列方程解应用题的一般步骤是

合集下载

列方程解应用题的一般步骤是

列方程解应用题的一般步骤是

列方程解应用题的一般步骤是:(1)审(2)找(3)设(4)列(5)解(6)答,而最关键的是第二步找等量关系,只有找出等量关系才可列方程,下面我来谈谈怎样找相等关系和设未知数。

一、怎样找等量关系(一)、根据数量关系找相等关系。

好多应用题都有体现数量关系的语句,即“…比…多…”、“ …比…少…”、“…是…的几倍”、“ …和…共…”等字眼,解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定相等关系。

例1:某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生相等关系:女生人数-男生人数=80例2:合唱队有80人,合唱队的人数比舞蹈队的3倍多15人,则舞蹈队有多少人相等关系:舞蹈队的人数×3+15=合唱队的人数例3:在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人相等关系:调动后甲处人数=调动后乙处人数×2解:设调x人到甲处,则调(20-x)人到乙处,由题意得:27+x=2(19+20-x),解得 x=17所以 20-x=20-17=3(人)答:应调往甲处17人,乙处3人。

(二)、根据熟悉的公式找相等关系。

单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工作效率×工作时间=工作总量,售价=原价×打折的百分数,利润=售价-进价,利润=进价×利润率,几何形体周长、面积和体积公式,都是解答相关方程应用题的工具。

例1:一件商品按成本价提高100元后标价,再打8折销售,售价为240元。

求这件商品的成本价为多少元相等关系:(成本价+100)×80%=售价例2:用一根长20cm的铁丝围成一个正方形,正方形的边长是多少相等关系:正方形的周长=边长×4例3:一个梯形的下底比上底多2厘米,高是5厘米,面积是40平方厘米,求上底。

列分式方程解应用题的一般步骤

列分式方程解应用题的一般步骤

列分式方程解应用题的一般步骤解分式方程应用题的一般步骤:
一、理解题意和变量定义
1. 仔细阅读题目,理解问题的背景和意图。

2. 确定需要解决的问题,并定义所涉及的变量。

二、列出分式方程
1. 根据问题中的条件和定义的变量,用数学语言将问题表达为分式方程。

2. 根据题目中所需求解的未知数,将分式方程进行变形,使得未知数只出现在一个分式中。

三、清除分母
1. 将方程两边的分母消除,使方程变为整式方程。

2. 方法一:将每个分母乘到方程两边的相应项上。

3. 方法二:求出各个分母的最小公倍数,并将每个分母乘以使其等于最小公倍数的倍数。

四、解整式方程
1. 如果分式方程已消去分母,得到的是一个整式方程。

2. 解整式方程的方法与一元一次方程的解法相同,例如使用等式两边的规律性质(加减反运算、去项、合并同类项等)进行计算。

五、检验解的有效性
1. 将求得的解代入原分式方程,验证是否满足方程的条件。

2. 如果解满足原方程,则解是有效的。

否则需要重新检查方程的推导过程。

六、书写解的结论
1. 根据题目要求和解的有效性,得出问题的解答。

2. 如果问题要求解是唯一的,需要明确指出解的唯一性。

这是解分式方程应用题的一般步骤,具体题目可能会有一些特殊的步骤或变形的需求,需要根据题目的具体要求来进行相应的考虑和解答。

同时,在解题过程中,需要注意每一步的合理性、准确性以及解的有效性的验证。

列一元一次方程解应用题的一般步骤

列一元一次方程解应用题的一般步骤

∙列一元一次方程解应用题的一般步骤:列方程(组)解应用题是中学数学联系实际的一个重要方面。

其具体步骤是:⑴审题:理解题意。

弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数):找出等量关系:找出能够表示本题含义的相等关系;①直接未知数:设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程;②间接未知数(往往二者兼用)。

一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。

一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答题。

综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。

在这个过程中,列方程起着承前启后的作用。

因此,列方程是解应用题的关键。

∙一元一次方程应用题型及技巧:列方程解应用题的几种常见类型及解题技巧:(1)和差倍分问题:①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。

(2)行程问题:基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,路程=速度×时间。

①相遇问题:快行距+慢行距=原距;②追及问题:快行距-慢行距=原距;③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,逆水(风)速度=静水(风)速度-水流(风)速度例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?两车同时开出,相背而行多少小时后两车相距600公里?两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

列方程解应用题的一般步骤是什么(精)

