2011年北京市中考数学试卷分析与点评
2011北京中考数学试卷分析
2011北京中考数学试卷分析第一、本次考试全卷总共有三大题型,25道小题,其中选择8个小题,填空题有4道小题,解答题有13个小题。
在这些题型当中,我们能够看出选择题有8道题,分值32分,填空题有4道题,分值16分。
那么选择题每题4分一个,填空题每题4分一个,解答题总共有13道题,分值占了72分。
从分值分布情况来看,数学中考试卷解答题占据了半壁江山。
第二,试卷考察内容以及分值分布情况。
从试卷考察内容来看,本次考试几乎涵盖了数学课程标准里面所包括的所有考点,并且对初中数学主要内容,如数理代数、三角形、四边形、圆、统计与概率都做了相应的考察。
在这些考点当中,数理代数占了64分,空间与几何占了43分,统计与概率占了13分,那么从全卷的分值分布情况来看,数理代数占据主要内容。
第三,试卷整体特点。
第一个特点,突出对基本知识、基本技能以及基本数学思维方法的考察,这个特点也是近五年北京中考数学考试的一个非常重要的趋势。
每一届数学考试试题有将近60%-70%的分都是来自于基础分。
第二个特点,试卷难易程度适中。
2011年,北京中考数学考试试题难度相对于2010年北京中考数学考试难度稍有下降。
第三个特点,注重联系生活实际及应用。
那么这一点从本次考试当中有非常大的体现,如选择题的第五题,解答题的第18题,解答题的第21题。
这些题目都希望同学们用自己所学过的知识点来解决实际问题,灵活运用自己所学过的内容。
第四个特点,多数题目源于教材。
这一点有很多同学拿到试卷以后,一看这道题,感觉这道题曾经做过,那么你比如咱们本次中考的第22题以及第24题,这两道题的图形很多同学拿到题目一看感觉非常熟悉,他们都是来自于教材。
第五个特点,第25题压轴题较之于2010年第25题稍稍有一些下降,其中第三小问主要注重对同学们几何思维能力的考察。
第四,试题重点,题目分析。
针对于2011年北京中考数学试卷,我从第12题、第22题、第24题、第25题这四道题和各位家长和学员分享。
2011北京中考数学试题答案
2011年北京市高级中等学校招生考试数学试卷参考答案一、选择题题号 1 2 3 4 5 6 7 8 答案D C DB AB AB二、填空题题号 9 101112 答案8()25-a a圆柱 0151三、解答题13. 解:()1012cos30272π2-⎛⎫-︒++- ⎪⎝⎭3223312=-⨯++ 23331=-++233=+.14. 解:去括号,得4456x x ->-.移项,得4546x x ->-. 合并,得2x ->-. 解得2x <.所以原不等式的解集是2x <. 15. 解:()()()422a a b a b a b +-+-()22244a ab a b =+-- 244ab b =+.∵2220a ab b ++=, ∴0a b +=.∴原式()40b a b =+=.16. 证明:∵BE DF ,∥∴ABE D ∠=∠.在ABE △和FDC △中,A B ED A B F D A F ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴ABE FDC ≅△△. ∴AE FC =.17. 解:⑴ ∵点()1A n -,在一次函数2y x =-的图象上,∴()212n =-⨯-=. ∴点A 的坐标为()12-,. ∵点A 的反比例函数ky x=的图象上, ∴2k =-.EA CBDF1O1-1xyA∴反比例函数的解析式为2y x=-.⑵ 点P 的坐标为()20-,或()04,.18. 解:设小王用自驾车方式上班平均每小时行驶x 千米.依题意,得18318297x x=⨯+.解得27x =.经检验,27x =是原方程的解,且符合题意. 答:小王用自驾车方式上班平均每小时行驶27千米.四、解答题19. 解:∵90ACB DE BC ∠=︒,,⊥∴AC DE ∥. 又∵CE AD ,∥∴四边形ACED 是平行四边形.∴2DE AC ==.在Rt CDE △中,由勾股定理得2223CD CE DE =-=. ∵D 是BC 的中点,∴243BC CD ==.在Rt ABC △中,由勾股定理得22213AB AC BC =+=. ∵D 是BC 的中点,DE BC ,⊥ ∴4EB EC ==.∴四边形ACEB 的周长10213AC CE EB BA =+++=+.20. ⑴ 证明:连结AE .∵AB 是O 的直径,∴90AEB ∠=︒.∴1290∠+∠=︒.∵AB AC =,∴112CAB ∠=∠.∵12CBF CAB ∠=∠, ∴1CBF ∠=∠.∴290CBF ∠+∠=︒. 即90ABF ∠=︒.∵AB 是O 的直径, ∴直线BF 是O 的切线. ⑵ 解:过点C 作CG AB ⊥于点G .∵5sin 15CBF CBF ∠=∠=∠,, ∴5sin 15∠=.∵905AEB AB ∠=︒=,,∴sin 15BE AB =⋅∠=. ∵90AB AC AEB =∠=︒,, ∴225BC BE ==.由Rt ABE △中,由勾股定理得222 5.AE AB BE =-=AC EBD12GADCFB E O∴255sin 2cos 255∠=∠=,. 在Rt CBG △中,可求得42GC GB ==,. ∴3AG =. ∵GC BF ∥,∴AGC ABF △△. ∴GC AG BF AB=. ∴203GC AB BF AG ⋅==. 21. 解:⑴ ()146119%⨯+173.74=174≈(万辆).所以2008年北京市私人轿车拥有量约是174万辆.⑵ 如右图.⑶ 75276 2.7372.6150⨯⨯=(万吨).估计2010年北京市仅排量为1.6L 的这类私人轿车的碳排放总量约为372.6万吨.22. 解:BDE △的面积等于 1 . ⑴ 如图.以AD 、BE 、CF 的长度为三边长的一个三角形是CFP △. ⑵ 以AD 、BE 、CF 的长度为三边长的三角形的面积等于34. 五、解答题23. 解:⑴ ∵点A B 、是二次函数()()2330y mx m x m =+-->的图象与x 轴的交点,∴令0y =,即()2330mx m x +--=.解得1231x x m=-=,. 又∵点A 在点B 左侧且0m >, ∴点A 的坐标为()10-,.⑵ 由⑴可知点B 的坐标为30m ⎛⎫⎪⎝⎭,.∵二次函数的图象与y 轴交于点C , ∴点C 的坐标为()03-,.∵45ABC ∠=︒,∴33m=. ∴1m =. ⑶ 由⑵得,二次函数解析式为223y x x =--.依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为2-和2,由此可得交点坐标为()25-,和174轿车拥有车量(万辆)北京市2006-2010年私人轿车拥有量统计图年份2762171461215010015020025030020062007200820092010A PEF CDB 1O B C A yx()23-,.将交点坐标分别代入一次函数解析式y kx b =+中,得252 3.k b k b -+=⎧⎨+=-⎩,解得21.k b =-⎧⎨=⎩,∴一次函数的解析式为21y x =-+.24. ⑴ 证明:如图1.∵AF 平分BAD ∠, ∴BAF DAF ∠=∠.∵四边形ABCD 是平行四边形, ∴AD BC AB CD ,∥∥.∴DAF CEF BAF F ∠=∠∠=∠,. ∴CEF F ∠=∠. ∴CE CF =.⑵ BDC ∠=45︒.⑶ 解:分别连结GB 、GE 、GC (如图2).∵120AB DC ABC ∠=︒,,∥ ∴120ECF ABC ∠=∠=︒ ∵FG CE ∥且FG CE =, ∴四边形CEGF 是平行四边形. 由⑴得CE CF =,∴CEGF 是菱形.∴1602EG EC GCF GCE ECF =∠=∠=∠=︒,.∴ECG △是等边三角形.∴EG CG =, ①60GEC EGC ∠=∠=︒.∴GEC GCF ∠=∠.∴BEG DCG ∠=∠. ②由AD BC ∥及AF 平分BAD ∠可得BAE AEB ∠=∠. ∴AB BE =.在ABCD 中,AB DC =.∴BE DC =. ③ 由①②③得BEG DCG ≅△△. ∴BG DE =,12∠=∠.∴132360BGD EGC ∠=∠+∠=∠+∠=∠=︒. ∴180602BGD BDG ︒-∠∠==︒.25. 解:⑴ 分别连结AD 、DB ,则点D 在直线AE 上,如图1. ∵点D 在以AB 为直径的半圆上, ∴90ADB ∠=︒. PMNx yA CB O1DEFCBA图1321G 图2A B CFE D图1D EA OB Fxy∴BD AD ⊥.在Rt DOB △中,由勾股定理得222BD OD OB =+=. ∵AE BF ,∥∴两条射线AE 、BF 所在直线的距离为2.⑵ 当一次函数y x b =+的图象与图形C 恰好只有一个公共点时,b 的取值是2b =或11b -<<;⑶ 假设存在满足题意的AMPQ ,根据点M 的位置,分以下四种情况讨论:①当点M 在射线AE 上时,如图2. ∵A M P Q 、、、四点按顺时针方向排列,∴直线PQ 必在直线AM 的上方.∴P Q 、两点都在 AD 上,且不与点A D 、重合.∴02PQ <<.∵AM PQ ∥且AM PQ =,∴02AM <<. ∴21x -<<-.②当点M 在AD (不包括点D )上时,如图 3.∵A M P Q 、、、四点按顺针方向排列, ∴直线PQ 必在直线AM 的下方.此时,不存在满足题意的平行四边形.③当点M 在 DB上时, 设 DB的中点为R ,则OR BF ∥. 1) 当点M 在 DR(不包括点R )上时,如图4.过点M 作OR 的垂线交 DB于点Q ,垂足为点S ,可得S 是MQ 的中点.连结AS 并延长交直线BF 于点P . ∵O 为AB 的中点,可证S 为AP 的中 点.∴四边形AMPQ 为满足题意的平行四 边形.∴202x <≤.2)当点M 在 RB上时,如图5. 直线PQ 必在直线AM 的下方.此时,不存在满足题意的平行四边形.M Q P y xFB O A ED 图2My xFB O AED图3图4PQ S R MD EA OBF xy R P 1P 2P 3图5DEA OBFxy M④当点M的射线BF(不包括点B)上时,如图6.直线PQ必在直线AM的下方.此时,不存在满足题意的平行四边形.综上,点M的横坐标x的取值范围是21x-<<-或22x<≤.MyxFBOAED图6P3P2P1。
2011年北京市四中中考数学全真模拟试卷(一)
2011年北京市四中中考数学全真模拟试卷(一)2011年北京市四中中考数学全真模拟试卷(一)一、填空题(共12小题,每空2分,满分38分)1.(8分)①的相反数是_________;②﹣2的倒数是_________;③16的算术平方根是_________;④﹣8的立方根是_________.2.(2分)不等式组的解集是_________.3.(2分)(2013•宝应县一模)函数的自变量x的取值范围是_________.4.(2分)直线y=3x﹣2一定过(0,﹣2)和(_________,0)两点.5.(6分)样本5,4,3,2,1的方差是_________;标准差是_________;中位数是_________.6.(2分)等腰三角形的一个角为30°,则底角为_________度.7.(2分)(2009•冷水江市二模)梯形的高为4cm,中位线长为5cm,则梯形的面积为_________cm2.8.(4分)如图PA切⊙O于点A,∠PAB=30°,则∠AOB=_________度,∠ACB=_________度.9.(4分)如图PA切⊙O于A割线PBC过圆心,交⊙O于B、C,若PA=6;PB=3,则PC=_________;⊙O的半径为_________.10.(2分)(2010•河北区模拟)如图△ABC中,∠C=90°,点D在BC上,BD=6,AD=BC,cos∠ADC=,则DC的长为_________.11.(2分)(2009•无锡模拟)图中的同心圆,大⊙O的弦AB切小⊙O于P,且AB=6,则阴影部分即圆环的面积为_________.12.(2分)已知Rt△ABC的两直角边AC、BC分别是一元二次方程x2﹣5x+6=0的两根,则此Rt△ABC的外接圆的半径为_________.二、选择题(共5小题,每小题4分,满分20分)214.(4分)徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两15.(4分)(2003•常德)二次函数y=ax2+bx+c的图象如图所示,则关于此二次函数的下列四个结论①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()16.(4分)(2002•荆州)如图点P为弦AB上一点,连接OP,过P作PC⊥OP,PC交⊙O于点C,若AP=4,PB=2,则PC的长为().D17.(4分)(2009•鄂尔多斯)为了美化城市,建设中的某小广场准备用边长相等的正方形和正八边形两种地砖镶嵌三、解答题(共12小题,满分92分)18.(5分)(2004•福州)计算﹣()0+(﹣2)3÷3﹣1.19.(5分)(2004•泰州)计算:.20.(5分)计算[+]÷().21.(5分)(2012•德州)解方程:22.(7分)(2004•重庆)已知关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根α、β满足,求m的值.23.(7分)如图,△ABC中,∠ABC=∠BAC=45°,点P在AB上,AD⊥CP,BE⊥CP,垂足分别为D,E,已知DC=2,求BE的长.24.(7分)(2004•新疆)在一块长16m,宽12m的矩形荒地上建造一个花园,要求花轩占地面积为荒地面积的一半,下面分别是小强和小颖的设计方案.(1)你认为小强的结果对吗?请说明理由.(2)请你帮助小颖求出图中的x.(3)你还有其他的设计方案吗?请在右边的图中画出一个与图(1)(2)有共同特点的设计草图,并加以说明.25.(7分)(2004•福州)如图所示,l1和l2分别表示一种白炽灯和一种节能灯的费用y(元)与照明时间x(小时)的函数关系图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(费用=灯的售价+电费)(1)根据图象分别求出l1,l2的函数关系式;(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.26.(10分)(2005•河源)已知:如图,AB是⊙O的一条弦,点C为的中点,CD是⊙O的直径,过C点的直线l交AB所在直线于点E,交⊙O于点F.(1)判定图中∠CEB与∠FDC的数量关系,并写出结论;(2)将直线l绕C点旋转(与CD不重合),在旋转过程中,E点,F点的位置也随之变化,请你在下面两个备用图中分别画出在不同位置时,使(1)的结论仍然成立的图形,标上相应字母,选其中一个图形给予证明.27.(10分)阅读下列材料并填空.平面上有n个点(n≥2)且任意三个点不在同一条直线上,过其中的每两点画直线,一共能作出多少条不同的直线?①分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线…S n发现:如下表A有n种取法,取第二个点B有(n﹣1)种取法,所以一共可连成n(n﹣1)条直线,但AB与BA是同一条直线,故应除以2;即S n=④结论:S n=试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?(1)分析:当仅有3个点时,可作出_________个三角形;当仅有4个点时,可作出_________个三角形;当仅有5个点时,可作出_________个三角形;…和可作出的三角形的个数S n,发现:(填下表)(3)推理:(4)结论:28.(10分)实践操作题:把一个等腰直角三角形ABC沿斜边上的高线CD(裁剪线)剪一刀,从这个三角形裁下一部分,与剩下部分能拼成一个平行四边形A′BCD(见示意图1).(以下探究过程中有画图要求的,工具不限,不必写画法和证明).探究一:(1)想一想:判断四边形A′BCD是平行四边形的依据是_________;(2)做一做:按上述的裁剪方法,请你拼一个与图1位置或形状不同的平行四边形,并在图2中画出示意图.