分数、百分数基本数量关系
六年级【小升初】小学数学专题课程《分数、百分数问题》(含答案)
![六年级【小升初】小学数学专题课程《分数、百分数问题》(含答案)](https://img.taocdn.com/s3/m/992cd2ee6bec0975f465e2ef.png)
15.分数、百分数问题知识要点梳理一、数量关系式在分数(百分数)应用题中存在着三个量,即标准量(单位“1”的量)、比较量(部分量)和分率(百分率)。
分数(百分数)应用题基本的数量关系式:标准量(单位“1”的量)×分率(百分率)=比较量(部分量)比较量(部分量)÷标准量(单位“1”的量)=分率(百分率)比较量(部分量)÷分率(百分率)=标准量(单位“1”的量)二、基本类型解题思路和方法:一般有三种基本类型:1.求一个数是另一个数的几分之几(百分之几);2.已知一个数,求它的几分之几(百分之几)是多少;3.已知一个数的几分之几(百分之几)是多少,求这个数。
解答分数、百分数应用题的关键是:首先要分清哪个量是标准量(单位“1”的量),哪个是比较量(部分量),然后找出与之相对的分率。
三、出勤率与发芽率出勤率=出勤人数÷总人数×100%发芽率=发芽粒数÷总的粒数×100%考点精讲分析典例精讲考点1 求分率(百分率)【例1】一本书100页,读了60页,剩下这本书的百分之几没看?【精析】根据已知条件,把这本书的总页数看作单位“1”,先计算出剩下的页数,再用剩下的页数除以总页数。
【答案】(100-60)÷100×100%=40%答:剩下这本书的40%没看。
【归纳总结】先确定单位“1”,再根据部分量除以单位“1”的量计算对应的百分率。
考点2 求部分量【例2】 参加“六一”儿童节联欢活动的少先队员中,女队员占全体少先队员的47,男队员比女队员的23多40人,问女队员有多少人?【精析】 以全体少先队员为单位“1”。
男队员占全体少先队员的1-47=37,男队员比全体少先队员的47×23=821多40人。
那么全体少先队员的(37-821)是40人,全体少先队员是40÷(37-821)=840(人),女队员有840×47=480(人)。
百分比与分数的关系
![百分比与分数的关系](https://img.taocdn.com/s3/m/35ac792fa55177232f60ddccda38376baf1fe09c.png)
百分比与分数的关系数学是我们日常生活中不可或缺的一部分,百分比和分数是数学中常见的概念。
它们不仅在学校的数学课堂上出现,也经常在我们的日常生活中使用。
在本文中,我们将探讨百分比与分数之间的关系,并介绍它们互相转换的方法。
一、百分比百分比是一种常用的数学表示方法,通常用百分号(%)表示。
百分比是将一个量相对于整体进行表示,以100作为基准。
例如,80%表示的是一个量与整体的关系,相当于这个量占整体的80%。
百分比可以用来表示许多不同的情况,如考试分数、股票涨跌幅、销售增长率等等。
我们可以通过以下公式来计算百分比:百分比 = (所占量 ÷整体量)× 100%二、分数分数是数学中另一种常见的表示方法,它是用来表示一个量相对于另一个量的比例关系。
分数由两个整数表示,一个为分子,表示量的一部分;另一个为分母,表示整体。
分数可以表示多个不同的情况,例如1/2可以表示一块蛋糕被分成了两份,其中一份为分子部分。
分数也可以用来表示小数,如1/2可以表示0.5。
三、百分比与分数的转换在数学中,百分比和分数之间存在一种特殊的转换关系。
我们可以通过以下方法将百分比转换为分数:1. 将百分比除以100,得到小数形式的数值。
2. 将小数形式的数值的分母设为100,即将小数形式的数值的分子乘以对应的倍数,使分子为整数。
例如,将75%转换为分数的过程如下:1. 75% ÷ 100 = 0.752. 将0.75的分母设为100,即0.75 × 100 = 75因此,75%可以表示为75/100或3/4。
同样地,我们也可以通过以下方法将分数转换为百分比:1. 将分数的分子除以分母,得到小数形式的数值。
2. 将小数形式的数值乘以100,得到百分比形式的数值。
例如,将2/5转换为百分比的过程如下:1. 2 ÷ 5 = 0.42. 将0.4乘以100,即0.4 × 100 = 40因此,2/5可以表示为40%。
百分数(二)复习讲义
![百分数(二)复习讲义](https://img.taocdn.com/s3/m/905f589acc22bcd126ff0ccf.png)
百分数(二) 学习目标:1.通过复习让学生把分数和百分数的应用题的有关知识系统化;2.学生能牢固掌握分数和百分数应用题的基本数量关系和解题方法;3.学生能够比较灵活运用所学知识正确解答稍复杂的分数百分数应用题。
知识整理【知识点1】分数与百分数的基本概念1.百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
2.百分数的写法:写百分数时,通常不写成分数的形式,而是在原来的分子后面加上百分号“%”来表示。
3.百分数与小数的互化:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
4.百分数和分数的互化:把分数化成百分数,通常把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数;把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
