飞机各翼型资料
飞机翼型科普ppt课件
14
英国“闪电”、美国 F-100、苏联米格-19 则是第一代后掠翼的超声速战斗机15
三、三角翼
后掠翼的制造比平直翼要麻烦,翼根不仅要承受机身重量带来的应力, 还要机翼上扬造成的向前扭转的应力,需要大大加强结构,带来较大的 重量。但如果把后掠翼“镂空”的后半填起来,机翼后缘拉直,变成三 角翼,翼根的受力情况就接近于平直翼,容易处理多了。
斜激波的角度大于平面转角,这是两者的关系图
代价就是单位面积的翼面上产生的升力减小吧,同样重量的飞机相当于翼载荷变12大了
机翼后掠使速度分量在翼展和法向上分解,法向分量小于原来的速度,得 以推迟激波的产生。
13
后掠翼大量使用在跨声速(0.8-1.2 倍声速范围内)和高亚声速飞机上,像 歼-6 战斗机、各种波音和空客客机。
关于机翼翼型的科普
1
图95
2
俗话说,百人百态,千人千面。飞机和人一样,也是各式各
样的,其中最引人注目的差别就是不同形状的机翼。说起来,
飞机的奥妙就在于机翼。
3
从莱特兄弟到现在,除了航空动力外,几乎每一次航空技术的重大突破 都离不开在机翼上作文章。
飞行者—1号
4
一、平直翼
最简单的机翼是平直翼,机翼前后缘和机身垂直,机翼从里到外一样 宽。这样的机翼结构简单,制造容易,产生升力的效率较高,但阻力也 较大。升力的力臂使得翼根的受力很是不利。
亚声速到超声速飞行的区别在于压力波,压力波挤压到一起正好发生在声速 的时候,所以形成声障(解释本层上图)
8
这看不见的石墙也称激波。
在风洞里,激波的形成清晰可见
9
随着速度的增加,激波的锋面变成圆锥形,锥的后倾角度随速度增加而增加, 锋面背后的空气重新回到亚声速。如果平直的机翼像燕子的翅膀一样后掠, “躲”到机头引起的激波锋面的背后,就可以避免机翼本身引起的激波阻力。
4.1 机翼及翼型的基本知识、翼型绕流图画
翼型的几何参数
最大厚度
最大中弧高 中弧线 上表面 后缘
前缘
前缘半 径 翼弦 下表面 弦长
常用低速翼型编号方法简介
1.
NACA四位数字翼族,以NACA2412为例
f 2%
第一位数字2——
相对弯度
第二位数字4—— x f 40%
第三位数字12—— c 12 % 相对厚度
所有NACA四位数字翼族的 xc 30%
翼型的几何参数最大厚度最大中弧高前缘后缘中弧线上表面前缘半径弦长翼弦下表面常用低速翼型编号方法简介1naca四位数字翼族以naca2412为例第一位数字2第二位数字4第三位数字12第三位数字12相对厚度相对厚度2?f40?fx相对弯度所有naca四位数字翼族的12?c30?cx常用低速翼型编号方法简介2naca五位数字翼族以23012为例第一位数字2第二三位数字30最大弯度相对位置的3
三、翼型绕流图画
低速圆头翼型在小迎角时,其绕流图画如下图示。总体 流动特点是: (1)整个绕翼型的流动是无分离的附着流动,在物面上的 边界层和翼型后缘的尾迹区很薄;
(2)前驻点位于下翼面距前缘点不远处,流经驻点的流线 分成两部分,一部分从驻点起绕过前缘点经上翼面顺壁 面流去,另一部分从驻点起经下翼面顺壁面流去,在后 缘处流动平滑地汇合后下向流去。 (3)在上翼面近区的流体质点速度从前驻点的零值很快加 速到最大值,然后逐渐减速。根据Bernoulli方程,压 力分布是在驻点处压力最大,在最大速度点处压力最小 ,然后压力逐渐增大(过了最小压力点为逆压梯度区) 。而在下翼面流体质点速度从驻点开始一直加速到后缘 ,但不是均加速的。
第四章 低速翼型
引言
机翼一般都有对称面。平行于机翼的对称面截得 的机翼截面,称为翼剖面,通常也称为翼型。 翼型的几何形状是机翼的基本几何特性之一。翼 型的气动特性,直接影响到机翼及整个飞行器的 气动特性,在空气 动力学理论和飞行 器中具有重要的地位。
飞机机翼翼型解析
飞机机翼翼型解析近日,网上有传我国J-20战斗机改装前掠翼版,并且配有想象图,象机翼“前掠”、“后掠”等名词,如果不配图,很多菜鸟级军迷可能还不知道是什么个翼型。
现在,我想从固定翼飞机和直升机两个方面来对各种机翼进行简单剖析。
一、固定翼飞机翼型。
1、固定翼飞机机翼大布局分为:常规布局、大三角翼布局、鸭翼布局。
常规布局就是我们常见的飞机,是目前世界上应用最广泛的一种翼型。
常规布局飞机的特点是前翼大、后翼小,机尾有尾垂,这些都是最基本的。
常规布局仍存在一些看起来不一样的地方飞是尾垂仍有几个式样,如:大型客机和运输机尾垂顶部有小翼,现代三代、四代战斗机多采用双尾垂,而二代以前的战斗机几乎都是单尾垂的。
很多大型飞机主翼稍部都有一个小的上翘,称为翼稍小翼;之所以做这个小翼是因为设计师们发现,飞机尖细的翼稍高速划过空气时会剧烈撕裂空气并形成紊流,而紊流对飞机的升力和高速性都造成了明显的不利影响,如果消除这样的紊流将对减小飞机的燃料消耗起到很大作用,所以现有多大型飞机都设有小翼,而战斗机之所以很少有翼稍小翼是因为小翼对飞机来说本身是一个增重,大型飞机由于自身重量大对这样小的增重不太敏感,而战斗机起飞垂量低,对超重非常敏感,设计翼稍小翼给战斗机带来的好处和飞机增重带来的小利影响基本持平或者大于收益,所以战斗机飞不再设翼稍小翼了。