列方程解应用题的一般步骤是什么(精)
解此方程得 x=300
经检验x=300为原方程的根
答:利息为300元。
练一练
练习: 1、一组学生乘汽车去春游,预计
共需车费120元,后来人数增加了 用仍不变,这样每人少摊3元,原来这组 学生的人数是多少个?
1 ,费 4
2、解一组方程,先用小计算器解20 分钟,再改用大计算器解25分钟可解完, 如果大计算器的运算速度是小计算器的4 倍,求单用大计算器解这组方程需多少时 间?
王明同学准备在课外活动时间组织部分 同学参加电脑网络培训,按原定的人数估计 共需费用300元。后因人数增加到原定人数 的2倍,费用享受了优惠,一共只需480元, 参加活动的每个同学平均分摊的费用比原计 划少4元。原定人数是多少?
3、(03苏州)为了绿化江山,某村计划在荒 山上种植1200棵树,原计划每天种x棵,由于邻村 的支援,每天比原计划多种了40棵,结果提前了5 天完成了任务,则可以列出方程为( )
列方程解应用题的 步骤是怎样的呢?
归纳概括
列分式方程解应用题的一般步骤: (1)审清题意; (2)设未知数(要有单位); (3)根据题目中的数量关系列出式子,找 出相等关系,列出方程; (4)解方程,并验根,还要看方程的解是 否符合题意; (5)写出答案(要有单位)。
练习:求解本章导图中的 问题.
三、例题讲解与练习
A,B两地相距135千米,两辆汽车从A开往B,大 汽车比小汽车早出发5小时,大汽车又比小汽车 早到30分钟,已知小汽车与大汽车的速度之比 为5:2,求两车的速度。 分析: 已知两边的速度之比为5:2,所以 设大车的速度为2x千米/时,小说车的速度为5x千 米/时,而A、B两地相距135千米,则大车行驶时 135 135 间 2 x 小时,小车行驶时间 5 x 小时,由题意可知大 车早出发5小时,又比小车早到30分钟,实际大车 行驶时间比小车行驶时间多4.5小时,由此可得等 量关系

列方程解应用题的一般步骤

列方程解应用题的一般步骤

列方程解应用题的一般步骤
解应用题的一般步骤如下:
1. 阅读题目:仔细阅读题目,并理解题目所描述的情境和要求。

2. 确定未知数:确定需要求解的未知数,可以用一个或多个字母表示。

3. 建立关系式:建立数学模型,将问题中的已知条件和未知数之间的关系用方程表示。

4. 解方程:根据建立的方程,用数学方法解方程。

5. 检验答案:将求得的解代入原方程中进行检验,确保答案符合题目要求。

6. 回答问题:根据问题要求,用正确的语言回答问题。

每一步都需要细致的分析和思考,有效地将问题转化为数学问题,并通过解方程求解得到正确的答案。

列方程解应用题的一般步骤

列方程解应用题的一般步骤

解:解方程(解法因题而异),间接设的问 题及有多个未知数的问题不要有遗漏 验:(1)检验解方程的结果是否正确;
(2)将解出的结果带入实际的问题情境 进行检验。 答:根据问题写出回答,要完整准确。
应用题的基本类型及应注意的知识点
一.数字问题(未知数的设法,验根)
1.某月日历中一竖列上相邻的三数之和
包装厂有工人42人,每个工人平均每小 时可以生产圆形铁片120片,或长方形铁片80 片,将两张圆形铁片与和一张长方形铁片可配 套成一个密封圆桶,问如何安排工人生产圆形 或长方形铁片能合理地将铁片配套?
六、工程问题:(工作量=工作效率×工作时间) (工作量之和=工作总量)
1.某人读一本书,第一天读了全书的 1/3还多2页,第二天读了剩下的1/2少 1页,这时还剩下28页没读完,这本 书共有多少页?
为75,若设中间一个数为 x,则另两个
数为 x 7 ,x 7 可列方程为:
x 7 x x 7 75
2.小明在日历上用一个正方形圈出了 2×2个数,这四个数的和是48,这四天 分别是几号?
数字问题: (会用代数式表示一个两位数或三位数)
3.若一个三为数的百位数字是 x ,十位数 字是 y,个位数字是 z ,则此三位数
联络员路程=联络员速度×联络员时间
解:15×4=60(千米)
答:当后队追上前队时联络员行了60千米。
3.甲、乙两人从同一村庄步行去县城, 甲比乙早出发1小时,而晚到1小时; 甲每小时走4千米,乙每小时走6千米。 求从村庄到县城的路程。
4.甲、乙两人由A村去B城办事,乙因事 耽误了30分钟,若乙的速度比甲的速度 每小时快5千米,那么乙用了2小时追上 甲,求甲、乙两人的速度及追上时离A 村的距离。