5.分数与百分数大小的比较方法:(1)把分数化成百分数来比较。
(2)把分数和百分数都化成小数来比较。
(3)把百分数化成分数来比较。
6.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
7.分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
8.分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
被除数÷除数 =除数被除数 用字母表示:a ÷b=b a (b ≠0)。
【知识点2】分数与百分数应用1.用分数、百分数解决问题:2.已知一个数比另一个数多(或少)几分之几/百分之几,求这个数的问题的解题规律:把另一个数看作是单位“ 1”:用另一个数±另一个数×几(百)分之几另一个数×(1±几(百)分之几)3.求一个数比另一个数多(或少)几(百)分之几的问题:(1)求甲比乙多几(百)分之几的问题的解题规律:(甲-乙)÷乙 = 几(百)分之几甲÷乙- 1= 几(百)分之几(2)求甲比乙少百分之几的问题的解题规律:(乙-甲)÷乙 =几(百)分之几 1-甲÷乙= 几(百)分之几4.已知比一个数多(或少)几(百)分之几的数,求这个数是多少的问题:把一个数看作单位“ 1”,单位“ 1”未知,列方程解答。
关于百分数的知识点总结
![关于百分数的知识点总结](https://img.taocdn.com/s3/m/0ed64f70302b3169a45177232f60ddccda38e661.png)
百分数的知识点总结关于百分数的知识点总结上学的时候,相信大家一定都接触过知识点吧!知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。
哪些知识点能够真正帮助到我们呢?下面是小编精心整理的关于百分数的知识点总结,欢迎阅读与收藏。
百分数的知识点总结11、意义:表示一个数是另一个数的百分之几。
(千分数:表示一个数是另一个数的千分之几)2、百分数和分数的区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。
②、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。
3、百分数与小数的互化:(1)小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。
(2)百分数化成小数:把小数点向左移动两位,同时去掉百分号4、百分数的和分数的互化(1)百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分(2)分数化成百分数:① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。
②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
5、用百分数解决问题(一)一般应用题2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题:数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量10的10%是多少(2)分率前是“多或少” :单位“1”的量×(1+—分率)=分率对应量比10多(少)10%3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。
解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法):分率对应量÷对应分率 = 单位“1”的量4、求一个数比另一个数多(少)百分之几的问题:两个数的相差量÷单位“1”的量× 100% 或:求多百分之几:(大数÷小数– 1)× 100%② 求少百分之几:( 1 - 小数÷大数)× 100%(二)、折扣1、折扣:商品按原定价格的百分之几出售,叫做折扣。
小学六年级数学小升初珍藏版复习资料第9讲 分数应用题(原卷)
![小学六年级数学小升初珍藏版复习资料第9讲 分数应用题(原卷)](https://img.taocdn.com/s3/m/fe7adcc30875f46527d3240c844769eae109a34e.png)
2022-2023学年小升初数学精讲精练专题汇编讲义第9讲分数应用题知识精讲分数应用题是研究数量之间份数关系的典型应用题,是小升初数学应用题中的难点,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析题中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.一、解决分数应用题的关键:关键——找出“量”与“率”的对应.要点——“标准量”,即单位“1”的寻找.二、单位“1”的标志与线索:1.明显标志:“占”、“是”、“比”、“相当于”这些词语后面的对象.例:a是(占、相当于)b的几分之几,就把b看作单位“1”.甲比乙多(少)几分之几,就把乙看作单位“1”.2.隐含线索:题目没有明确给出比较对象,需要分析增加(减少)了谁的几分之几,一般是指增加(减少)了前面那种状态的几分之几,也就是说前面那种状态下的量就是单位“1”.例:水结成冰后体积增加了几分之几,意思是增加了原来状态(水)的几分之几.三、“率”的寻找方法:明示的“率”自不必说. 没有明确指出的“率”,一般可以画线段图,通过分析整体的组成来找出.四、常用数量关系式和解题模式:1.常用的数量关系式:在分数(百分数)应用题中存在着三个量,即标准量(单位“1”的量)、比较量(部分量)和分率(百分率)。
