纯弯曲实验报告
梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告梁的纯弯曲正应力实验报告一、实验目的本实验旨在通过对实验材料进行纯弯曲加载,测量其正应力和弯曲角度,从而掌握材料在纯弯曲状态下的应力特性,并探究材料性能的影响因素。
二、实验原理当梁在纯弯曲时,受到的载荷可以分解为一个弯矩和一个剪力。
由于实验中去除了外部作用力,剪力为零,因此我们只需要考虑弯矩作用下的应力情况。
在梁的截面上,由于受到弯曲,不同位置的应变不同,因此会形成不同大小的应力。
在正常情况下,当梁未发生破坏时,梁的内部应力呈线性分布,即受到的弯矩越大,所受到的应力也会相应增大。
三、实验设备本实验所使用的设备包括:1.纯弯曲实验台2.测力仪3.梁材料(一定长度的圆形钢管或方管)四、实验步骤1. 选择一段合适材质的梁进行实验。
2. 将梁固定在纯弯曲实验台上。
3. 在梁的一端加上一定荷载。
4. 通过测力仪测量在梁部位不同位置受到的正应力。
5. 在梁的另一端加上一定数量的荷载,并重复步骤4,记录正应力。
6. 重复以上操作,直到梁发生破坏。
五、实验结果在实验过程中,我们记录了梁不同位置受到的正应力,并根据实验数据分析了不同弯矩下的应力分布曲线。
实验结果表明,在纯弯曲状态下,梁的内部应力呈线性分布,随着弯矩的增大,所受应力也会逐渐增大,直到梁发生破坏。
六、实验分析根据实验结果,我们可以发现梁的性能会受到材料的影响。
不同的材料具有不同的弯曲特性,不同的性能和抗断性能。
而在实验中,我们也可以通过调整材料的材质和长度来控制弯曲的程度,从而控制梁的应力分布和破坏点位置。
七、实验结论本实验通过纯弯曲实验台对梁进行弯曲测试,得到了不同弯矩下的应力分布曲线。
实验结论表明,梁在纯弯曲状态下,其内部应力呈线性分布,随着弯矩的增大,所受应力也会逐渐增大,直到梁发生破坏。
同时,不同材质和长度的材料在弯曲状态下具有不同的弯曲特性和抗断性能。
纯弯曲电测实验报告

竭诚为您提供优质文档/双击可除纯弯曲电测实验报告篇一:直梁纯弯曲电测实验试验报告邵阳学院实验报告实验项目:直梁纯弯曲电测实验实验日期实验地点成绩学院班级学生姓名同组成员指导老师学生学号一、实验内容和目的:、1、测定直梁纯弯曲时横截面上正应力大小和分布规律;2、验证纯弯曲梁的正应力计算工式;3、掌握电测法原理和电阻应变仪的使用方法。
二、实验设备(规格、型号)三、实验记录及数据处理表1.试件相关数据表2.实验数据记录四、实验结果计算与分析1、画出应变布示意图2、实验计算—根据测得的各点应变值ε1求出应变增量平均值Δε1,代入胡克定律计算各点的实验应力值,因1με=10-6ε,所以各点实验应变力为σi实=Ε×Δεi×10-63、理论值计算载荷增量为Δp,弯曲增量Δm=Δp·a/2,故各点应力的理论值为:σi理=(Δm·Yi)/Iz4、实验值与理论值的比较5、绘制实验应力值和理论力值的分布图分别认横坐标表示各测点的应力σi实和σi理,以坐标轴表示各点测距梁中性层位置Yi,选用合适的比例绘出应力分布图。
篇二:4实验报告-弯曲正应力电测实验材料力学弯曲正应力电测实验实验报告日期年月日指导教师:实验室温度℃学院:专业班级:姓名:学号:同组人:备注:请用A3纸双面打印篇三:弯曲正应力实验报告浙江大学材料力学实验报告(实验项目:弯曲正应力)一、实验目的:1、初步掌握电测方法和多点测量技术。
;2、测定梁在纯弯和横力弯曲下的弯曲正应力及其分布规律。
二、设备及试样:1.电子万能试验机或简易加载设备;2.电阻应变仪及预。
纯弯曲正应力分布实验报告

纯弯曲正应力分布实验报告篇一:弯曲正应力实验报告一、实验目的1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律;2、验证纯弯曲梁的正应力计算公式。
3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。
二、实验仪器和设备1、多功能组合实验装置一台;2、TS3860型静态数字应变仪一台;3、纯弯曲实验梁一根。
4、温度补偿块一块。
三、实验原理和方法弯曲梁的材料为钢,其弹性模量E=210GPa,泊松比μ=。
用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。
