西南大学2020年秋季初等数论【0346】大作业参考答案非免费
初等数论练习题答案
初等数论练习题一一、填空题1、d(2420)=12; 0(2420)=_880_2、设比n是大于1的整数,若是质数,则a=_2.3、模9的绝对最小完全剩余系是_卜4, -3, -2, -1,0,1,2,3,4}.4、同余方程9x+12=0(mod 37)的解是x三11 (mod 37)。
5、不定方程18x-23y=100 的通解是x=900+23t, y=700+18t t Z。
.6、分母是正整数m的既约真分数的个数为—(山)_。
7、18100被172除的余数是_殛。
9、若p是素数,则同余方程L 1 l(modp)的解数为p-1 。
二、计算题疋11X 20 0 (mod lO5)o1、解同余方程:3解:因105 = 3 5 7,同余方程3x211X 20 0 (mod 3)的解为x 1 (mod 3),同余方程3x211X 38 0 (mod 5)的解为x0, 3 (mod 5),同余方程3x211X 20 0 (mod 7啲解为x2, 6 (mod 7), 故原同余方程有4解。
作同余方程组:x (mod 3), x b2 (mod 5), x b3 (mod 7),其中®=1, b2 = 0, 3, b3 = 2, 6,由子定理得原同余方程的解为x 13, 55, 58, 100 (mod 105)o2. 判断同余方程/三42(mod 107)是否有解?*3x7 2 3 7)=(二)(一)(―-)107 107 107 1072 3 I 。
, 2 v( —) = -1, ( — ) = (-1) 2 2(ArL) = -<±) = L 107 107 3 3.-.(—) = 1 107故同余方程x 2三42(mod 107)有解。
3、求(12715C +34) 23除以ill 的最小非负余数。
解:易知 1271 = 50 (mod 111)0由 502 =58 (mod 111) , 503 三58X50三 14 (mod 111), 509=143=80 (mod111)知 502G = (509)彳x50三803X50三803x50三68x50三70 (mod 111) 从而505C=16 (mod 11 l)o故(12715C +34) 2c = (16+34) 20 =502G =70 (mod 111)三、证明题1、 已知p 是质数,(a,p) =1,证明:(1) 当 Q 为奇数时,a p l +(p-l)A =O (mod p);(2) 当a 为偶数时,衣三°(mod p)。
2015秋季西南大学初等数论大作业答案
因为p、p+1、p+2除以3余数不同,p、p+2都不被3整除,所以p+1被3整除.
于是6是p+1的因数.
\
6.叙述孙子定理的内容。
11.孙子定理的内容为:设 是k个两两互质的正整数,
(1)
设 ,
则同余式组(1)的解是
(2)
其中 是满足 的任一个整数,i=1,2,…,k。
三、计算题(每小题8分,共40分)
1.求210与55的最大公因数。
答:210=2x3x5x7 ,55=5x11 210与55的最大公因数是5.
1.叙述整数a被整数b整除的概念。
答:设a,b是任意两个整数,其中b≠0,如果存在一个整数q使得等式a=bq成立,我们就称b整除a或a被b整除,记做b|a
2.叙述质数的概念,并写出小于14的所有质数。
答一个大于1的整数,如果它的正因数只有1和它本身,就叫作质数(或素数)。14的所有质数2,3,5,7, 11,13.
性质3①若a1=b1(mod m),a2=b2(mod m),则a1+ a2 =b1+ b2( (mod m)
②若a+b≡c(mod m),则a≡c-b(mod m)
5. 196是否是3的倍数,为什么?
