脉冲激光沉积PPT课件
PLD简介
PPT文档演模板
PLD简介
PLD的优点
五.由于激光光子能量很高,可溅射制备很 多困难的镀层:如高温超导薄膜,陶瓷氧 化物薄膜,多层金属薄膜等; PLD可以用 来合成纳米管,纳米粉末等。
PPT文档演模板
PLD简介
PLD的缺点
一个是薄膜被溅污,或有微粒沉积在薄膜上。 引致溅污的物理机制包括:表面下的沸腾、冲
击波反冲压力造成的液态层喷溅,以及层离。微 粒的体积可能有几微米那么大。这些微粒非常阻 碍随后膜层的形成,亦大大影响薄膜的导电特性。
PPT文档演模板
PLD简介
PLD的缺点
另一个是由于激光的绝热膨胀导致溶化核素分布 角度狭窄,在靶表面形成等离子羽状物及凹痕。 这些弊端削弱了PLD生产大面积均匀薄膜的用处, PLD因此未能在工业上大展身手。最近有人提出了 补救措施,插入障板能够有效阻挡大微粒,转动 靶与底物有助于形成较大的均匀薄膜。
PPT文档演模板
PLD简介
脉冲激光束聚焦在固体靶的表面上。在表面 大量吸收电磁辐射,导致靶物质快速蒸发。蒸 发的物质由容易逃出与电离的物质组成。如果 溶化作用在真空之下进行,蒸发的物质本身会 实时在靶表面上形成光亮的等离子羽状物。简 单来说,脉冲激光沉积PLD(Pulsed Laser Deposition)就是脉冲激光光束聚焦在固体靶 面上,激光超强的功率使得靶物质快速等离子 化,然后溅镀到目标物上。
PLD简介
PLD一般可以分为以下四个阶段:
1. 激光辐射与靶的相互作用 2. 熔化物质的动态 3. 熔化物质在基片的沉积 4. 薄膜在基片表面的成核与生成
PPT文档演模板
PLD简介ห้องสมุดไป่ตู้
PLD的应用前景
自1987年成功制作高温的超导膜开始, 用作膜制造技术的脉冲激光沉积获得普遍 赞誉,并吸引了广泛的注意。过去十年, 脉冲激光沉积已用来制作具备外延特性的 晶体薄膜。
脉冲激光沉积技术PPT讲稿
2020/7/15
8
1. 激光与靶材相互作用产生等离子体
等离子体是由大量自由电子和离子及少量未电离的气体分子和原子组成,且 在整体上表现为近似于电中性的电离气体。
等离子体=自由电子+带正电的离子+未电离原子或分子,为物质的第四态。
2020/7/15
9
熔化物质的动态
• 在第二阶段,根据气体动力学定律,发射
脉冲激光沉积技术课件
2020/7/15
1
化学气相沉积 直流溅射
分子束外延
超声喷雾热 解
薄膜制备方法
脉冲激光沉积
溶胶凝胶法
2020/7/15
2
脉冲激光沉积的实验仪器图
2020/7/15
3
• 1960年,激光的示范首次出现。自此以后,激光
受到多方面应用,发展成為强效的工具。激光对 物料加工的帮助,效果尤其显着。激光具备许多 独特的性质,例如狭窄的频率带宽、相干性、以 及高释能密度。通常,光束的强度足以汽化最坚 硬与最耐热的物料。再加上激光精确、可靠、具 备良好的空间分辨能力。这些出色表现,所以得 到机製薄膜、物料改造、物料表面加热处理、熔 接,及微型图案等工业广泛使用。除此之外,多 组分物质能够溶化,并沉积在底物上,形成化学 计量薄膜。
靶材表面的高温(可达20000K)和高密度((1016-----1021)/cm3)的等离子体
在靶面法线方向的高温和压力梯度
等温膨胀发射(激光作用时)和绝热膨胀发射(激光终止后)
等离子体区
等离子体羽辉
沿靶面法线方向 轴向约束性
2020/7/15
11
• 第三阶段是决定薄膜质量的关键。放射出的高能核素碰击
2020/7/15
脉冲激光沉积技术
激光功率
激光功率是脉冲激光沉积过程中的重要参数,它决定了激光能量的大小,从而影响 薄膜的生长速率和成分。