现代很多战斗机翼尖可挂格斗导弹,如SU-27、J-15、F-16等等,当这些飞机翼尖不挂导弹时从减轻飞机重量来考虑应该拆掉翼稍挂架,但很多飞行中的战斗机并不拆除这一对挂架,主要原因就是这对挂架虽然会增加飞机自重,但在飞行时却起到翼稍小翼的作用,两相抵消后虽然没有多大增益但增重后对飞行的影响也不大,不拆除挂架还减少了一些维护费,所以很多战斗机平时也保留了这对挂架。
部分中型运输机改装的特种机尾翼两侧加了两到四块垂直方向安装的小板称为“端板”,端板的作用主要是增强飞机飞行的气动性,如美军E-2预警机为了方便地放进机库而降低了垂尾高度,而垂尾的一个重要作用就是平飞是改变飞行方向,垂尾降低后飞行转向性能变差了,为了弥补这个据点,增加垂尾是很普遍的方法,E-2预警机在增加垂尾后可以在降低垂尾高度的同时维持了飞机转向性能。
飞机各翼型资料
飞机各翼型资料飞机是现代社会中一种重要的交通工具,而飞机的翼型对其性能和飞行特性起着至关重要的作用。
下面我们就来介绍一些常见的飞机翼型及其相关资料。
1. 对称翼型:对称翼型是最为常见的一种翼型,其上下翼面对称,横截面呈对称形状。
这种翼型通常用于一些一般性的民用飞机和教练机上,适用于低速和直线飞行。
对称翼型具有较高的升力系数和较小的阻力,但在高速飞行时升力衰减较快。
2. 单蒙皮翼型:单蒙皮翼型是一种简单的翼型结构,翼型由一片单蒙皮板组成,整体较为轻便。
这种翼型通常用于一些轻型飞机和无人机上,具有较好的低速飞行性能和操纵性能。
但在高速飞行时,可能存在一定的结构强度不足的问题。
3. 双蒙皮翼型:双蒙皮翼型结构更为复杂,由上下两片蒙皮板组成,中间通过肋梁和横桁进行连接。
这种翼型广泛应用于大型客机和运输机上,具有较好的结构强度和飞行平稳性。
双蒙皮翼型能够在高速飞行时保持较好的升力和阻力性能。
4. 椭圆翼型:椭圆翼型是一种理论上最为理想的翼型,其横截面呈椭圆形状,具有最佳的升阻比。
然而,由于制造难度较大,目前仅少数飞机采用了椭圆翼型。
椭圆翼型具有较高的升力和较小的阻力,在高速飞行时也能保持较好的性能。
5. 不对称翼型:不对称翼型又称为斜翼型或者箔翼型,其翼面呈不对称形状,通常用于一些高速飞机及军用战斗机上。
不对称翼型能够提高飞机的飞行速度和敏捷性,但在低速飞行时升力系数较低。
综上所述,飞机的翼型种类繁多,每种翼型都有其独特的特点和适用范围。
在设计飞机时,需要根据具体的使用需求和飞行特性选择合适的翼型,从而保证飞机在各种飞行条件下均能表现出优异的性能。
希望以上介绍的飞机各翼型资料能够为您带来一些参考和帮助。
机翼的分类
机翼的分类
机翼可以根据其形状和功能进行分类。
以下是几种常见的机翼分类:
1. 直翼(Rectangular wing):直翼是最简单和最基础的机翼
类型,其翼展和翼面积一般相等,翼根和翼尖形状基本相同。
2. 梯形翼(Trapezoidal wing):梯形翼翼根较宽,翼尖较窄,可以提高飞机的升力和速度性能。
3. 翼尖燕尾翼(Wingtip Sails):翼尖燕尾翼是在机翼的翼尖
处加装的小型气动产生装置,可以减小气动阻力,提高升力性能。
4. 后掠翼(Swept wing):后掠翼是机翼后缘向后倾斜的形状,可以减小飞行时的阻力,提高超音速飞行性能。
5. 双垂直尾翼(Twin vertical tail):双垂直尾翼是机翼上安装两个垂直尾翼的配置,可以增加飞机的稳定性和机动性。
6. 倒梯形翼(Inverse Trapezoidal wing):倒梯形翼具有翼根
较窄、翼尖较宽的形状,可以提供更大的翼展和升力。
这只是一些常见的机翼分类,实际上还有许多其他类型的机翼,每种机翼类型都有其特定的设计和应用领域。
各种不同的翼型介绍
各种不同的翼型介绍飞机最重要的部分当然是机翼了,飞机能飞在空中全靠机翼的浮力,机翼的剖面称之为翼型,为了适应各种不同的需要,航空前辈们发展了各种不同的翼型,从适用超音速飞机到手掷滑翔机的翼型都有,100年来有相当多的单位及个人做有系统的研究,与模型有关的方面比较重要的发展机构及个人有:1NACA:国家航空咨询委员会即美国太空总署﹝NASA﹞的前身,有一系列之翼型研究,比较有名的翼型是”四位数”翼型及”六位数”翼型,其中”六位数” 翼型是层流翼。
2易卜拉:易卜拉原先发展滑翔机翼型,后期改研发模型飞机翼型。
3渥特曼:渥特曼教授对现今真滑翔机翼型有重大贡献。
4哥庭根:德国一次大战后被禁止发展飞机,但滑翔机没在禁止之列,所以哥庭根大学对低速﹝低雷诺数﹞飞机翼型有一系列的研究,对遥控滑翔机及自由飞﹝无遥控﹞模型非常适用5班奈狄克:匈牙利的班奈狄克翼型是专门针对自由飞模型,有很多翼型可供选择。
有些翼型有特殊的编号方式让你看了编号就大概知道其特性,如NACA2412,第一个数字2代表中弧线最大弧高是2%,第二个数字4代表最大弧高在前缘算起40%的位置,第三、四数字12代表最大厚度是弦长的12%,所以NACA0010,因第一、二个数字都是0,代表对称翼,最大厚度是弦长的10%,但要注意每家命名方式都不同,有些只是单纯的编号。