答:196不是3的倍数。因为由定义可知设a,b是任意两个整数,其中b≠0,如果存在一个整数q使得等式a=bq成立,则将a叫做b的倍数。所以a=196,b=3,不存在一个整数q使得等式a=bq成立,所以196不是3的倍数。
西南大学网络与继续教育学院课程考试答题卷
学号:1513150663001姓名:陈琛层次:专科起点本科
类别:网教专业:数学与应用数学(数学教育)2015年11月西南大学网络教育鹰潭职业技术学院学习中心
奥鹏2020年6月福师《初等数论》在线作业一_3.doc
1.9x+11y=100的正整数解的个数是()A.0B.1C.2D.无穷【参考答案】: B2.题见图片A.AB.BC.CD.D【参考答案】: B3.题见图片A.AB.BC.CD.D【参考答案】: C4.被3除余1,被5除余4,被11除余5的最小正整数一定处于()的区间A.[10,20]B.[20,30]C.[30,40]D.[40,50]【参考答案】: D5.100!的末尾0的个数是()A.20B.21C.24D.25【参考答案】: C6.p为素数是2^(2^p)+1为素数的()A.充分条件B.必要条件C.充要条件D.既非充分也非必要条件【参考答案】: B7.。
A.AB.BC.CD.D【参考答案】: A8.整数202()A.能够写成两数平方和B.能够写成两数平方差C.都可以D.都不能【参考答案】: A9.题见图片A.AB.BC.CD.D10.题见图片A.AB.BC.CD.D 【参考答案】: B11.题见图片A.AB.BC.CD.D 【参考答案】: B12.。
A.AB.BC.CD.D13.题见图片A.AB.BC.CD.D【参考答案】: B14.100!最高能被45的()次幂整除A.20B.23C.24D.48【参考答案】: C15.题见下图A.AB.BC.CD.D【参考答案】: A16.题见图片A.AB.BC.CD.D【参考答案】: B17.a,b大于1且互素,则不定方程ax-by=ab的正整数解的个数是()A.0B.1C.2D.无穷【参考答案】: D18.。
A.AB.BC.CD.D【参考答案】: A19.题见图片A.AB.BC.CD.D 【参考答案】: B20.题见图片A.AB.BC.CD.D 【参考答案】: B21.题见图片A.AB.BC.CD.D 【参考答案】: B22.。
A.AB.BC.CD.D 【参考答案】: D23.。
A.AB.BC.CD.D 【参考答案】: A24.。
A.AB.BC.CD.D 【参考答案】: A25.题见图片A.AB.BC.CD.D 【参考答案】: B26.题面见图片A.错误B.正确【参考答案】: A27.题面见图片A.错误B.正确【参考答案】: B28.题面见图片A.错误B.正确【参考答案】: A29.题见图片A.错误B.正确【参考答案】: B 30.题见图片A.错误B.正确【参考答案】: B 31.题见图片A.错误B.正确【参考答案】: B 32.题见图片A.错误B.正确【参考答案】: B 33.题见图片A.错误B.正确【参考答案】: B34.题面见图片A.错误B.正确【参考答案】: B 35.题见图片A.错误B.正确【参考答案】: B 36.题见下图A.错误B.正确【参考答案】: A37.题面见图片A.错误B.正确【参考答案】: A 38.题见图片A.错误B.正确【参考答案】: B 39.题见下图A.错误B.正确【参考答案】: A40.题面见图片A.错误B.正确【参考答案】: B 41.题见图片A.错误B.正确【参考答案】: B42.题面见图片A.错误B.正确【参考答案】: B 43.题面见图片A.错误B.正确【参考答案】: AA.错误B.正确【参考答案】: B 45.题见下图A.错误B.正确【参考答案】: A 46.题见图片A.错误B.正确【参考答案】: B 47.题见图片A.错误B.正确【参考答案】: B48.题面见图片A.错误B.正确【参考答案】: AA.错误B.正确【参考答案】: A 50.题见下图A.错误B.正确【参考答案】: A。
0346初等数论
所以125与50的最大公因数是52,即25。
四、解:因为(1,9) = 1,所以不定方程有整数解。
显然x = 1,y = 0是其一个特解,
所以不定方程的一切整数解为,其中t取一切整数。
五、证明:若m或n为3的倍数,则mn是3的倍数;若m是3的倍数加1,n是3的倍数加1,则m-n是3的倍数;若m是3的倍数加1,n是3的倍数加2,则m+n是3的倍数;若m是3的倍数加2,n是3的倍数加1,则m+n是3的倍数;若m是3的倍数加2,n是3的倍数加2,则m-n是3的倍数,结论成立。
三、(15分)求125与50的最大公因数。
四、(15分)求不定方程x+9y=1的一切整数解。
五、(10分)设m,n为整数,证明m+n,m-n与mn中一定有一个是3的倍数。
一、解释概念
1.答:若a,b是两个整数,其中b>0,则存在两个整数q及r,使得
a=bq+r, 0<=r<b 成立,而且q及r是唯一的,q叫做a被b除所得的不完全商。学与应用数学2017年06月
课程名称【编号】:初等数论【0346】 A卷