列方程解应用题的一般步骤

列方程解应用题的一般步骤

用字母代替应用题中的未知数,根据等量关系列出方程,再解所列出的方程,从而得到应用题的答案,这个过程叫做列方程解应用题.列方程解应用题的一般步骤是:(1)分析题意.认真读题,反复审题,弄清问题中的已知量是什么,未知量是什么,它们之间有什么等量关系:(2)设未知数为x.合理选择未知数是解题的关键步骤之一.一般设题目里所求的未知数是x,特殊情况下也可设与所求量相关的另一个未知数为x;(3)列方程.根据所设的未知量x和题目中的已知条件,利用等量关系列出方程;(4)解方程.求未知数x的值;(5)检验并答题.对方程的解进行检查验算,看是否符合题意,针对问题作出答案.例1 甲船载油595吨,乙船载油225吨,要使甲船的载油量为乙船的4倍,必须从乙船抽多少吨油给甲船?分析:先找相等的关系.乙船抽出一部分油给甲船后,使甲船的油等于乙船的油的4倍,即:甲船的油+乙船抽出的油=(乙船的油-乙船抽出的油)×4,我们可以设乙船抽出的油为x吨,利用等量关系列出方程求解.解:设从乙船抽出x吨油,则595+x=(225-x)×4595+x=900-4x4x+x=900-5955x=305x=61答:必须从乙船抽出61吨油给甲船.例2 甲、乙两人骑自行车同时从西镇出发去东镇,甲每小时行15千米,乙每小时行10千米.甲行30分钟后,因事用原速返回西镇,在西镇耽搁了半小时,又以原速去东镇,结果比乙晚到30分钟,试求两镇间的距离.分析:甲从西镇出发,行了30分钟,因有事用原速返回西镇,这样又得需要30分钟,到西镇后又耽搁了半小时,甲前后共耽误了0.5×3=1.5小时,但在甲耽误的时间里,乙没有停留,因此可以看作乙比甲从西镇提前1.5小时出发,然后甲追乙,结果比乙晚30分钟到达东镇,如果设甲第二次从西镇出发到东镇所用时间为x小时,我们可以得出东西两镇的距离为:甲时速×x=乙在甲前的路程+乙时速×(x-0.5)根据这样的等量关系,可以列出方程求解.解:设甲第二次从西镇出发到东镇所用的时间为x小时,则15x=10×(0.5×3)+10(x-0.5)15x=15+10x-515x-10x=15-55x=10x=2代入15x=15×2=30答:东西两镇的距离是30千米.例3 哥哥现在的年龄是弟弟当年年龄的3倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁?分析:解答有关年龄方面的问题时,注意两人的年龄差经过多少年都不会变,因此可以根据这个差不变找等量关系.如果假设哥哥现在的年龄为x岁,由于哥哥与弟弟现在的年龄和是30岁,所以弟弟现在的年龄为30-x岁,又因为哥哥当年的年龄与弟弟现在的年龄相同,所以哥哥当年的年龄为30-x岁,又由于哥哥现在的年龄是弟弟当年年龄的3倍,所以弟弟当年的年龄为他们的年龄差不变.解:设哥哥现在的年龄为x,则方程两边同乘以3,得6x-90=90-3x-x6x+4x=90+9010x=180x=18代入30-x=30-18=12答:哥哥现在的年龄是18岁,弟弟现在的年龄是12岁.思考:如果设弟弟现在的年龄为x岁,如何列方程呢?例4 小红、小丽、小强三位同学,各用同样多的钱买了一些练习本.小红买的每本是0.6元,比小强少2本,小丽买的每本是0.4元,比小强多3本,问小强买了多少个练习本?每本的价格是多少?分析:设小强买了x个练习本,由于小红买的本数比小强少2本,所以小红买的本数为x-2个,小丽买的本数比小强多3本,所以小丽买的本数为x+3个.根据三人买练习本花的钱数相同,可以列出方程.解:设小强买了x个练习本,则0.6×(x-2)=0.4×(x+3)0.6x-1.2=0.4x+1.20.6x-0.4x=1.2+1.20.2x=2.4x=12代入0.6×(x-2)=0.6×(12-2)=66÷12=0.5答:小强买了12个练习本,每本价格0.5元。

【小升初】小学数学《列方程解应用题专题课程》含答案

【小升初】小学数学《列方程解应用题专题课程》含答案

21.列方程解应用题知识要点梳理一、列方程解应用题的意义列方程解应用题就是用字母表示实际问题里的某个未知数,根据等量关系列出含有未知数的等式,即方程。

二、列方程解应用题的一般步骤1.审题:了解题中的已知条件和未知量,明确各个数量之间的关系,找出等量关系。

2.设:用字母表示题中的一个未知量,并用含该字母的代数式表示其他的未知量。

3.列:找出能够表示应用题全部含义的一个数量关系,列出方程4.解:解列出的方程5.答:检验所求的解是否符合题意,写出答案。

列方程解应用题,关键是寻找题中的等量关系。

方法:(1)直接设未知数;(2)间接设未知数。

途径:(1)根据关键句设未知数;(2)根据单位“1”设未知数;(3)根据公式设未知数。

考点精讲分析典例精讲考点1 直接列方程解应用题【例1】甲和乙一共有100元钱,甲用去,乙用去后,两人一共还剩下60元,甲原来有多少钱?【精析】设甲原有x元,则乙原有(100-x)。

甲剩下的钱可以用 -元表示,乙剩下的钱可以用--元表示,然后根据两人一共剩下60元列出方程。

【答案】设甲原有x元,则乙原有(100-x)。

---答:甲原来有72元钱。

【归纳总结】此题比较简单,直接设未知数即可,利用两个等量关系设未知数和列方程。

考点2 间接列方程解应用题【例2】东方小学体育室的足球个数是篮球的3倍,体育课上,每班借6个足球,5个篮球,篮球借完时,还有72个足球。

体育室里原有足球和篮球各多少个?【精析】设班级数共为x个,那么借出的足球为6x个,借出的篮球为5x个。

【答案】设借球的班级数为x个。

篮球:58=40个足球:403=120个答:体育室里原有足球120个,篮球40个。

【归纳总结】隐含的等量关系是借的班数相同,间接设未知数,设班数为x。

考点3 列方程解含比例的应用题【例3】李叔叔与王叔叔8月份收入的钱数之比是8:5,8月份支出的钱数之比是8:3,月底李叔叔结余800元,王叔叔结余980元,8月份两人各收入多少元?【精析】由题意可知:收入比是8:5,设李叔叔的收入为8x元,王叔叔的收入为5x 元,收入减去结余等于支出,由此可列方程。