因为翼型实在太多种类了,一般人如只知编号没有坐标也搞不清楚到底长什么样,所以在模型飞机界称呼翼型一般常分成以下几类:1全对称翼:上下弧线均凸且对称。
2半对称翼:上下弧线均凸但不对称。
3克拉克Y翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是克拉克Y翼最有名,故把这类翼型都叫克拉克Y翼,但要注意克拉克Y翼也有好几种。
4S型翼:中弧线是一个平躺的S型,这类翼型因攻角改变时,压力中心较不变动,常用于无尾翼机。
5内凹翼:下弧线在翼弦在线,升力系数大,常见于早期飞机及牵引滑翔机,所有的鸟类除蜂鸟外都是这种翼型。
飞机机翼翼型解析
飞机机翼翼型解析近日,网上有传我国J-20战斗机改装前掠翼版,并且配有想象图,象机翼“前掠”、“后掠”等名词,如果不配图,很多菜鸟级军迷可能还不知道是什么个翼型。
现在,我想从固定翼飞机和直升机两个方面来对各种机翼进行简单剖析。
一、固定翼飞机翼型。
1、固定翼飞机机翼大布局分为:常规布局、大三角翼布局、鸭翼布局。
常规布局就是我们常见的飞机,是目前世界上应用最广泛的一种翼型。
常规布局飞机的特点是前翼大、后翼小,机尾有尾垂,这些都是最基本的。
常规布局仍存在一些看起来不一样的地方飞是尾垂仍有几个式样,如:大型客机和运输机尾垂顶部有小翼,现代三代、四代战斗机多采用双尾垂,而二代以前的战斗机几乎都是单尾垂的。
很多大型飞机主翼稍部都有一个小的上翘,称为翼稍小翼;之所以做这个小翼是因为设计师们发现,飞机尖细的翼稍高速划过空气时会剧烈撕裂空气并形成紊流,而紊流对飞机的升力和高速性都造成了明显的不利影响,如果消除这样的紊流将对减小飞机的燃料消耗起到很大作用,所以现有多大型飞机都设有小翼,而战斗机之所以很少有翼稍小翼是因为小翼对飞机来说本身是一个增重,大型飞机由于自身重量大对这样小的增重不太敏感,而战斗机起飞垂量低,对超重非常敏感,设计翼稍小翼给战斗机带来的好处和飞机增重带来的小利影响基本持平或者大于收益,所以战斗机飞不再设翼稍小翼了。
现代很多战斗机翼尖可挂格斗导弹,如SU-27、J-15、F-16等等,当这些飞机翼尖不挂导弹时从减轻飞机重量来考虑应该拆掉翼稍挂架,但很多飞行中的战斗机并不拆除这一对挂架,主要原因就是这对挂架虽然会增加飞机自重,但在飞行时却起到翼稍小翼的作用,两相抵消后虽然没有多大增益但增重后对飞行的影响也不大,不拆除挂架还减少了一些维护费,所以很多战斗机平时也保留了这对挂架。
部分中型运输机改装的特种机尾翼两侧加了两到四块垂直方向安装的小板称为“端板”,端板的作用主要是增强飞机飞行的气动性,如美军E-2预警机为了方便地放进机库而降低了垂尾高度,而垂尾的一个重要作用就是平飞是改变飞行方向,垂尾降低后飞行转向性能变差了,为了弥补这个据点,增加垂尾是很普遍的方法,E-2预警机在增加垂尾后可以在降低垂尾高度的同时维持了飞机转向性能。
飞机各翼型资料
飞机各翼型资料-CAL-FENGHAI.-(YICAI)-Company One1【资料】一些超轻型飞机中用的翼型Clark Y (低性能的允许制造误差大的,下表面很长一段是直线容易造)NACA 4412/4415 (低性能的允许制造误差大的,头部圆钝不易气流分离,下表面平坦容易制造)NACA 6412 (升力比较大,但下表面内凹,不便制造,俯仰力矩大,一般不用。
模型上通常用较薄的NACA6409)NACA 23012/23015/23018(综合性可靠的,商务飞机最常用的,厚度范围比较大)NACA 43012/43015(综合性较好的,可能侧重于飞行性能)NACA 63-618 (层流翼型制作要求高)NACA 66-618(层流翼型制作要求更高,第二个数字可以推测此类6系列翼型的层流范围,此类翼型通常用较小弯度如66-116的用于高速飞机上)NACA 8-H-12(s翼型,俯仰安定性好,其他性能差,飞翼类用)FX 63-137(低速大升力翼型,通常仅用于人力飞机类慢速飞机)FX 67-K-170(层流翼型制作要求高),Wortmann的层流翼型理论上说性能比NACA的6系列更先进些。
蟋蟀用的那个厚度21.7的没找到,将就着看看厚度19.1的吧:FX 60-126(翼尖处使用,抗失速)EPPLER 266 (滑翔机任务专用,不适合动力飞机)平板(通常在管子蒙皮结构中作为尾翼用)NACA0006~0008 (通常用做尾翼)少数特技飞机也采用对称翼型。
不过通常厚度相当大。
单层蒙布翼型,这个通常总是用根圆管做前缘。
按传统的翼型制图理论,这个形状应该是常规翼型的那些中心线,然后厚度为0的那样翼型。
当然那个理论是简单设想的扯淡。
所以这个翼型实际是常规翼型的上表面的形状,一般只要做到曲率逐渐变化就可以了。
由于实际的此类翼型性能都很差,所以你做的形状差了很多也无所谓的。
一层半蒙布翼型,这个通常不是完整的翼型,上表面是完整的,下表面只蒙一部分然后就贴到上蒙皮下面去了。
飞机机翼的分类,后掠翼、前掠翼、三角翼都是什么意思?