大作业满分:100 分
一、解释下列概念(每小题15分,共30分)
1.叙述整数a被b除的不完全商的概念。
2.叙述整数a,b对模m同余的概念。
二、(30分)给出有关整除的一条性质并加以证明。
2.答:如果用m去除任意两个整数a与b所得的余数相同,我们就说a与b对模m同余,记为a≡b(mod m)。
二、答:若a是b的倍数,b是c的倍数,则a是c的倍数。即:若b| a,c| b,则 c|a。
证:由b|a,c|b及整除的定义知存在整数q1,q2 使得a=bq1,b=cq2。因此a=(cq2)q1=c(q1q2),但q1q2是一个整数,故c|a。
(0346)《初等数论》网上作业题及答案
(0346)《初等数论》网上作业题及答案1:第一次作业2:第二次作业3:第三次作业4:第四次作业5:第五次作业1:[论述题]数论第一次作业参考答案:数论第一次作业答案2:[单选题]如果a|b,b|c,则()。
A:a=cB:a=-cC:a|cD:c|a参考答案:C马克思主义哲学是我们时代的思想智慧。
作为时代的思想智慧,马克思主义哲学主要具有反思功能、概括功能、批判功能和预测功能。
(1)“反思”是哲学思维的基本特征,是以思想的本身为内容,力求思想自觉其为思想。
通过不断的反思,揭示自己时代的本质和规律,达到对事物本质和规律性的认识。
(2)概括是马克思主义哲学的重要功能,是马克思主义哲学把握人与世界总体性关系的基本思维方式。
(3)马克思主义哲学的批判功能主要是指对现存世界的积极否定。
(4)马克思主义哲学的预测功能在于预见现存世界的发展趋势。
3:[单选题]360与200的最大公约数是()。
A:10B:20C:30D:40参考答案:D数论第一次作业答案4:[单选题]如果a|b,b|a ,则()。
A:a=bB:a=-bC:a=b或a=-bD:a,b的关系无法确定参考答案:C数论第一次作业答案5:[单选题]-4除-39的余数是()。
A:3B:2C:1D:0参考答案:C数论第一次作业答案6:[单选题]设n,m为整数,如果3整除n,3整除m,则9()mn。
A:整除B:不整除C:等于D:小于参考答案:A数论第一次作业答案7:[单选题]整数6的正约数的个数是()。
A:1B:2C:3D:4参考答案:D数论第一次作业答案8:[单选题]如果5|n ,7|n,则35()n 。
A:不整除B:等于C:不一定D:整除参考答案:D数论第一次作业答案1:[论述题]数论第二次作业参考答案:数论第二次作业答案2:[单选题]288与158的最大公约数是()。
A:2B:4C:6D:8参考答案:A数论第二次作业答案3:[单选题]-337被4除余数是()。
初等数论1习题参考答案
附录1习题参考答案第一早1. (i ) 由a b 知b = aq,于是b = ( a)( q), b = a( q)及 b =(a)q,即 a b, a b及a b。
反之,由 a b, a b及 a b 也可得a b;(ii) 由a b, b c 知b = aq, c = bq2,于是c = a(qq2),即a c;(:iii )由b a知a = bq,于是ax】a2X2 a k X k =b( qxq2X2q k X k),即b ax a2X2 ax k;( iv )由b a知a =bq,于是ac = :bcq,即bc ac;( v ) 由b a 知a = bq, 于是l a| = | bd ,再由a 0 得H ql 1 ,从而| a| | b|,后半结论由前半结论可得。
2. 由恒等式mq np = (mn pq) (m p)( n q)及条件m p mnpq可知m P mq 1 np。
3. 在给定的连续39个自然数的前20个数中,存在两个自然数,它们的个位数字是 0,其中必有一个的十位数字不是9,记这个数为a,它的数字和为s,则a, a 1, , a 9, a 19的数字和为S, S 1, ,s 9, s 10,其中必有一个能被11整除。
4. 设不然,n1 = mm, n2 p, n3 p,于是n =卩住介p3,即p 3 n ,矛盾。
5. 存在无穷多个正整数k,使得2k 1是合数,对于这样的k, (k 1)不能表示为a p的形式,事实上,若(k 八 2 21) = a p,则(k 1 a)( k1 a) = p,得k 1 a = 1,,k 1 a = p,即p =2 k 1,此与p为素数矛盾。
第一早习题二1. 验证当n =0,1 , 2,…,11 时,12|f(n)。
2. 写a = 3 q1 r1, b = 3 q? g m r2 = 0, 1 或2,由3 a2b2=3Q 「12r 22知「1 =门=0,即3 a 且3 b。
西南大学2020秋季 [0346]《初等数论》考试答案
西南大学培训与继续教育学院课程考试试题卷学期:2020年秋季
课程名称【编号】:初等数论【0346】 A卷
考试类别:大作业满分:100分
1.解:整除的定义:
设a, b是任意两个整数,其中b不为零,若存在一个整数q使得a=bq,我们就说b 整除a,记为bla.这时b叫a的因数, a叫b的倍数.若这样的q不存在,则说b 不整除a.