激光功率过低可能导致薄膜生长速率缓慢,而激光功率过高则可能导致基板熔化或 产生其他热效应。
在实际应用中,需要根据基板材料、薄膜成分和厚度等因素选择合适的激光功率。
脉冲宽度
脉冲宽度决定了每个脉冲持续的 时间,它与激光能量和脉冲频率 共同决定了单位时间内激光的总
提高薄膜的生长速率。
然而,过高的脉冲频率可能导致 热积累和热应力增加,因此需要 综合考虑脉冲频率和其他工艺参
数的相互影响。
扫描速度
扫描速度决定了激光在基板上移动的快 慢,它与激光能量和脉冲频率共同决定 了单位面积上接收到的激光能量。
然而,过快的扫描速度可能导致激光 能量不足,影响薄膜的生长速率和成 分。
可能引起材料损伤
脉冲激光的高能量密度可能会引起材 料损伤,如热裂、气孔等,需要进一 步优化工艺参数。
05
脉冲激光沉积技术 的发展趋势和未来 展望
技术改进与创新
01
脉冲激光器的性能提升
随着激光技术的不断发展,脉冲激光器的功率、重复频率和稳定性等性
能将得到进一步提升,为脉冲激光沉积技术提供更强的能量和更好的加
靶材
01
02
03
靶材的种类
靶材是脉冲激光沉积技术 的核心组成部分,根据不 同的应用需求,可以选择 不同的靶材。
靶材的特点
靶材需要具有良好的稳定 性和高纯度,以确保制备 出的材料具有高质量和可 靠性。
靶材的应用
靶材广泛应用于材料科学、 电子学、光学等领域,如 薄膜制备、涂层制备、晶 体生长等。
基板
04
脉冲激光沉积技术Leabharlann 的优缺点优点高沉积速率
脉冲激光沉积技术ppt
突破多元素、多相材料制备的技术瓶颈,实现多元复杂材料的脉冲 激光沉积。
激光与材料相互作用机制
深入研究激光与材料相互作用机制,优化脉冲激光沉积工艺参数, 提高材料性能。
应用领域的拓展
新材料研发
01
利用脉冲激光沉积技术制备高性能新材料,满足能源、环境、
生物医疗等领域的需求。
微纳制造
02
将脉冲激光沉积技术应用于微纳制造领域,实现高精度、高效
激光器选择与参数设置
激光器类型选择
根据需求选择合适的脉冲激光器,如二氧化碳激光器、YAG 激光器等。
激光参数设置
调整激光脉冲宽度、频率、能量等参数,以满足沉积需求。
脉冲激光照射与靶材熔化
激光聚焦与扫描
通过光学系统将激光聚焦在靶材表面, 并控制激光扫描速度和路径。
靶材熔化与蒸发
激光照射导致靶材局部熔化并蒸发为 原子或分子。
详细描述
通过调整脉冲激光的参数和靶材的组合,可以在基材上同时沉积出多种材料,形成具有 优异性能的复合材料。这些复合材料在航空航天、能源、生物医学等领域具有广泛的应
用前景。
05
脉冲激光沉积技术的未 来发展与挑战
技术创新与突破
高效脉冲激光器
研发更高功率、更短脉冲宽度和更稳定输出的脉冲激光器,提高 脉冲激光沉积的效率和质量。
03Βιβλιοθήκη 脉冲激光沉积技术工艺 流程靶材选择与准备
靶材选择
根据应用需求,选择合适的靶材 ,如金属、陶瓷等。
靶材制备
对靶材进行切割、研磨和抛光等 处理,确保其表面质量和尺寸符 合要求。
真空环境建立与控制
真空室清洗
在沉积前对真空室进行彻底清洗,确保无残留物。
真空度监测与控制
《脉冲激光沉积》课件
工艺优化的目的
工艺优化的目的是通过调整实验参数,获得高质量 的沉积膜,并提高沉积效率和经济性。
工艺优化的方法
工艺优化可以通过单因素实验、正交实验和 响应曲面法等方法进行,以实现最佳的工艺 参数组合。
03
脉冲激光沉积薄膜特性
物理性质
光学性质
脉冲激光沉积薄膜具有高透过率、低反射率和优异的 光学性能。
脉冲激光沉积薄膜具有一定的催 化活性和反应活性,能够用于催 化反应和传感器等领域。
显微结构与形貌
晶体结构
脉冲激光沉积薄膜具有高度取向的晶体结构,能够提高薄 膜的力学性能和光学性能。