探究二:在等腰直角三角形ABC中,请你找出其它的裁剪线,把分割成的两部分拼出不同类型的特殊四边形.(1)试一试:你能拼出所有不同类型的特殊四边形有_________;它们的裁剪线分别是_________;(2)画一画:请在图3中画出一个你拼得的特殊四边形示意图.29.(14分)(2004•济南)已知半径为R的⊙O′经过半径为r的⊙O的圆心,⊙O与⊙O′交于E、F两点.(1)如图1,连接OO′交⊙O于点C,并延长交⊙O′于点D,过点C作⊙O的切线交⊙O′于A、B两点,求OA•OB 的值;(2)若点C为⊙O上一动点.①当点C运动到⊙O′时,如图2,过点C作⊙O的切线交⊙O′,于A、B两点,则OA•OB的值与(1)中的结论相比较有无变化?请说明理由;②当点C运动到⊙O′外时,过点C作⊙O的切线,若能交⊙O′于A、B两点,如图3,则OA•OB的值与(1)中的结论相比较有无变化?请说明理由.2011年北京市四中中考数学全真模拟试卷(一)参考答案与试题解析一、填空题(共12小题,每空2分,满分38分)1.(8分)①的相反数是;②﹣2的倒数是;③16的算术平方根是4;④﹣8的立方根是﹣2.的相反数是;2.(2分)不等式组的解集是﹣4<x<10.3.(2分)(2013•宝应县一模)函数的自变量x的取值范围是x≤1.主要考查了二次根式的意义和性质.概念:式子4.(2分)直线y=3x﹣2一定过(0,﹣2)和(,0)两点.x=,直线过点(5.(6分)样本5,4,3,2,1的方差是2;标准差是;中位数是3.×标准差是;6.(2分)等腰三角形的一个角为30°,则底角为30或75度.=7.(2分)(2009•冷水江市二模)梯形的高为4cm,中位线长为5cm,则梯形的面积为20cm2.梯形的中位线长为(上底梯形的面积为(上底(上底8.(4分)如图PA切⊙O于点A,∠PAB=30°,则∠AOB=60度,∠ACB=30度.9.(4分)如图PA切⊙O于A割线PBC过圆心,交⊙O于B、C,若PA=6;PB=3,则PC=12;⊙O的半径为 4.5.10.(2分)(2010•河北区模拟)如图△ABC中,∠C=90°,点D在BC上,BD=6,AD=BC,cos∠ADC=,则DC的长为9.ADC=,设11.(2分)(2009•无锡模拟)图中的同心圆,大⊙O的弦AB切小⊙O于P,且AB=6,则阴影部分即圆环的面积为9π.ABAP=12.(2分)已知Rt△ABC的两直角边AC、BC分别是一元二次方程x2﹣5x+6=0的两根,则此Rt△ABC的外接圆的半径为.斜边长为:的外接圆直径为的外接圆的半径为..二、选择题(共5小题,每小题4分,满分20分)214.(4分)徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两15.(4分)(2003•常德)二次函数y=ax2+bx+c的图象如图所示,则关于此二次函数的下列四个结论①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()x=,∴16.(4分)(2002•荆州)如图点P为弦AB上一点,连接OP,过P作PC⊥OP,PC交⊙O于点C,若AP=4,PB=2,则PC的长为().DPC=217.(4分)(2009•鄂尔多斯)为了美化城市,建设中的某小广场准备用边长相等的正方形和正八边形两种地砖镶嵌三、解答题(共12小题,满分92分)18.(5分)(2004•福州)计算﹣()0+(﹣2)3÷3﹣1.÷19.(5分)(2004•泰州)计算:.×+2×+2﹣20.(5分)计算[+]÷().﹣]÷×21.(5分)(2012•德州)解方程:22.(7分)(2004•重庆)已知关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根α、β满足,求m的值..∵,故舍去.23.(7分)如图,△ABC中,∠ABC=∠BAC=45°,点P在AB上,AD⊥CP,BE⊥CP,垂足分别为D,E,已知DC=2,求BE的长.中,24.(7分)(2004•新疆)在一块长16m,宽12m的矩形荒地上建造一个花园,要求花轩占地面积为荒地面积的一半,下面分别是小强和小颖的设计方案.(1)你认为小强的结果对吗?请说明理由.(2)请你帮助小颖求出图中的x.(3)你还有其他的设计方案吗?请在右边的图中画出一个与图(1)(2)有共同特点的设计草图,并加以说明.)依题意得:,依题意得25.(7分)(2004•福州)如图所示,l1和l2分别表示一种白炽灯和一种节能灯的费用y(元)与照明时间x(小时)的函数关系图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(费用=灯的售价+电费)(1)根据图象分别求出l1,l2的函数关系式;(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.∴26.(10分)(2005•河源)已知:如图,AB是⊙O的一条弦,点C为的中点,CD是⊙O的直径,过C点的直线l交AB所在直线于点E,交⊙O于点F.(1)判定图中∠CEB与∠FDC的数量关系,并写出结论;(2)将直线l绕C点旋转(与CD不重合),在旋转过程中,E点,F点的位置也随之变化,请你在下面两个备用图中分别画出在不同位置时,使(1)的结论仍然成立的图形,标上相应字母,选其中一个图形给予证明.为27.(10分)阅读下列材料并填空.平面上有n个点(n≥2)且任意三个点不在同一条直线上,过其中的每两点画直线,一共能作出多少条不同的直线?①分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线…S n发现:如下表A有n种取法,取第二个点B有(n﹣1)种取法,所以一共可连成n(n﹣1)条直线,但AB与BA是同一条直线,故应除以2;即S n=④结论:S n=试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?(1)分析:当仅有3个点时,可作出1个三角形;当仅有4个点时,可作出4个三角形;当仅有5个点时,可作出10个三角形;…和可作出的三角形的个数S n,发现:(填下表)(4)结论:=..28.(10分)实践操作题:把一个等腰直角三角形ABC沿斜边上的高线CD(裁剪线)剪一刀,从这个三角形裁下一部分,与剩下部分能拼成一个平行四边形A′BCD(见示意图1).(以下探究过程中有画图要求的,工具不限,不必写画法和证明).探究一:(1)想一想:判断四边形A′BCD是平行四边形的依据是一组对边平行且相等的四边形是平行四边形;(2)做一做:按上述的裁剪方法,请你拼一个与图1位置或形状不同的平行四边形,并在图2中画出示意图.探究二:在等腰直角三角形ABC中,请你找出其它的裁剪线,把分割成的两部分拼出不同类型的特殊四边形.(1)试一试:你能拼出所有不同类型的特殊四边形有平行四边形、矩形、等腰梯形和直角梯形;它们的裁剪线分别是三角形的三条中位线、裁剪线EF∥BC,且AE:EC=:1;(2)画一画:请在图3中画出一个你拼得的特殊四边形示意图.EC=:EC=29.(14分)(2004•济南)已知半径为R的⊙O′经过半径为r的⊙O的圆心,⊙O与⊙O′交于E、F两点.(1)如图1,连接OO′交⊙O于点C,并延长交⊙O′于点D,过点C作⊙O的切线交⊙O′于A、B两点,求OA•OB 的值;(2)若点C为⊙O上一动点.①当点C运动到⊙O′时,如图2,过点C作⊙O的切线交⊙O′,于A、B两点,则OA•OB的值与(1)中的结论相比较有无变化?请说明理由;②当点C运动到⊙O′外时,过点C作⊙O的切线,若能交⊙O′于A、B两点,如图3,则OA•OB的值与(1)中的结论相比较有无变化?请说明理由.参与本试卷答题和审题的老师有:HJJ;张长洪;zxw;zhehe;Linaliu;zhangCF;lanchong;wenming;ln_86;CJX;HLing;自由人;张超。
2011年北京市中考数学试题与答案
A OBCD CE 2011年北京市高级中等学校招生考试数 学 试 卷学校 姓名 准考证号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.- 34的绝对值是( )A .- 4 3B . 4 3C .- 3 4D . 342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为( )A .66.6×107B .0.666×108C .6.66×108D .6.66×107 3.下列图形中,即是中心对称又是轴对称图形的是( )A .等边三角形B .平行四边形C .梯形D .矩形 4.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O , 若AD =1,BC =3,则OAOC的值为( ) A . 1 2 B . 1 3 C . 1 4 D . 195则这10个区县该日最高气温的人数和中位数分别是( )A .32,32B .32,30C .30,32D .32,316.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为( ) A .5 18 B . 1 3 C . 2 15 D . 1157.抛物线y =x 2-6x +5的顶点坐标为( )A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)8.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是 AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线FE x二、填空题(本题共16分,每小题4分) 9.若分式x ―8x的值为0,则x 的值等于________. 10.分解因式:a 3―10a 2+25a =______________.11.若右图是某几何体的表面展开图,则这个几何体是__________. 12.在右表中,我们把第i 行第j 列的数记为a ij (其中i ,j 都是不大于5的正整数),对于表中的每个数a ij ,规定如下:当i ≥j 时,a ij =1;当i <j 时,a ij =0.例如:当i =2,j =1时,a ij =a 21=1.按此规定,a 13=_____;表中的25个数中,共有_____个1;计算:a 11·a i 1+a 12·a i 2+a 13·a i 3+a 14·a i 4+a 15·a i 5的值为________. 三、解答题(本题共30分,每小题5分)13.计算:01)2(2730cos 221π-++-⎪⎭⎫⎝⎛- .14.解不等式:4(x -1)>5x -6.15.已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值.16.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .17.如图,在平面直角坐标系xOy 中,一次函数y =-2x 的图象与反比例函数y = kx的图象的一个交点为A (-1,n ).(1)求反比例函数y = kx的解析式;(2)若P 是坐标轴上一点,且满足P A =OA ,直接写出点P 的坐标.A .B .C .D .A B C E DAOBF CDE 18.列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 37.小王用自驾车方式上班平均每小时行驶多少千米?四、解答题(本题共20分,每小题5分) 19.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD .若AC =2,CE =4,求四边形ACEB 的周长.20.如图,在△ABC ,AB =AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且∠CBF = 12∠CAB .(1)求证:直线BF 是⊙O 的切线; (2)若AB =5,sin ∠CBF =55,求BC 和BF 的长.A BD CEF21.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)? (2)补全条形统计图;(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L 的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L 的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨?22.阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD +BC 的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC 、BD 、AD +BC 的长度为三边长的三角形(如图2).请你回答:图2中△BDE 的面积等于____________. 参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC 的三条中线分别为AD 、BE 、CF .(1)在图3中利用图形变换画出并指明以AD 、BE 、CF 的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC 的面积为1,则以AD 、BE 、CF 的长度为 BBCADOA DCEO图2图1北京市2001~2010年私人轿车拥有量的年增长率统计图 北京市2001~2010年 私人轿车拥有量统计图五、解答题(本题共22分)23.(7分)在平面直角坐标系xOy 中,二次函数y =mx 2+(m ―3)x ―3(m >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 的坐标;(2)当∠ABC =45°时,求m 的值;(3)已知一次函数y =kx +b ,点P (n ,0)是x 轴上的一个动点,在(2)的条件下,过点P 垂直于x 轴的直线交这个一次函数的图象于点M ,交二次函数y =mx 2+(m ―3)x ―3(m >0)的图象于N .若只有当-2<n <2时,点M 位于点N 的上方,求这个一次函数的解析式.24.(7分)在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F .(1)在图1中,证明:CE =CF ; (2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数.B BADADC C EFE G FABC DE GF 图1图2图325.(7分)如图,在平面直角坐标系xOy中,我把由两条射线AE、BF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段).已知A(-1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上.(1)求两条射线AE、BF所在直线的距离;(2)当一次函数y=x+b的图象与图形C恰好只有一个公共点时,写出b的取值范围;当一次函数y=x+b的图象与图形C恰好只有两个公共点时,写出b的取值范围;(3)已知□AMPQ(四个顶点A、M、P、Q按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,求点M的横坐标x的取值范围.数学试卷参考答案三、解答题解:()1012cos302π2-⎛⎫-︒+- ⎪⎝⎭221=-+21= 3=.解:去括号,得4456x x ->-. 移项,得4546x x ->-. 合并,得2x ->-. 解得2x <.所以原不等式的解集是2x <. 解:()()()422a a b a b a b +-+-()22244a ab a b =+--244ab b =+. ∵2220a ab b ++=, ∴0a b +=. ∴原式()40b a b =+=.