列方程解应用题的一般步骤

列方程解应用题的一般步骤
确保未知数的设定合理,不会导致方 程无解或解不唯一。
找出题目中的等量关系
根据题目的描述,找出已知量与未知量之间的等量关系。 将等量关系式转化为数学表达式或方程,以便求解。
02 设未知数
直接设未知数
总结词
直接设立未知数是解决应用题的基础 步骤,有助于简化问题并明确解题方 向。
详细描述
直接设未知数是指在应用题中直接定 义未知的量,通常用字母表示。例如 ,在路程问题中,可以直接设速度为v ,时间t等。
总结词
详述解题步骤
VS
详细描述
列出详细的解题过程,包括方程的建立、 求解过程以及如何得出最终答案。这有助 于读者理解解题思路和方法。
对解进行解释和说明
总结词
阐述解的意义和实际背景
详细描述
对解进行解释和说明,包括解在实际问题中 的应用和意义。这有助于加深对题目的理解 ,并使答案更具实际价值。
THANKS 感谢观看
检验解是否符合题目要求
核对解是否满足题目的目标或任务,例如求解最大值、最 小值等。
检验解是否满足题目的特定要求,例如特定数值、特定关 系等。
06 作答
写出解的完整形式
总结词
明确解的形式
详细描述
在解答应用题时,需要将解的完整形式写出,包括未知数的具体数值和单位,确保答案 清晰明了。
写出解题过程
根据几何图形列出方程
分析几何图形中的已知条件和未 知量。
根据几何定理和性质,列出方程 表示图形的边长、角度等关系。
对方程进行整理,使其形式更简 单,便于求解。
04 解方程
合并同类项
合并同类项
将方程中相同或相似的项合并, 简化方程。
合并方法
将同类项的系数相加或相减,字 母和字母的指数保持不变。

应用题的解题步骤与方法

应用题的解题步骤与方法

应用题的解题步骤与方法一、解答应用题的一般步骤1、审题,也就是理解题意。

要反复读题,弄清已知条件和所求问题。

2、分析数量之间的关系,也就是分析题目中已知量,未知量及所求问题之间的相互关系。

有时可以通过画简单的线段关系图,使数量关系更加简单明了。

3、确定运算顺序,即先算什么、再算什么、最后算什么,并列出算式,算出结果。

4、验算并写出答案。

二、列方程解应用题的一般步骤1、弄清题意,明确已知量和未知量,用字母X表示未知量。

2、找出题目中已知量和未知量之间的等量关系。

3、根据等量关系,列出方程,并解方程。

4、检验并写出答案。

三、列方程解答应用题跟算术方法解答应用题的联系与区别。

联系:列方程解答应用题,需要应用算术里学习的四则运算的相互关系,以及常见的数量关系,因此算术解法是基础,而列方程解应用题是它的发展。

区别:1、两种解答应用题的方法表达方式不同。

列方程是用代数式表示数量关系,关系式中包括未知数X;算术解法则是用算术式子表示数量关系,计算过程不含未知数。

2、解题思路不同。

列方程解应用题是把未知量设为X,与其它已知量一起参加列式,而算术解法只能从已知与已知,已知与未知之间多层次分析思考,需要逆向思维。

3、解题步骤的不同(见解应用题的步骤)四、解答应用题的基本思路1、综合法思路。

从已知条件出发,根据数量关系先选择两个已知条件,提出可以解答的问题,然后把所求出的数量作为新的已知条件,与其它已知条件搭配,再提出可以解答的问题,这样逐步推导,直到求出题目中所要求的结果为止。

2、分析法思路。

从所求问题入手,根据数量关系,找出解答最后结果所需要的条件,把其中一个(或2个)未知条件作为新问题,再寻找解决这个新问题所需要的条件,这样逐步逆推,直到所找条件在应用题中都是已知的为止。

其实在运用分析法的逆推过程中,就是把复杂的应用题分解成几个简单的应用题。

3、综合法解题思路和分析法解题思路是相反的,但在思考过程中,分析和综合的运用并不是孤立的,而是互相联系的,综合中有分析,交叉运用。

列方程解应用题

列方程解应用题

列方程解应用题上节课复习正数负数数轴主要知识:重点难点复习:本节课知识点列方程解应用题的一般步骤:1.用字母表示未知数,并根据题意,用未知数来表示相关的量;2.找出未知量于已知量之间的等量关系,并列方程;3.解方程;4. 检验并写出答句。

