列一元一次方程解应用题的一般步骤
一元一次方程应用题解题攻略(含答案)
一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设-设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际, 检验后写出答案.(注意带上单位)二、一般行程问题(相遇与追击问题)1。
行程问题中的三个基本量及其关系:路程=速度×时间 时间=路程÷速度 速度=路程÷时间2。
行程问题基本类型(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3。
6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。
解:等量关系 步行时间-乘公交车的时间=3.6小时 列出方程是:6.3408=-x x 2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程.方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x 3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题.等量关系:快车行的路程+慢车行的路程=两列火车的车长之和设客车的速度为3x 米/秒,货车的速度为2x 米/秒,则 16×3x +16×2x =200+2804、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
一元一次方程实际问题归纳
一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题,配套问题,工程问题,调配问题,分配问题,比例问题,和差倍分问题,销售问题,储蓄问题,积分问题,年龄问题,几何问题、数字问题,增长率问题,古代数学问题,分段问题,方案选择问题等。
列一元一次方程解应用题的一般步骤1. 审:审题,分析题目中的数量关系;2. 设:设适当的未知数,并表示未知量;3. 列:根据题目中的数量关系列方程;4. 解:解这个方程求未知数的值;5. 检验:检验是否符合实际;6. 答:作答.(一)行程问题(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行、环形跑道问题、行船问题、火车过隧道(桥)的问题。
(3)解此类题常常借助画草图来分析,理解行程问题。
①相遇问题(同时出发“两段”)1.西安站和武汉站相距1500km,一列慢车从西安开出,速度为65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?分析:快车路程+慢车路程=总路程或 (快车速度+慢车速度)×相遇时间=相遇路程①相遇问题(不同时出发“三段”)2.西安站和武汉站相距1500km,一列慢车从西安开出,速度为60km/h,一列快车从武汉开出,速度为90km/h,若两车相向而行,慢车先开5小时,快车行驶几小时后两车相遇?分析:慢车先行路程+慢车后行路程+快车路程=总路程②追及问题(同时出发)3.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?②追及问题(不同时出发)4.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?②追及问题5.敌我两军相距32km,乱军以每小时6km的速度逃窜,我军同时以每小时16km的速度追击,在相距2km的时候发生战斗,则战斗是从开始追击后几小时发生的?③相背而行6.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(最新整理)列一元一次方程解实际问题的一般方法
2021/7/26
31
知1-讲
(1)审题:审清题意,找出已知量和未知量; (2)设未知数:设该年级的男生有x人,那么女生有
__(_1_7_0_-__x_)_人; (3)列方程:根据相等关系,列方程为__3_x_=__7_(_1_7_0_-__x_)_; (4)解方程,得x=___1_1_9___,则女生有___5_1__人; (5)检验:将解得的未知数的值放入实际问题中进行验证; (6)作答:答:该年级有男生__1_1_9__人,女生__5_1___人.
当x=3时,130-30 x =2, 20
运费为3×500+2×400=2 300(元)<2 500(元).
故安排3辆甲种货车和2辆乙种货车,运费最省,
需2 300元.
2021/7/26
12
例6 某景点的门票价格如下表:
购票人数/人 1~50 51~100 100以上
每人门票价/元 12
10
8
某校七年级(1)、(2)两班计划去游览该景点,其中(1)班 人数少于50人,(2)班人数多于50人且少于100人,如果 两班都以班为单位单独购票,则一共支付1 118元;如果 两班联合起来作为一个团体购票,则只需花费816元. (1)两个班各有多少名学生? (2)团体购票与单独购票相比较,两个班各节约了多少钱?
(1)这两次各购进电风扇多少台?
(2)商场以250元/台的售价卖完这两批电
风扇,商场获利多少元?
2021/7/26
9
解:(1)设第一次购进电风扇x台, 则第二次购进电风扇(x-10)台. 由题意可得150x=180(x-10),解得x=60. 则x-10=60-10=50. 所以第一次购进电风扇60台,第二次购进电 风扇50台.