证明:∵BE DF ,∥ ∴ABE D ∠=∠. 在ABE △和FDC △中,EFABE D AB FD A F ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴ABE FDC ≅△△. ∴AE FC =. 解:⑴ ∵点()1A n -,在一次函数2y x =-的图象上,∴()212n =-⨯-=.∴点A 的坐标为()12-,.∵点A 的反比例函数k y x =的图象上, ∴2k =-.∴反比例函数的解析式为2y x =-.⑵ 点P 的坐标为()20-,或()04,.解:设小王用自驾车方式上班平均每小时行驶x 千米.依题意,得18318297x x =⨯+. 解得27x =.经检验,27x =是原方程的解,且符合题意. 答:小王用自驾车方式上班平均每小时行驶27千米. 四、解答题解:∵90ACB DE BC ∠=︒,,⊥ ∴AC DE ∥.又∵CE AD ,∥∴四边形ACED 是平行四边形. ∴2DE AC ==.在Rt CDE △中,由勾股定理得CD ∵D 是BC 的中点,AC BD∵D 是BC 的中点,DE BC ,⊥ ∴4EB EC ==.∴四边形ACEB的周长10AC CE EB BA =+++=+⑴ 证明:连结AE .∵AB 是O 的直径, ∴90AEB ∠=︒. ∴1290∠+∠=︒. ∵AB AC =,∴112CAB∠=∠.∵12CBF CAB ∠=∠,∴1CBF ∠=∠. ∴290CBF ∠+∠=︒. 即90ABF ∠=︒. ∵AB 是O 的直径, ∴直线BF 是O 的切线. ⑵ 解:过点C 作CG AB ⊥于点G .∵sin 1CBF CBF ∠∠=∠,∴sin 1∠=.∵905AEB AB ∠=︒=,,∴sin 1BE AB =⋅∠=. ∵90AB AC AEB =∠=︒,,F∴sin 2cos 2∠=∠.在Rt CBG △中,可求得42GC GB ==,. ∴3AG =. ∵GC BF ∥, ∴AGC ABF △△.∴GC AG BF AB =. ∴203GC AB BF AG ⋅==. 解:⑴()146119%⨯+173.74= 174≈(万辆).所以2008年北京市私人轿车拥有量约是174万辆. ⑵ 如右图.⑶ 75276 2.7372.6150⨯⨯=(万吨). 估计2010年北京市仅排量为1.6L 的这类私人轿车的碳排放总量约为372.6万吨.解:BDE △的面积等于 1 . ⑴ 如图.以AD 、BE 、CF 的长度为三边长的一个三角形是CFP △.⑵ 以AD 、BE 、CF 的长度为三边长的三角形的面积等于34. 五、解答题解:⑴ ∵点A B 、是二次函数()()2330y mx m x m =+-->的图象与x 轴的交点, ∴令0y =,即()2330mx m x +--=.解得1231x x m =-=,.又∵点A 在点B 左侧且0m >,北京市2006-2010年私人轿车拥有量统计图APEFCDB⑵ 由⑴可知点B 的坐标为30m⎛⎫ ⎪⎝⎭,. ∵二次函数的图象与y 轴交于点C , ∴点C 的坐标为()03-,.∵45ABC ∠=︒,∴33m =. ∴1m =.⑶ 由⑵得,二次函数解析式为223y x x =--.依题意并结合图象可知,一次函数的图象与二次函数的 图象交点的横坐标分别为2-和2,由此可得交点坐标为()25-,和()23-,.将交点坐标分别代入一次函数解析式y kx b =+中, 得252 3.k b k b -+=⎧⎨+=-⎩,解得21.k b =-⎧⎨=⎩,∴一次函数的解析式为21y x =-+.⑴ 证明:如图1.∵AF 平分BAD ∠, ∴BAF DAF ∠=∠.∵四边形ABCD 是平行四边形, ∴AD BC AB CD ,∥∥. ∴DAF CEF BAF F ∠=∠∠=∠,. ∴CEF F ∠=∠. ∴CE CF =.DEFCBA图1321GA BCFED⑵ BDC ∠=45︒.⑶ 解:分别连结GB 、GE 、GC (如图2). ∵120AB DC ABC ∠=︒,,∥ ∴120ECF ABC ∠=∠=︒ ∵FG CE ∥且FG CE =, ∴四边形CEGF 是平行四边形. 由⑴得CE CF =, ∴CEGF 是菱形.∴1602EG EC GCF GCE ECF =∠=∠=∠=︒,. ∴ECG △是等边三角形. ∴EG CG =, ① 60GEC EGC ∠=∠=︒. ∴GEC GCF ∠=∠.∴BEG DCG ∠=∠. ②由AD BC ∥及AF 平分BAD ∠可得BAE AEB ∠=∠. ∴AB BE =.在ABCD 中,AB DC =. ∴BE DC =. ③ 由①②③得BEG DCG ≅△△. ∴BG DE =,12∠=∠.∴132360BGD EGC ∠=∠+∠=∠+∠=∠=︒.∴180602BGDBDG ︒-∠∠==︒.解:⑴ 分别连结AD 、DB ,则点D 在直线AE 上,如图1. ∵点D 在以AB 为直径的半圆上, ∴90ADB ∠=︒.∴BD AD ⊥.在Rt DOB △中,由勾股定理得BD ∵AE BF ,∥∴两条射线AE 、BF⑵ 当一次函数y x b =+的图象与图形C 恰好只有一个公共点时,b的取值是b =或11b -<<; ⑶ 假设存在满足题意的AMPQ ,根据点M 的位置,分以下四种情况讨论:①当点M 在射线AE 上时,如图2. ∵A M P Q 、、、四点按顺时针方向排列, ∴直线PQ 必在直线AM 的上方.∴P Q 、两点都在AD 上,且不与点A D 、重 合.∴0PQ <<.∵AM PQ ∥且AM PQ =,∴0AM << ∴21x -<<-.②当点M 在AD (不包括点D )上时,如图 3.∵A M P Q 、、、四点按顺针方向排列, ∴直线PQ 必在直线AM 的下方. 此时,不存在满足题意的平行四边形. ③当点M 在DB 上时,设DB 的中点为R ,则OR BF ∥. 当点M 在DR (不包括点R )上时,如图4.过点M 作OR 的垂线交DB 于点Q ,垂足为点S ,可得S 是MQ 的中点.图2图3图4连结AS 并延长交直线BF 于点P . ∵O 为AB 的中点,可证S 为AP 的中 点.∴四边形AMPQ 为满足题意的平行四 边形.∴0x <≤.2)当点M 在RB 上时,如图5. 直线PQ 必在直线AM 的下方. 此时,不存在满足题意的平行四边形. ④当点M 的射线BF (不包括点B )上时,如 图6.直线PQ 必在直线AM 的下方. 此时,不存在满足题意的平行四边形. 综上,点M 的横坐标x 的取值范围是21x -<<-或0x <≤.2011年北京中考数学试题答案一.选择题1.D2. C3.D4. B5. A6. B7. A8. B 二.填空题9.8 10. 2(5)a a - 11. 圆柱 12. 0 ;15 ;1 三.计算题13.3+ 14. x<2 15. 0 16. ABE FDA ∆≅∆(SAS)17. (1)2y x -=(2)0 ) 或P(-2 , 0 )18. x = 27km/h19. 10+20. (1)略BF=20/3 21. (1)174 (2) 略 (3) 372.6图5图622. 1(1)(2) 3/423. (1) A(—1 , 0 ) (2)m=1 (3)y= —2x+124. (2)GDF GCB ∆≅∆, GBD ∆为等腰直角三角形,45BDG ︒∠=; (3) GDF GCB ∆≅∆, GBD ∆为等边三角形,60BDG ︒∠=。
2011年北京市四中中考数学全真模拟试卷(二)
2011年北京市四中中考数学全真模拟试卷(二)2011年北京市四中中考数学全真模拟试卷(二)一、选择题(共14小题,每小题3分,满分42分)D.4.(3分)(2008•天河区一模)一个不透明的袋中装有除颜色外均相同的3个红球和2个黄球,从中随机摸出一个,.C D.5.(3分)(2006•临沂)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB;那么判定△OAB≌△OA′B′的理由是()7.(3分)(2009•黄冈)化简的结果是()8.(3分)(2006•临沂)如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=10,DF=4,则菱形ABCD 的边长为().C9.(3分)(2006•临沂)小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm,幻灯片到屏幕的距离是1.5m,幻灯片上小树的高度是10cm,则屏幕上小树的高度是()11.(3分)(2008•枣庄)如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为(),﹣),﹣),)13.(3分)(2006•临沂)如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()14.(3分)(2006•临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是()二、填空题(共5小题,每小题3分,满分15分)15.(3分)(2006•临沂)关于x的不等式3x﹣2a≤﹣2的解集如图所示,则a的值是_________.16.(3分)(2006•临沂)若圆周角α所对弦长为sinα,则此圆的半径r为_________.17.(3分)(2006•临沂)如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的面积为_________cm2(不考虑接缝等因素,计算结果用π表示).18.(3分)(2006•临沂)如图,Rt△ABC中,∠A=90°,AB=4,AC=3,D在BC上运动(不与B、C重合),过D点分别向AB、AC作垂线,垂足分别为E、F,则矩形AEDF的面积的最大值为_________.19.(3分)(2006•临沂)判断一个整数能否被7整除,只需看去掉一节尾(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.如果这个和能被7整除,则原数就能被7整除.如126,去掉6后得12,12+6×5=42,42能被7整除,则126能被7整除.类似地,还可通过看去掉该数的一节尾后与此一节尾的n倍的差能否被7整除来判断,则n=_________(n是整数,且1≤n<7).三、解答题(共7小题,满分63分)20.(6分)(2006•临沂)为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 195 180 250 270 455 170请你用统计初步的知识,计算小亮家平均每年(每年按52周计算)的日常生活消费总费用.21.(7分)(2006•临沂)小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.22.(8分)(2006•临沂)(探索题)某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商店出售的这种瓷砖有大,小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大,小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?23.(9分)(2006•临沂)如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.24.(10分)(2006•临沂)某厂从2005年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)按照这种变化规律,若2010年已投入技改资金5万元.①预计生产成本每件比2009年降低多少万元?②如果打算在2009年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)25.(10分)(2006•临沂)△ABC中,BC=a,AC=b,AB=c.若∠C=90°,如图1,根据勾股定理,则a2+b2=c2.若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.26.(13分)(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.(1)求此抛物线的解析式;(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.①求证:PB=PS;②判断△SBR的形状;③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.2011年北京市四中中考数学全真模拟试卷(二)参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)D.4.(3分)(2008•天河区一模)一个不透明的袋中装有除颜色外均相同的3个红球和2个黄球,从中随机摸出一个,.C D...5.(3分)(2006•临沂)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB;那么判定△OAB≌△OA′B′的理由是()7.(3分)(2009•黄冈)化简的结果是()8.(3分)(2006•临沂)如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=10,DF=4,则菱形ABCD 的边长为().CBD+DF=×9.(3分)(2006•临沂)小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm,幻灯片到屏幕的距离是1.5m,幻灯片上小树的高度是10cm,则屏幕上小树的高度是()11.(3分)(2008•枣庄)如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为(),﹣),﹣),)OC=BC=.,﹣)ABC==60ABC==3013.(3分)(2006•临沂)如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()14.(3分)(2006•临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是()∠∠PCB=((+∠(﹣BCP=∠∠﹣∠(﹣二、填空题(共5小题,每小题3分,满分15分)15.(3分)(2006•临沂)关于x的不等式3x﹣2a≤﹣2的解集如图所示,则a的值是﹣..观察数轴知其解集为∴.16.(3分)(2006•临沂)若圆周角α所对弦长为sinα,则此圆的半径r为.AC==,=r=.17.(3分)(2006•临沂)如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的面积为300πcm2(不考虑接缝等因素,计算结果用π表示).=18.(3分)(2006•临沂)如图,Rt△ABC中,∠A=90°,AB=4,AC=3,D在BC上运动(不与B、C重合),过D点分别向AB、AC作垂线,垂足分别为E、F,则矩形AEDF的面积的最大值为3.∴BE=﹣)+4x19.(3分)(2006•临沂)判断一个整数能否被7整除,只需看去掉一节尾(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.如果这个和能被7整除,则原数就能被7整除.如126,去掉6后得12,12+6×5=42,42能被7整除,则126能被7整除.类似地,还可通过看去掉该数的一节尾后与此一节尾的n倍的差能否被7整除来判断,则n=2(n是整数,且1≤n<7).三、解答题(共7小题,满分63分)20.(6分)(2006•临沂)为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 195 180 250 270 455 170请你用统计初步的知识,计算小亮家平均每年(每年按52周计算)的日常生活消费总费用.21.(7分)(2006•临沂)小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.22.(8分)(2006•临沂)(探索题)某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商店出售的这种瓷砖有大,小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大,小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?=16x+32023.(9分)(2006•临沂)如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.24.(10分)(2006•临沂)某厂从2005年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)按照这种变化规律,若2010年已投入技改资金5万元.①预计生产成本每件比2009年降低多少万元?②如果打算在2009年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)∴.7.2=解得.y=y=3.2=.25.(10分)(2006•临沂)△ABC中,BC=a,AC=b,AB=c.若∠C=90°,如图1,根据勾股定理,则a2+b2=c2.若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.26.(13分)(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.(1)求此抛物线的解析式;(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.①求证:PB=PS;②判断△SBR的形状;③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.,a=xa=y=y=a aNS=a(∴MR=.x+bc=0∴SR=2.∴∴MT=PQ=∴参与本试卷答题和审题的老师有:Liuzhx;zhehe;feng;Linaliu;lf2-9;wdxwwzy;jpz;lanchong;zhjh;蓝月梦;hbxglhl;csiya;kuaile;hnaylzhyk;cook2360;算术;张超。