根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:??My Ix式中:M为弯矩;Ix为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。
由上式可知,沿横截面高度正应力按线性规律变化。
实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。
当增加压力?P时,梁的四个受力点处分别增加作用力?P/2,如下图所示。
为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。
此外,在梁的上表面和下表面也粘贴了应变片。
如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式??E?,可求出各点处的应力实验值。
将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。
σ实=Eε式中E是梁所用材料的弹性模量。
实图3-16为确定梁在载荷ΔP的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP测定各点相应的应变增量一次,取应变增量的平均值Δε 把Δσ实与理论公式算出的应力??式中的M应按下式计算:实来依次求出各点应力。
??比较,从而验证公式的正确性,上述理论公????四、实验步骤1?Pa (3.16) 21、检查矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a,及各应变片到中性层的距离yi。
纯弯曲正应力实验报告

纯弯曲正应力实验报告纯弯曲正应力实验报告引言:纯弯曲正应力实验是材料力学领域中的一项基础实验,通过对材料在受到纯弯曲力作用下的正应力分布进行测量和分析,可以了解材料的力学性能和变形特征。
本实验旨在通过对不同材料样本的纯弯曲正应力实验,探究材料的强度、韧性和变形能力。
实验目的:1. 了解纯弯曲正应力实验的原理和方法;2. 掌握纯弯曲正应力实验的操作技巧;3. 分析不同材料样本的正应力分布特点;4. 探究材料的强度、韧性和变形能力。
实验原理:纯弯曲正应力实验是通过施加一个纯弯曲力矩于材料上,使其产生弯曲变形。
在材料的中性轴附近,正应力呈线性分布,而在材料的表面,正应力最大。
根据材料的几何尺寸和应力分布,可以计算出材料的弯曲应力。
实验步骤:1. 准备不同材料样本,包括金属、塑料等;2. 将样本固定在弯曲试验机上,并调整试验机的参数,如加载速度、加载方式等;3. 施加纯弯曲力矩,记录下加载过程中的应变和应力数据;4. 根据实验数据,计算出材料的正应力分布和弯曲应力。
实验结果与分析:通过实验得到的数据,我们可以绘制出不同材料样本的正应力分布曲线。
根据曲线的变化特点,我们可以分析材料的强度、韧性和变形能力。
首先,正应力分布曲线的斜率表示了材料的强度。
斜率越大,说明材料的强度越高。
通过比较不同材料样本的斜率,我们可以评估材料的强度差异。
其次,正应力分布曲线的形状和曲线下的面积表示了材料的韧性。
曲线形状越平缓,说明材料的韧性越好。
曲线下的面积越大,表示材料的变形能力越高。
通过比较不同材料样本的曲线形状和曲线下的面积,我们可以评估材料的韧性和变形能力。
最后,我们还可以分析材料在不同加载条件下的正应力分布曲线。
通过比较不同加载速度、加载方式等对正应力分布曲线的影响,可以了解材料在不同应力条件下的变形特性。
结论:通过纯弯曲正应力实验,我们可以了解材料的强度、韧性和变形能力。
不同材料样本的正应力分布曲线可以反映材料的力学性能差异。
光测法梁的纯弯曲实验报告光测法

光测法梁的纯弯曲实验报告光测法
一、实验目的
说明本次实验的目的和意义。
二、实验原理
介绍光测法测量梁变形的原理,包括应变测量和位移测量两个方面的原理。
三、实验装置与仪器
描述实验用到的装置、仪器和材料,包括梁、支座、加载装置、光电仪器等等。
四、实验步骤与数据处理
依次介绍实验的具体步骤,包括加载、光电测量、数据记录等。
并详细描述如何进行数据处理,如何求得梁的瞬时弯矩、弯曲角、曲率半径等参数,并给出典型数据和图表。
五、实验结果分析
根据实验获得的数据,分析和讨论光测法测量精度的影响因素,比如光电测量误差、支座刚度、梁截面形状等,以及实验结果和理论计算结果的比较,分析误差及其原因。
六、结论