分数(百分数)应用题基本的数量关系式:标准量(单位“1”的量)×分率(百分率)=比较量(部分量)比较量(部分量)÷标准量(单位“1”的量)=分率(百分率)比较量(部分量)÷分率(百分率)=标准量(单位“1”的量)2.解题模式:(1)量÷对应率=单位“1”(2)分数即份数,设数法解决(3)多对象多状态多维度,列表解决 五、分数应用题的基本类型及方法:1.求一个数的几(或百)分之几是多少? 解题方法:已知数×几(或百)分之几2.已知一个数的几(或百)分之几是多少,求这个数. 解题方法:已知数÷几(或百)分之几3.求甲数比乙数多(或少)几(或百)分之几。
小学阶段各类应用题公式大全
![小学阶段各类应用题公式大全](https://img.taocdn.com/s3/m/01900872fab069dc51220183.png)
各类应用题公式(一)归一问题数量关系式:单一量×份数=总数量(正归一)总数量÷单一数量=份数(反归一)解题关键:从已知的一组对应量中咏等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。
(二)归总问题数量关系式:单位数量×单位个数÷另一个单位数量=另一个单位个数单位数量×单位个数÷另一个单位个数=另一个单位数量解答方法:先求出总数量,再根据题意得出所求的数量。
(三)平均数数量关系:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数(四)和倍问题数量关系:和÷(倍数+1)=一倍数一倍数×倍数=几倍数解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。
求出倍数和之后,再求出标准的数量是多少。
(五)差倍问题数量关系:两个数的差÷(倍数-1)=较小的数标准数×倍数=较大的数(六)和差问题解题规律:(和+差)÷2=大数(和-差)÷2=小数解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。
(七)倍比问题数量关系:总量÷一个数量=倍数另一个数量×倍数=另一总量解答方法:求出倍数,再用倍比关系求出要求的数(八)年龄问题解题关键:年龄问题与和差、和倍、差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。
(九)植树问题解题规律:沿线段植树:棵树=段数+1棵树=总路程÷株距+1株距=总路程÷(棵树-1)总路程=株距×(棵树-1)沿周长植树:棵树=总路程÷株距株距=总路程÷棵树总路程=株距×棵树解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。
2分数与百分数
![2分数与百分数](https://img.taocdn.com/s3/m/8434053f83c4bb4cf7ecd1a2.png)
2、百分数化小数
把百分数化成小数,先把百分号去掉,再把 百分号前面的数的小数点向左移动两位,位 数不够时用0补足。例如:26.5%=0.265。
3、百分数与分数的互化
1、分数化成百分数 通常把分数化成小数,若遇到除不尽的,通 常会保留三位小数,在把小数化成百分数。 例如:1 =0.25=25% 1 ≈0.333=33.3% 4 3 还可以先把分数化成分母是100的分数,然后 再去掉分母,在分子后面添上百分号。例如: 8 = 160 =160%,1 = 75 =75% 4 100 5 100
税率和利率
应缴税=营业额×税率 利率又称利息率利息与本金的比值叫做利率 利息=本金×利率×时间(其中的时间有相 对应的年或者月等各不相同的时间)
小数和百分数的互化 1、小数化百分数
把小数化成百分数,先把小数点向右移动两 位 ,再在后面添上百分 (位数不够时用0补足) 号。例如:0.38=38%,1.5=150%, 0.007=0.7% 。
,写
1 3 因为 > , 4 5 数字 “0” 的卡片多还是写有数字 “1” 的卡片 所以写有数字 “0” 的卡片多。 多?
10.* 你能写出一个比 1 大, 又比 1 小的分数吗? 你
6 5
是怎样找到这个分数的? 还能再找到两个这样 的分数吗? 1 10 = 6 60 1 20 = 6 120 1 12 = 5 60 1 24 = 5 120 11 这样找到一个 。 60
结果
练习
(2)比较下列分数的大小,并说出你的理由: 3 4 < 13 13 2 4 < 7 7 5 5 > 6 8 5 2 > 9 9
分母相同的两个分数,分子大的分数就大。
3 3 > 8 11 12 12 > 17 19
常用的数量关系式 简
![常用的数量关系式 简](https://img.taocdn.com/s3/m/65abc8512e3f5727a5e962be.png)