2011年北京市中考数学试卷及答案评析
2011年北京市中考数学试卷及答案、评析一、选择题(共8小题,每小题4分,满分32分)1.﹣的绝对值是()A.﹣B.C.﹣D.考点:绝对值。
专题:计算题。
分析:数轴上某个数与原点的距离叫做这个数的绝对值.解答:解:数轴上某个数与原点的距离叫做这个数的绝对值,在数轴上,点﹣到原点的距离是,所以﹣的绝对值是﹣.故选D.点评:本题考查绝对值的基本概念:数轴上某个数与原点的距离叫做这个数的绝对值.2.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为()A.66.6×107B.0.666×108 C.6.66×108D.6.66×107考点:科学记数法与有效数字。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:665 575 306≈6.66×108.故选C.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3.下列图形中,即是中心对称又是轴对称图形的是()A.等边三角形B.平行四边形C.梯形D.矩形考点:中心对称图形;轴对称图形。
分析:根据轴对称图形与中心对称图形的概念求解,四个选项中,只有D选项既为中心对称图形又是轴对称图形解答:解:A.是轴对称图形,不是中心对称图形.故本选项错误;B.是不是轴对称图形,是中心对称图形.故本选项错误;C.是轴对称图形,不是中心对称图形.故本选项错误;D.既是轴对称图形,又是中心对称图形.故本选项正确.故选D.点评:本题主要考察中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.4.如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若AD=1,BC=3,则的值为()A.B.C.D.考点:相似三角形的判定与性质;梯形。
北京朝阳区2011年中考数学一模试卷分析
朝阳区2011一模数学试卷分析北京中考研究中心高立辉一、整体难度本试卷总体难度中等偏低,但是知识点考察的比较全面,本试卷的最大亮点是非常重视基础知识的掌握、灵活运用,例如第15题考察的是对三角形全等的判定及平行四边形的判定,第19题考察的是对一元二次方程定义的判定及二次函数顶点坐标的求法,都是围绕基础知识,基本方法展开的题目。
此外,能看出本套试卷出题人有意识的在考察同学们的认真审题的能力和分情况讨论解题的能力,例如第16题的(2)小问中,P点坐标在哪个象限,需同学们分情况讨论,第23题的(3)问,第24题的(3)问也要学生分情况讨论。
二、难易程度及分值分布图各题总体难易程度题号12345难度易易易易易类型代数代数代数概率统计分值44444题号678910难度易易难易易类型几何代数代数代数代数分值44444题号1112131415难度易中易易易类型几何代数代数代数几何分值44555题号1617181920难度易易易易中类型代数代数几何代数统计分值55555题号2122232425难度中中难难难类型几何几何代几综合代几综合几何分值64787考点分布代数几何概率与统计代几综合57351315难易分布简单中等难751926三、难点、易错点分析第8题:考察的是最值问题,当考生拿到此题时都在考虑二次函数的最值问题,其实此题只是将点A代入得到a-b=1,然后将ab中的其中一字母用另一字母代换,得到关于其中一字母的二次多项式,然后根据二次函数的最值求其代数式的最值。
中考中若遇到代数式中求最值问题时一般将其转换成一个二次函数的问题求解。
第12题:本题相对以往第12题而言较为容易,考察的是学生推理以及总结规律的能力,12题一般作为填空题中的难题,此题考察的是三角形和梯形的中位线问题,由题中给出的数值我们不难发现其中蕴含的规律,只是第三空我们需注意的是高h=,学生容易犯错需要学生认真做题。
若此题不给出数值,难度会增大。
2011年北京市中考数学模拟试卷
2011年北京市中考数学模拟试卷2011年北京市中考数学模拟试卷一、选择题(共8小题,每小题4分,满分32分)D±2.(4分)(2010•西藏)已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()3.(4分)(2010•东城区一模)布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸.C D.4.(4分)(2010•海淀区二模)某班的9名同学的体重分别是(单位:千克):61,59,70,59,65,67,59,63,5.(4分)(2010•朝阳区二模)全球可被人类利用的淡水总量仅占总水量的0.00003,因此珍惜水,保护水是我们每6.(4分)(2010•东城区二模)如图,模块①﹣⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①﹣⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体.则下列选择方案中,能够完成任务的为()7.(4分)(1999•南京)如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PD=4,则两圆组成的圆环的面积是()8.(4分)(2009•临沂)矩形ABCD 中,AD=8cm ,AB=6cm .动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:cm 2),则y 与x 之间的函数关系用图象表示大致是下图中的( ).CD .二、填空题(共4小题,每小题4分,满分16分) 9.(4分)(2013•昌平区二模)若分式的值为0,则x 的值为 _________ .10.(4分)(2012•开平区二模)如图,点A 、B 、C 是半径为6的⊙O 上的点,∠B=30°,则的长为 _________ .11.(4分)(2010•西城区一模)如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,若AD=3,DB=5,DE=1.2,则BC= _________ .12.(4分)(2009•桂林)如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1得∠A1,∠A1BC 的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2008BC的平分线与∠A2008CD的平分线交于点A2009,得∠A2009,则∠A2009=_________.三、解答题(共13小题,满分72分)13.(5分)(2008•石景山区一模)14.(5分)(2011•广东模拟)解不等式组,并把它的解集表示在数轴上.15.(5分)(2009•长沙)如图,E、F是平行四边形ABCD对角线AC上两点,BE∥DF,求证:AF=CE.16.(5分)(2010•海淀区二模)已知x2﹣6xy+9y2=0,求代数式的值.17.(5分)(2012•中山二模)列方程(组)解应用题:小明乘坐火车从某地到上海去参观世博园,已知此次行程为2160千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用6小时,求小明乘坐动车组到上海需要的时间.18.(5分)(2012•潮阳区模拟)如图,点P的坐标为,过点P作x轴的平行线交y轴于点A,作PB⊥AP 交双曲线(x>0)于点B,连接AB.已知.求k的值和直线AB的解析式.19.(5分)(2010•东城区一模)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,E为DC中点,tanC=.求AE的长度.20.(5分)(2009•德州)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.求证:四边形OBEC是菱形.21.(5分)(2011•兴国县模拟)根据北京市统计局的2006﹣2009年空气质量的相关数据,绘制统计图如下:(1)由统计图中的信息可知,北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是_________年,增加了_________天;(2)表上是根据《中国环境发展报告(2010)》公布的数据会置的2009年十个城市供气质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部分补充完整(精确到1%)A组,不低于85%且低于95%的为B组,低于85%的为C组.按此标准,C组城市数量在这十个城市中所占的百分比为_________%;请你补全右边的扇形统计图.22.(5分)(2010•朝阳区二模)阅读下列材料并解答后面的问题:利用完全平方公式(a±b)2=a2±2ab+b2,通过配方可对a2+b2进行适当的变形,如a2+b2=(a+b)2﹣2ab或a2+b2=(a﹣b)2+2ab.从而使某些问题得到解决.例:已知a+b=5,ab=3,求a2+b2的值.解:a2+b2=(a+b)2﹣2ab=52﹣2×3=19.问题:(1)已知a+=6,则a2+=_________;(2)已知a﹣b=2,ab=3,求a4+b4的值.23.(7分)(2011•广东模拟)一开口向上的抛物线与x轴交于A,B两点,C(m,﹣2)为抛物线顶点,且AC⊥BC.(1)若m是常数,求抛物线的解析式;(2)设抛物线交y轴正半轴于D点,抛物线的对称轴交x轴于E点.问是否存在实数m,使得△EOD为等腰三角形?若存在,求出m的值;若不存在,请说明理由.24.(8分)(2006•常德)把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP•CQ=_________;(2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP•CQ的值是否改变?说明你的理由;(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用)25.(7分)(2006•长沙)如图1,已知直线y=﹣x与抛物线y=﹣x2+6交于A,B两点.(1)求A,B两点的坐标;(2)求线段AB的垂直平分线的解析式;(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.2011年北京市中考数学模拟试卷参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)D±2.(4分)(2010•西藏)已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()3.(4分)(2010•东城区一模)布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸.C D.=;4.(4分)(2010•海淀区二模)某班的9名同学的体重分别是(单位:千克):61,59,70,59,65,67,59,63,5.(4分)(2010•朝阳区二模)全球可被人类利用的淡水总量仅占总水量的0.00003,因此珍惜水,保护水是我们每6.(4分)(2010•东城区二模)如图,模块①﹣⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①﹣⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体.则下列选择方案中,能够完成任务的为()7.(4分)(1999•南京)如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PD=4,则两圆组成的圆环的面积是()=AB8.(4分)(2009•临沂)矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的().C D.二、填空题(共4小题,每小题4分,满分16分)9.(4分)(2013•昌平区二模)若分式的值为0,则x的值为﹣2.解:若分式10.(4分)(2012•开平区二模)如图,点A、B、C是半径为6的⊙O上的点,∠B=30°,则的长为2π.∴l=.11.(4分)(2010•西城区一模)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,若AD=3,DB=5,DE=1.2,则BC= 3.2.∴12.(4分)(2009•桂林)如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1得∠A1,∠A1BC 的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2008BC的平分线与∠A2008CD的平分线交于点A2009,得∠A2009,则∠A2009=.(∠BD=∠A=α∠.=三、解答题(共13小题,满分72分)13.(5分)(2008•石景山区一模)×﹣,﹣,.14.(5分)(2011•广东模拟)解不等式组,并把它的解集表示在数轴上.,对不等式;不等式的解集为:15.(5分)(2009•长沙)如图,E、F是平行四边形ABCD对角线AC上两点,BE∥DF,求证:AF=CE.16.(5分)(2010•海淀区二模)已知x2﹣6xy+9y2=0,求代数式的值.(故答案为17.(5分)(2012•中山二模)列方程(组)解应用题:小明乘坐火车从某地到上海去参观世博园,已知此次行程为2160千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用6小时,求小明乘坐动车组到上海需要的时间.依题意,得18.(5分)(2012•潮阳区模拟)如图,点P的坐标为,过点P作x轴的平行线交y轴于点A,作PB⊥AP 交双曲线(x>0)于点B,连接AB.