6整除24.
8不整除42.
3.解:欧拉函数()a
ϕ是定义在正整数上的函数,它在正整数a上的值等于序列0,1,2,…,a-1中与a互质的数的个数。
(5)
ϕ=4
(6)
ϕ=2.
4.解:220=2²×5×11。
6.解如下图
8.解:素数除了1和自己就没有其他约数了.4m-1或4m+1,其中4m-1看成4m+3,即一切奇素数都可以表示成4m+3或4m+1的形式.因为,一切奇素数不可以写成4m的形式(约数4),但也不能写成4m+2(约数2).所以一切奇素数都可以表示成4m-1或4m+1的形式,即41
m±.
- 1 -。
初等数论练习题答案(优选.)
初等数论练习题答案(优选.)初等数论练习题答案原点教育培训学校初等数论练习题⼀⼀、填空题1、d(2420)=12; ?(2420)=_880_2、设a,n 是⼤于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最⼩完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余⽅程9x+12≡0(mod 37)的解是x ≡11(mod 37)。
5、不定⽅程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_?(m )_。
7、18100被172除的余数是_256。
8、??? ??10365 =-1。
9、若p 是素数,则同余⽅程x p - 1 ≡1(mod p )的解数为 p-1 。
⼆、计算题1、解同余⽅程:3x 2+11x -20 ≡ 0 (mod 105)。
解:因105 = 3?5?7,同余⽅程3x 2+11x -20 ≡ 0 (mod 3)的解为x ≡ 1 (mod 3),同余⽅程3x 2+11x -38 ≡ 0 (mod 5)的解为x ≡ 0,3 (mod 5),同余⽅程3x 2+11x -20 ≡ 0 (mod 7)的解为x ≡ 2,6 (mod 7),故原同余⽅程有4解。
作同余⽅程组:x ≡ b 1 (mod 3),x ≡ b 2 (mod 5),x ≡ b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙⼦定理得原同余⽅程的解为x ≡ 13,55,58,100 (mod 105)。
2、判断同余⽅程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==??≡-?--?-)()()()(),()()()(),()())()(()(解:故同余⽅程x 2≡42(mod 107)有解。
2020年秋学期西南大学[0346]《初等数论》作业1答案
作业1答案一、简答题(每小题10分,共30分)1. 判断30是质数还是合数,如果是合数,请给出其标准分解式。
答:30是合数,其标准分解式为30235=⨯⨯。
2. 94536是否是9的倍数,为什么?答:94536是9的倍数,因为9453627++++=是9的倍数。
3. 写出模6的最小非负完全剩余系。
答:模6的最小非负完全剩余系为0,1,2,3,4,5。
4. 叙述质数的概念,并写出小于18的所有质数。
答:一个大于1的整数,如果它的正因数只有1和它本身,就叫作质数。
小于18的所有质数是2,3,5,7,11,13,17。
5. 叙述模m 的最小非负完全剩余系的概念。
答:0,1,2,…,m -1称为m 的最小非负完全剩余系。
6. 2358是否是3的倍数,为什么?答:2358是3的倍数。
因为一个整数能被3整除的充要条件是它的各个位数的数字之和为3的倍数,而2+3+5+8=18,18是3的倍数,所以2358是3的倍数。
二、给出不定方程ax + by = c 有整数解的充要条件并加以证明。
解: 结论:二元一次不定方程ax + by = c 有整数解的充要条件是(,)|a b c 。
证明如下:若ax + by = c 有整数解,设为00,x y ,则00ax by c += 但(,)|a b a ,(,)|a b b ,因而(,)|a b c ,必要性得证。
反之,若(,)|a b c ,则1(,)c c a b =,1c 为整数。
由最大公因数的性质,存在两个整数s ,t 满足下列等式(,)as bt a b +=于是111()()(,)a sc b tc c a b c +==。
令0101x sc tc ==,y ,则00ax by c +=,故00,x y 为ax + by = c 的整数解,从而ax + by = c 有整数解。
三、给出有关同余的一条性质并加以证明。
答:同余的一条性质:整数a ,b 对模m 同余的充要条件是m |a -b ,即a =b +mt ,t 是整数。
西南大学线性代数[0044]20年6月程[大作业]《答案》非免费
西南大学网络与继续教育学院课程考试试题卷类别:网教2020年5月
课程名称[编号]:线性代数[0044]
A卷
大作业
满分:100分
要答案:2
必答题(40分)
什么是线性方程组
阐述矩阵乘法的运算过程。
并用矩阵乘积形式表示如下线性方程组。
用初等变换的方法求解上述线性方程组从下列两题中任选一题作答(30分)
(a)什么是方阵的逆矩阵
(b)阐述求逆矩阵的初等行变换方法
(0)求解如下矩阵方程:
(a)什么是向量组线性无关
(b)判断向量组口是否线性无关。
()分析式子D在几何上表达的含义。
(d)求解如下方程,并阐释D的意义
口从下列两题中任选一题作答(30分)
(a)求解行列式口
(b)求解矩阵D的特征值,并求0对应的特征向量
(a)阐述正交矩阵的定义。
(b)已知二二次型0变换为标准型时的正交变换矩阵为口,求该二次型的标准型。
初等数论习题集参考答案
习题参考答案第一章习题一1. (ⅰ) 由a∣b知b = aq,于是b = (-a)(-q),-b = a(-q)及-b = (-a)q,即-a∣b,a∣-b及-a∣-b。
反之,由-a∣b,a∣-b及-a∣-b也可得a∣b;(ⅱ) 由a∣b,b∣c知b = aq1,c = bq2,于是c = a(q1q2),即a∣c;(ⅲ) 由b∣a i知a i= bq i,于是a1x1+a2x2+ +a k x k = b(q1x1+q2x2+ +q k x k),即b∣a1x1+a2x2+ +a k x k;(ⅳ) 由b∣a知a = bq,于是ac = bcq,即bc∣ac;(ⅴ) 由b∣a知a = bq,于是|a| = |b||q|,再由a ≠ 0得|q| ≥ 1,从而|a| ≥ |b|,后半结论由前半结论可得。