一、常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数二、小学数学图形计算公式1、正方形(C:周长S:面积a:边长)周长=边长×4 C=4a 面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3、长方形(C:周长S:面积a:边长)周长=(长+宽)×2 C=2(a+b) 面积=长×宽S=ab4、长方体(V:体积s:面积a:长b: 宽h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高V=abh5、三角形(s:面积a:底h:高)面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高)面积=底×高s=ah7、梯形(s:面积a:上底b:下底h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积C:周长лd=直径r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr (2)面积=半径×半径×л9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:底面半径)体积=底面积×高÷311、和差问题的公式:(和+差)÷2=大数(和-差)÷2=小数12、和倍问题: 和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)13、差倍问题:差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)14、相遇问题相遇路程=速度和×相遇时间;相遇时间=相遇路程÷速度和;速度和=相遇路程÷相遇时间15、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量16、利润与折扣问题利润=售出价-成本;利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比;利息=本金×利率×时间;税后利息=本金×利率×时间×(1-20%) 三、常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算:1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算:1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算:1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算:1元=10角1角=10分1元=100分时间单位换算:1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒基本概念第一章数和数的运算一概念(一)整数1 整数的意义:自然数和0都是整数。
小学数学常用的数量关系
![小学数学常用的数量关系](https://img.taocdn.com/s3/m/b823ff3ab4daa58da0114a10.png)
小学数学【常用的数量关系】1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数2、1倍数×倍数=几倍数;几倍数÷1倍数=倍数;几倍数÷倍数=1倍数3、速度×时间=路程;路程÷速度=时间;路程÷时间=速度4、单价×数量=总价;总价÷单价=数量;总价÷数量=单价5、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;6、加数+加数=和;和-一个加数=另一个加数7、被减数-减数=差;被减数-差=减数;差+减数=被减数8、因数×因数=积;积÷一个因数=另一个因数9、被除数÷除数=商;被除数÷商=除数;商×除数=被除数【小学数学图形计算公式】1、正方形(C:周长,S:面积,a:边长)周长=边长×4;C=4a面积=边长×边长;S=a×a2、正方体(V:体积,a:棱长)表面积=棱长×棱长×6;S表=a×a×6体积=棱长×棱长×棱长;V= a×a×a3、长方形(C:周长,S:面积,a:边长,b:宽)周长=(长+宽)×2;C=2(a+b)面积=长×宽;S=a×b4、长方体(V:体积,S:面积,a:长,b:宽,h:高)(1)表面积=(长×宽+长×高+宽×高)×2;S=2(ab+ah+bh) (2)体积=长×宽×高;V=abh5、三角形(S:面积,a:底,h:高)面积=底×高÷2 ;S=ah÷2三角形的高=面积×2÷底三角形的底=面积×2÷高6、平行四边形(S:面积,a:底,h:高)面积=底×高;S=ah7、梯形(S:面积,a:上底,b:下底,h:高)面积=(上底+下底)×高÷2;S=(a+b)×h÷28、圆形(S:面积,C:周长,π:圆周率,d:直径,r:半径)(1)周长=π×直径π=2×π×半径;C=πd=2πr(2)面积=π×半径×半径;S= πr29、圆柱体(V:体积,S:底面积,C:底面周长,h:高,r:底面半径)(1)侧面积=底面周长×高=Ch=πdh=2πrh(2)表面积=侧面积+底面积×2(3)体积=底面积×高10、圆锥体(V:体积,S:底面积,h:高,r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式:已知两数的和及它们的差,求这两个数各是多少的应用题,叫做和差应用题,简称和差问题。