已知.求k的值和直线AB的解析式.的坐标为)中,由)在双曲线上,可得的图象上,可得的解析式为的坐标为)中,,∴∴的解析式为19.(5分)(2010•东城区一模)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,E为DC中点,tanC=.求AE的长度.DM=CF=tanC==20.(5分)(2009•德州)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.求证:四边形OBEC是菱形.21.(5分)(2011•兴国县模拟)根据北京市统计局的2006﹣2009年空气质量的相关数据,绘制统计图如下:(1)由统计图中的信息可知,北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是2008年,增加了28天;(2)表上是根据《中国环境发展报告(2010)》公布的数据会置的2009年十个城市供气质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部分补充完整(精确到1%)A组,不低于85%且低于95%的为B组,低于85%的为C组.按此标准,C组城市数量在这十个城市中所占的百分比为30%;请你补全右边的扇形统计图.×个城市,所占的百分比为:22.(5分)(2010•朝阳区二模)阅读下列材料并解答后面的问题:利用完全平方公式(a±b)2=a2±2ab+b2,通过配方可对a2+b2进行适当的变形,如a2+b2=(a+b)2﹣2ab或a2+b2=(a﹣b)2+2ab.从而使某些问题得到解决.例:已知a+b=5,ab=3,求a2+b2的值.解:a2+b2=(a+b)2﹣2ab=52﹣2×3=19.问题:(1)已知a+=6,则a2+=34;(2)已知a﹣b=2,ab=3,求a4+b4的值.)∵23.(7分)(2011•广东模拟)一开口向上的抛物线与x轴交于A,B两点,C(m,﹣2)为抛物线顶点,且AC⊥BC.(1)若m是常数,求抛物线的解析式;(2)设抛物线交y轴正半轴于D点,抛物线的对称轴交x轴于E点.问是否存在实数m,使得△EOD为等腰三角形?若存在,求出m的值;若不存在,请说明理由..解析式为:,时,∴m时,∴m24.(8分)(2006•常德)把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP•CQ=8;(2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP•CQ的值是否改变?说明你的理由;(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用)∴ACAP=AB﹣(AP=,PB=﹣∴解得.MQ(﹣(或y=25.(7分)(2006•长沙)如图1,已知直线y=﹣x与抛物线y=﹣x2+6交于A,B两点.(1)求A,B两点的坐标;(2)求线段AB的垂直平分线的解析式;(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.)依题意得OA=3OB=2AB=5,得:∴OD=,)∴∴﹣x+m∴∴﹣)×,x++得:y=)x+中,()GH=∵OG∵×d=××d=AB×参与本试卷答题和审题的老师有:自由人;HJJ;星期八;hbxglhl;lf2-9;Linaliu;wenming;733599;MMCH;110397;CJX;开心;ln_86;nhx600;zhjh;疯跑的蜗牛;xiu;117173;心若在;lanchong;王岑;zcx;gsls;lbz;jingjing;Liuzhx(排名不分先后)菁优网2014年3月16日。
2011年北京市清华附中中考数学模拟试卷
2011年北京市清华附中中考数学模拟试卷2011年北京市清华附中中考数学模拟试卷一、选择题(共8小题,每小题4分,满分32分)3.(4分)(2010•顺义区)从北京教育考试院获悉,截至2010年3月5日,今年北京市中考报名确认考生人数达325.(4分)(2010•顺义区)小明在做一道数学选择题时,经过审题,他知道在A,B,C、D四个备选答案中,只有一个是正确的,但他只能确定选项D是错误的,于是他在其它三个选项中随机选择了B,那么小明答对这道选择题.C D整理得出下表(有两个数据丢失).8.(4分)(2010•顺义区)在正方形ABCD中,点E为BC边的中点,点F在对角线AC上,连接FB、FE.当点F 在AC上运动时,设AF=x,△BEF的周长为y,下列图象中,能表示y与x的函数关系的图象大致是().C D .二、填空题(共4小题,每小题4分,满分16分) 9.(4分)(2010•顺义区)函数中,自变量x 的取值范围是 _________ .10.(4分)(2010•顺义区)若|m ﹣n|+(m+2)2=0,则m n的值是 _________ . 11.(4分)(2010•顺义区)如图,⊙O 是△ABC 的外接圆,已知∠ABO=50°,则∠ACB 的度数是 _________ 度.12.(4分)(2010•顺义区)在平面直角坐标系中,点A 的坐标为(4,0),点B 的坐标为(4,10),点C 在y 轴上,且△ABC 是直角三角形,则满足条件的C 点的坐标为 _________.三、解答题(共13小题,满分72分) 13.(5分)(2010•顺义区)计算:|﹣2|+﹣(3﹣π)0﹣.14.(5分)(2010•顺义区)解方程组:.15.(5分)(2010•顺义区)已知:如图,AB=AC ,点D 是BC 的中点,AB 平分∠DAE ,AE ⊥BE ,垂足为E . 求证:AD=AE .16.(5分)(2010•顺义区)已知x=2010,y=2009,求代数式的值.17.(5分)(2010•顺义区)已知正比例函数y=kx(k≠0)与反比例函数的图象交于A、B两点,且点A的坐标为(2,3).(1)求正比例函数及反比例函数的解析式;(2)在所给的平面直角坐标系中画出两个函数的图象,根据图象直接写出点B的坐标及不等式的解集.18.(5分)(2010•顺义区)列方程或方程组解应用题:在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?19.(6分)(2010•顺义区)某市青少年健康研究中心随机抽取了本市1000名小学生和若干名中学生,对他们的视力状况进行了调查,并把调查结果绘制成如下统计图.(近视程度分为轻度、中度、高度三种)(1)求这1000名小学生患近视的百分比;(2)求本次抽查的中学生人数;(3)该市有中学生8万人,小学生10万人.分别估计该市的中学生与小学生患“中度近视”的人数.20.(5分)(2010•顺义区)如图,在梯形ABCD中,AD∥BC,BD⊥DC,∠C=60°,AD=4,BC=6,求AB的长.21.(5分)(2010•顺义区)如图,⊙O的直径AB=4,C、D为圆周上两点,且四边形OBCD是菱形,过点D的直线EF∥AC,交BA、BC的延长线于点E、F.(1)求证:EF是⊙O的切线;(2)求DE的长.22.(4分)(2010•顺义区)如图,已知正方形纸片ABCD的边长为2,将正方形纸片折叠,使顶点A落在边CD 上的点P处(点P与C、D不重合),折痕为EF,折叠后AB边落在PQ的位置,PQ与BC交于点G.(1)观察操作结果,找到一个与△EDP相似的三角形,并证明你的结论;(2)当点P位于CD中点时,你找到的三角形与△EDP周长的比是多少?23.(7分)(2010•顺义区)已知:抛物线y=(k﹣1)x2+2kx+k﹣2与x轴有两个不同的交点.(1)求k的取值范围;(2)当k为整数,且关于x的方程3x=kx﹣1的解是负数时,求抛物线的解析式;(3)在(2)的条件下,若在抛物线和x轴所围成的封闭图形内画出一个最大的正方形,使得正方形的一边在x轴上,其对边的两个端点在抛物线上,试求出这个最大正方形的边长?24.(7分)(2010•顺义区)在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.25.(8分)(2010•顺义区)如图,直线l1:y=kx+b平行于直线y=x﹣1,且与直线l2:相交于点P(﹣1,0).(1)求直线l1、l2的解析式;(2)直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,B n,A n,…①求点B1,B2,A1,A2的坐标;②请你通过归纳得出点A n、B n的坐标;并求当动点C到达A n处时,运动的总路径的长?2011年北京市清华附中中考数学模拟试卷参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)3.(4分)(2010•顺义区)从北京教育考试院获悉,截至2010年3月5日,今年北京市中考报名确认考生人数达325.(4分)(2010•顺义区)小明在做一道数学选择题时,经过审题,他知道在A,B,C、D四个备选答案中,只有一个是正确的,但他只能确定选项D是错误的,于是他在其它三个选项中随机选择了B,那么小明答对这道选择题.C D..整理得出下表(有两个数据丢失).[[﹣﹣8.(4分)(2010•顺义区)在正方形ABCD 中,点E 为BC 边的中点,点F 在对角线AC 上,连接FB 、FE .当点F 在AC 上运动时,设AF=x ,△BEF 的周长为y ,下列图象中,能表示y 与x 的函数关系的图象大致是().CD .二、填空题(共4小题,每小题4分,满分16分)9.(4分)(2010•顺义区)函数中,自变量x的取值范围是x≠﹣1.10.(4分)(2010•顺义区)若|m﹣n|+(m+2)2=0,则m n的值是.解:由题意,得:.11.(4分)(2010•顺义区)如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的度数是40度.12.(4分)(2010•顺义区)在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且△ABC是直角三角形,则满足条件的C点的坐标为(0,0),(0,10)(0,2),(0,8).,∴三、解答题(共13小题,满分72分)13.(5分)(2010•顺义区)计算:|﹣2|+﹣(3﹣π)0﹣.14.(5分)(2010•顺义区)解方程组:.原方程组的解为.15.(5分)(2010•顺义区)已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.中,16.(5分)(2010•顺义区)已知x=2010,y=2009,求代数式的值.=17.(5分)(2010•顺义区)已知正比例函数y=kx(k≠0)与反比例函数的图象交于A、B两点,且点A的坐标为(2,3).(1)求正比例函数及反比例函数的解析式;(2)在所给的平面直角坐标系中画出两个函数的图象,根据图象直接写出点B的坐标及不等式的解集.)与求不等式.正比例函数的解析式为)在反比例函数∴反比例函数的解析式为.y=不等式的解集为﹣18.(5分)(2010•顺义区)列方程或方程组解应用题:在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?19.(6分)(2010•顺义区)某市青少年健康研究中心随机抽取了本市1000名小学生和若干名中学生,对他们的视力状况进行了调查,并把调查结果绘制成如下统计图.(近视程度分为轻度、中度、高度三种)(1)求这1000名小学生患近视的百分比;(2)求本次抽查的中学生人数;(3)该市有中学生8万人,小学生10万人.分别估计该市的中学生与小学生患“中度近视”的人数.××=1.0420.(5分)(2010•顺义区)如图,在梯形ABCD中,AD∥BC,BD⊥DC,∠C=60°,AD=4,BC=6,求AB的长..∴∴21.(5分)(2010•顺义区)如图,⊙O的直径AB=4,C、D为圆周上两点,且四边形OBCD是菱形,过点D的直线EF∥AC,交BA、BC的延长线于点E、F.(1)求证:EF是⊙O的切线;(2)求DE的长.22.(4分)(2010•顺义区)如图,已知正方形纸片ABCD的边长为2,将正方形纸片折叠,使顶点A落在边CD 上的点P处(点P与C、D不重合),折痕为EF,折叠后AB边落在PQ的位置,PQ与BC交于点G.(1)观察操作结果,找到一个与△EDP相似的三角形,并证明你的结论;(2)当点P位于CD中点时,你找到的三角形与△EDP周长的比是多少?.∴∴23.(7分)(2010•顺义区)已知:抛物线y=(k﹣1)x2+2kx+k﹣2与x轴有两个不同的交点.(1)求k的取值范围;(2)当k为整数,且关于x的方程3x=kx﹣1的解是负数时,求抛物线的解析式;(3)在(2)的条件下,若在抛物线和x轴所围成的封闭图形内画出一个最大的正方形,使得正方形的一边在x轴上,其对边的两个端点在抛物线上,试求出这个最大正方形的边长?依题意,得且的取值范围是,﹣∴∴∴24.(7分)(2010•顺义区)在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.∴25.(8分)(2010•顺义区)如图,直线l1:y=kx+b平行于直线y=x﹣1,且与直线l2:相交于点P(﹣1,0).(1)求直线l1、l2的解析式;(2)直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,B n,A n,…①求点B1,B2,A1,A2的坐标;②请你通过归纳得出点A n、B n的坐标;并求当动点C到达A n处时,运动的总路径的长?:∴∴∴参与本试卷答题和审题的老师有:Linaliu;星期八;zhjh;lbz;lf2-9;蓝月梦;108139;bjy;sd2011;疯跑的蜗牛;MMCH;HJJ;心若在;HLing;CJX;zhangCF;733599;zxw;117173;hbxglhl(排名不分先后)菁优网2014年3月16日。
【推荐下载】名师指导:2011北京中考数学试卷分析
[键入文字]
名师指导:2011 北京中考数学试卷分析
今年数学试题给人以耳目一新的感觉。
试题以学生的发展为本并关注学生的心理特征,题目立意新颖且起点较低,难度分布适宜有序,语言陈述准确规范,表达简洁醒目、图文制作精良,结构编排合理,在全面考查课程标准所规定的义务教育阶段的数学核心内容的基础上,注重考查学生能力水平和学习潜能。
2011 年数学试题严格遵循普通中考考试说明,重视基础,不断拔高,选拔性强,在考查基本知识的同时也保证了区分度。
①基础知识考察依然为全卷重点
2011 年北京卷较2010 年北京中考数学整体内容和基本问题变化均不大,试题出题规律比较稳定,依然侧重于基础知识考核。
比如对于选择题:重点考察实数、一次函数、反比例函数、四边形、一元二次方程等知识点。
填空题主要考察不等式组等概念。
大题与往常相似,依然是全等、四边形、方程、二次函数、圆等知识
②侧重基础的同时考察了思维能力
2011 年北京卷数学试题,部分题目考察了综合能力,乍一看此题与我们平时
1。
2011北京中考数学试卷详细分析
2011年北京市高级中等学校招生考试数学试卷学校______________ 姓名______________ 准考证号_________________考生须知1.本试卷共6页,共五道大题,25道小题,满分120分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的1.34-的绝对值是A.43-B.43C.34-D.34考点:绝对值点评:本题延续了北京中考第1题的风格:一般会是倒数,相反数、绝对值等几个考点。
难点很小,旨在让学生第一题都拿分,让学生轻松的进入考试。
2.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人,将665 565 306用科学记数法表示(保留三个有效数字)约为A.766.610⨯B.80.66610⨯C.86.6610⨯D.76.6610⨯考点:科学计数法点评:本题与生活生产结合,让同学们在熟悉的基础上轻松考试,减少紧张。