总结实验结果和分析,指出实验的优点、不足,及其工程应用的前景,并给出改进措施和建议。
七、参考文献
列出本实验中所参考的文献、资料与软件。
注:以上仅为一个写作思路示例,具体写作内容应根据实验条件、数据和要求进行具体调整和修改。
同时需要注意不能出现涉及政治敏感、敏感信息等问题。
梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告一、实验目的。
本实验旨在通过对梁的纯弯曲实验,了解在梁的弯曲变形中产生的正应力分布规律,并通过实验数据的处理和分析,验证梁的正应力分布与理论计算的结果是否一致。
二、实验原理。
梁的纯弯曲是指梁在外力作用下只产生弯曲变形,不产生轴向拉伸或压缩的情况。
在梁的弯曲变形中,梁的上表面产生拉应力,下表面产生压应力,且在梁的截面上,不同位置的应力大小不同。
根据梁的弯曲理论,梁在弯曲变形中的正应力分布规律可以通过理论计算得出。
三、实验装置和仪器。
本实验所使用的实验装置包括梁的支撑装置、加载装置、测力传感器、位移传感器等。
其中,测力传感器用于测量梁在加载过程中的受力情况,位移传感器用于测量梁在加载过程中的位移情况。
四、实验步骤。
1. 将梁放置在支撑装置上,并调整支撑装置,使梁能够自由地产生弯曲变形;2. 将加载装置与梁连接,并通过加载装置施加一定的加载力;3. 同时记录梁在加载过程中的受力情况和位移情况;4. 依据实验数据,计算梁在不同位置的正应力大小,并绘制出正应力分布图;5. 将实验数据与理论计算结果进行对比分析,验证梁的正应力分布规律。
五、实验数据处理和分析。
通过实验测得的数据,我们计算出了梁在不同位置的正应力大小,并绘制出了正应力分布图。
通过对比实验数据与理论计算结果,我们发现梁的正应力分布与理论计算的结果基本一致,验证了梁的正应力分布规律。
六、实验结论。
通过本次实验,我们了解了梁的纯弯曲正应力分布规律,并通过实验数据的处理和分析,验证了梁的正应力分布与理论计算的结果基本一致。
因此,本实验取得了预期的实验目的。
七、实验总结。
本次实验通过对梁的纯弯曲实验,加深了我们对梁的弯曲变形和正应力分布规律的理解,同时也提高了我们的实验操作能力和数据处理能力。
希望通过本次实验,能够对大家有所帮助。
八、参考文献。
[1] 《材料力学实验指导书》。
[2] 《材料力学实验讲义》。
以上为梁的纯弯曲正应力实验报告,谢谢阅读。
纯弯曲实验报告

实验二:梁的纯弯曲正应力试验一、实验目的1、测定矩形截面梁在只受弯矩作用的条件下,横截面上正应力的大小随高度变化的分布规律,并与理论值进行比较,以验证平面假设的正确性,即横截面上正应力的大小沿高度线性分布。
2、学习多点静态应变测量方法。
二:实验仪器与设备:①贴有电阻应变片的矩形截面钢梁实验装置 1台②DH3818静态应变测试仪 1件三、实验原理(1)受力图主梁材料为钢梁,矩形截面,弹性模量E=210GPa,高度h=40.0mm,宽度b=15.2mm。
旋动转轮进行加载,压力器借助于下面辅助梁和拉杆(对称分布)的传递,分解为大小相等的两个集中力分别作用于主梁的C、D截面。
对主梁进行受力分析,得到其受力简图,如图1所示。
(2)内力图分析主梁的受力特点,进行求解并画出其内力图,我们得到CD段上的剪力为零,而弯矩则为常值,因此主梁的CD段按理论描述,处于纯弯曲状态。
主梁的内力简图,如图2所示。
Page 1 of 10(3)弯曲变形效果图(纵向剖面)(4)理论正应力根据矩形截面梁受纯弯矩作用时,对其变形效果所作的平面假设,即横截面上只有正应力,而没有切应力(或0=τ),得到主梁纯弯曲CD 段横截面上任一高度处正应力的理论计算公式为zii I y M =理论σ其中,M 为CD 段的截面弯矩(常值),z I 为惯性矩,iy 为所求点至中性轴的距离。
(5)实测正应力测量时,在主梁的纯弯曲CD 段上取5个不同的等分高度处(1、2、3、4、5),沿着与梁的纵向轴线平行的方向粘贴5个电阻应变片,如图4所示。
在矩形截面梁上粘贴上如图5.3所示的2组电阻应变片,应变片1-5分别贴在横力弯曲区,6-10贴在纯弯曲区,同一组应变片之间的间隔距离相等。
Page 2 of 10Page 3 of 10Page 4 of 10Page 5 of 10Page 6 of 10Page 7 of 10b.σ–P曲线图在σ–P坐标系中,以σi实的值为横坐标,P的值为纵坐标,将各点的实测应力值分别绘出,然后进行曲线拟合,这样就得到了纯弯梁横截面上各点在不同载荷下的5条正应力分布曲线。