分数百分数应用题解题方法
![分数百分数应用题解题方法](https://img.taocdn.com/s3/m/d1be5ad67cd184254a353584.png)
分数百分数应用题解题方法本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March分数百分数应用题解题方法分数应用题的基本解题思路:根据分率句写数量关系式。
说明:单位“1”分为标准量和整体量下列五种基本类型的解题方法:一、求:一个数的百分之几是多少方法:单位1×对应分率= 比较量例题:1、 60的40%是多少2、五(1)班有40人,男生占全班的65 % ,男生有多少人3、五(1)班男生有25人,女生是男生的80 %,女生多少人二、已知一个数的百分之几是多少,求这个数。
方法:比较量÷对应分率=单位1;或设这个数(单位1)为X,用方程解。
例题:1、()的30%是30。
2、五(1)班男生有20人,男生是全班的40%,全班有多少人3、五(1)班男生有16人,男生是女生的80%,女生有多少人4、一条公路,已经修了60%,还剩下20千米,这条公路有多长5、五(1)班男生占全班的60%,男生比女生多了10人,全班有多少人三、条件中有“比多(少)百分之几(几分之几)”,求:标准量(单位1)或比较量方法: (1)单位1±单位1× n% =比较量(2)单位1×(1±n%) =比较量(3)比较量÷(1±n%)=单位一找准单位一是关键。
单位一是已经条件的用方法(1)(2),未知的用方法(3),设标准量为X。
例题:1、五(1)班男生有20人,女生比男生多了10 %,女生有多少人2、有一列火车,原来每小时行驶80千米,提速后,这列火车的速度比原来增加了40%。
现在这列火车每小时行驶多少千米3、五(2)班男生有20人,女生比男生少了10 %,女生有多少人4、游乐场的门票原来每张30元,“六一”期间八折优惠,购买一张门票多少元能比原来省多少元四、求:“比多(少)百分之几(几分之几)”方法:相差数÷单位1例题:1、男生有30人,女生有20人,男生比女生多了百分之几女生比男生少了百分之几2、电饭锅的原价是220元,现价是160元,电饭锅的价格降低了百分之几五、是(占、相当于)的百分之几(几分之几)”方法:比较量÷单位1(提示:在出油率、发芽率、正确率、成活率、出勤率、含盐率等题目中,单位“1”是总数,即整体量。
六年级上册分数、百分数常见数量关系
![六年级上册分数、百分数常见数量关系](https://img.taocdn.com/s3/m/fb304136a8956bec0875e33b.png)
分数/百分数常见数量关系 (蓝字表示已知数量)Ⅰ、求“A 数量的几分之几是多少?”用乘法,单位“1”找“的”字。
例:1、32米的43是( )米; 2、32米的25%是( )米。
32×43=24(米) 32×25%=32×41=8(米)变化1:已知A 数是B 数的几分之几,求A 的数量。
(“是”字可替换成“相当于”、“占”、“等于”…)已知条件换句话说:B 数的几分之几是A 数。
B 数×几分之几=A 数例:1、已知松树有48棵,杨树数量是松树的65,杨树多少棵?48×65=40(棵)2、( )千克相当于35千克的74。
35×74=20(千克) 3、( )吨占25吨的80%。
25×80%=25×54=20(吨)4、已知六年级总共300人,女生占47%,六年级女生有多少人? 分析:把“女生占47%”这句话说完整就是“女生占总人数的47%”。
300×47%=141(人)变化2:已知A 数是(相当于、占、等于)B 数的几分之几,求B 的数量。
同样是:B 数×几分之几=A 数,但是B 数未知,A 数已知,因此得到 A 数÷几分之几=B 数,或者设B 数为x ,用方程方法。
例:1、72米是( )米的98方法一:72÷98=72×89=81(米) 方法二:解:设72米是x 米的98。
98x=72 → x=81 2、已知水果超市运来12箱苹果,是梨箱数的43,运来梨有多少箱?等量关系:梨的箱数×43=苹果的箱数 方法一:12÷43=12×34=16(箱) 方法二:解:设运来梨有x 箱。
43x=12 → x=163、已知六年级男生有159人,占六年级总人数的53%,六年级总共有多少人?等量关系:六年级总人数×53%=男生人数解:设六年级总共有x 人。
行测数量关系公式大全
![行测数量关系公式大全](https://img.taocdn.com/s3/m/4b2d7e43cd1755270722192e453610661fd95a49.png)
行测数量关系公式大全
行测中的数量关系是指通过对事物数量的分析和计算来解决问题的方法。
在行测中,关于数量关系的问题非常常见,因此掌握相关的公式和解题方法非常重要。
下面是行测中常用的数量关系公式:
一、基本数量关系公式:
1.两个数的比例关系:两个数a和b的比例关系表示为a:b,可以用分数形式a/b或者百分数形式a%表示。
2.百分数与小数的关系:100%=1或者1%=0.01