3.下列图形中,既是中心对称图形又是轴对称图形的是A.等边三角形B.平行四边形C.梯形D.矩形考点:中心对称与轴对称此类问题是中考重点考察问题,中心对称主要考察"180"轴对称相比比较简单。
4.如图,在梯形ABCD中,AD BC∥,对角线AC、BD相交于点O,若1AD=,3BC=,则AOCO的值为A.12B.13C.14D.19考点:梯形和相似综合点评:本科考核了梯形与相似综合,难度较小,也间接考察八字模型。
5.北京市今年6月某日部分区县的最高气温如下表:区县大兴通州平谷顺义怀柔门头沟延庆昌平密云房山最高气温(℃)32 32 30 32 30 32 29 32 30 32 则这10个区县该日气温的众数和中位数分别是A.32,32 B.32,30 C.30,32 D.32,31 考点:数理统计点评:通过表格考察众数中位数,难度较低。
北京市历届中考数学试卷(含答案)
历届高级中等学校招生考试数学试卷满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为 A. 39.6×102 B. 3.96×103 C. 3.96×104 D. 3.96×104 2. 43-的倒数是 A. 34 B. 43 C. 43- D. 34-3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为 A.51 B. 52 C. 53 D. 54 4. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于A. 40°B. 50°C. 70°D. 80°5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上。
若测得BE=20m ,EC=10m ,CD=20m ,则河的宽度AB 等于 A. 60m B. 40m C. 30m D. 20m 6. 下列图形中,是中心对称图形但不是轴对称图形的是7. 某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5 6 7 8 人数1015205则这50名学生这一周在校的平均体育锻炼时间是A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时8. 如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是二、填空题(本题共16分,每小题4分)9. 分解因式:a ab ab 442+-=_________________10. 请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的解析式__________10 11. 如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为__________ 12. 如图,在平面直角坐标系x O y 中,已知直线:1--=x t ,双曲线xy 1=。
2011东城区一模数学试卷分析
代数 47 简单 70
几何 43
代几综合 17 难 27
报名咨询电话:82618899、62164116
知识点分布
50 40 30 20 10 0 代数 几何 概率统计 代几综合
难度分布
80 70 60 50 40 30 20 10 0 容易 中等 难
三、 难点、易错点分析
第 6 题: 考察圆锥与其侧面展开图(扇形)之间的联系: (1)圆锥的母线是扇形的半径; (2)圆 锥的底面圆周长是扇形的弧长。然后根据扇形的面积公式计算即可。
BP BE ,得 BP=2 或 4,所 CF CP
报名咨询电话:82618899、62164116
第 25 题 是一个中等偏难的代几综合问题。 第 (1) 问: 最基本的待定系数法求解析式。 关键: 从抛物线解析式首先得到 C 点坐标, 进而求得 B 点坐标。 第(2)问:大家可能失分的点是没有分类讨论。 直线 PM 与直线 OP 的夹角为 75° , 则图中∠OPM 可能为 75° 或 105° 。 (学而思第十讲讲义:板块三 17 题与此题非常类似) 第(3)问:注意:是抛物线平移之后与线段 EF 总有公共点。 我们直接去找抛物线与线段 EF 有交点的临界状态,不难发现,当抛物线向上平移到经 过 E(-8,0) ,此时,如果继续向上平移,则抛物线与线段 EF 不会再有交点。∴假设最多向 上平移 n 个单位,则抛物线解析式为: y x 2 2 x 8 n ,将 E(-8,0)代入,即可得 到 n 值。
AM AD ,由垂径定理得: AM MB ,∴ AD DC 。 MB DC
第(2)问:利用垂径定理求半径:连接 OB 构造 Rt△OMB 即可。 首先需要证明 MB DE , MD BE EC (一个矩形,一个中点) 。 设半径为 x , MB 2,OM x 1 利用勾股定理列方程即可。
北京中考数学试卷分析
北京中考数学试卷分析火红的六月,北京中正如火如荼的进行中。
针对今早新奇出炉数学试卷,高思教育第一时刻为大伙儿分析:一、试题构成①试卷知识板块构成:概率统计、平面几何、代数的分值比,这一点与往年北京中考试卷结构差不多一致。
②试卷难度构成:纵观整套试卷,难度较为平缓,易、中、难的分值比差不多上是,仅有最后两题(第28题几何综合7分题,第29题代几综合8分题)难度较大。
今年试题较往年而言,考察知识点广度变化不大:增加的考点有:1.圆内接四边形对角互补(第28题第(2)问)。
2.利用相对位置探求点的坐标(第8题,“紫禁城宫殿坐标”)。
3.尺规作图原理(第16题,给定线段中垂线的尺规作图之理论依据)。
删除的考点有:1.梯形。
2.圆和圆的位置关系。
3.频数和频率。
今年试题较往年而言,题量增加4题,难度有所下降。
要紧考察考生对差不多知识点的把握程度。
难度降了,可不代表容易得高分,试题出的专门灵活。
总体上讲,要拿115以上高分实属不易。
二、要紧试题具体分析:1.选择题第8题:此题考察利用相对位置探求点的坐标。
此题将紫禁城内各大宫殿置于正方形网格中,以此为背景建立平面直角坐标系。
但只给定x、y轴正方向,并未直截了当给定原点位置和单位长度。
而是通过给定太和门、九龙壁两点坐标间接给出以上信息,考查方式专门灵活。
2.选择题第10题:连续往年选择题最后一题的一贯作风,给定数学模型考查函数大致图像,结合图像特点通过排除法得出正确选项。
3.填空题第15题:严格上讲,此题属于线性拟合问题,考查考生的归纳能力。
此题以北京市2009~2021年轨道交通日均客运量为题材,给出一条由6个点连接而成的折线图。
假如考生注意到这6个点大致在同一条直线上,那么问题迎刃而解:2021年相关于2021年客运增长量大致是2009~2021五年间年均增长量,是108万人次,那么2021年日均客运量约为1 038万人次。
图示 6.解答题第28题:几何综合大题,此题以正方形为大环境,考察旋转、平移、四点共圆、解三角形等知识点。
中考数学试卷解析及点评
中考试卷分析(数学)、选择题(共 8 道小题,每小题 4分,共 32分)是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应 字母处涂黑. 1. 6 的绝对值等于( )1B . 6A 本题考核的是绝对值,难度较小,属送分题, 本题考点:绝对值 . 难度系数为 0.95.2.截止到 2008年 5月19日,已有 21 600名中外记者成为北京奥运会的注册记者, 创历届奥运会之最. 21 600 用科学记数法表示应为( )5 3 3 4A . 0.216 105B . 21.6 103C . 2.16 103D . 2.16 104 【解析】 D【点评】 本 题是以奥运会为背景的一道题,考核了科学记数法的同时让学生了解我国今年奥运会的进展 及相关情况,此类与时事政治相关的考题是全国各地的总体命题趋势 . 本题考点:科学记数法 . 难度系数为: 0.93.若两圆的半径分别是 1cm 和 5cm ,圆心距为 6cm ,则这两圆的位置关系是( )A .内切B .相交C .外切D .外离 【解析】 C【点评】 本 题直接告诉了两圆的半径及圆心距,只要学生记得两圆半径和差与圆心距的大小关系与两圆 位置关系的对应情况便可直接得出答案 . 本题考点:两圆的位置关系的判定 . 难度系数: 0.94.众志成城,抗震救灾.某小组 7 名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50, 20,50,30, 50,25,135.这组数据的众数和中位数分别是( )A .50,20B .50,30C .50,50D . 135, 50 【解析】 C【点评】 本 题以给地震灾区捐款为背景,考核了统计概率的相关知识。
本题在考核数学知识的基础上向 学生渗透爱心教育,是一道很不错的题目 . 本题考点:众数、中位数 . 难度系数: 0.85 5.若一个多边形的内角和等于 720o ,则这个多边形的边数是(列各题均有四个选项,其中只有一个 A . C .解析】A .5B . 6C .7D . 8 解析】 B点评】 本 题考核了多边形的外角和公式及利用外角和公式列方程解决相关问题 .外角和公式是初一下的内容,可能时间久了部分学生会忘记,但是这并不是重点,如果我们在学习这个知识的时候能 真正理解,在考试时即使忘记了公式,推导一下这个公式也不会花多少时间,所以,学习数学, 理解比记忆更重要 .本题考点:多边形的内角和公式,及利用公式列方程解应用题 难度系数: 0.75 6.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃) 火炬和奖牌等四种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是( )12 13 A . B . C . D .5 5 2 5 解析】 B点评】 本 题和第 2 题一样,也是以奥运知识为背景的一道题目,本题在让学生了解奥运知识的基础上 考核了学生对概率的理解 . 本题考点:求概率 .难度系数: 0.957.若 x 2y3 0 ,则 xy 的值为( ) A . 8 B . 6C .5D . 6【解析】 B【点评】本题考核了非负数的性质,这种题型在平时训练中应该很常见 本题考点: 非负数的性质、绝对值、二次根式难度系0.75 点评】 本 题考核了立意相对较新,考核了学生的空间想象能力。
北京市中考数学试卷(含答案解析)
2018年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下列几何体中,是圆柱的为A.B.C.D.2.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是A.||4a>B.0c b->C.0ac>D.0a c+>3.方程组33814x yx y-=⎧⎨-=⎩的解为A.12xy=-⎧⎨=⎩B.12xy=⎧⎨=-⎩C.21xy=-⎧⎨=⎩D.21xy=⎧⎨=-⎩4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为27140m,则FAST的反射面积总面积约为A.327.1410m⨯B.427.1410m⨯C.522.510m⨯D.622.510m⨯5.若正多边形的一个外角是60︒,则该正多边形的内角和为A.360︒B.540︒C.720︒D.900︒6.如果23a b-=,那么代数式22()2a b aba a b+-⋅-的值为A.3B.23C.33D.437.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(0a ≠).下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A .10mB .15mC .20mD .22.5m8.下图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(6-,3-)时,表示左安门的点的坐标为(5,6-); ②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-,6-)时,表示左安门的点的坐标为(10,12-); ③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-,5-)时,表示左安门的点的坐标为(11,11-); ④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-,7.5-)时,表示左安门的点的坐标为(16.5,16.5-). 上述结论中,所有正确结论的序号是 A .①②③B .②③④C .①④D .①②③④二、填空题(本题共16分,每小题2分)9.下图所示的网格是正方形网格,BAC∠.(填“>”,“=”或“<”)∠________DAE10.若x在实数范围内有意义,则实数x的取值范围是_______.11.用一组a,b,c的值说明命题“若a b<,则ac bc<”是错误的,这组值可以是a=_____,b=______,c=_______.12.如图,点A,B,C,D在O上,CB CD∠==,30∠=︒,则ADB∠=︒,50CADACD________.13.如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若4AB=,AD=,则CF的长为________.314.从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路3035t≤≤3540t<≤4045t<≤4550t<≤合计A59151166124500 B5050122278500C4526516723500早高峰期间,乘坐_________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为________元.16.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第________.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ l∥.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=_______,CB=_______,∴PQ l∥(____________)(填推理的依据).18.计算:04sin45(π2)18|1|︒+--+-.19.解不等式组:3(1)1922x xxx+>-⎧⎪⎨+>⎪⎩.20.关于x的一元二次方程210ax bx++=.(1)当2b a=+时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.如图,在四边形ABCD 中,AB DC ∥,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形; (2)若5AB =,2BD =,求OE 的长.22.如图,AB 是O 的直径,过O 外一点P 作O 的两条切线PC ,PD ,切点分别为C ,D ,连接OP ,CD .(1)求证:OP CD ⊥;(2)连接AD ,BC ,若50DAB ∠=︒,70CBA ∠=︒,2OA =,求OP 的长.23.在平面直角坐标系xOy 中,函数ky x=(0x >)的图象G 经过点A (4,1),直线14l y x b =+∶与图象G 交于点B ,与y 轴交于点C .(1)求k 的值;(2)横、纵坐标都是整数的点叫做整点.记图象G 在点A ,B 之间的部分与线段OA ,OC ,BC 围成的区域(不含边界)为W .①当1b =-时,直接写出区域W 内的整点个数;②若区域W 内恰有4个整点,结合函数图象,求b 的取值范围.24.如图,Q 是AB 与弦AB 所围成的图形的内部的一定点,P 是弦AB 上一动点,连接PQ并延长交AB 于点C ,连接AC .已知6cm AB =,设A ,P 两点间的距离为x cm ,P ,C 两点间的距离为1cm y ,A ,C 两点间的距离为2cm y .