01
表面形貌
脉冲激光沉积薄膜表面光滑、均匀,无 明显缺陷和杂质,有利于提高薄膜的耐 腐蚀性和耐磨性。
02
03
相组成
脉冲激光沉积薄膜具有单一相或多种 相组成,能够通过调整工艺参数实现 不同相组成和显微结构的调控。
衬底的作用
衬底在脉冲激光沉积中起到支撑 和引导材料生长的作用,其表面 质量、晶体结构和化学稳定性等 对沉积膜的质量有重要影响。
衬底与靶材的匹配
在选择衬底和靶材时,需要考虑 它们之间的匹配程度,以确保沉 积膜的质量和附着力。
脉冲激光沉积实验装置
实验装置的组成
01
脉冲激光沉积实验装置主要由脉冲激光器、光路系统、真空腔
特点
脉冲激光沉积具有高能脉冲激光束的高能量密度、高精度控 制、高沉积速率等优点,能够制备出高质量、高性能的薄膜 材料,广泛应用于材料科学、电子工程、光学等领域。
工作原理
工作原理
脉冲激光沉积的工作原理是利用高能脉冲激光束照射靶材,产生高温、高压、高 能量密度的等离子体,等离子体在基底上快速凝固形成薄膜。
脉冲激光沉积薄膜课件
FTIR分析
分析;存在三个明显的吸 收峰. 1)峰为Si—O 键的非对 称伸缩振动吸收,为SiO2 中的Si—O 键 2)属于硅晶格中的替位 碳的振动吸收 3)对应Zn—O 键的红外 光谱的特征吸收峰
由于ZnO 薄膜的生长过程 中采用了400℃的衬底温 度,提高了Zn原子和O 原 子在衬底表面的迁移率进 而提高了ZnO薄膜的结晶 质量,使得ZnO 的吸收峰 非常尖锐.
[4] E. Cappellia,*, C. Scillettaa, S. Orlando Thin Solid Films 482 (2005) 305– 310 [5] 何建廷等,PLD 法生长硅基ZnO 薄膜的特性,电子元件与材料.2005.5
PLD 的基本原理及物理过程
脉冲激光沉积技术就是将脉冲激光器产生 的高功率脉冲激光束聚焦后作用于靶材表 面,瞬间产生高温高压等离子体( T ≥104 K) , 等离子体定向局域绝热膨胀发射并在衬底 上沉积而形成薄膜.
PLD原理图
参考陈老师PPT
脉冲激光沉积示意图
Tube Furnace
主要分为3 个过程:
Dual-beam PLD
解决大面积沉积膜厚不 均的问题
因为等离子体羽的方向 接近于靶的法线方向,通 过一聚焦的激光束扫射圆 柱形靶,可以把等离子体 羽拉长。 合适的等离子体 羽和基板的相对运动就可 以得到适当厚度的薄膜。
Combination of large area PLD (left) and magnetron sputter deposition (right)
SEM 和SAED分析
分析:SEM 和SAED 表明薄膜表面平整致 密,晶粒大小分布比 较均匀,制备的ZnO 薄膜为具有六方纤锌 矿结构的单晶薄膜。
脉冲激光沉积
7
PLD的优点
• (1) 采用高光子能量和高能量密度的紫外脉冲激光作为产 生等离子体的能源,因而无污染又易于控制 • (2) 烧蚀物粒子能量高,可精确控制化学计量,实现靶膜 成分接近一致,简化了控制膜组分的工作,特别适合制备 具有复杂成分和高熔点的薄膜 • (3) 生长过程中可原位引入多种气体,可以在反应气氛中 制膜,这为控制薄膜组分提供了另一条途径 • (4) 多靶材组件变换灵便,容易制备多层膜及异质结 • (5) 工艺简单,灵活性大,可制备的薄膜种类多 • (6) 可用激光对薄膜进行多种处理等
脉冲 宽度 图5-6 等离子体羽辉外形随时间的演化 激光作用结束后
激光作用时间 图5-7 等离子体膨胀过程中间的输运
靶材表面的高温(可达20000K)和高密度((1016--1021)/cm3)的等 离子体 在靶面法线方向的高温和压力梯度