3.百分数、小数和分数的转化关系:百分数转化为小数除以100,小数转化为百分数乘以100,分数转化为百分数分子除以分母再乘以100或者分子除以分母再乘以100%。
4. 两个数的倍数关系:如果一个数a是另一个数b的倍数,可以表示成a = nb,其中n是整数。
二、增长和减少关系公式:
1.增长率的公式:增长率=(增长的数量/原来的数量)*100%。
2.减少率的公式:减少率=(减少的数量/原来的数量)*100%。
3.点数和百分数的关系:点数表示的是增长或减少的比例,1个点
=1%。
三、综合数量关系公式:
1.一对一关系:两个集合A和B中的元素一一对应,集合A中的元素个数等于集合B中的元素个数。
即,集合A和集合B的元数相等。
2.多对一关系:集合A中的一个元素对应集合B中的多个元素,集合B中的元素个数小于集合A中的元素个数。
3.多对多关系:集合A中的一个元素对应集合B中的多个元素,而集合B中的一个元素又对应集合A中的多个元素。
集合A和集合B的元素个数都可以不相等。
数量关系公式大全
![数量关系公式大全](https://img.taocdn.com/s3/m/c3c52ec385868762caaedd3383c4bb4cf6ecb759.png)
数量关系公式大全数量关系是数学中一个重要的概念,它描述了不同量之间的数学关系。
在实际生活和工作中,我们经常会遇到各种数量关系问题,因此掌握数量关系公式是十分重要的。
本文将为大家介绍数量关系公式的大全,帮助大家更好地理解和运用数量关系公式。
一、基本数量关系公式。
1. 相等关系,a = b,表示a和b相等。
2. 比例关系,a,b = c,d,表示a与b的比例等于c与d的比例。
3. 百分比关系,a% = b,表示a的百分之一等于b。
4. 倒数关系,a的倒数为1/a。
5. 平方关系,a²表示a的平方,a² = a a。
6. 立方关系,a³表示a的立方,a³ = a a a。
7. 平方根关系,√a表示a的平方根,(√a)² = a。
二、加减乘除的数量关系公式。
1. 加法,a + b = c,表示a与b的和等于c。
2. 减法,a b = c,表示a减去b的差等于c。
3. 乘法,a b = c,表示a与b的积等于c。
4. 除法,a / b = c,表示a除以b的商等于c。
三、比例的数量关系公式。
1. 直接比例,y = kx,表示y和x成正比,k为比例常数。
2. 反比例,xy = k,表示x和y成反比,k为比例常数。
四、百分比的数量关系公式。
1. 百分数,a% = a/100,表示a的百分之一。
2. 百分数的计算,a% b = c,表示a的百分之一乘以b等于c。
五、平均数的数量关系公式。
1. 算术平均数,(a₁ + a₂ + ... + aₙ) / n = x,表示n个数的和除以n等于平均数x。
2. 加权平均数,(a₁w₁ + a₂w₂ + ... + aₙwₙ) / (w₁ + w₂ + ... + wₙ) = x,表示每个数乘以相应权重的和除以权重的和等于加权平均数x。
六、百分比的数量关系公式。
1. 百分数,a% = a/100,表示a的百分之一。
2. 百分数的计算,a% b = c,表示a的百分之一乘以b等于c。
分数、百分数应用题及答案 (1)
![分数、百分数应用题及答案 (1)](https://img.taocdn.com/s3/m/bdc3879650e79b89680203d8ce2f0066f5336495.png)
分数、百分数应用题知识梳理:1、求一个数是另一个数的几分之几(或百分之几),用等式表示三种量得关系:分量÷单位“1”的量=分率(或百分率)2、已知一个数,求它的几分之几(或百分之几)是多少,用等式表示三种量的关系:单位“1”的量×分率(或百分率)=分量3、已知一个数的几分之几(或百分之几)是多少,求这个数,用等式表示三种量的关系:分量÷分率(或百分率)=单位“1”的量工程问题是分数应用题的特例,它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。
工作总量、工作效率、工作时间之间的关系是:工作总量=工作效率×工作时间工作时间=工作总量÷工作效率工作效率=工作总量÷工作时间工作总量÷工作效率之和=工作时间5、浓度问题浓度问题是一种研究溶液配比的百分数应用题。
基本数量关系有:溶液质量=溶质质量/溶液质量×100%=溶质质量/(溶质质量+溶剂质量)×100%溶质质量=溶液浓度×溶液质量溶液质量=溶质质量÷溶液浓度6、纳税与银行利息问题依法纳税是每个公民应有的义务。
把应缴纳的税款叫做应纳税额,应纳税额与收入的百分比叫做利率。
基本数量关系有:总利息=本金×利率×时间个人应得利息=总利息×(1-利息税税率)利率=总利息÷本金÷时间×100%本金=总利息÷利率÷时间7、折扣与商品利润问题工厂或商店有时减价出售商品,通常我们把它称为“打折”出售,几折就是百分之几十。
利润问题亦是一种常见的百分数应用题。
一般情况下,从厂家购进商品的价格称为成本价。
商家在成本价的基础上提升价格出售,所赚的钱称为利润,利润与成本价的百分比就称为利润率。
基本数量关系:利润率=(售价-成本价)/成本价×100%售价=成本价×(1+利润率)成本价=售价÷(1+利润率)定价=成本价×(1+期望利润率)期望利润=成本价×期望利润率1、一桶油第一次取出总数的10%,第二次取出剩下的20%,两次共取出28升。