飞机机翼的分类,后掠翼、前掠翼、三角翼都是什么意思?机翼是飞机的重要部件之一,安装在机身上。
其最主要作用是产生升力,同时也可以在机翼内部置弹药仓和油箱,在飞行中可以收藏起落架。
飞机的机翼(单翼机)按俯视平面形状,主要可分为平直翼、椭圆形机翼、梯形翼、三角翼、后掠翼、可变后掠翼、前掠翼等类型。
(本文不介绍气动布局,单说机翼)常见的机翼平面形状平直翼是指无明显后掠角(后掠角小于20度)的机翼,包括矩形、梯形或半椭圆形的机翼。
特点是制作工艺简单,低速性能好,常用在亚音速飞机上。
运-12运输机,平直翼梯形翼是机翼的平面形状为梯形的一种机翼。
梯形翼不靠后掠角减阻,升力较好,但最终效果不一定优于后掠翼或者三角翼,使用较少。
F-5战斗机,梯形翼椭圆形翼的升力分布比较均匀,相比其他翼形阻力很小,但制作难度高,现在已少见。
椭圆形翼和梯形翼本质上和平直翼算一个类型。
P-47战斗机,椭圆翼三角翼是飞机机翼平面形状的一种,由于其形状形似三角形而得名。
三角翼具有超音速飞行阻力小、结构强度高、跨音速时机翼重心向后移动量小的三大优点,因此被广泛应用于以高速飞机。
幻影-2000战斗机,纯三角翼三角翼机翼的造型比较多,有纯三角翼、曲线三角翼(S型前缘三角翼)、双三角翼等,如果结合气动布局,其细分重量将更多,比如鸭翼。
纯三角翼曲线三角翼(S型前缘三角翼)协和式飞机,曲线三角翼双三角翼歼-7E战斗机三视图,双三角翼双三角翼是上世纪五六十年代开始出现的技术,瑞典的萨博-35战斗机最先应用。
后掠角达到80度的内段机翼采用大厚度翼身融合设计,为容纳燃油和主起落架提供了宽敞的空间,外翼段为薄翼型的小型三角翼,前缘后掠角57度,外翼段这样的设计有利于改善战机的低速性能和缩短起降距离,同时保留高速飞行时的低阻特性。
但双三角翼的设计,提高了涡升力,增强了飞机的机动性,但也损失了一定的高速性能,双三角翼设计的飞机已经很少了。
另外,在一定程度上,双三角翼和边条翼很类似,或者说边条翼可以视为拥有超大内段后掠角的双三角翼,很多高机动性战斗机都采用了边条翼的设计。
各种不同的翼型介绍
系统发布人气打印返回[字体:大中小]飞机最重要地部分当然是机翼了,飞机能飞在空中全靠机翼地浮力,机翼地剖面称之为翼型,为了适应各种不同地需要,航空前辈们发展了各种不同地翼型,从适用超音速飞机到手掷滑翔机地翼型都有,年来有相当多地单位及个人做有系统地研究,与模型有关地方面比较重要地发展机构及个人有:文档来自于网络搜索1:国家航空咨询委员会即美国太空总署﹝﹞地前身,有一系列之翼型研究,比较有名地翼型是”四位数”翼型及”六位数”翼型,其中”六位数” 翼型是层流翼.2易卜拉:易卜拉原先发展滑翔机翼型,后期改研发模型飞机翼型.3渥特曼:渥特曼教授对现今真滑翔机翼型有重大贡献.4哥庭根:德国一次大战后被禁止发展飞机,但滑翔机没在禁止之列,所以哥庭根大学对低速﹝低雷诺数﹞飞机翼型有一系列地研究,对遥控滑翔机及自由飞﹝无遥控﹞模型非常适用5班奈狄克:匈牙利地班奈狄克翼型是专门针对自由飞模型,有很多翼型可供选择.文档来自于网络搜索有些翼型有特殊地编号方式让你看了编号就大概知道其特性,如,第一个数字代表中弧线最大弧高是,第二个数字代表最大弧高在前缘算起地位置,第三、四数字代表最大厚度是弦长地,所以,因第一、二个数字都是,代表对称翼,最大厚度是弦长地,但要注意每家命名方式都不同,有些只是单纯地编号.因为翼型实在太多种类了,一般人如只知编号没有坐标也搞不清楚到底长什么样,所以在模型飞机界称呼翼型一般常分成以下几类:文档来自于网络搜索1全对称翼:上下弧线均凸且对称.2半对称翼:上下弧线均凸但不对称.3克拉克翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是克拉克翼最有名,故把这类翼型都叫克拉克翼,但要注意克拉克翼也有好几种.4型翼:中弧线是一个平躺地型,这类翼型因攻角改变时,压力中心较不变动,常用于无尾翼机.5内凹翼:下弧线在翼弦在线,升力系数大,常见于早期飞机及牵引滑翔机,所有地鸟类除蜂鸟外都是这种翼型.6其它特种翼型.文档来自于网络搜索以上地分类只是一个粗糙地分类,在观察一个翼型地时候,最重要地是找出它地中弧线,然后再看它中弧线两旁厚度分布地情形,中弧线弯曲地方式、程度大至决定了翼型地特性,弧线越弯升力系数就越大,但一般来说光用眼睛看非常不可靠,克拉克翼地中弧线就比很多内凹翼还弯.文档来自于网络搜索飞行中之阻力如何减少阻力是飞机设计地一大难题,飞行中飞机引擎地推力全部用来克服阻力,如果可以减少阻力则飞机可以飞得更快,不然可以把引擎改小减少重量及耗油量,拿现代私人小飞机与一次大战战斗机相比,引擎大约都差不多一百多匹马力,现代私人小飞机光洁流线地机身相对于一次大战战斗机整架飞机一堆乱七八糟地支柱与张线,现代飞机速度几乎是它前辈地一倍,所以减少阻力是我们设计飞机时需时时刻刻要注意地,我们先要了解阻力如何产生,一架飞行中飞机阻力可分成四大类:文档来自于网络搜索1磨擦阻力:空气分子与飞机磨擦产生地阻力,这是最容易理解地阻力但不很重要,只占总阻力地一小部分,当然为减少磨擦阻力还是尽量把飞机磨光.2形状阻力:物体前后压力差引起地阻力,平常汽车广告所说地风阻系数就是指形状阻力系数,飞机做得越流线形,形状阻力就越小,尖锥状地物体形状阻力不见得最小,反而是有一点钝头地物体阻力小,读者如果有机会看到油轮船头水底下那部分,你会看到一个大头,高级滑翔机大部分也有一个大头,除了提供载人地空间外也是为了减少形状阻力.3诱导阻小,只不过是一架小飞机,如像类似这种大家伙起飞降落后,小飞机要隔一阵子才能起降,否则飞入这种涡流,后果不堪设想,这种阻力是因为涡流产力:机翼地翼端部因上下压力差,空气会从压力大往压力小地方向移动,部份空气不会规规矩矩往后移动,而从旁边往上翻,因而在两端产生涡流,因而产生阻力,这现象在飞行表演时,飞机翼端如有喷烟时可看得非常清楚,你可以注意涡流旋转地方向是地照片,可看见壮观地涡流,因为这种涡流延伸至水平尾翼时,从水平尾翼地观点气流是从上往下吹,因此会减小水平尾翼地攻角,也就是说水平尾翼地攻角实际会比较生,所以也称涡流阻力.4寄生阻力:所有控制面地缝隙﹝如主翼后缘与副翼间﹞、主翼及尾翼与机身接合处、机身开孔处、机轮及轮架、拉杆等除本身地原有地阻力以外,另外衍生出来地阻力.