纯弯曲实验报告

纯弯曲实验报告page 1 of 10 page 2 of 10 page 3 of 10 page 4 of 10 page 5 of 10篇二:弯曲实验报告弯曲实验报告材成1105班 3111605529 张香陈一、实验目的测试和了解材料的弯曲角度、机械性能、相对弯曲半径及校正弯曲时的单位压力等因素对弯曲角的影响及规律。
二、实验原理坯料在模具内进行弯曲时,靠近凸模的内层金属和远离凸模的外层金属产生了弹—塑性变。
但板料中性层附近的一定范围内,却处于纯弹性变形阶段。
因此,弯曲变形一结束,弯曲件由模中取出的同时伴随着一定的内外层纤维的弹性恢复。
这一弹性恢复使它的弯曲角与弯曲半径发生了改变。
因此弯曲件的形状的尺寸和弯曲模的形状尺寸存在差异。
二者形状尺寸上的差异用回弹角来表示。
本实验主要研究影响回弹角大小的各因素。
三、实验设备及模具(1)工具:弯曲角为90度的压弯模一套,配有r=0.1、0.4、0.8、2、4五种不同半径的凸模各一个。
刚字头,万能角度尺,半径样板和尺卡。
(2)设备:曲柄压力机(3)试件:08钢板(不同厚度),铝板(不同厚度),尺寸规格为52x14mm,纤维方向不同四、实验步骤1.研究弯曲件材料的机械性能,弯曲角度和相对弯曲半径等回弹角度的影响。
实验时利用90度弯曲角度分别配有五种不同的弯曲半径的弯模,对尺寸规格相同的试件进行弯曲,并和不同的弯曲半径各压制多件。
对不同弯曲半径的试件压成后需要打上字头0.1、0.4、0.8、2、4等,以示区别。
最后,按下表要求测量和计算。
填写好各项内容。
五、数据处理(t/mm)试件尺寸:52x14mm弯曲后的试样如下图所示δθ=f(r凸/t)曲线如下图所示分析讨论:分析相对弯曲半径,弯曲角度及材料机械性能对回弹角的影响。
答:相对弯曲半径越小,弯曲的变形程度越大,塑性变形在总变形中所占比重越大,因此卸载后回弹随相对弯曲半径的减小而减小,因而回弹越小。
相对弯曲半径越大,弯曲的变形程度越小,但材料断面中心部分会出现很大的弹性区,因而回弹越大;弯曲角度越大,表明变形区的长度越长,故回弹的积累值越大,其回弹角越大;材料的屈模比越大,则回弹越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纯弯曲实验报告《材料力学》课程实验报告纸(3)弯曲变形效果图(纵向剖面)(4)理论正应力根据矩形截面梁受纯弯矩作用时,对其变形效果所作的平面假设,即横截面上只有正应力,而没有切应力(或0=τ),得到主梁纯弯曲CD段横截面上任一高度处正应力的理论计算公式为z ii I yM=理论σ其中,M为CD段的截面弯矩(常值),z I为惯性矩,i y为所求点至中性轴的距离。
(5)实测正应力测量时,在主梁的纯弯曲CD段上取5个不同的等分高度处(1、2、3、4、5),沿着与梁的纵向轴线平行的方向粘贴5个电阻应变片,如图4所示。
在矩形截面梁上粘贴上如图5.3所示的2组电阻应变片,应变片1-5分别贴在横力弯曲区,6-10贴在纯弯曲区,同一组应变片之间的间隔距离相等。
Page 2 of 10《材料力学》课程实验报告纸根据应变电测法的基本原理,电阻应变片粘贴到被测构件表面,构件在受到外载荷作用,发生变形,应变片因感受测点的应变,而同步发生变形,从而自身的电阻发生变化。
电阻应变仪通过设定的桥接电路的测量原理,将应变片的电阻变化转换成电信号(物理信号转换成电信号),最后通过应变仪内部自带的存储器和计算器(具有设定的程序计算公式),进行反馈计算输出应变值。
根据矩形截面梁纯弯曲时变形的平面假设,即所有与纵向轴线平行的纤维层都处于轴向拉伸或压缩。
所以横截面上各点均处于单向受力状态,应用轴向拉伸时的胡克定律,即可通过实际测定各点的应变值,从而计算出不同高度处相应12345910687补偿片hb Pa x y c a的正应力实验值,我们有 实测实测i i E εσ=这里,i 表示测量点,E 为材料弹性模量,实测i ε为实测应变。
有关的参数记录 梁截面b =15.2(mm),h =40.0(mm)力臂a =150.0(mm),横力弯曲贴片位置c =75.0(mm)贴片位置 16,y y 27,y y 38,y y 49,y y 50,y y/2h - /4h - 0 /4h /2hPage 3 of 10《材料力学》课程实验报告纸(6)误差分析两者误差%100⨯=理论理论-实测i i i i e σσσ四、试样的制备由教师完成。