【小升初】小学数学《分数、百分数问题专题课程》含答案
![【小升初】小学数学《分数、百分数问题专题课程》含答案](https://img.taocdn.com/s3/m/643545b4d0d233d4b14e69d8.png)
15.分数、百分数问题知识要点梳理一、数量关系式在分数(百分数)应用题中存在着三个量,即标准量(单位“1”的量)、比较量(部分量)和分率(百分率)。
分数(百分数)应用题基本的数量关系式:标准量(单位“1”的量)×分率(百分率)=比较量(部分量)比较量(部分量)÷标准量(单位“1”的量)=分率(百分率)比较量(部分量)÷分率(百分率)=标准量(单位“1”的量)二、基本类型解题思路和方法:一般有三种基本类型:1.求一个数是另一个数的几分之几(百分之几);2.已知一个数,求它的几分之几(百分之几)是多少;3.已知一个数的几分之几(百分之几)是多少,求这个数。
解答分数、百分数应用题的关键是:首先要分清哪个量是标准量(单位“1”的量),哪个是比较量(部分量),然后找出与之相对的分率。
三、出勤率与发芽率出勤率=出勤人数÷总人数×100%发芽率=发芽粒数÷总的粒数×100%考点精讲分析典例精讲考点1 求分率(百分率)【例1】一本书100页,读了60页,剩下这本书的百分之几没看?【精析】根据已知条件,把这本书的总页数看作单位“1”,先计算出剩下的页数,再用剩下的页数除以总页数。
【答案】(100-60)÷100×100%=40%答:剩下这本书的40%没看。
【归纳总结】先确定单位“1”,再根据部分量除以单位“1”的量计算对应的百分率。
考点2 求部分量【例2】参加“六一”儿童节联欢活动的少先队员中,女队员占全体少先队员的,男队员比女队员的多40人,问女队员有多少人?【精析】以全体少先队员为单位“1”。
男队员占全体少先队员的1-=,男队员比全体少先队员的×=多40人。
那么全体少先队员的(-)是40人,全体少先队员是40÷(-)=840(人),女队员有840×=480(人)。
【答案】×=40÷(-)=840(人)840×=480(人)。
百分数应用
![百分数应用](https://img.taocdn.com/s3/m/ccd945e24afe04a1b071dea1.png)
一个数的几分之几是多少。
其最基本的数量有三个:“一个数”即单位“1”(标准量)“几分之几”即对应分率“多少”即对应数量。
【基本数量关系式为】:单位“1”×对应分率=对应数量;对应数量÷单位“1”=对应分率;对应数量÷对应分率=单位“1”。
解题时,一般先确定好标准量,再找准题中具体数量与分率的对应关系,运用相应的数量关系式求解。
孩子在解答较复杂的分数应用题时,常常因为找不准量率对应关系,不会解题。
【解题技巧】:一、通过分率弄清对应数量。
分率表示的大多是部分和总量(或某个量与标准量)的比,抓住分率就能弄清谁和谁比,从而确定总量(或标准量)即单位“1”,部分量(或某个量)即该分率对应的数量。
二、转化“量”“率”不直接对应的问题,化难为易。
有些问题中给出的分率和具体数量没有直接的对应关系,可以通过已知分率和其它已知条件先求出具体数量对应的分率,再进一步解答。
三、数量关系比较复杂的分数应用题,可以通过画线段图直观显现出具体数量与分率对应关系,这是解答分数应用题的有效策略。
【题目】:食堂有一批大米,用去总量的2/3后,又运进260千克,现存大米比原来还多20%,现存大米多少千克?【题目】:某小学六年级选出男生的1/11和12名女生参加数学竞赛,剩下的男生人数是女生人数的2倍。
已知这个学校六年级共有156人,男、女生各有多少人?(1)水泥公司生产的水泥存放在两个仓库里,第一仓库存水泥占总数的56%。
如果从第一仓库调6吨到第二仓库,这时两个仓库存水泥相等,求两个仓库共有水泥多少吨?(2)新民小学男生比全校学生总数的4/7少25人,女生比全校学生总数的4/9多15人。
求全校总人数【题目】:某小学学生中3/8是男生,男生比女生少328人,该小学共有学生多少人?【题目】:某饲养场有改良羊和牛共160头。
一次卖出羊总数的1/10,又买来30头牛,这时羊和牛的头数相等,求原来羊和牛各有多少头?【题目】:一瓶油第一次吃去1/5,第二次吃去余下的3/4,这时瓶内还有1/5千克,这瓶油原来有多少千克?【题目】:五年级参加文艺汇演的共有46人,其中女生人数的4/5是男生人数的1又1/2倍,问参加演出的男、女生各多少人?【题目】:四个孩子合买一只60元的小船,第一个孩子付的钱是其他孩子付的总钱数的一半,第二个孩子付的钱是其他孩子付的总钱数的1/3,第三个孩子付的钱是其他孩子付的总钱数的1/4,第四个孩子付了多少元?【题目】:(1)把一批面粉分给三个工厂,甲厂先分得这批面粉的2/5,乙厂分得余下的2/5,最后丙厂分得14.4吨,这批面粉重多少吨?(2)两袋大米,第二袋比第一袋重15千克。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数、百分数应用题的基本数量关系笔记
1.分数加、减法应用题
分数加、减法应用题中的已知分数有两种情况:一种是表示具体的数量,另一种是表示两个量的比。
譬如:
①食堂第一天烧煤吨,第二天烧煤吨,两天共烧煤多少吨?