2. 由恒等式mq+np = (mn+pq) - (m-p)(n-q)及条件m-p∣mn+pq可知m-p∣mq+np。
3. 在给定的连续39个自然数的前20个数中,存在两个自然数,它们的个位数字是0,其中必有一个的十位数字不是9,记这个数为a,它的数字和为s,则a, a+ 1, , a+ 9, a+ 19的数字和为s, s+ 1, , s+ 9, s+ 10,其中必有一个能被11整除。
4. 设不然,n1 = n2n3,n2≥p,n3≥p,于是n = pn2n3≥p3,即p≤3n,矛盾。
5. 存在无穷多个正整数k,使得2k+ 1是合数,对于这样的k,(k+ 1)2不能表示为a2+p的形式,事实上,若(k+ 1)2 = a2+p,则(k+ 1 -a)( k+ 1 +a) = p,得k+ 1 -a = 1,k+ 1 +a = p,即p = 2k+ 1,此与p 为素数矛盾。
第一章习题二1. 验证当n =0,1,2,… ,11时,12|f(n)。
2.写a = 3q1+r1,b = 3q2+r2,r1, r2 = 0, 1或2,由3∣a2+b2 = 3Q+r12+r22知r1 = r2 = 0,即3∣a且3∣b。
电大国开电大初等数论(四川)形成作业三参考答案非答案
拿答案:1144766066题目1.同余式x2=5(mod11)的解的个数()a. 2b. 0c. 3d. 1【答案】:2题目2.如果a=b(modm),那么b=()a. 1b. 2c. 0d. a(modm)【答案】:a(modm)题目3.同余式6x3+27x2+17x+20=0(mod30)的解的个数()a. 2b. 3c. 0d. 1【答案】:3题目4.同余式12x+15=0(mod5)的解的个数()a. 1b. 0c. 2d. 3【答案】:题目5.同余式2x+7y=5(mod12)()a. 不确定b. 无解c. 有解d. 无数解【答案】:题目6.模5的最小非负完全剩余系是()a. -5,-4,-3,-2,-1b. 1,2,3,4,5c. 0,1,2,3,4d. -2,-1,0,1,2【答案】:题目7.同余式x2=438(mod593)()a. 有无限个解b. 无解c. 有解d. 无法确定【答案】:题目8.同余式x2=2(mod23)的解的个数()a. 1b. 0c. 3d. 2【答案】:题目9.同余式12x+15=0(mod45)的一个解()a. (10,3)b. (5,3)c. (7,3)d. (0,1)【答案】:题目10.如果同余式ax+b=0(modm)有解,则解的个数()a. bb. mc. (a,m)d. a【答案】:题目11.一元一次同余式ax+b=0(modm),如果同余式有解,则解的个数为d=(a,m) 对错【答案】:题目12.25=0(mod5)对错【答案】:题目13.同余式111x=75(mod321)无整数解对错【答案】:题目14.模8的简单剩余系为{0,1,3,5,7}对错【答案】:题目15.同余式12x+30=0(mod18)有整数解对错【答案】:题目16.设a=b(modm),c=d(modm),则a·c=b·d(modm)不成立对错【答案】:题目17.模4完全剩余系为{1,2,3,4}对错【答案】:题目18.模4完全剩余系为{1,2,3,4}对错【答案】:题目19.45=5(mod10)对错【答案】:题目20.设ca=cb(modm),并且(c,m)=1,那么a=b(modm)不成立对错【答案】:拿答案:1144766066。
西南大学线性代数作业答案
第一次行列式部分的填空题1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符号应取 + 号。
2.排列45312的逆序数为 5 。
3.行列式25112214---x中元素x 的代数余子式是 8 . 4.行列式10232543--中元素-2的代数余子式是 —11 。
5.行列式25112214--x 中,x 的代数余子式是 —5 。
6.计算00000d c ba = 0行列式部分计算题 1.计算三阶行列式381141102--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)×(—4)—0×1×3—2×(—1)×8=—42.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列. 解:i =8,j =5。
3.(7分)已知0010413≠x x x,求x 的值.解:原式=3x 2—x 2—4x=2 x 2—4x=2x(x —2)=0 解得:x 1=0;x 2=2所以 x={x │x ≠0;x ≠2 x ∈R } 4.(8分)齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000z y x z y x z y x λλ 有非零解,求λ。
解:()211110100011111111-=--==λλλλλD由D=0 得 λ=15.用克莱姆法则求下列方程组:⎪⎩⎪⎨⎧=+-=++=++10329253142z y x z y x z y x 解:因为331132104217117021042191170189042135113215421231312≠-=⨯-⨯=-------=-------=)(r r r r r r D 所以方程组有唯一解,再计算:811110212942311-=-=D 1081103229543112-==D1351013291531213=-=D因此,根据克拉默法则,方程组的唯一解是:x=27,y=36,z=—45第二次线性方程组部分填空题1.设齐次线性方程组A x =0的系数阵A 的秩为r ,当r= n 时,则A x =0 只有零解;当A x =0有无穷多解时,其基础解系含有解向量的个数为 n-r .2.设η1,η2为方程组A x =b 的两个解,则 η1-η2或η2-η1 是其导出方程组的解。
西南大学2020年秋季经济数学上 【0177】机考大作业参考答案
(3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么
x→∞时lim f(x)/F(x)=lim f'(x)/F'(x)。
如果函数f(x)满足:
在闭区间[a,b]上连续;
在开区间(a,b)内可导;
在区间端点处的函数值相等,即f(a)=f(b),