五、实验步骤1、开始在未加载荷的时候校准仪器。
2、逆时针旋转实验架前端的加载手轮施加载荷。
加载方案采用等量加载法,大约500N 为一个量级,从0N 开始,每增加一级载荷,逐点测量各点的应变值。
加到最大载荷2000N ;每次读数完毕后记录数据。
3、按照上述步骤完成了第一遍测试后卸掉荷载再来一遍。
4、整理实验器材,完成实验数据记录。
六:实验数据与数据处理:载荷节点应变(-6 10)-500N/-503N-996N/-1003N-1498N/-1497N-1994/-2000N1 -62 -114 -166 -212-56 -110 -158 -210 平均值-59 -112 -162 -2112 -26 -50 -76 -98-24 -48 -72 -100 平均值-25 -49 -74 -993 0 2 2 40 2 2 0 平均值0 2 2 24 28 54 78 10424 54 76 10226 54 77 103 平均值5 56 106 156 20252 106 152 202 平54 106 154 202 均值Page 4 of 10《材料力学》课程实验报告纸载荷节点-500N/-503N-996N/-1003N-1498N/-1497N-1994/-2000N6 -112 -206 -298 -382-100 -196 -284 -378 平均值-106 -201 -291 -3807 -50 -96 -140 -182-50 -96 -140 -186 平均值-50 -96 -140 -1848 2 12 16 220 12 16 22 平均值1 12 16 22 9 60 122 180 23462 122 176 234 平均值 6112217823410 114 218 332 422 108 216 318 426 平均值 111 217325424其中矩形截面,弹性模量E=210GPa,高度h=40.0mm ,宽度b=15.2mm ,我们可以算得331248415.240108.1067101212zbh m I m --⨯⨯===⨯其中CD 段为纯弯曲,22P aM•=,其中P 为载荷,a 为AC 段的距离。
AC 段中的部分,1c2P M •=;a=150mm,c=75mm. 代入计算22P aM•=在纯弯矩段理论上理M y=ZI σ•,实际上实测=E σε•,其中误差%100⨯=理论理论-实测ii i i e σσσPage 5 of 10 《材料力学》课程实验报告纸载荷节点位置节点应力(710Pa)501.5N 999.5N 1497.5N1997N1 理论值-4.63968-9.24698-13.8542-18.47545测量值-1.239-2.352-3.402-4.4310相对误差0.732950.745640.754440.760162 理论值-2.31984-4.62349-6.92714-9.23772测量值-0.525-1.029-1.554-2.0790相对误差0.773690.777440.775660.774943 理论值0 0 0 0测量值0 0.0420 0.0420 0.0420 相对nan inf inf inf误差4 理论值2.319844.623496.927149.23772测量值0.5460 1.1340 1.6170 2.1630相对误差0.764630.754730.766570.765855 理论值4.639689.2469813.854218.47545测量值1.13402.22603.23404.2420相对误差0.755580.759270.766570.770396 理论值-9.27936-18.4939-27.7085-36.9509测量值-2.226-4.221-6.111-7.9800相对误差0.760110.771760.779450.784037 理论值-4.63968-9.2469-13.8542-18.4754测量-1.050-2.016-2.940-3.8640值0 0 0相对误差0.773690.78198 0.787780.790858 理论值0 0 0 0测量值0.0210 0.2520 0.3360 0.4620相对误差inf inf inf inf9 理论值4.639689.2469 13.854218.4754测量值1.28102.56203.73804.9140相对误差0.72390.722930.730190.734021 0 理论值9.2793618.493927.708536.9509测量值2.3310 4.5570 6.8250 8.9040相对误差0.748790.753590.753680.75903Page 6 of 10 《材料力学》课程实验报告纸描绘应力分布曲线a.σ–y曲线图的值为横坐标,y的在σ–y坐标系中,以σi实值为纵坐标,将各点的实测应力值分别绘出,然后进行曲线拟合这样就得到了纯弯梁横截面上沿高度的5条正应力分布曲线。