①解答一般的相遇问题,我们常规的思路是,抓住相遇问题的基本数量关系:(甲速+乙速)×相遇时间=路程来解答。

②解答一般的应用题,我们常规的思路是,抓住其表示数量关系的词语(图形的周长和面积﹑甲的数量比乙的多或者少﹑甲的数量是乙的多少倍)从而找到其中的等量关系。

典型例题解析例1用一根长为28厘米的铁丝围成一个长方形,这个长方形的长是8厘米,宽是多少厘米?分析:先设这个长方形的宽是x厘米,那么这个长方形的周长可以用2(8+x)厘米表示,然后寻找x cm 未知量和已知量之间的等量关系来列方程。

长方形的周长计算公式就是一个等量关系:8 cm 长方形的周长=2×(长+宽)。

解:设这个长方形的宽为x厘米,2(8+x)=28,8+x=14x=6答:这个长方形的宽是6厘米。

巩固练习:1、长方形的游泳池占地600平方米,长30米,游泳池的宽多少米?x m30米2如图,面积为15平方厘米的三角形纸片的底边长6厘米,这条底边上的高是多少厘米?h6cm3、如图,一块梯形草坪的面积是30平方米,量得上4m底长4米,高6米,它的下底长多少米?6m例2小胖、小丁丁、小巧、小亚平时都喜欢集邮。

小胖和小巧一共有232张邮票,小胖的邮票张数是小巧的3倍,小胖、小巧各有多少张邮票?小巧的邮票张数232张小胖的邮票张数分析:设小巧有x张邮票,那么小胖的邮票张数可以用3x表示。

根据题意,未知量和已知量之间的等量关系是:小巧的邮票张数+小胖的邮票张数=两个人共有的邮票张数。

解:设小巧有x张邮票,那么小胖有3x张邮票。

x+3x=232,4x=232,x=583x=3×58=174答:小胖有174张邮票,小巧又58张邮票.4、小胖将174张邮票放在大、小两本集邮册中,大集邮册中的邮票张数正好是小集邮册的2倍,这两本集邮册中分别由多少张邮票?例3 小胖的邮票张数比小巧多116张,是小巧邮票张数的3倍,小胖,小巧各有多少张邮票?小巧的邮票张数116张小胖的邮票张数分析:设小巧又x张邮票,那么小胖的邮票张数可以用3x表示,再寻找未知量和已知量之间的等量关系列方程。

列方程解应用题的一般步骤(精)

列方程解应用题的一般步骤(精)

解:解方程(解法因题而异),间接设的问 题及有多个未知数的问题不要有遗漏 验:(1)检验解方程的结果是否正确; (2)将解出的结果带入实际的问题情境 进行检验。 答:根据问题写出回答,要完整准确。
应用题的基本类型及应注意的知识点
一.数字问题(未知数的设法,验根)
1.某月日历中一竖列上相邻的三数之和 为75,若设中间一个数为 x ,则另两个 数为 x 7 ,x 7 可列方程为:
各买了5件该服装。那么,谁更合算?
解:珺珺(甲):150×80%×5=600(元)
璐璐(乙): 150×70%×5+150=675(元)
答:珺珺更合算。
(6)由上面两道题可见,有时去甲
商场合算,有时去乙商场合算。 聪明的你能否计算出买几件该服 装时去两家商场一样合算吗?
甲商场花的钱 = 乙商场花的钱 解:设买x件服装时去两家商场一样合算。 根据题意 ,得 150×80%· x = 150×70%· x+150 X = 10
联络员路程=联络员速度×联络员时间
解:15×4=60(千米) 答:当后队追上前队时联络员行了60千米。
3.甲、乙两人从同一村庄步行去县城, 甲比乙早出发1小时,而晚到1小时; 甲每小时走4千米,乙每小时走6千米。 求从村庄到县城的路程。 4.甲、乙两人由A村去B城办小时追上 甲,求甲、乙两人的速度及追上时离A 村的距离。
六、工程问题:(工作量=工作效率×工作时间) (工作量之和=工作总量)
1.某人读一本书,第一天读了全书的 1/3还多2页,第二天读了剩下的1/2少 1页,这时还剩下28页没读完,这本 书共有多少页? 解:设这本数共有 x 页,根据题意得:
1 x 2 1 [ x ( 1 x 2)] 1 28 x 2 3 3

小学列方程解应用题的一般步骤

小学列方程解应用题的一般步骤

列方程解应用题的一般步骤①审题,弄清题意.即全面分析已知数与已知数、已知数与未知数的关系.特别要把牵涉到的一些概念术语弄清,如同向,相向,增加到,增加了等.②引进未知数.用x表示所求的数量或有关的未知量.在小学阶段所遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数.③找出应用题中数量间的相等关系,列出方程.④解方程,找出未知数的值.⑤检验并写出答案.检验时,一是要将所求得的未知数的值代太原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.简而言之:(1)找等量关系;(2)设未知数;(3)列方程;(4)解方程;(5)检验及解答。

列方程解应用题练习题1. 一支钢笔比一支圆珠笔贵1元4角4分,3支圆珠笔的价格恰好等于2支钢笔的价格,这两种笔的单价各是多少元?2. 78只鸡在田里捉青虫吃,共吃掉138条青虫,已知每只公鸡吃4条青虫,每只母鸡吃3条青虫,两只小鸡吃1条青虫,母鸡比公鸡多18只。