那么在(a,b)内至少有一点ξ(a<ξ<b),使得f'(ξ)=0.
如果函数f(x)及F(x)满足
(1)在闭区间[a,b]上连续;
(2)在开区间(a,b)内可导;
(3)对任一x∈(a,b),F'(x)≠0
西南大学培训与继续教育学院课程考试试题卷
学期:2020年秋季
课程名称【编号】:经济数学上 【0177】 A卷
考试类别:大作业 满分:100分
一、填空题每小题5分,共20分
1、设 ,则 =0。
2、若 ,则 -6。
3、已知 是函数 的极值点,则 -8。
4、求由曲线 在 上所围曲边梯形的面积 4。
二、计算题每小题15分,共60分
设(1)当x→a时,函数f(x)及F(x)都趋于零;
(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;
(3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么
x→a时lim f(x)/F(x)=lim f'(x)/F'(x)。
又设
(1)当x→∞时,函数f(x)及F(x)都趋于∞;
1、讨论函数 的连续性。
最新初等数论试卷-最全面的答案-包括截图
初等数论考试试卷一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( A ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( B )A.整数12,,,n a a a L 的公因数中最大的称为最大公因数;B.整数12,,,n a a a L 的公倍数中最小的称为最小公倍数 【有最小的吗?】 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( C )A.00,,0,1,2,;a bx x t y y t t d d =-=+=±±L B.00,,0,1,2,;a bx x t y y t t d d =+=-=±±LC.00,,0,1,2,;b ax x t y y t t d d =+=-=±±LD.00,,0,1,2,;b ax x t y y t t d d=-=-=±±L4.下列各组数中不构成勾股数的是( D )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( D )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡ 6.模10的一个简化剩余系是( D )A.0,1,2,,9;L B.1,2,3,,10;L C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( A ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( C ) A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解.9、设f(x)=10n n a x a x a +++K K 其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( ? )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/K K 设其中为奇数则同余式 ()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .不超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( D )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( C ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( A )A . 4B . 3C . 2D . 1 14. 模12的所有可能的指数为:( A )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的原根存在,下列数中,m 不可能等于:( D ) A . 2 B . 3 C . 4 D . 12 16.对于模5,下列式子成立的是 ( B ) A .322ind = B . 323ind =C . 350ind =D . 3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( C ) A .茂陛鸟斯(mobius)函数w(a) ; B .欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18.若x 对模m 的指数是ab ,a >0,ab >0,则a χ对模m 的指数是( B ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( A ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( B )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = _____21____;22. 多元一次不定方程:1122n n a x a x a x N +++=L ,其中1a ,2a ,…,n a ,N 均为整数,2≥n ,有整数解的充分必要条件是_(1a ,2a ,…,n a ,)︱N_; 23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_(10,b )=1__; 24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为; 25. 威尔生(wilson )定理:____()1p -!+1()0mod ,p p ≡为素数______; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=___1___; 27. 若)(,1a p =,则a 是模p 欧拉判别条件);28. 在模m 的简化剩余系中,原根的个数是___()()m φφ__;29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_g 与g+a p 中的奇数_; 30. ()48ϕ=___16___。