一架飞机地总阻力就是以上四种阻力地总合,但飞机地阻力互相影响地,以上地分类只是让讨论方便而已,另外诱导阻力不只出现在翼端,其它舵面都会产生,只是翼端比较严重,磨擦阻力、形状阻力、寄生阻力与速度地平方成正比,速度越快阻力越大,诱导阻力则与速度地平方成反比,所以要减少阻力地话,无动力飞机重点在减少诱导阻力,高速飞机重点在减少形状阻力与寄生阻力. 文档来自于网络搜索(来源:网络)(作者:佚名)(:不同翼型介绍)。
固定翼飞机机翼的分类
固定翼飞机机翼的分类固定翼飞机机翼是飞机的重要组成部分,它能够提供升力和控制飞机的姿态。
根据不同的特点和用途,固定翼飞机机翼可以分为多种类型。
一、直线翼直线翼是最常见的机翼类型,也是最基本的形式。
直线翼的特点是翼展较大,翼面相对较宽,翼根较厚,翼尖较尖。
这种机翼结构简单,制造成本低,适用于大多数民航飞机。
直线翼能够提供良好的升力和稳定性,适合飞行速度较低的飞机。
二、悬臂翼悬臂翼是指机翼没有额外的支撑结构,只依靠机身连接。
悬臂翼的特点是翼展较大,翼面相对较窄,翼根较薄,翼尖较尖。
悬臂翼能够减少飞机的阻力和气动干扰,提高飞机的性能和效率,适合高速飞行的军用战斗机和商用喷气式飞机。
三、后掠翼后掠翼是指机翼的前缘与飞行方向成一定角度,通常呈倒V字形。
后掠翼的特点是翼展较大,翼面相对较窄,翼根较薄,翼尖较尖。
后掠翼能够减小飞机的阻力和气动干扰,提高飞机的超音速飞行能力和操纵性,适合高速飞行的军用战斗机和超音速客机。
四、前掠翼前掠翼是指机翼的前缘与飞行方向成一定角度,通常呈V字形。
前掠翼的特点是翼展较大,翼面相对较宽,翼根较厚,翼尖较钝。
前掠翼能够减小飞机的阻力和气动干扰,提高飞机的超音速飞行能力和操纵性,适合高速飞行的军用战斗机和超音速客机。
五、可变后掠翼可变后掠翼是指机翼的后缘可以根据飞行速度和飞行状态的需要改变角度。
可变后掠翼的特点是能够在低速飞行时提供更大的升力和操纵性,在高速飞行时减小阻力和气动干扰。
可变后掠翼适用于需要在不同速度下进行飞行的军用战斗机和超音速客机。
六、鸭翼鸭翼是指机翼位于机身尾部的水平稳定面。
鸭翼的特点是能够提供额外的升力和稳定性,改善飞机的操纵性和平衡性。
鸭翼适用于需要在低速和高速飞行时保持良好稳定性的飞机,如军用战斗机和商用客机。
七、全翼翼全翼翼是指机翼和机身融为一体,形成一个整体的翼身结构。
全翼翼的特点是能够提供更大的升力和操纵性,减小飞机的气动干扰和阻力。
全翼翼适用于需要在低速和垂直起降时保持稳定性的垂直起降战斗机和直升机。
飞机各翼型资料
【资料】一些超轻型飞机中用的翼型Clark Y (低性能的允许制造误差大的,下表面很长一段是直线容易造)NACA 4412/4415 (低性能的允许制造误差大的,头部圆钝不易气流分离,下表面平坦容易制造)NACA 6412 (升力比较大,但下表面内凹,不便制造,俯仰力矩大,一般不用。
模型上通常用较薄的NACA6409)NACA 23012/23015/23018(综合性可靠的,商务飞机最常用的,厚度范围比较大)NACA 43012/43015(综合性较好的,可能侧重于飞行性能)NACA 63-618 (层流翼型制作要求高)NACA 66-618(层流翼型制作要求更高,第二个数字可以推测此类6系列翼型的层流范围,此类翼型通常用较小弯度如66-116的用于高速飞机上)NACA 8-H-12(s翼型,俯仰安定性好,其他性能差,飞翼类用)FX 63-137(低速大升力翼型,通常仅用于人力飞机类慢速飞机)FX 67-K-170(层流翼型制作要求高),Wortmann的层流翼型理论上说性能比NACA的6系列更先进些。
蟋蟀用的那个厚度21.7的没找到,将就着看看厚度19.1的吧:FX 60-126(翼尖处使用,抗失速)EPPLER 266 (滑翔机任务专用,不适合动力飞机)平板(通常在管子蒙皮结构中作为尾翼用)NACA0006~0008 (通常用做尾翼)少数特技飞机也采用对称翼型。
不过通常厚度相当大。
单层蒙布翼型,这个通常总是用根圆管做前缘。
按传统的翼型制图理论,这个形状应该是常规翼型的那些中心线,然后厚度为0的那样翼型。
当然那个理论是简单设想的扯淡。
所以这个翼型实际是常规翼型的上表面的形状,一般只要做到曲率逐渐变化就可以了。
由于实际的此类翼型性能都很差,所以你做的形状差了很多也无所谓的。
一层半蒙布翼型,这个通常不是完整的翼型,上表面是完整的,下表面只蒙一部分然后就贴到上蒙皮下面去了。
也就是说前半部分是个立体翼型,后半部分省略为单层蒙布。
飞机各翼型
【资料】一些超轻型飞机中用的翼型Clark Y (低性能的允许制造误差大的,下表面很长一段是直线容易造)NACA 4412/4415 (低性能的允许制造误差大的,头部圆钝不易气流分离,下表面平坦容易制造)NACA 6412 (升力比较大,但下表面内凹,不便制造,俯仰力矩大,一般不用。
模型上通常用较薄的NACA6409)NACA 23012/23015/23018(综合性可靠的,商务飞机最常用的,厚度范围比较大)NACA 43012/43015(综合性较好的,可能侧重于飞行性能)NACA 63-618 (层流翼型制作要求高)NACA 66-618(层流翼型制作要求更高,第二个数字可以推测此类6系列翼型的层流范围,此类翼型通常用较小弯度如66-116的用于高速飞机上)NACA 8-H-12(s翼型,俯仰安定性好,其他性能差,飞翼类用)FX 63-137(低速大升力翼型,通常仅用于人力飞机类慢速飞机)FX 67-K-170(层流翼型制作要求高),Wortmann的层流翼型理论上说性能比NACA的6系列更先进些。