等温膨胀发射(激光作用时)和绝热膨胀发射(激 光终止后)
8
待解决的问题
• (1) 不易于制备大面积的膜。 • (2) 在薄膜表面存在微米-亚微米尺度的颗粒物污染,所制 备薄膜的均匀性较差。 • (3) 某些材料靶膜成分并不一致。对于多组元化合物薄膜, 如果某些种阳离子具有较高的蒸气压,则在高温下无法保 证薄膜的等化学计量比生长。
9
5.2 PLD的基本原理
抽真空(机械泵与分子泵至10-5Pa)
开加热装臵,通气体 导入激光进行镀膜 关闭仪器
23
The end
• 使用高致密度的靶材,同时选用靶材吸收高的激光波长。
因为液滴产生的情况在激光渗入靶材越深时越严重。靶材对激光的吸 收系数越大,则作为液滴喷射源的熔融层越薄,产生的液滴密度越低。
• 通过基于速率不同的机械屏蔽技术来减少颗粒物(由于 PLD产生的颗粒物的速率要比原子、分子的速率低一个数量级)。
脉冲激光沉积
5.1 脉冲激光沉积概述
• PLD • 发展过程 • PLD的优点 • 待解决的问题
PLD
b
脉冲沉积系统一般由脉冲激光器,
光路系统(光阑扫描器,会聚透
镜,激光窗等),沉积系统(真
空室,抽真空泵电机冷
c
却系统)等组成。如图5-1所示。
a
备薄膜的均匀性较差。 • (3) 某些材料靶膜成分并不一致。对于多组元化合物薄膜
,如果某些种阳离子具有较高的蒸气压,则在高温下无法 保证薄膜的等化学计量比生长。
5.2 PLD的基本原理
• PLD是一种真空物理沉积方法,当一束强的脉冲激光照射 到靶材上时,靶表面材料就会被激光所加热、熔化、气化 直至变为等离子体,然后等离子体(通常是在气氛气体中 )从靶向衬底传输,最后输运到衬底上的烧蚀物在衬底上 凝聚、成核至形成薄膜。
• 整个PLD过程可分为三个阶段: (1)激光与靶的作用阶段 (2)等离子体的膨胀 (3)到达衬底上的烧蚀物 在衬底上的成膜阶段。
图5-3 脉冲激
5.2.1 激光与靶的相互作用
当激光辐射在不透明的凝 聚态物质上被吸收时,被 照射表面的一个薄层被加 热,结果使表面温度升高 ,同时对物质的内层进行 热传导,使被加热层的厚 度增加。由于热传导引起 的热输运随时间而减慢, 因此热传导不能使足够的
图5-5 激光烧蚀靶材表 等离子体是面由大的量自结由构电子示和离意子图及少(量未2电)离的气体分子
和原子组成,且在整体上表现为近似于电中性的电离气体。
等离子体=自由电子+带正电的离子+未电离原子或分子,为 物质的第四态。
5.2.2 等离子体膨胀
等离子体膨胀过程是指高能激光脉冲溅射产生的烧蚀物, 离化为高温高密的等离子体后,大致经历等温和绝热膨胀两 个过程,从靶材表面输运到衬底的过程。
脉冲激光沉积技术参考课件
C 激光蒸发镀膜(laser ablation)装置
使用高功率的激光束作为能量进行薄膜的蒸发沉积的方法叫激光沉
积法。显然,这种方法也具有加热温度高、可避免坩埚污染、材料的蒸 发速率高、蒸发过程容易控制等特点。同时由于在蒸发过程中,高能激 光光子将能量直接传给被蒸发的原子,因而激光蒸发法的粒子能量一般 显著高于其它的蒸发方法。
致靶物质快速蒸发。蒸发的物质由容易逃出与电
离的核素组成。若果溶化作用在真空之下进行,
核素本身会即时在靶表面上形成光亮的等离子羽
状物。下图展示了一些过程中產生的典型等离子 羽状物。
2019/12/26
5
PLD的机制
• 的系统设备简单,相反,它的原理却是非常复杂 的物理现象。它涉及高能量脉衝辐射衝击固体靶 时,激光与物质之间的所有物理相互作用,亦包 括等离子羽状物的形成,其后已熔化的物质通过 等离子羽状物到达已加热的基片表面的转移,及 最后的膜生成过程。所以,一般可以分為以下四 个阶段:
2019/12/26
9
2.等离子体在空间的输运
靶材表面的高温(可达20000K)和高密度((1016-----1021)/cm3)的等离子体
在靶面法线方向的高温和压力梯度
等温膨胀发射(激光作用时)和绝热膨胀发射(激光终止后)
等离子体区
等离子体羽辉
沿靶面法线方向 轴向约束性
2019/12/26
10
• 第三阶段是决定薄膜质量的关键。放射出的高能核素碰击 基片表面,可能对基片造成各种破坏。下图表明了相互作 用的机制。高能核素溅射表面的部分原子,而在入射流与 受溅射原子之间,建立了一个碰撞区。膜在这个热能区 (碰撞区)形成后立即生成,这个区域正好成為凝结粒子 的最佳场所。只要凝结率比受溅射粒子的释放率高,热平 衡状况便能够快速达到,由於熔化粒子流减弱,膜便能在 基片表面生成。
脉冲激光沉积ppt课件
如果某些种阳离子具有较高的蒸气压,则在高温下无法保 证薄膜的等化学计量比生长。
9
9
5.2 PLD的基本原理
• PLD是一种真空物理沉积方法,当一束强的脉冲激光照射 到靶材上时,靶表面材料就会被激光所加热、熔化、气化 直至变为等离子体,然后等离子体(通常是在气氛气体中) 从靶向衬底传输,最后输运到衬底上的烧蚀物在衬底上凝 聚、成核至形成薄膜。
传导,使被加热层的厚度
增加。由于热传导引起的
热输运随时间而减慢,因
此热传导不能使足够的热 图5-4 激光烧蚀靶材表面的结构示意图(1) 量进入物质内部,这将导
致表面和表面附近的物质温度持续上升,直到蒸发开始,在 PLD常用的功率密度下,蒸气的温度可以很高,足够使相当多 的原子被激发和离化,于是蒸气开始吸收激光辐射,导致在靶
解决方案
• 使用高致密度的靶材,同时选用靶材吸收高的激光波长。
因为液滴产生的情况在激光渗入靶材越深时越严重。靶材对激光的吸 收系数越大,则作为液滴喷射源的熔融层越薄,产生的液滴密度越低。
• 通过基于速率不同的机械屏蔽技术来减少颗粒物(由于 PLD产生的颗粒物的速率要比原子、分子的速率低一个数量级)。
表面出现等离子体。最终结果是在靶表面附近形成复杂的层状
结构,如图5-4所示
11
11
图5-5 激光烧蚀靶材表面的结构示意图(2)
等离子体是由大量自由电子和离子及少量未电离的气体分子 和原子组成,且在整体上表现为近似于电中性的电离气体。 等离子体=自由电子+带正电的离子+未电离原子或分子,为 物质的第四态。
2121
PLD中的重要实验参数
第五章-脉冲激光沉积
第五章脉冲激光沉积脉冲激光沉积(pulsed laser deposition,简称PLD)法制备薄膜,将脉冲激光器产生的高功率脉冲激光聚焦于靶材表面,使其表面产生高温及烧蚀,并进一步产生高温高压等离子体(T>104K),等离子体定向局域膨胀在衬底上沉积成膜。
PLD技术起步于上个世纪60年代,但直到80年代末才得到迅速发展。
人们随即发现这种技术在超导体、半导体、铁电体、金刚石或类金刚石以及一些有机薄膜的制备中具有不可替代的优势,而且在制备低维结构材料(纳米颗粒、量子点等)方面也得到了运用。
5.1脉冲激光沉积概述PLD是20世纪80年代后期发展起来的新型薄膜制备技术,典型的PLD装置如图3-1所示。
一束激光经透镜聚焦后投射到靶上,使被照射区域的物质烧蚀(ablation),烧蚀物(ablated materials)择优沿着靶的法线方向传输,形成一个看起来象羽毛状的发光团──羽辉(plume),最后烧蚀物沉积到前方的衬底上形成一层薄膜。
在沉积的过程中,通常在真空腔中充入一定压强的某种气体,如淀积氧化物时往往充入氧气,以改善薄膜的性能。