《初等数论》试卷及参考答案(与闵嗣鹤第三版配套)
《初等数论》试卷一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( )A.00,,0,1,2,;abx x t y y t t d d =-=+=±± B.00,,0,1,2,;abx x t y y t t d d =+=-=±± C.00,,0,1,2,;bax x t y y t t d d =+=-=±± D.00,,0,1,2,;bax x t y y t t dd =-=-=±±4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡ 6.模10的一个简化剩余系是( ) A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( ) A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解. 9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( )A . 4B .3C . 2D . 1 14. 模12的所有可能的指数为;( )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的单根存在,下列数中,m 可能等于: ( ) A . 2 B .3 C . 4 D . 12 16.对于模5,下列式子成立的是: ( )A .322ind =B .323ind =C .350ind =D .3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( ) A .茂陛鸟斯(mobius)函数w(a) ; B . 欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18. 若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________;23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________;24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;25. 威尔生(wilson )定理:________________________________________; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=________________________________________; 27. 若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件); 28. 在模m 的简化剩余系中,原根的个数是_______________________; 29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________; 30.()48ϕ=_________________________________。
《初等数论》试卷及参考答案(与闵嗣鹤第三版配套)
《初等数论》试卷一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( )A.00,,0,1,2,;a bx x t y y t t d d =-=+=±± B.00,,0,1,2,;a bx x t y y t t d d =+=-=±± C.00,,0,1,2,;b ax x t y y t t d d =+=-=±± D.00,,0,1,2,;b ax x t y y t t d d=-=-=±±4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡ 6.模10的一个简化剩余系是( ) A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( ) A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解. 9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( )A . 4B . 3C . 2D . 1 14. 模12的所有可能的指数为;( )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的单根存在,下列数中,m 可能等于: ( ) A . 2 B . 3 C . 4 D . 12 16.对于模5,下列式子成立的是: ( )A .322ind =B . 323ind =C . 350ind =D . 3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( ) A .茂陛鸟斯(mobius)函数w(a) ; B . 欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18. 若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________;23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________;24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;25. 威尔生(wilson )定理:________________________________________; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=________________________________________; 27. 若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件); 28. 在模m 的简化剩余系中,原根的个数是_______________________; 29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________; 30. ()48ϕ=_________________________________。