问这群鸡中公鸡、母鸡、小鸡各有多少只?3. 把275米长的电线剪成45根,一部分每根长7米,另一部分每根长5米,问两种电线各有多少根?4. 商店购进一批皮球每只成本1.50元,出售时每只售价2.00元,当商店卖剩皮球20只时,成本已经全部收回并且盈利50元。

问商店原购进皮球多少只?5. 面包每只重200克,成人每人发2个面包,小孩每两人发1个面包,现在有81人,共发掉面包15600克,问成人、小孩各有多少人?6. 一次数学竞赛共15道题,每做对一题得8分,做错一题倒扣4分,小王所有题都做了,但只得了72分,问他做对了几道题?7. 一个单位包租一辆车去旅游,乘车的人数和每人应付车费的钱数正好相等,后来又有10人也要去,这样每人比原来可以少付6元。

问包租这辆车的费用是多少元?8. 甲、乙、丙、丁四个人组成代表队参加数学比赛,甲得88分,丙得85分,丁得90分,乙的分数比四个人的平均分多4分,问乙的成绩是多少分?9. 某车间赶制一批零件,生产250个后,经改进技术使生产效率提高到原来的2倍,现在生产300个的时间比原来生产250个的时间还少10小时。

列方程解应用题的步骤

列方程解应用题的步骤

列方程解应用题的步骤作者:闫振杰来源:《新课程·教研版》2011年第10期列方程解应用题是初中数学学习的重要内容。

通过把实际问题转化为数学问题,建立数学模型,从而培养学生收集和处理信息的能力,提高学生分析问题和解决问题的能力,增强其数学的应用意识。

一、列方程解应用题的一般步骤:审、设、列、解、验、答(一)审:读题。

首先分析题目类型,找出题中的基本量(一般是三个)、基本公式和变化过程,分清已知量、未知量及其关系,把不常见的题型转化为常见题型来处理;然后根据题中给出的过程或状态(一个或两个)找出题目中的等量关系(一个或两个)。

经常使用的分析方法:图示法(线段型或框架型)或列表法。

(二)设:根据问题设出未知数,注意把单位带正确。

通常有直接设法或间接设法,特殊的还可设辅助未知数。

(三)列:将等量关系中的每一个量都用题目中的已知数和设出的未知数表示出来(列代数式),根据等量关系列出方程。

注意方程两边数值单位相同,意义相同。

(四)解:解方程(解法因题而异)。

间接设的问题及有多个未知数的问题不要有遗漏,紧扣题中所问的问题得出最终结果。

(五)验:检验解方程的结果是否是方程的解;将解出的结果带入题设的实际问题情境进行检验。

(六)答:根据题中所问写出回答,要完整准确。

二、应用题的基本类型及应注意的知识点(一)行程问题:基本量和基本公式:路程=速度×时间(设甲速大于乙速)。

1.相遇问题:①同时不同地中的相等关系:甲所走路程+乙所走路程=甲乙之间的距离,甲行走的时间=乙行走的时间。

②不同时不同地中的相等关系:甲所走路程+乙所走路程=甲乙之间的距离,甲行走的时间=乙行走的时间+乙先行走的时间。

2.追及问题:①同时不同地中的相等关系:甲所走路程=乙所走路程+甲乙之间的距离,甲行走的时间=乙行走的时间。

②同地不同时中的相等关系:甲所走路程=乙所走路程,甲行走的时间=乙行走的时间-乙先行走的时间。

3.环形问题:①同向=追及,相等关系:甲所走路程=乙所走路程+1圈的路程。

列方程解应用题如何找等量关系

列方程解应用题如何找等量关系

列方程解应用题的一般步骤是:(1)审(2)找(3)设(4)列(5)解(6)答,而最关键的是第二步找等量关系,只有找出等量关系才可列方程,下面我来谈谈怎样找相等关系和设未知数。

一、怎样找等量关系(一)、根据数量关系找相等关系。

好多应用题都有体现数量关系的语句,即“…比…多…”、“ …比…少…”、“…是…的几倍”、“ …和…共…”等字眼,解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定相等关系。

例1:某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?相等关系:女生人数-男生人数=80例2:合唱队有80人,合唱队的人数比舞蹈队的3倍多15人,则舞蹈队有多少人?相等关系:舞蹈队的人数×3+15=合唱队的人数例3:在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?相等关系:调动后甲处人数=调动后乙处人数×2解:设调x人到甲处,则调(20-x)人到乙处,由题意得:27+x=2(19+20-x),解得 x=17所以 20-x=20-17=3(人)答:应调往甲处17人,乙处3人。

(二)、根据熟悉的公式找相等关系。

单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工作效率×工作时间=工作总量,售价=原价×打折的百分数,利润=售价-进价,利润=进价×利润率,几何形体周长、面积和体积公式,都是解答相关方程应用题的工具。

例1:一件商品按成本价提高100元后标价,再打8折销售,售价为240元。

求这件商品的成本价为多少元?相等关系:(成本价+100)×80%=售价例2:用一根长20cm的铁丝围成一个正方形,正方形的边长是多少?相等关系:正方形的周长=边长×4例3:一个梯形的下底比上底多2厘米,高是5厘米,面积是40平方厘米,求上底。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列方程解应用题的一般步骤是:(1)审(2)找(3)设(4)列(5)解(6)答,而最关键的是第二步找等量关系,只有找出等量关系才可列方程,下面我来谈谈怎样找相等关系和设未知数。