PLD技术的起始想法来自上世纪60年代中期即世界第一台激光器问世不久对激光与物质相互作用的研究,由于发现强激光能将固态物质熔化并蒸发,人们于是想到将蒸发物沉积在基片上以获得薄膜。
由于当时材料研究水平和激光器性能的限制,PLD技术在80年代末以前并没有受到广泛关注,但也在制备诸如电介质、半导体薄膜等方面摸索了一定的经验。
PLD技术的每一次发展都伴随着新型激光器的产生和研究激光与物质相互作用的进展。
二十世纪70年代起,短脉冲Q开关激光器出现,其瞬时功率可达到106 W以上,可以用于复合成分薄膜的沉积,这为PLD的广泛应用奠定了基础[1]。
1987年,D. Dijkkamp 等人[2]应用高能准分子脉冲激光成功地制备出高质量的高温超导YBa2Cu3O7-x薄膜。
随后,PLD技术又被用于制备日益重要的微电子和光电子领域用的多元氧化物,也被用于制备氮化物、碳化物、硅化物以及一些有机物,甚至有机-无机复合材料薄膜等广泛领域;在制备一些难以合成的材料,如金刚石薄膜、立方氮化碳薄膜,PLD技术也取得了很大进展[3,4];PLD还扩展到了制备纳米颗粒和半导体量子点等其它领域[5,6]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
14
5.2.3 烧蚀粒子在衬底上的沉积
烧蚀粒子在空间经过一段时间的运动到达衬底表面,然 后在衬底上成核、长大形成薄膜。为了利,其一是从靶材表面喷射出的高速运动粒子对 已成膜的反溅射作用,其二是易挥发元素的挥发损失,其三 是液滴的存在导致薄膜上产生颗粒物。
• (3) 生长过程中可原位引入多种气体,可以在反应气氛中 制膜,这为控制薄膜组分提供了另一条途径
• (4) 多靶材组件变换灵便,容易制备多层膜及异质结 • (5) 工艺简单,灵活性大,可制备的薄膜种类多 • (6) 可用激光对薄膜进行多种处理等
.
8
8
待解决的问题
• (1) 不易于制备大面积的膜。 • (2) 在薄膜表面存在微米-亚微米尺度的颗粒物污染,所制
16 16
解决方案
•使用高致密度的靶材,同时选用靶材吸收高的激光波长。因
Chapter 5
脉冲激光沉积 Pulsed Laser Deposition (PLD)
.
1
化学气相沉积
脉冲激光沉积
分子束外延
薄膜制备方法
溅射
溶胶凝胶法
超声喷雾热解
.
2
2
脉冲激光沉积
5.1 脉冲激光沉积概述 5.2 PLD的基本原理 5.3 颗粒物的抑制 5.4 PLD技术的主要应用
• 脉冲激光沉积(pulsed laser deposition,简称 PLD)法制备薄膜,将脉冲激光器产生的高功率 脉冲激光聚焦于靶材表面,使其表面产生高温及 烧蚀,并进一步产生高温高压等离子( T>104K), 等离子体定向局域膨胀在衬底上沉积成膜。
.
图5-3 脉冲激光沉积装置图 10
10
5.2.1 激光与靶的相互作用
当激光辐射在不透明的凝
聚态物质上被吸收时,被
照射表面的一个薄层被加
热,结果使表面温度升高,
同时对物质的内层进行热
传导,使被加热层的厚度
增加。由于热传导引起的
热输运随时间而减慢,因
图5-4 激光烧蚀靶材表面的结构示意图(1)
此热传导不能使足够的热 量进入物质内部,这将导
图5-2 典型.的PLD示意图
6
6
发展过程
• 1960年,世界上第一台红宝石激光器问世不久,就产生了 激光镀膜的概念,也开始了激光与物质相互作用的研究。
• 1965年,第一次用红宝石激光沉积光学薄膜,取得一定的 成功,但是效果并不理想。总有较多的微滴,影响薄膜质 量。
• 20世纪70年代中期。电子Q开关的应用,短脉冲激光应运 而生,使PLD技术取得较大进展。
等离子体=自由电子+带正电的离子+未电离原子或分子,为 物质的第四态。
.