检查σ∝y是否成立;我们写以下代码:y=[-0.020;-0.010;0;0.010;0.020];e=210000;E=[-59,-112,-162,-211;-25,-49,-74,-99;0,2,2,2;26,54,77,103;54,106,154 ,202];q5=e*E;p1=polyfit(y,q5(:,1),1)yfit=polyval(p1,y);plot(y,q5(:,1),'r*',y,yfit,'b-');r1=corrcoef(q5(:,1),y);p2=polyfit(y,q5(:,2),1)yfit=polyval(p2,y);hold onplot(y,q5(:,2),'r*',y,yfit,'b-');r2=corrcoef(q5(:,2),y);p3=polyfit(y,q5(:,3),1)yfit=polyval(p3,y);hold onplot(y,q5(:,3),'r*',y,yfit,'b-');r3=corrcoef(q5(:,3),y);p4=polyfit(y,q5(:,4),1)yfit=polyval(p4,y);hold onplot(y,q5(:,4),'r*',y,yfit,'b-');r4=corrcoef(q5(:,4),y);xlabel('y/m')ylabel('sigma/Pa')title('sigma-y ')Page 7 of 10《材料力学》课程实验报告纸b.σ–P曲线图的值为横坐标,P的在σ–P坐标系中,以σi实值为纵坐标,将各点的实测应力值分别绘出,然后进行曲线拟合,这样就得到了纯弯梁横截面上各点在不同载荷下的5条正应力分布曲线。
检查σ∝P是否成立;编写如下代码:q5=[-2.2260,-4.2210,-6.1110,-7.9800;-1.0500,-2.0160,-2.9400,-3.8640;0 .0210,0.2520,0.3360,0.4620;1.2810,2.5620,3.7380,4.9140;2.3310,4.5570, 6.8250,8.9040];y=[501.5,999.5,1497.5,1997];p1=polyfit(q5(1,:),y,1)yfit=polyval(p1,q5(1,:));plot(q5(1,:),y,'r*',q5(1,:),yfit,'b-');r1=corrcoef(q5(1,:),y);p2=polyfit(q5(2,:),y,1)yfit=polyval(p2,q5(2,:));hold onplot(q5(2,:),y,'r*',q5(2,:),yfit,'b-');r2=corrcoef(q5(2,:),y);p3=polyfit(q5(3,:),y,1)yfit=polyval(p3,q5(3,:));Page 8 of 10《材料力学》课程实验报告纸hold onplot(q5(3,:),y,'r*',q5(3,:),yfit,'b-');r3=corrcoef(q5(3,:),y);p4=polyfit(q5(4,:),y,1)yfit=polyval(p4,q5(4,:));hold onplot(q5(4,:),y,'r*',q5(4,:),yfit,'b-');r4=corrcoef(q5(4,:),y);p5=polyfit(q5(5,:),y,1)yfit=polyval(p5,q5(5,:));hold onplot(q5(5,:),y,'r*',q5(5,:),yfit,'b-');r5=corrcoef(q5(5,:),y);ylabel('P/N')xlabel('sigma/Pa')title('sigma-P ')Page 9 of 10《材料力学》课程实验报告纸上述两图都符合实验预期。