蟋蟀用的那个厚度21.7的没找到,将就着看看厚度19.1的吧:FX 60-126(翼尖处使用,抗失速)EPPLER 266 (滑翔机任务专用,不适合动力飞机)平板(通常在管子蒙皮结构中作为尾翼用)NACA0006~0008 (通常用做尾翼)少数特技飞机也采用对称翼型。
不过通常厚度相当大。
单层蒙布翼型,这个通常总是用根圆管做前缘。
按传统的翼型制图理论,这个形状应该是常规翼型的那些中心线,然后厚度为0的那样翼型。
当然那个理论是简单设想的扯淡。
所以这个翼型实际是常规翼型的上表面的形状,一般只要做到曲率逐渐变化就可以了。
由于实际的此类翼型性能都很差,所以你做的形状差了很多也无所谓的。
一层半蒙布翼型,这个通常不是完整的翼型,上表面是完整的,下表面只蒙一部分然后就贴到上蒙皮下面去了。
也就是说前半部分是个立体翼型,后半部分省略为单层蒙布。
飞机翼型
发现当时的几种优秀翼型的折算成相同厚度时,厚度分布规
律几乎完全一样。于是他们把厚度分布就用这个经过实践证 明,在当时认为是最佳的翼型厚度分布作为NACA翼型族的厚
度分布。厚度分布函数为:
yc c (0.29690 x 0.12600 x 0.35160 x 2 0.28430 x 3 0.10150 x 4 ) 0.2
最大厚度为
xc 30% 。
EXIT
1.1
翼型的几何参数及其发展
f xf
2
中弧线取两段抛物线,在中弧线最高点二者相切。
yf
(2 x f x x 2 )
0 x xf
f yf (1 2 x f ) 2 x f x x 2 (1 x f ) 2 式中,f 为相对弯度, x f 为最大弯度位置。
后缘在弦线上投影之间的距离。
EXIT
1.1
翼型的几何参数及其发展
2、翼型表面的无量纲坐标
翼型上、下表面曲线用弦线长度的相对坐标的函数表示:
yu x yu fu ( ) fu ( x ) b b yl x yl fl ( ) fl ( x ) b b
0 x 1
EXIT
1.1
Cy
Y 1 2 V b 2 X
阻力系数
俯仰力矩系数
1 2 ρV b 2 Mz mz 1 2 V b 2 2
EXIT
Cx
1.2
翼型的空气动力系数
由空气动力实验表明,对于给定的翼型,升力是下列变
量的函数:
Y f (V , , b, , )
根据量纲分析,可得
EXIT
1.1
翼型的几何参数及其发展
机翼
机翼科技名词定义中文名称:机翼英文名称:wing定义:飞机上用来产生升力的主铱件。
所属学科:航空科技(一级学科);航空器(二级学科)本内容由全国科学技术名词审定委员会审定公布机翼是飞机的重要部件之一,安装在机身上。
其最主要作用是产生升力,同时也可以在机翼内布置弹药仓和油箱,在飞行中可以收藏起落架。
另外,在机翼上还安装有改善起飞和着陆性能的襟翼和用于飞机横向操纵的副翼,有的还在机翼前缘装有缝翼等增加升力的装置。
目录编辑本段机翼弦后掠角等)、上反角、翼剖面形状(翼型)等(图2a)。
常用基本翼型有低速翼型、尖峰翼型、超临界翼型和前缘较尖锐的超音速翼型。
此外还有以下一些重要的相对参数:①展弦比:机翼翼展与平均弦长(机翼面积被翼展除)之比;②梢根比:机翼翼梢弦长与翼根弦长之比;③翼型相对厚度:翼型最大厚度与弦长之比。
这些参数对机翼的空气动力特性、机翼受载和结构重量都有重要影响。
飞机的机翼按照俯视平面形状的不同,可划分为三种基本机翼。
平直翼机翼的1/4弦线后掠角大约在20°以下。
平直翼多用在亚音速飞机和部分超音速歼击机上。
在亚音速飞机上,展弦比为8~12左右,相对厚度为0.15~0.18。
在超音速飞机上,展弦比为3~4,相对厚度为0.03~0.04左右。
后掠翼机翼1/4弦线后掠角多在25°以上。
用于高亚音速飞机和超音速飞机。
高亚音速飞机后掠翼的常用参数范围是:后掠角30°~35°,展弦比6~8,相对厚度约 0.10,梢根比0.25~0.3。
对于超音速飞机,后掠角超过35°,展弦比3~4,相对厚度0.06~0.08,梢根比小于0.3。
三角翼机翼前缘后掠角约60°,后缘基本无后掠,俯视投影呈三角形状。
展弦比约为 2,相对厚度0.03~0.05。
多用于超音速飞机,尤以无尾飞机采用最多。
改善机翼气动特性的措施超音速飞机常用的后掠和三角形薄机翼存在低速大迎角特性不好的缺点。
飞机各翼型资料
Clark Y (低性能的允许制造误差大的,下表面很长一段是直线容易造)NACA 4412/4415 (低性能的允许制造误差大的,头部圆钝不易气流分离,下表面平坦容易制造)NACA 6412 (升力比较大,但下表面内凹,不便制造,俯仰力矩大,一般不用。
模型上通常用较薄的NACA6409)NACA 23012/23015/23018(综合性可靠的,商务飞机最常用的,厚度范围比较大)NACA 43012/43015(综合性较好的,可能侧重于飞行性能)NACA 63-618 (层流翼型制作要求高)NACA 66-618(层流翼型制作要求更高,第二个数字可以推测此类6系列翼型的层流范围,此类翼型通常用较小弯度如66-116的用于高速飞机上)NACA 8-H-12(s翼型,俯仰安定性好,其他性能差,飞翼类用)FX 63-137(低速大升力翼型,通常仅用于人力飞机类慢速飞机)FX 67-K-170(层流翼型制作要求高),Wortmann的层流翼型理论上说性能比NACA的6系列更先进些。
蟋蟀用的那个厚度的没找到,将就着看看厚度的吧:FX 60-126(翼尖处使用,抗失速)EPPLER 266 (滑翔机任务专用,不适合动力飞机)平板(通常在管子蒙皮结构中作为尾翼用)NACA0006~0008 (通常用做尾翼)少数特技飞机也采用对称翼型。