小腾根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值; /cm x0 1 2 3 4 5 6 1/cm y 5.624.673.762.653.184.372/cm y5.62 5.59 5.53 5.425.19 4.73 4.11(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,1y ),(x ,2y ),并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:当APC△为等腰三角形时,AP的长度约为____cm.25.某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:4050≤,x<x<≤,5060≤,90100xx<≤≤);x<6070≤,7080x<≤,8090≤这一组是:x<b.A课程成绩在708070 71 71 71 76 76 77 78 78.578.579 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是_______;(3)假设该年级学生都参加此次测试,估计A课程成绩超过75.8分的人数.26.在平面直角坐标系xOy中,直线44=+与x轴、y轴分别交于点A,B,抛物线y x23=+-经过点A,将点B向右平移5个单位长度,得到点C.y ax bx a(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作⊥交DG的延长线于点H,连接BH.EH DE(1)求证:GF GC=;(2)用等式表示线段BH与AE的数量关系,并证明.28.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d(M,N).已知点A(2-).-),C(6,2-,6),B(2-,2(1)求d(点O,ABC△);(2)记函数y kx=,=(11xk≠)的图象为图形G,若d(G,ABC-≤≤,0△)1直接写出k的取值范围;(3)T的圆心为T(,0),半径为1.若d(T,ABC=,直接写出的取值△)1范围.2018年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.下列几何体中,是圆柱的为A .B .C .D .【答案】A【解析】A 选项为圆柱,B 选项为圆锥,C 选项为四棱柱,D 选项为四棱锥. 【考点】立体图形的认识2.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是A .||4a >B .0c b ->C .0ac >D .0a c +>【答案】B【解析】∵43a -<<-,∴34a <<,故A 选项错误;数轴上表示b 的点在表示c 的点的左侧,故B 选项正确; ∵0a <,0c >,∴0ac <,故C选项错误;∵0a <,0c >,a c >,∴0a c +<,故D 选项错误.【考点】实数与数轴3.方程组33814x yx y-=⎧⎨-=⎩的解为A.12xy=-⎧⎨=⎩B.12xy=⎧⎨=-⎩C.21xy=-⎧⎨=⎩D.21xy=⎧⎨=-⎩【答案】D【解析】将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.【考点】二元一次方程组的解4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为27140m,则FAST的反射面积总面积约为A.327.1410m⨯B.427.1410m⨯C.522.510m⨯D.622.510m⨯【答案】C【解析】5714035249900 2.510⨯=≈⨯(2m),故选C.【考点】科学记数法5.若正多边形的一个外角是60︒,则该正多边形的内角和为A.360︒B.540︒C.720︒D.900︒【答案】C【解析】由题意,正多边形的边数为360660n︒==︒,其内角和为()2180720n-⋅︒=︒.【考点】正多边形,多边形的内外角和.6.如果23a b-=,那么代数式22()2a b aba a b+-⋅-的值为A .3B .23C .33D .43【答案】A【解析】原式()2222222a b a b ab aa ab a a b a a b -+--=⋅=⋅=--,∵23a b -=,∴原式3=. 【考点】分式化简求值,整体代入.7.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(0a ≠).下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A .10mB .15mC .20mD .22.5m【答案】B【解析】设对称轴为x h =,由(0,54.0)和(40,46.2)可知,040202h +<=, 由(0,54.0)和(20,57.9)可知,020102h +>=, ∴1020h <<,故选B .【考点】抛物线的对称轴.8.下图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(6-,3-)时,表示左安门的点的坐标为(5,6-);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-,6-)时,表示左安门的点的坐标为(10,12-);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-,5-)时,表示左安门的点的坐标为(11,11-);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-)-,7.5时,表示左安门的点的坐标为(16.5,16.5-).上述结论中,所有正确结论的序号是A.①②③B.②③④C.①④D.①②③④【答案】D【解析】显然①②正确;③是在②的基础上,将所有点向右平移个单位,再向上平移个单位得到,故③正确;-,④是在“当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(18-)”的基础上,将所有点向右平9-)时,表示左安门的点的坐标为(15,18移1.5个单位,再向上平移1.5个单位得到,故④正确.【考点】平面直角坐标系,点坐标的确定,点的平移二、填空题(本题共16分,每小题2分)9.下图所示的网格是正方形网格,BAC∠.(填“>”,“=”或“<”)∠________DAE【答案】>【解析】如下图所示,△是等腰直角三角形,∴45AFG∠=∠=︒,∴BAC DAE∠>∠.FAG BAC另:此题也可直接测量得到结果.【考点】等腰直角三角形10.若x在实数范围内有意义,则实数x的取值范围是_______.【答案】0x≥【解析】被开方数为非负数,故0x≥.【考点】二次根式有意义的条件.11.用一组a,b,c的值说明命题“若a b<,则ac bc<”是错误的,这组值可以是a=_____,b=______,c=_______.【答案】答案不唯一,满足a b<,0c≤即可,例如:,2,1-【解析】不等式两边乘(或除以)同一个负数,不等号的方向改变.【考点】不等式的基本性质12.如图,点A,B,C,D在O上,CB CD=,30CAD∠=︒,50ACD∠=︒,则ADB∠= ________.【答案】70【解析】∵CB CD=,∴30CAB CAD∠=∠=︒,∴60BAD∠=︒,∵50ABD ACD∠=∠=︒,∴18070ADB BAD ABD∠=︒-∠-∠=︒.【考点】圆周角定理,三角形内角和定理13.如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若4AB=,3AD=,则CF的长为________.【答案】10 3【解析】∵四边形ABCD是矩形,∴4AB CD==,AB CD∥,90ADC∠=︒,在Rt ADC △中,90ADC ∠=︒,∴225AC AD CD =+=, ∵E 是AB 中点,∴1122AE AB CD ==, ∵AB CD ∥,∴12AF AE CF CD ==,∴21033CF AC ==. 【考点】矩形的性质,勾股定理,相似三角形的性质及判定14.从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数 线路3035t ≤≤3540t <≤4045t <≤4550t <≤合计A 59 151 166 124 500B 50 50 122 278 500 C4526516723500早高峰期间,乘坐_________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大. 【答案】C【解析】样本容量相同,C 线路上的公交车用时超过45分钟的频数最小,所以其频率也最小,故选C .【考点】用频率估计概率15.某公园划船项目收费标准如下:船型两人船四人船六人船八人船(限乘两人)(限乘四人)(限乘六人)(限乘八人)每船租金90100130150(元/小时)某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为________元.【答案】380【解析】租用四人船、六人船、八人船各1艘,租船的总费用为100130150380++=(元)【考点】统筹规划16.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第________.【答案】【解析】从左图可知,创新综合排名全球第22,对应创新产出排名全球第11;从下图可知,创新产出排名全球第11,对应创新效率排名全球第3.【考点】函数图象获取信息三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ l∥.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=_______,CB=_______,∴PQ l∥(____________)(填推理的依据).【解析】(1)尺规作图如下图所示:(2)PA,CQ,三角形中位线平行于三角形的第三边.【考点】尺规作图,三角形中位线定理18.计算:04sin45(π2)18|1|︒+--+-.【解析】解:原式241321222=⨯+-+=-.【考点】实数的运算19.解不等式组:3(1)1922x x x x +>-⎧⎪⎨+>⎪⎩.【解析】解:由①得,2x >-,由②得,3x <,∴不等式的解集为23x -<<.【考点】一元一次不等式组的解法20.关于x 的一元二次方程210ax bx ++=.(1)当2b a =+时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【解析】(1)解:由题意:0a ≠.∵()22242440b a a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b a -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=, 解得:121x x ==.【考点】一元二次方程21.如图,在四边形ABCD 中,AB DC ∥,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形; (2)若5AB =,2BD =,求OE 的长.【解析】(1)证明:∵AB CD ∥∴CAB ACD ∠=∠ ∵AC 平分BAD ∠ ∴CAB CAD ∠=∠ ∴CAD ACD ∠=∠ ∴AD CD = 又∵AD AB = ∴AB CD = 又∵AB CD ∥∴四边形ABCD 是平行四边形 又∵AB AD = ∴ABCD 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==. 在Rt AOB △中,90AOB ∠=︒. ∴222OA AB OB =-=. ∵CE AB ⊥,在Rt AEC △中,90AEC ∠=︒.O 为AC 中点. ∴122OE AC OA ===. 【考点】菱形的性质和判定,勾股定理,直角三角形斜边中线22.如图,AB 是O 的直径,过O 外一点P 作O 的两条切线PC ,PD ,切点分别为C ,D ,连接OP ,CD .(1)求证:OP CD ⊥;(2)连接AD ,BC ,若50DAB ∠=︒,70CBA ∠=︒,2OA =,求OP 的长.【解析】(1)证明:∵PC 、PD 与O ⊙相切于C 、D .∴PC PD =,OP 平分CPD ∠.在等腰PCD △中,PC PD =,PQ 平分CPD ∠. ∴PQ CD ⊥于Q ,即OP CD ⊥. (2)解:连接OC 、OD .∵OA OD =∴50OAD ODA ∠=∠=︒∴18080AOD OAD ODA ∠=︒-∠-∠=︒∴18060COD AOD BOC ∠=︒-∠-∠=︒. 在等腰COD △中,OC OD =.OQ CD ⊥ ∴1302DOQ COD ∠=∠=︒.∵PD 与O ⊙相切于D . ∴OD DP ⊥. ∴90ODP ∠=︒.在Rt ODP △中,90ODP ∠=︒,30POD ∠=︒ ∴243cos cos30332OD OA OP POD ====∠︒.【考点】切线的性质,切线长定理,锐角三角函数23.在平面直角坐标系xOy 中,函数ky x=(0x >)的图象G 经过点A (4,1),直线14l y x b =+∶与图象G 交于点B ,与y 轴交于点C . (1)求k 的值;(2)横、纵坐标都是整数的点叫做整点.记图象G 在点A ,B 之间的部分与线段OA ,OC ,BC 围成的区域(不含边界)为W .①当1b =-时,直接写出区域W 内的整点个数;②若区域W 内恰有4个整点,结合函数图象,求b 的取值范围. 【解析】(1)解:∵点A (4,1)在ky x=(0x >)的图象上. ∴14k=,∴4k =.(2)① 3个.(1,0),(2,0),(3,0).② a .当直线过(4,0)时:1404b ⨯+=,解得1b =-b .当直线过(5,0)时:1504b ⨯+=,解得54b =-c .当直线过(1,2)时:1124b ⨯+=,解得74b =d .当直线过(1,3)时:1134b ⨯+=,解得114b =∴综上所述:514b -<-≤或71144b <≤.【考点】一次函数与反比例函数综合,区域内整点个数问题24.如图,Q 是AB 与弦AB 所围成的图形的内部的一定点,P 是弦AB 上一动点,连接PQ并延长交AB 于点C ,连接AC .已知6cm AB =,设A ,P 两点间的距离为x cm ,P ,C 两点间的距离为1cm y ,A ,C 两点间的距离为2cm y .小腾根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值; /cm x0 1 2 3 4 5 6 1/cm y 5.624.673.762.653.184.372/cm y5.62 5.59 5.53 5.425.19 4.73 4.11(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,1y ),(x ,2y ),并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:当APC△为等腰三角形时,AP的长度约为____cm.【解析】(1)3.00(2)如下图所示:(3)3.00或4.83或5.88.如下图所示,个函数图象的交点的横坐标即为所求.【考点】动点产生的函数图象问题,函数探究25.某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:4050≤,x<≤,5060x<x<≤,90100≤,8090≤≤);x6070x<≤,7080x<≤这一组是:x<b.A课程成绩在708070 71 71 71 76 76 77 78 78.578.579 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是_______;(3)假设该年级学生都参加此次测试,估计A课程成绩超过75.8分的人数.【解析】(1)78.75(2)B .