题中已知的分数,都表示具体的数量,跟整数里求和应用题的数量关系是一致的,要求学生知道这是求两个相同单位的量的和。
②食堂有一批煤,第一天烧去这批煤的,第二天烧去这批煤的,两天共烧去
这批煤的几分之几?
题中已知的分数,都是两个量的比,而不是具体的数量。
数量关系虽然跟整数里求和应
用题是一致的,这是共性;但是,学生要理解题中的、以及求出的和,都是对这批煤而言的,不是具体的量。
③地球表面积的是海洋,剩下的是陆地,陆地占地球表面积的几分之几?
这一题的数量关系跟整数里求剩余数,用减法计算是一致的,可是题中只给出一个已知
条件是,另一个条件要想象整个地球表面积看作“1”,然后用1-=,这就是与整数应用题不同的特殊性。
2.分数、百分数乘、除法应用题
分数乘、除法应用题,既含有整数乘、除法应用题的数量关系,又具有新的数量关系,要求学生能够辨析清楚。
譬如:
①一辆汽车平均每分钟行千米,30分钟行多少千米?
这种题的数量关系跟整数里求相同加数的和,或者说求的30倍是一致的。
②10个鸡蛋重千克,平均每个鸡蛋重多少千克?
这种题的数量关系跟整数除法题是一致的。
分数乘、除法应用题,既含有整数乘、除法应用题的数量关系,又具有新的数量关系,通常分为三种情况,或者叫做分数的三种基本应用题:
(1)求一个数是另一个数的几分之几的除法应用题。
在实际生活中,经常需要比较两个数量的倍数关系,当它们的倍数等于1或大于1的时候,通常称为“几倍”;当它们的倍数小于1的时候,通常称为“几分之几”。
学习整数应用题的时候,只知道一个数是另一个数几倍。
如:白兔16只,黑兔4只,白兔只数是黑兔的16÷4=4(倍)。
到了学习分数以后,黑兔的只数也可以与白兔去比较,即黑兔的
只数是白兔的4÷16=。
当学习了百分数以后,数是另一个数的几倍或几分之几,就
统一为一个数是另一个数的百分之几了。
这类问题的数量关系跟整数里求两个数的倍数是一致的,要求掌握谁与谁相比较。
如,甲是乙的几分之几,是用甲与乙相比较,那么乙是标准的量,甲是比较的量。
并且知道用标准的量作除数。
可是,百分数在实际应用上,还有一些特殊性。
求一个数是另一个数的百分之几,也叫做两个数的百分比或百分率。
例如,产品合格率,种子发芽率,工人出勤率,存款的利息率,向国家交税的纳税率等。
所求的这些“率”,都是用百分数表示的,所以,在这些百分率的公式里,添上乘以100%,表示求得的结果必须用百分数表示。
如,
小麦出粉率=×100%
在百分数里,经常会遇到除不尽的情况,除了指定精确度的以外,一般除到小数第四位,即万分位,然后四舍五入取三位小数,化成百分数后,百分号前面的数保留一位小数。
并且知道百分号前面通常写成小数形式,不用带分数的形式,如通常写成33.3%。
(2)求一个数的几分之几或百分之几是多少的乘法应用题。
在整数应用题里,求一个数的几分之一或几分之几是多少的内容,那时是用整数乘、除法计算的。
例如,有学生600人,其中十分之九(或)是少先队员,求少先队员有
多少人。
这就是把600人分成10等份,求出的是的人数,再乘以9,就是的人数,
列式为:600÷10×9=540(人)。
有了这个基础,学习分数乘法应用题,思考方法一致,只是把整数乘除的方法转化为分数乘法。
即
600÷10×9=540(人)用分数表示
×9=600×=540(人)
我们要练地掌握求一个数的几(百)分之几是多少,用乘法计算的结论。
(3)已知一个数的几分之几或百分之几是多少,求这个数的除法应用题。
这是分数乘法的逆向题,也是容易与分数乘法相混淆的问题,在分数四则计算的前面要学习简易方程,到这里用列方程解答,可避免乘、除法混淆。
因此,运用求一个数的几分
之几是多少,用乘法计算的思考方法去解题。
例如,一根钢管的是48厘米,这根钢管
长多少厘米?思考:
(钢管的长)×=48(厘米),
设钢管长x米,即:
X=48
x=192。
有些题目,既可以用上述方法解答,也可以根据已知的数量关系进行思考。
如,一个工程队小时开凿山洞米,求1小时开凿山洞多少米。
用上述方法解答,设1小时开凿山洞x米,列方程为:x×=或x=,解得x=。
也可以根据:工作总量÷工作时间=单位时间的工作量
所以,列式为:÷=(米)
以上是分数、百分数应用题中最基础的内容,应该理解并掌握。