不过通常厚度相当大。
单层蒙布翼型,这个通常总是用根圆管做前缘。
按传统的翼型制图理论,这个形状应该是常规翼型的那些中心线,然后厚度为0的那样翼型。
当然那个理论是简单设想的扯淡。
所以这个翼型实际是常规翼型的上表面的形状,一般只要做到曲率逐渐变化就可以了。
由于实际的此类翼型性能都很差,所以你做的形状差了很多也无所谓的。
一层半蒙布翼型,这个通常不是完整的翼型,上表面是完整的,下表面只蒙一部分然后就贴到上蒙皮下面去了。
也就是说前半部分是个立体翼型,后半部分省略为单层蒙布。
这样基本保留了翼型的气动性,又节省了重量。
飞机翼型科普
在同样翼展下,三角翼的翼面积更大,升力更大;翼根更长, 结构上需要的加强越少,同样翼面积时重量更轻。另一方面,机翼 的阻力特征由相对厚度决定,也就是机翼的实际厚度和弦长(机翼 前后缘之间的距离)之比。实际机翼的厚度和弦长随不同翼展位置 而变化,所以一般取 1/4 翼展处的厚度和弦长之比。三角翼的翼弦 较长,在相对厚度不变的情况下,实际厚度较厚,既简化结构设计 和制造,有利于减重;又增加翼内容积,有利于增加机内燃油容量。
米格-15 和 F-86 是第一代采用后掠翼的战斗机,两者都是高亚声速战斗机
英国“闪电”、美国 F-100、苏联米格-19 则是第一代后掠翼的超声速战斗机
三、三角翼
后掠翼的制造比平直翼要麻烦,翼根不仅要承受机身重量带来的应力, 还要机翼上扬造成的向前扭转的应力,需要大大加强结构,带来较大的 重量。但如果把后掠翼“镂空”的后半填起来,机翼后缘拉直,变成三 角翼,翼根的受力情况就接近于平直翼,容易处理多了。
空气只对机翼的“掠”感兴趣,前掠还是后掠并不重要,所 以机翼也可以前掠,这是俄罗斯的 Su-37 研究机
前掠翼则不同,翼尖处于“干净”的气流中,边பைடு நூலகம்层堆积发生在翼根, 升力损失小,而且副翼保持有效的横滚控制。前掠翼要到差不多整个机 翼都失速的时候,才有翼尖失速的问题,比后掠翼进入失速要晚很多, 有利于增强机动性。
翼下起落架不容易找地方生根活动段内无法设计翼内油箱使总的翼内油箱空间大减翼下武器挂架需要随活动段同步转动才能保持挂载的武器指向前方加上变后掠翼固有的机械问题变后掠翼最后会变的很重极大地抵消了变后掠翼的气动优势
飞机翼型科普
图95
俗话说,百人百态,千人千面。飞机和人一样,也是各式各
样的,其中最引人注目的差别就是不同形状的机翼。说起来, 飞机的奥妙就在于机翼。
飞机翼型教学课件
例:
NACA
2
20 3
C
y设
2
C y设
2
3 20
0.3
3
2 x f 30 % x f 15 %
012
中弧线 c 12%
0:简单型 1:有拐点
C y设 :来流与前缘中弧线平行时的理论升力系数
EXIT
1.1 翼型的几何参数及其发展
1939年,发展了NACA1系列层流翼型族。其后又相继发 展了NACA2系列,3系列直到6系列,7系列的层流翼型族。
yu
yu b
fu
(
x b
)
fu (x)
yl
yl b
fl
(
x b
)
fl (x)
0x1
EXIT
1.1 翼型的几何参数及其发展
通常翼型的坐标由离散的数据表格给出:
EXIT
1.1 翼型的几何参数及其发展
3、弯度 翼型上下表面y向高度中点的连线称为翼型中弧线。 如果中弧线是一条直线(与弦线合一),这个翼型是对
曲线,阻力系数曲线,力矩系数曲线。
NACA 23012 的气动特性曲线
EXIT
1.3 低速翼型的低速气动特性概述
(1)在升力系数随迎角的变化曲线中,在迎角较小时是一 条直线,这条直线的斜率称为升力线斜率,记为
C
y
dC y
d
这个斜率,薄翼的理论值等于2/弧度,即0.10965/度,实验
值略小。NACA 23012的是0.105/度,NACA 631-212的是0.106
EXIT
1.1 翼型的几何参数及其发展
在上世纪三十年代初期,美国国家航空咨询委员会( National Advisory Committee for Aeronautics,缩写为 NACA,后来为NASA,National Aeronautics and Space Administration)对低速翼型进行了系统的实验研究。他们 发现当时的几种优秀翼型的折算成相同厚度时,厚度分布规 律几乎完全一样。于是他们把厚度分布就用这个经过实践证 明,在当时认为是最佳的翼型厚度分布作为NACA翼型族的厚 度分布。厚度分布函数为:
机翼形状
特别重要的几何参数。
表3-1-1 介绍几种飞机的主要几何参数
机种几何参数 歼五
面积(㎡)
22.6
翼展(m)
9.6
展玄比
4.13
根尖比
歼六 25
•有
P上
P
1 2
C2
P上
P P P
1 2
C
2
P下
P
1 2
C2 P下
• 机翼无限小面积ds所产生的升力(见图3-1-13)dY应为
•
• 而 ds ldx 则得
dY
1 2
C2
(P下
P上 )dx
Y
1 2
C2
(P下
P上 )ldx
• •
整个机翼的升力(Y)应为:Y 取X x b ,上式改写成:
• 从空气流过双凸形机翼的流线谱(图3—1—9)中可以看到,空气 流到机翼前缘,分成上下两股,分别沿机翼上、下表面向后流动, 由于机冀有一定的正迎角,上表面又比较凸出,所以机翼上
•
表面的流管必然变细,根据连续方程和伯努利方程可知其流
速增大、压强下降。下表面则相反,流管变粗,流速减少,压强
增大。垂直于相对气流方向压力差就是机翼的升力。
力,首先在其上任取一长度为 l 、宽度为d x 、面积为d s 的一小块 微元机翼 d s = d X l 。可以认为这块微元机翼的上、下表面压
力分布是均匀的,这样就很容易算出它的升力。
•
