归系数(partial regression coefficient)。 ii1,2, m 的含义为在其它自
第十四章 多元线性回归分析
Muቤተ መጻሕፍቲ ባይዱtivariate linear regression
多元线性回归分析
一个变量的变化直接与另一组变量的变化有关:
如:
➢人的体重与身高、胸围
➢血压值与年龄、性别、劳动强度、饮食习惯、吸烟 状况、家族史
➢糖尿病人的血糖与胰岛素、糖化血红蛋白、血清总 胆固醇、甘油三脂
➢射频治疗仪定向治疗脑肿瘤过程中,脑皮质的毁损 半径与辐射的温度、 照射的时间
b1 ,b2 ,bm
bmlmm lmy
值。
常数项 b0 Y b1X1 b2 X2 ... bm Xm 多元线性回归分析
例14.1
27名糖尿病患者的血 清总胆固醇(x1)、 甘油三酯(x2)、空 腹胰岛素(x3)、糖 化血红蛋白(x4)、 空腹血糖(y)的测量 值列于表中,试建立 血糖与其它几项指标 关系的多元线性回归 方程。
多元线性回归分析
Multivariate linear regression
概念: 多元线性回归分析也称复线性回归分析(multiple linear regression analysis),它研究一组自变量如何直接影响一个 因变量。
自变量(independent variable)是指独立自由变量的变量,用向量X 表示;因变量(dependent variable)是指非独立的、受其它变量影响 的变量,用向量Y表示;由于模型仅涉及一个因变量,所以多元线性回 归分析也称单变量线性回归分析(univariate linear regression analysis)
它等价于对于任意一组自变量 X 1 , X 2 , X m ,应
变量Y 均服从正态分布且方差齐。
注意:虽然模型要求因变量是连续数值变量,但对自变量的类型不限。若 自变量是分类变量,特别是无序分类变量,要转化为亚变量才能分析。对 于自变量是分类变量的情形,需要用广义线性回归模型分析。
SS回归=b1l1y+ b2l2y + b3l3y + b4l4y =0.1424×67.6962+0.3515×89.8025+0.2706×142.4347+0.6382 ×84.5570 =133.7107;
ν回归=m=4
多元线性回归分析
1、对模型的假设检验—F检验
b0 11.9259 0.1424 5.8126 0.3515 2.8407 0.2706 6.1467 0.6382 9.1185
= 5.9433
线性回归方程模型为:
Yˆ 5.9433 0.1424X1 0.多3元5线1性5回X归分2析 0.2706X3 0.6382X 4
的线性关系而使因变量Y 变异减小的部分;
SS回归 b1l1Y b2l2Y bmlmY biliy
SS剩余 表示剩余平方和,说明除自变量外,其它随机因素
对 Y 变异的影响。 SS剩余 SS总 SS回归
多元线性回归分析
各变量的离差矩阵
b1 0.1424 , b2 0.3515 , b3 0.2706 , b4 0.6382
多元线性回归分析
多元回归分析数据格式
编号 X 1
X2
┅
1
X 11
X 12
┅
2
X 21
X 22
┅
┇
┇
┇
┇
Xj
┅
X1j
┅
X2j ┅
┇
┇
Xm Y
X 1m
Y1
X 2m Y2
┇
┇
i
X i1
X i2
┅
X ij
┅
X im
Yi
┇
┇
┇
┇
┇
┇
┇
┇
n
X n1
Xn2 ┅
Xnj ┅
X nm Yn
注:患者编号为 i (i 1,2,, n) ;变量个数为 j ( j 1,2,, m)
多元线性回归分析
各变量的离差矩阵
多元线性回归分析
求解后得 b1 0.1424 , b2 0.3515 , b3 0.2706 , b4 0.6382
各变量均值分别为: X1 5.8126 , X 2 2.8407 , X 3 6.1467 , X 4 9.1185 ,Y 11.9259 , 则常数项:
多元线性回归分析
二、多元线性回归分析的步骤
(一)估计各项参数,建立多元线性回归方程模型 (二)对整个模型进行假设检验,模型有意义的前提下,再分 别对各偏回归系数进行假设检验。 (三)计算相应指标,对模型的拟合效果进行评价。
多元线性回归分析
方程求方组回程中归中:系参数lij 数b1l,的bji2估,计(bXm可的i 用方X最法i )小(X二j 乘X法j )求得X,i X j [(Xi )(X j )]/ n
(二)对模型及偏回归系数的假设检验 1、对模型的假设检验—F检验 2、对偏回归系数的假设检验—F检验和t 检验 3、标准偏化回归系数
多元线性回归分析
1、对模型的假设检验—F检验
检验统计量为 F : F
SS回归 / m
SS剩余 /( n m 1)
SS回归 为回归项的平方和,反映由于方程中 m 个自变量与因变量Y
是也求就解是正求规liy出方程能(组使X(i估no计Xrmi值)a(lYYeˆqu和aYti实)on际s):观Xi察Y 值[(Xi )(Y)]/ n
Y的bb11ll误1211 差bb22平ll1222方和Qbbmmll12m(m (Y一l1l2yy)Yˆ)模2 为型最的小参值数估计
的一组回归系数
b1lm1 b2lm2
变量保持不变的条件下,自变量 X改i 变一个单位时因变量Y
的平均改变量。 为随机误差,又称残差(residual),它表
示 的Y变化中不能由自变量
Xii1,2,解 m 释的部分。
多元线性回归分析
y
Y ˆb0b1X1b2X2
x1
x2
多元线性回归分析
应用条件:
多元线性回归模型应满足以下条件:
(1) Y 与 X 1 , X 2 , X m 之间具有线性关系;
多元线性回归分析
一、多元线性回归方程模型
假定因变量Y与自变量 X1,X2,Xm间存在如下关系:
Y 0 1 X 1 2 X 2 m X m
式中, 0 是常数项, 1,2,m 称为偏回归系数(partial regression coefficient)。 ii1,2, m 的含义为在其它自
第十四章 多元线性回归分析
Muቤተ መጻሕፍቲ ባይዱtivariate linear regression
多元线性回归分析
一个变量的变化直接与另一组变量的变化有关:
如:
➢人的体重与身高、胸围
➢血压值与年龄、性别、劳动强度、饮食习惯、吸烟 状况、家族史
➢糖尿病人的血糖与胰岛素、糖化血红蛋白、血清总 胆固醇、甘油三脂
➢射频治疗仪定向治疗脑肿瘤过程中,脑皮质的毁损 半径与辐射的温度、 照射的时间
b1 ,b2 ,bm
bmlmm lmy
值。
常数项 b0 Y b1X1 b2 X2 ... bm Xm 多元线性回归分析
例14.1
27名糖尿病患者的血 清总胆固醇(x1)、 甘油三酯(x2)、空 腹胰岛素(x3)、糖 化血红蛋白(x4)、 空腹血糖(y)的测量 值列于表中,试建立 血糖与其它几项指标 关系的多元线性回归 方程。
多元线性回归分析
Multivariate linear regression
概念: 多元线性回归分析也称复线性回归分析(multiple linear regression analysis),它研究一组自变量如何直接影响一个 因变量。
自变量(independent variable)是指独立自由变量的变量,用向量X 表示;因变量(dependent variable)是指非独立的、受其它变量影响 的变量,用向量Y表示;由于模型仅涉及一个因变量,所以多元线性回 归分析也称单变量线性回归分析(univariate linear regression analysis)