2020年自考《初等数论》专业考试题库及答案
2020年自考《初等数论》专业考试题库及答案2020年自考《初等数论》专业考试题库及答案一填空题(每空2分)1.写出30以内的所有素数 2,3,5,7,11,13,17,19,23,29 .2.,(,)(,)(,)a b a b a b a b =设是任意两个不为零的整数,则 1 . 3.若,a b 是非零整数,则a 与b 互素的充要条件是存在整数,x y ,适1ax by +=4.写出180的标准分解式是22235?? ,其正约数个数有(2+1)(2+1)(1+1)=18个.5.,1,2,,a b a b L 设与是正整数则在中能被整除的整数恰有 []ab个.6.设,a b 是非零整数,c 是整数,方程ax by c +=有整数解(,x y )的充要条件是 (,)|a b c7. 若整数集合A 是模m 的完全剩余系,则A 中含有 m 个整数.8.?(3)= 2 ;?(4)= 2 .9.当p 素数时,(1)()p ?= 1p - ;(2)()k p ?= 1k k p p -- . 10.(),(,)1,1m m a m a ?=-≡设是正整数则 0 (mod ).m 11.,,p p a a a -≡设是素数则对于任意的整数有 0 (mod ).p 12.已知235(mod7)x +≡,则x ≡ 1 (mod 7).13.同余方程22(mod 7)x ≡的解是4(mod7) . 14.同余方程2310120(mod 9)x x ++≡的解是 .X=6. . 15.(,)1n p =若,n p 是模的二次剩余的充要条件是 -121(m od ).p n p ≡ . 16.(,)1n p =若,n p 是模的二次非剩余的充要条件是 -121(mod ).p np ≡- .17.3()=5 -1 ; 4()=5 1 .18.,p 设是奇素数则2()p=218(1).p --.19.,p 设是奇素数则1()p = 1 ;-1()p= -12(-1).p .20. 5()=9 1 ; 2()=45-1 .二判断题(判断下列结论是否成立,每题2分). 1. ||,|a b a c x y Za bx cy ?∈+且对任意的有.成立2. (,)(,),[,][,]a b a c a b a c ==若则.不成立3. 23|,|a b a b 若则.不成立4.(mod ),0,(mod ).a b m k k N ak bk mk ≡>∈?≡ 成立5.(mod )(mod ).ac bc m a b m ≡?≡ 不成立6. 22(mod ),(mod )(mod )a b m a b m a b m ≡≡≡-若则或至少有一个成立. 不成立 7. 222(mod ),(mod )a b m a b m ≡≡若则.不成立8. 若x 通过模m 的完全剩余系,则x b +(b 是整数)通过模m 的完全剩余系. 成立 9. 1212{,,,}{,,,}.m m a a a b b b L L 若与都是模m 的完全剩余系不成立1122{,,,}.m m a b a b a b m +++L 则也是模的完全剩余系不成立10.若(,)1a m =,x 通过模m 的简化剩余系,则ax b +也通过模m 的简化剩余系. 不成立 11.12121212,,(,)1,()()().m m N m m m m mm ∈==若则成立12. 同余方程24330(mod15)x x -+≡和同余方程2412120(mod15)x x +-≡是同解的. 成立13. (mod ).ax b m ax my b ≡+=同余方程等价于不定方程成立14. 2,(mod ),() 1.am x a m m≡=当是奇素数时若有解则成立15. 2,()1,(mod ).a m x a m m=≡当不是奇素数时若则方程一定有解不成立三计算题1. (1859,1573)-求.(6分)解:1.(1859,1573)(1859,1573)(286,1573)(286,15732865)(286,143)(0,143)143-===-?===2.求 [-36,108,204].(8分)解:22232232.[36,108,204][36,108,204],3623,10823,2042317,[36,108,204]23171836.-==?=?=??∴=??=Q3. 求(125,17),以及x ,y ,使得125x +17y =(125,17).(10分)解:3.651,16-56-(17-26)36-173(125-177)-173125-2217.1253-17221,3,-22.x y =+==?=?=??=??∴??===由等式起逐步回代得4. 求整数x ,y ,使得1387x -162y =(1387,162).(10分)解:4.9421,19-429-4(11-9)59-4115(20-11)-411520-911520-9(71320)322097132(91-71)97132914171329141(16291)73914116273(13878162)41162731387625162.1=?+=?=?=??=??=??=??-?=?-?=?-?=?-?=?-? -=?-?=?-?-?=?-?∴由等式起逐步回代得38773162625 1.-?=5. 12!.分解为质因数乘积(8分)6. ,10|199!k k 求最大的正整数使.(8分)7. [1+L 求(10分) 8. 81743.x y +=求方程的整数解(6分)9.求方程19 x +20y=1909的正整数数解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西南大学培训与继续教育学院课程考试试题卷
学期:2020年秋季
课程名称【编号】:初等数论【0346】 A卷
考试类别:大作业满分:100分
答案网叫福到(这四个字的拼音)
每题分值20分,选做5个题。
1、简述题:叙述整除的概念,并判断6是否整除24,8是否整除42。
2、简述题:叙述两个整数互质的概念,并判断12与25是否互质
3、简述题:叙述欧拉函数口的概念,并求欧拉函数值和
4、计算题:求220的标准分解式
5、计算题:求3201除以8的余数
6、计算题:求不定方程的一切整数解。
7、计算题:解同余式。
8、证明题:证明一切奇质数都可以表成的形式(其中m是正整数)。