如图3—1—14所示,流过机翼上下表面的气流速度、压强
在Ⅱ-Ⅱ截面处分别C为上 P、上 及C下 P、下 ,根据压力系数定义
各种不同的翼型介绍
各种不同的翼型介绍系统发布|人气:4517|2009-4-8 21:55:54 打印返回[字体:大中小]飞机最重要的部分当然是机翼了,飞机能飞在空中全靠机翼的浮力,机翼的剖面称之为翼型,为了适应各种不同的需要,航空前辈们发展了各种不同的翼型,从适用超音速飞机到手掷滑翔机的翼型都有,100年来有相当多的单位及个人做有系统的研究,与模型有关的方面比较重要的发展机构及个人有:1NACA:国家航空咨询委员会即美国太空总署﹝NASA﹞的前身,有一系列之翼型研究,比较有名的翼型是”四位数”翼型及”六位数”翼型,其中”六位数” 翼型是层流翼。
2易卜拉:易卜拉原先发展滑翔机翼型,后期改研发模型飞机翼型。
3渥特曼:渥特曼教授对现今真滑翔机翼型有重大贡献。
4哥庭根:德国一次大战后被禁止发展飞机,但滑翔机没在禁止之列,所以哥庭根大学对低速﹝低雷诺数﹞飞机翼型有一系列的研究,对遥控滑翔机及自由飞﹝无遥控﹞模型非常适用5班奈狄克:匈牙利的班奈狄克翼型是专门针对自由飞模型,有很多翼型可供选择。
有些翼型有特殊的编号方式让你看了编号就大概知道其特性,如NACA2412,第一个数字2代表中弧线最大弧高是2%,第二个数字4代表最大弧高在前缘算起40%的位置,第三、四数字12代表最大厚度是弦长的12%,所以NACA0010,因第一、二个数字都是0,代表对称翼,最大厚度是弦长的10%,但要注意每家命名方式都不同,有些只是单纯的编号。
因为翼型实在太多种类了,一般人如只知编号没有坐标也搞不清楚到底长什么样,所以在模型飞机界称呼翼型一般常分成以下几类:1全对称翼:上下弧线均凸且对称。
2半对称翼:上下弧线均凸但不对称。
3克拉克Y翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是克拉克Y翼最有名,故把这类翼型都叫克拉克Y翼,但要注意克拉克Y翼也有好几种。
4S型翼:中弧线是一个平躺的S型,这类翼型因攻角改变时,压力中心较不变动,常用于无尾翼机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【资料】一些超轻型飞机中用的翼型
Clark Y (低性能的允许制造误差大的,下表面很长一段是直线容易造)
NACA 4412/4415 (低性能的允许制造误差大的,头部圆钝不易气流分离,下表面平坦容易制造)
NACA 6412 (升力比较大,但下表面内凹,不便制造,俯仰力矩大,一般不用。
模型上通常用较薄的NACA6409)
NACA 23012/23015/23018(综合性可靠的,商务飞机最常用的,厚度范围比较大)
NACA 43012/43015(综合性较好的,可能侧重于飞行性能)
NACA 63-618 (层流翼型制作要求高)
NACA 66-618(层流翼型制作要求更高,第二个数字可以推测此类6系列翼型的层流范围,此类翼型通常用较小弯度如66-116的用于高速飞机上)
NACA 8-H-12(s翼型,俯仰安定性好,其他性能差,飞翼类用)
FX 63-137(低速大升力翼型,通常仅用于人力飞机类慢速飞机)
FX 67-K-170(层流翼型制作要求高),Wortmann的层流翼型理论上说性能比NACA的6系列更先进些。
蟋蟀用的那个厚度的没找到,将就着看看厚度的吧:
FX 60-126(翼尖处使用,抗失速)
EPPLER 266 (滑翔机任务专用,不适合动力飞机)
平板(通常在管子蒙皮结构中作为尾翼用)
NACA0006~0008 (通常用做尾翼)
少数特技飞机也采用对称翼型。
不过通常厚度相当大。
单层蒙布翼型,这个通常总是用根圆管做前缘。
按传统的翼型制图理论,这个形状应该是常规翼型的那些中心线,然后厚度为0的那样翼型。
当然那个理论是简单设想的扯淡。
所以这个翼型实际是常规翼型的上表面的形状,一般只要做到曲率逐渐变化就可以了。
由于实际的此类翼型性能都很差,所以你做的形状差了很多也无所谓的。
一层半蒙布翼型,这个通常不是完整的翼型,上表面是完整的,下表面只蒙一部分然后就贴到上蒙皮下面去了。
也就是说前半部分是个立体翼型,后半部分省略为单层蒙布。
这样基本保留了翼型的气动性,又节省了重量。
(带圆管前缘的单层蒙布翼型也可以看做这种翼型的特例——只贴个管子那么宽,现在的三角翼一般没有只有根圆管的,少说下表面也向后贴了个15%宽度)
=================
关于翼型厚度
对于超轻型飞机来说,常采用的厚度为15~16%左右。
厚度对升力并没太大影响,不过会略微增加点最小时的阻力,对于那些弯度比较小的翼型(通常是高速的下用的)比较明显。
但薄翼型气动性敏感,只会在特定的状态下有最好的表现,容易发生突变,飞机操纵性不好。
因此一般都选用较厚的机翼使得飞行品质平稳。
特技飞机为了获得可靠的操纵性能,也使用了很厚而且前缘半径非常大的翼型。
理论上机翼内部可以装东西,比如常用来装油。
厚一点也有好处。
不过超轻型飞机上一般没这种需求,这不是采用厚机翼的理由。
对于悬臂梁结构的机翼来说,越厚越有利于提高机翼的强度,因此这种结构一般都采用厚度大的翼型。
已知最厚的是“蟋蟀”的机翼,采用了%相对厚度的机翼。
加上它很短的翼展,这个小飞机非常结实。
不过由于这个飞机后面挂了个开缝襟翼,这相当延长了弦长,实际的气动厚度大概只有17%的样子。
一般受力最大的地方在翼根,这里可以采用较厚的翼型,如果要减小阻力,可以把外翼段取较薄的翼型。
这样强度和阻力都得到比较好的控制。
对于那种单层蒙布的翼型来说当然不存在什么厚度了。
这时一般采用较大的前缘半径飞起来比较平稳。
航模上通常用较薄的翼型。
它上面取得的经验不可照搬到载人飞机上来。
这是因为两者气体流动状态不一样。