一、怎样找等量关系(一)、根据数量关系找相等关系。

好多应用题都有体现数量关系的语句,即“…比…多…”、“ …比…少…”、“…是…的几倍”、“ …和…共…”等字眼,解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定相等关系。

例1:某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?相等关系:女生人数-男生人数=80例2:合唱队有80人,合唱队的人数比舞蹈队的3倍多15人,则舞蹈队有多少人?相等关系:舞蹈队的人数×3+15=合唱队的人数例3:在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?相等关系:调动后甲处人数=调动后乙处人数×2解:设调x人到甲处,则调(20-x)人到乙处,由题意得:27+x=2(19+20-x),解得 x=17所以 20-x=20-17=3(人)答:应调往甲处17人,乙处3人。

(二)、根据熟悉的公式找相等关系。

单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工作效率×工作时间=工作总量,售价=原价×打折的百分数,利润=售价-进价,利润=进价×利润率,几何形体周长、面积和体积公式,都是解答相关方程应用题的工具。

例1:一件商品按成本价提高100元后标价,再打8折销售,售价为240元。

求这件商品的成本价为多少元?相等关系:(成本价+100)×80%=售价例2:用一根长20cm的铁丝围成一个正方形,正方形的边长是多少?相等关系:正方形的周长=边长×4例3:一个梯形的下底比上底多2厘米,高是5厘米,面积是40平方厘米,求上底。

相等关系:梯形的面积=(上底+下底)×高÷2例4:商品进价1800元,原价2250元,要求以利润率为5%的售价打折出售,则此商品应打几折出售?相等关系:售价-进价=进价×利润率解:设最低可打x折。

据题意有:2250x-1800=1800×5%解得 x=0.84答:此商品应打8.4折。

(三)、根据总量等于各部分量的和找相等关系。

根据总量等于各分量之和来列出方程,用此法要注意分量不可有所遗漏。

例1:甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支,两种铅笔个买了多少支?相等关系:买甲种铅笔花的钱+买乙种铅笔花的钱=总共花的钱例2:把1400元奖学金按照两种奖项发给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生有多少?相等关系:发一等奖学金用的钱+发二等奖学金用的钱=总共的钱例3:希腊数学家丢番图,他一生的六分之一是幸福的童年,十二分之一是无忧无虑的少年。

再过去七分之一的年程,他建立了幸福的家庭。

五年后儿子出生,不料儿子竟先其父四年而终,只活到父亲岁数的一半。

晚年丧子老人真可怜,悲痛之中度过了风烛残年。

请你算一算,丢番图活到多大和死神见面?”相等关系:总年龄=各部分年龄的和解:设丢番图活了x年。

据题意可得:x=x/6+x/12+x/7+5+x/2+4解得 x=84答:丢番图共活了84岁。

(四)、用不同方法表示不变量找相等关系。

这类题目的解题原理是:如果一个不变的量能用两个不同的代数式表达,则这两个代数式必然相等。

这就要求我们找到这个量,可以根据题中的“比值一定”、“积一定”、“速度一定”等相关语句来找。

例:种一批树苗,如果每人种10棵,则剩6棵树苗未种;如果每人种12棵,则缺6棵树苗,一共种了多少棵树?(1)可以间接设未知数:解:设一共有X人种树?相等关系:树的总棵数=树的总棵数10X+6=12X-6(2)可直接设未知数:解:设一共种了X棵树。

相等关系:总人数=总人数( X-6)÷10=(X+6)÷12二、未知数的设法未知数的设法总的来说有两种:直接设未知数法和间接设未知数法。

主要看哪一种方法更利于列方程,并且考虑列出的方程更容易解。

不管是直接设未知数还是间接设未知数,都要遵循以下方法:⑴、有比较关系时,如甲比乙多8,我们一般设较小的为x,这样计算时主要用的是加法不易出错;⑵、有倍数关系时,如数学小组人数是英语小组的5倍,我们设一倍量为x,用乘法表示其余量利于计算;⑶、在分数应用题中,我们设单位“1”为x;⑷、在有比的问题中,我们设一份数为x;⑸、在有和的问题中,我们设其中任意一个为x都可以,比如说两个班共有50人,设其中一个班有x人。

列方程解应用题的步骤(1)审题,弄清题意.即全面分析已知数与已知数、已知数与未知数的关系.特别要把牵涉到的一些概念术语弄清,如同向,相向,增加到,增加了等. (2)引进未知数.用x表示所求的数量或有关的未知量.在小学阶段所遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数.(3)找出应用题中数量间的相等关系,列出方程.(4)解方程,找出未知数的值.(5)检验并写出答案.检验时,一是要将所求得的未知数的值代太原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.理解题意。