该学生A 课程分数低于中位数,排名在中间位置之后,而B 课程分数高于中位数,排名在中间位置之前.(3)解:抽取的60名学生中.A 课程成绩超过75.8的人数为36人. ∴3630018060⨯=(人) 答:该年级学生都参加测试.估计A 课程分数超过75.8的人数为180人.【考点】频数分布直方图,中位数,用样本估计总体26.在平面直角坐标系xOy 中,直线44y x =+与x 轴、y 轴分别交于点A ,B ,抛物线23y ax bx a =+-经过点A ,将点B 向右平移5个单位长度,得到点C .(1)求点C 的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.【解析】(1)解:∵直线44y x =+与x 轴、y 轴交于A 、B .∴A (1-,0),B (0,4)∴C (5,4)(2)解:抛物线23y ax bx a =+-过A (1-,0)∴30a b a --=.2b a =-∴223y ax ax a =-- ∴对称轴为212a x a -=-=. (3)解:①当抛物线过点C 时.251034a a a--=,解得13a=.②当抛物线过点B时.34a-=,解得43a=-.③当抛物线顶点在BC上时.此时顶点为(1,4)∴234a a a--=,解得1a=-.∴综上所述43a <-或13a ≥或1a =-. 【考点】一次函数与坐标轴的交点,点的平移,抛物线对称轴,抛物线与线段交点问题27.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A ,B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH DE ⊥交DG 的延长线于点H ,连接BH .(1)求证:GF GC =;(2)用等式表示线段BH 与AE 的数量关系,并证明.【解析】(1)证明:连接DF .∵A ,F 关于DE 对称.∴AD FD =.AE FE =.在ADE △和FDE △中.AD FD AE FE DE DE =⎧⎪=⎨⎪=⎩∴ADE FDE △≌△∴DAE DFE ∠=∠.∵四边形ABCD 是正方形∴90A C ∠=∠=︒.AD CD =∴90DFE A ∠=∠=︒∴18090DFG DFE ∠=︒-∠=︒∴DFG C ∠=∠∵AD DF =.AD CD =∴DF CD =在Rt DCG △和Rt DFG △.DC DF DG DG =⎧⎨=⎩∴Rt DCG △≌Rt DFG △∴CG FG =.(2)2BH AE =.证明:在AD 上取点M 使得AM AE =,连接ME .∵四这形ABCD 是正方形.∴AD AB =.90A ADC ∠=∠=︒.∵DAE △≌DFE △∴ADE FDE ∠=∠同理:CDG FDG ∠=∠∴EDG EDF GDF ∠=∠+∠1122ADF CDF =∠+∠ 1452ADC =∠=︒ ∵DE EH ⊥∴90DEH ∠=︒∴18045EHD DEH EDH ∠=︒-∠-∠=︒∴EHD EDH ∠=∠∴DE EH =.∵90A ∠=︒∴90ADE AED ∠+∠=︒∵90DEH ∠=︒∴90AED BEH ∠+∠=︒∴ADE BEH ∠=∠∵AD AB =.AM AE =∴DM EB =在DME △和EBH △中DM EB MDE BEH DE EH =⎧⎪∠=∠⎨⎪=∠⎩∴DME △≌EBH △∴ME BH =在Rt AME △中,90A ∠=︒,AE AM =. ∴222ME AE AM AE =+= ∴2BH AE =.【考点】正方形的性质,轴对称的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定28.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d(M,N).已知点A(2-).-),C(6,2-,6),B(2-,2(1)求d(点O,ABC△);(2)记函数y kx=,=(11k≠)的图象为图形G,若d(G,ABC-≤≤,0x△)1直接写出k的取值范围;(3)T的圆心为T(,0),半径为1.若d(T,ABC=,直接写出的取值△)1范围.【解析】(1)如下图所示:∵B(2-)-,2-),C(6,2∴D(0,2-)∴d(O,ABC△)2==OD(2)10<≤kk-<≤或01(3)4t =-或0422t -≤≤或422t =+.【考点】点到直线的距离,圆的切线。
北京市2011年中考数学试题解析
北京市2011年中考数学试题解析一、选择题(共8小题,每小题4分,满分32分)1、(2011•北京)﹣的绝对值是()A、﹣B、C、﹣D、考点:绝对值。
专题:计算题。
分析:数轴上某个数与原点的距离叫做这个数的绝对值.解答:解:数轴上某个数与原点的距离叫做这个数的绝对值,在数轴上,点﹣到原点的距离是,所以﹣的绝对值是﹣.故选D.点评:本题考查绝对值的基本概念:数轴上某个数与原点的距离叫做这个数的绝对值.2、(2011•北京)我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为()A、66.6×107B、0.666×108C、6.66×108D、6.66×107考点:科学记数法与有效数字。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:665 575 306≈6.66×108.故选C.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3、(2011•北京)下列图形中,即是中心对称又是轴对称图形的是()A、等边三角形B、平行四边形C、梯形D、矩形考点:中心对称图形;轴对称图形。
分析:根据轴对称图形与中心对称图形的概念求解,四个选项中,只有D选项既为中心对称图形又是轴对称图形解答:解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、是不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是轴对称图形,又是中心对称图形.故本选项正确.故选D.点评:本题主要考察中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.4、(2011•北京)如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若1AD=,3BC=,则AOCO的值为( )A、B、C、D、考点:相似三角形的判定与性质;梯形。
2011北京中考各科试题独家解析
2011北京中考文言文《鱼我所欲也》一手解析从2011年北京中考文言文《鱼我所欲也》看北京文言文命题趋势2011年北京中考语文考试结束了!考生们走出考场,议论纷纷的无非是今年自己的老师有没有押中作文题目和文言文的题目。
一个海淀教师进修学校的男生兴奋地打来电话:“老师,太爽了!考的就是昨天我们复习的那篇!”笔者在考前,也即23号那天,给每个学生发了一篇《鱼我所欲》的练习,此举并非意在押题,而是经过对近几年中考文言文篇目的观察,发现北京中考的文言文命题有其内在的规律和趋势!自从2007年北京市中考开始统考以来,先后考了07年的《桃花源记》,08年的《岳阳楼记》,09年的《生于忧患死于安乐》,10年的《陈涉世家》,到11年的《鱼我所欲也》,如果各位老师和同学能够细心观察,会发现其有内在的联系。
07年《桃花源记》,在当时国际局势下的怡然自得,08年汶川地震后的《岳阳楼记》中“先天下之忧而忧,后天下之乐而乐”,到09年铁骨铮铮的《生于忧患死于安乐》,10年似乎是一个停顿的犹豫,有点出人意料地出了《陈涉世家》,11年的中考文言文在考前就有很多人纷纷猜测,会考经典的篇目《出师表》,还是会考激励学生的《送东阳马生序》?其实有心人仔细观察不难发现,从07年中考到现在,包括2011年北京市几个城区的一模、二模、文言文考的篇目几乎是各不相同,似无规律可循,但实际上考了这么多篇,各区教研员都在有意无意地回避着两篇——《鱼我所欲也》和《记承天寺夜》。
既然如此,那么中考文言文考什么?你也就知道了。
2011北京中考作文《日积月累》第一手分析点评2011北京中考物理题详细图文解析一、试卷整体卷面分析图1:整张卷面的简单、中等及难题的分数分布图二、试卷整体知识点分析1、各知识板块所占分值分析图2特点:整张卷面没有出现声学的内容,同时力学所占分值略增。
2、各知识板块考查的难易程度图3:三、通过以上图表,从今年中考物理题的整张卷面上来说,主要体现为以下几个特点:1、由图1可以看出今年的物理题分布的特点是“前轻后重”,难题的分布基本集中在后半部分。
中考数学分析
2011年中考试卷:数学(解读版)(北京)2011年北京中考暂时告一段落。
网校老师对今年的北京中考试卷与初三强化提高班的课程、模拟题进行了一些分析和对比。
对比发现:网校课程及讲义与今年中考的考查知识点完全契合,95%左右的题目与课程讲义中给出的题目所考查的知识点完全相同,约有65%的题目与讲义中老师给出的题目只差一些具体数字(解题方法完全相同)。
这其中,函数图像的交点问题、常见辅助线的构造问题、平移旋转问题、中心对称与轴对称问题、二次函数图像与解读式、函数(二次函数)与圆综合题等都结合近年的中考真题做了专题讲解与复习。
可以这样说,学过这个班级的同学,对考题中90%的题目不陌生,甚至个别题目老师还"讲过"。
下面是网校老师对2011年北京中考数学试卷的分析及原题解读,供大家参考。
一、题型、题量及分值比例分布基本涵盖了《考试说明》所要求的所有知识点,如:数与代数、函数、三角形、圆、统计与概率等等。
真题与考试说明相比,题量上有所减少。
共25道题目,共72分。
难度比约为:5:3:2填空题选择题解答题4道16分8道32分13道72分二、总体特点1、重视基础,紧扣教材和考试说明。
绝大多说题目都非常注重对基本知识、方法、思想等的考查,很多题目源于书本或者以书本为基础;此类题目分值约占总分的75%2、理论与实际生活相结合。
真题中出现了人口普查、温度统计、京通公交快速通道、汽车保有量与尾气排放等问题。
3、出现新题型。
第12题是新出现的一个找规律的题目,难度不是很大;4、压轴题相对较难,与2010年相比难度有所下降。
但对同学抽象思维能力、分类讨论思想等的能力要求较高。
里面出现了一个容易被忽略的问题--半圆应该不包括直径。
三、真题详解及讲义相似度对比一、选择题(本题共32分,每小题4分)下面各题均有4个选项,其中只有一个是符合题意的.1、﹣的绝对值是()A、﹣B、C、﹣D、【考点】绝对值。
【难度】容易【解读】解:数轴上某个数与原点的距离叫做这个数的绝对值,在数轴上,点﹣到原点的距离是,所以﹣的绝对值是.故本题答案选D.【点评】本题考查绝对值的基本概念:数轴上某个数与原点的距离叫做这个数的绝对值.本题在北京近年中考一般会考相反数或者绝对值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年北京市中考数学试卷分析及学法指导
智康1对1 谌良
一、试卷总体分析
2011年北京市中考数学试卷,延续了去年的平稳趋势,较2010年北京市中考数学试卷相比,题型结构稳定,总体难度略难,灵活性提高。
本套试卷在保持对基本知识的考察力度上,重视数学思想方法和学科综合能力的考察。
在题型的设计上,注重与现实生活的联系,同时也体现了“实践与操作、综合与探究、创新与应用”的命题特点。
(如第2题,第12题,第18题,第21题,第22题,第24题,第25题)。
试题基本上无“偏、难、繁、旧”的题目。
在简单题和中档题方面,题型变化不大,都是学生比较熟悉的题型,体现了中考试卷重视“双基”特点。
在难度比较大的压轴题方面,如第22题,第24题,第25题,强化了对数学思想方法和数学综合能力的考察,试题比较人性化,无繁琐的计算,但具有很高的灵活性,体现了“入口宽、出口窄”的特点,具有很好的区分度。
总体来说,2011年的中考试卷体现了“稳重有变,变中有新”的特点。
本次试卷的试题结构、题型题量分布、以及考点内容分布等基本符合今年的考试说明,这里不详述。
今年中考试卷的部分考察内容及难度和去年中考略有变化,在第二部分的典型试题点评部分会有介绍。
二、典型试题点评
在选填压轴题等稍难的题目方面,第8题(选择题的最后一道),考察的是动点与函数图象的题目,第12题(填空题的最后一道),考察的是新概念和新定义的题目,背景是高等数学中的线性代数,比较新颖,体现了知识的衔接。
这两道题都属于近年来比较热门的题型,特别是第12题,要求学生能够“活学活用”,能很好地考察学生接收新知识的能力。
这两道题的难度和2010年的难度相当,不是很难。
在图形操作与探究题(第22题)方面,考察了平移变换和面积问题,较2010年考察的轴对称变换要难一些。
这类题目,大都与图形变换有着密切的关系,能很好地体现了近年来中考试卷“实践与操作”的特点。
本题第一问比较简单,属于梯形中比较常见的辅助线,即平移腰,后两问有一定的难度(带有三角形重心的背景),需要学生能灵活运用平移的思想去分析问题、解决问题,部分学生可能会感觉第一问和后两问有一定的跨度,不够连贯。
因此学生在平时的学习中要重视三大几何变换的学习,达到“灵活运用”的程度,同时也要加强“三角形的三线四心”的学习。
值得说明的是,本题来源于一道类似的竞赛题,原题是已知三角形三条中线的长度,求三角形的面积。
从中考到竞赛,也是近年来部分中考压轴题的特色,不少经典的竞赛题能够很好地体现数学中的思想方法,因此对于一些想突破高分的学生来说,可以关注部分经典性的竞赛题目。
在代数综合压轴题方面(第23题),主要考察了二次函数、一次函数以及不等式的相关知识。
这类题型大都与函数、方程不等式以及代数式的恒等变形等有关,通常考察数形结合思想以及相关的画图识图能力。
本题难度不大,第3问需要学生在平时养成良好的审题读题习惯,培养将文字语言转化成数学语言能力,进而在解题时能抓住出题意图,提高分析问题、解决问题的能力。
在几何综合题方面(第24题),主要考察了旋转思想,等腰三角形的性质及判定等相关知识。
相对于2010年的几何综合题(第25题),2011年的几何综合题要简单一些。
本题属于探究题,第1问比较简单,第2问略难,考察的是一个比较隐蔽的旋转类全等模型,需要学生在平时的学习中积累一些经典几何辅助线的做法经验,同时注意培养观察、猜想、分析、论证的能力。
需要提醒的是,在积累经验的同时,一定要重视能力的培养,这样才能提高解题的灵活性,进而从容应对一些比较新颖的题目。
事实上,如果前2问都做出来的
话,第3问并不难。
此类探究题,通常是从特殊到一般,而且前后问的条件和结论具有很大的相似性和连贯性。
因此,在解此类题目时一定要仔细注意前后问之间的共性和差异,抓住前一问解法的本质特点,进而将解法灵活地迁移到后一问中。
在代几综合题方面(第25题),主要考察了平行线间的距离、直线与圆的位置关系、平移、平行四边形的判定等相关的知识。
同时本题也考察了数形结合思想、分类讨论的思想以及画图识图的能力。
本题前两问难度不大,第三问难度较大,需要学生能灵活运用第2问的结论,同时结合分类讨论思想进行解答,此问能很好地考察学生的思维缜密程度和细致程度,可能不少学生会感到纠结。
和2010年中考数学的代几综合题(第24题)相比,今年的难度要大一些,具有很高的区分度,第3问能够全部做出的学生应该很少。
因此,学生在平时的学习中,一定要注意归纳总结,将这部分的题型分类归纳,积累相应的解题经验,同时要强化数学思想方法和综合能力的培养,提高解题的灵活性。
三、学习方法指导
总体来说,鉴于中考重视对“双基”的考察,而且简单题加中档题大概有96分,因此对于基础知识这部分,学生在平时的学习中一定要夯实基础,概念要理解透彻,知识之间的联系和区别要梳理清楚,并养成认真审题解题的习惯。
同时也要注意这类题目解题的正确率和熟练程度,以便为突破部分难度较大的题目做准备。
对于难度较大具有区分度的题目,学生在平时的学习中,一定要注意数学思想方法和综合能力的培养,同时在实践与操作、探究与综合,以及找规律、归纳与概括等之类的题目上,好好练习,积累丰富的经验,还有一定要提高解题的灵活性。
最后,也是不容忽视的一点,需要学生培养一定的考试技巧,找到自己的考试状态和节奏,确保考试稳定发挥。