12
12
5.2.2 等离子体膨胀
等离子体膨胀过程是指高能激光脉冲溅射产生的烧蚀物, 离化为高温高密的等离子体后,大致经历等温和绝热膨胀两 个过程,从靶材表面输运到衬底的过程。
图5-6 等离子体羽辉外形随时间的演化
脉冲 宽度
激光作用结束后
备薄膜的均匀性较差。 • (3) 某些材料靶膜成分并不一致。对于多组元化合物薄膜,
如果某些种阳离子具有较高的蒸气压,则在高温下无法保 证薄膜的等化学计量比生长。
.
Байду номын сангаас
9
9
5.2 PLD的基本原理
•PLD是一种真空物理沉积方法,当一束强的脉冲激光照射到 靶材上时,靶表面材料就会被激光所加热、熔化、气化直至 变为等离子体,然后等离子体(通常是在气氛气体中)从靶 向衬底传输,最后输运到衬底上的烧蚀物在衬底上凝聚、成 核至形成薄膜。 •整个PLD过程可分为三个阶段: (1)激光与靶的作用阶段 (2)等离子体的膨胀 (3)到达衬底上的烧蚀物 在衬底上的成膜阶段。
激光作用时间
图5-7. 等离子体膨胀过程中温度随时间演化1规3 律 13
等离子体在空间的输运
靶材表面的高温(可达20000K)和高密度((1016--1021)/cm3)的等 离子体
在靶面法线方向的高温和压力梯度
等温膨胀发射(激光作用时)和绝热膨胀发射(激 光终止后)
等离子体区
等离子体羽辉
沿靶面法线 方向轴向约 束性
a
图5-1 脉冲激光沉积系统示意图(a)与. 光路系统(b)、沉积系统实物图(c)5 5
典型的PLD装置如图5-2所示。一束激光经透镜聚焦后投射 到靶上,使被照射区域的物质烧蚀,烧蚀物择优沿着靶的法 线方向传输,形成一个看起来象羽毛状的发光团──羽辉,最 后烧蚀物沉积到前方的衬底上形成一层薄膜。
在沉积的过程中,通常在真空腔中充入一定压强的某种气 体,如淀积氧化物时往往充入氧气,以改善薄膜的性能。
.
3
3
5.1 脉冲激光沉积概述
• PLD • 发展过程 • PLD的优点 • 待解决的问题
.
4
4
PLD
b
脉冲沉积系统一般由脉冲激光器,
光路系统(光阑扫描器,会聚透
镜,激光窗等),沉积系统(真
空室,抽真空泵,充气系统,靶
材,基片加热器),辅助设备
(测控装置,监控装置,电机冷
c
却系统)等组成。如图5-1所示。
• 1987年,美国贝尔实验室的Dijkkamp等首次成功制备出 高温超导薄膜YBa2Cu3O7-X(钇钡铜氧)薄膜。从而使 PLD技术迅速发展。
.
7
7
PLD的优点
• (1) 采用高光子能量和高能量密度的紫外脉冲激光作为产 生等离子体的能源,因而无污染又易于控制
• (2) 烧蚀物粒子能量高,可精确控制化学计量,实现靶膜 成分接近一致,简化了控制膜组分的工作,特别适合制备 具有复杂成分和高熔点的薄膜
致表面和表面附近的物质温度持续上升,直到蒸发开始,在
PLD常用的功率密度下,蒸气的温度可以很高,足够使相当多
的原子被激发和离化,于是蒸气开始吸收激光辐射,导致在靶
表面出现等离子体。最终结果是在靶表面附近形成复杂的层状
结构,如图5-4所示
.
11
11
图5-5 激光烧蚀靶材表面的结构示意图(2)
等离子体是由大量自由电子和离子及少量未电离的气体分子 和原子组成,且在整体上表现为近似于电中性的电离气体。
图5-8 成膜过程
.
15 15
5.3 颗粒物的抑制
在5.1一节中提到,颗粒物是限制PLD技术获得广泛应用 的主要因素之一,是PLD技术得以商业化应用迫切需要解决 的难题。颗粒物的大小和多少强烈依赖于沉积参数,如激光 波长、激光能量、脉冲重复频率、衬底温度、气氛种类与压 强以及衬底与靶材的距离等。
.