仔细读题,理解题意,弄懂题里的已知条件和所求问题。

分析问题。

如果是分数应用题,可以画线段图帮助理解。

找出等量关系。

这是解决此类问题的关键步骤,找出题里的等量关系,这是最重要的步骤。

也是这类问题的难点。

列方程,解方程。

把未知数设为一个字母,通常情况下设为x,根据等量关系列方程,并解方程。

检验。

检验的过程是学生往往忽略的,但这是很重要的一步,只有检验后才可以确定答案正确与否。

一般是把答案看成已知条件代人原来的题意中,算出的结果和原来的条件一致就是正确的,否则就是错误的。

写出答案。

这是列方程解应用题的最后一步,也是不可缺少的一步。

小学用方程解应用题是一个重要的考察点,也算是一个难点,这一部分内容融入了等式的性质,以及四则运算各部分的关系,所以我们在平时的练习中就要注意了。

在此,老师给同学们介绍一些解题技巧,或许会收获不小哦!一、首先是审题,确定未知数审题,理解题意。

就是全面分析已知数与已知数、已知数与未知数的关系。

特别要把牵涉到的一些概念术语弄清,如同向、相向、增加到、增加了等,并确立未知数。

即用x表示所求的数量或有关的未知量。

在小学阶段同学们遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数,如:“学校图书馆里科技书的本数比文艺书的2倍多47本,科技书有495本,文艺书有多少本?”在这道题目中只有“文艺书的数量”不知道,所以只要设“文艺书的数量”为未知数x就可以了。

二、寻找等量关系,列出方程是关键“含有未知数的等式称为方程”,因而“等式”是列方程必不可少的条件。

所以寻找等量关系是解题的关键。

如上题中“科技书得本数比文艺书的2倍多47本”这是理解本题题目意思的关键。

仔细审题发现“文艺书本数的2倍加上47本就是科技书的本数”故本题的等量关系为:文艺书本数的2倍+47=科技书的本数。

上题中的方程可以列为:“2x+47=495”三、解方程,求出未知数得值解方程时应当注意把等号对齐。

如:2x+47=4952x+47-47=495-47 ←应将“2x”看做一个整体。

2x=448 2x÷2=448÷2 x=224四、检验也是列方程解应用题中必不可少的检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.1)将求得的方程的解代入原方程中检验。

如果左右两边相等,说明方程解正确了。

如上题的检验过程为:检验:把x=224代入原方程。

左边=2×224+47 右边=495=495因为左边=右边,所以x=224是方程2x+47=495的解。

2)文艺书本数的2倍+47=科技书的本数将224代入以上等式,等式成立。

故所求得的未知数的值符合题意。

总之,以上几点技巧都是列方程解应用题的关键环节的技巧,只要大家利用这些技巧加强练习,就一定能闯过列方程解应用题这道关。

在千变万化的应用问题中,我们若能抓住以上几点,以不变应万变,则问题就可迎刃而解常见错题解析:一、把算术解法当作方程解法的错误例1:两袋大米,甲袋重65千克,乙袋重45千克,要使两袋大米的重量相等,应从甲袋里取出多少千克放入乙袋?(用方程解)错解:设应从甲袋里取出大米x千克放入乙袋,根据题意列方程:x=(65-45)÷2,x=20÷2,x=10。

分析:以上计算并无错误,但不符合利用方程求解的意义和要求。

这种解法虽然也含有未知数,但实际上是一种算术方法。

纠正的方法是把未知数设为x,暂时把未知条件当成已知条件,使未知条件与已知条件处于同等的地位,然后找出等量关系列方程。

这样做比起用算术方法解容易得多。

正确解法:设从甲袋取出x千克大米放入乙袋,根据题意列方程:65-x=45+x,65-2x=45,2x=65-45,x=10 答:应从甲袋取出大米10千克。

点评:本题主要考查同学们对简易方程基本知识的掌握程度,以及运用“等量”关系列方程和解方程的基本技能。

有的同学由于受算术方法解应用题的思维定势的影响,所以会出现上面的错误解法。

二、等量关系的错误例2:学校分苹果,五年级老师分50千克,比四年级老师分的2倍少2千克。

四年级老师分多少千克?错解:设四年级老师分x千克,列方程得:2x+2=50,2x=48,x=24。

分析:本题在列方程时把等量关系弄错了,误认为四年级老师的2倍加上2千克就等于五年级老师分的。

正确解法:设四年级老师分x千克。

2x-2=50,2x=52,x=26。

答:四年级老师分26千克。

三、单位不统一的错误例3:梯形的面积是24平方厘米,高为4厘米,下底比上底多0.6分米,求梯形的上底。

(用方程解,注:梯形面积=(上底+下底)×高÷2)错解1:设梯形的上底是x分米(x+x+0.6)×4÷2=24,2x+0.6=12,2x=11.4,x=5.7。

答:梯形的上底是5.7分米。

错解2:设梯形的上底是x厘米,(x+x+0.6)×4÷2=24,2x+0.6=12,2x =11.4,x=5.7。

答:梯形的上底是5.7厘米。

分析:此题错在没有统一题中各个量的单位。

题中告诉的面积单位为平方厘米,高是厘米,下底却是分米,如果不加以统一,所列出的就不是等式,也就不能恒等变形。

相关文档
最新文档