列一元一次方程解应用题题型归纳 詹洪
一元一次方程解应用题题型归纳共乐初中詹洪列一元一次方程解应用题是初一年级数学教学中的一大重点,又是学生从小学升入初中后第一次接触到用代数的方法处理应用题,所以也是一大难点。
认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题、列不等式(组)解应用题及函数应用题大有帮助。
因此将列一元一次方程解应用题的步骤、几种常见题型及其特点归纳如下:一、列方程解应用题的步骤:(1)读懂题意,正确理解.(2)弄清数量关系:准确把握题目条件中的已知量和未知量,必要时可用图表辅助分析. (3)找出:正确找出等量关系。
(4)列方程:设出未知数,将题设条件中的语句都“翻译”成含有“字母”的代数式,根据等量关系列出方程。
(5)解方程并检验:检验所求的未知数的值是否是所列方程的解,受否符合题意;(6)答:根据题意写出答案.二、常见题型及其特点:A.和差倍分问题和差倍分在列方程时,即可表示运算关系,又可表示相等关系。
在解决这类问题时,要特别注意关键词的含义,如:多、少、快、慢、提前、推迟、提高x%(几倍)、降低x%(几份之几)、提高到x%等。
用和、差、几倍、几分之几……它可以指导我们正确地列代数式或列方程。
例: 有一根铁丝,第一次用去了它的一半少1m,第二次用去了剩下的一半多1m,结果还剩2.5m,这根铁丝原来有多长?1、一个机床厂今年第一季度生产机床180台,比去年同期的二倍多36台,去年一季度产量多少台?2、某通信公司今年员工人均收入比去年提高20%,且今年人均收入比去年的1.5倍少了1200元,求去年人均收入?3.“希望工程”委员会将2000元奖金发给全校25名三好学生,其中市级三好学生每人得奖金200元,校级三好学生每人得奖金50元,问全校市级三好学生、校级三好学生各有多少人?4. 一群老人去赶集,集上买了一堆梨,一人1个多一个,一人2个少2个,几位老人几个梨?5. 某学校组织10名优秀学生春游,预计费用若干元,后来又来了2名同学,原来的费用不变,这样每人可以少摊3元,则原来每人需要付费多少元?6. 七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问参加书画社的有多少人?7 .某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)8. 本市中学生足球赛中,某队共参加了8场比赛,保持不败的记录,积18分.记分规则是:胜一场得3分,平一场得1分,负一场得0分。
一元一次方程应用题(常见类型题)
一、列一元一次方程解应用题的一般步骤:(1)审题:弄清题意;(2)找出等量关系:找出能够表示本题含义的相等关系;(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程;(4)解方程:解所列的方程,求出未知数的值;(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案。
二、若干应用题等量关系的规律:类型一:和、差、倍、分问题(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
【典型例题】例1.x 的43与1的和为8,求x ?例2.已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。
例3.甲数比乙数大10,甲数的5倍与乙数的8倍的和是115,求甲、乙两数。
例4.有甲、乙两个数,甲数比乙数的2倍多1,乙数比甲数小4,求这两个数。
类型二:数字问题一般可设个位数字为a ,十位数字为b ,百位数字为c①两位数可表示为:10b a + ②三位数可表示为:10010c b c ++然后抓住数字间或新数、原数之间的关系找等量关系列方程。
【典型例题】例1.一个两位数,十位数字比个位数字的4倍多1.将两个数字调换顺序后所得的数比原数小63,求原数?例2.一个三位数,十位上的数字比个位上的数字大3,而比百位上的数字小l ,且三个数字之和的50倍比这个三位数小2,求这个三位数?例3.一个两位数,十位上的数字与个位上数字的和是8,将十位上的数字与个位上的数字对调,得到的新数比原数的2倍多l0,求原来的两位数?类型三:利润问题出现的量有:进价、售价、标价、利润、成本、利润率、折扣等用到的公式有:①利润=卖的钱—成本 ②利润=成本X 利润率注意打几折是按原价的百分之几十出售。
一般的相等关系:卖的钱—成本=成本X 利润率【典型例题】例1.一件商品的售价是30元,①、如果卖出后盈利25元,那么这件商品的进价是多少?②若卖出后亏损25元,那么进价又是多少?例2.某商品标价110元,八折出售后,仍获利10%, 则该商品的进价为多少元?例3.某商场把进价为80元的商品按标价的八折出售,仍获利10%, 则该商品的标价为多少元?例4.某商场把进价为80元的商品按标价110元折价出售后,仍获利10%, 则商品打了几折?例5.商店对某种商品进行调价,决定按原价的九折出售,此时该商品的利润率是15℅,已知这种商品每件的进货价为1800元,求每件商品的原价。
一元一次方程应用题解题技巧
一元一次方程应用题解题技巧一元一次方程是数学中的一种基本方程,广泛应用于解决实际问题。
掌握一元一次方程的应用,对于提高数学解题能力具有重要意义。
本文将介绍一元一次方程应用题的基本概念、解题步骤和技巧。
一、基本概念一元一次方程是指未知数最高次数为1的方程,其形式为ax+b=0(a≠0)。
在实际应用中,一元一次方程常用来描述简单的一次性量与变量之间的关系,如速度与时间的关系、销售量与价格的关系等。
二、解题步骤1. 审题:仔细阅读题目,理解题意,找出题目中的等量关系。
2. 设未知数:根据题目中的等量关系,设定未知数。
3. 列方程:根据等量关系,列出方程。
4. 解方程:求出方程的解。
5. 检验:将解代入原方程,检验是否符合题意。
三、解题技巧1. 寻找等量关系:在应用题中,等量关系往往隐藏在题目中,需要仔细寻找。
常见的等量关系有速度相等、价格相等、数量相等等。
找到等量关系是解决应用题的关键。
2. 画图辅助:对于较为复杂的应用题,可以借助图形来辅助解题。
如行程问题中的路程图、销售问题中的价格走势图等。
通过图形,可以更加直观地理解题目中的信息。
3. 灵活运用未知数:在一元一次方程中,未知数的个数是有限的,可以通过设定不同的未知数来列出不同的方程,从而得到多个解。
但在实际问题中,有些解是不符合实际情况的,需要加以排除。
因此,在解题时要注意灵活运用未知数,不要盲目求解。
4. 利用公式法求解:对于一些特殊的一元一次方程,可以利用公式法求解。
如利用韦达定理求解一元二次方程的解。
对于一些特定的题目,利用公式法可以更加简便地得到答案。
四、例题解析【例题】某公司生产一种产品,每件成本为20元,售价为30元。
公司每天的人工、电费、设备折旧等固定成本为2000元。
为了降低成本并提高利润,公司决定采用新技术降低每件产品的成本。
如果新技术的成本每件降低5元,则每天的净收入可增加200元。
问是否需要采用新技术?【解析】设采用新技术后每天的生产量为x件,则采用新技术前每天的生产量为(x-1)件。
一元一次方程的应用
一元一次方程的应用一、列方程解应用题的一样步骤:1.认真审题,找出已知量和未知量,以及它们之间的关系;2.设未知数,能够直截了当设未知数,也能够间接设未知数;3.列出方程中的有关的代数式;4.依照题中的相等关系列出方程;5.解方程;6.答题。
二、列方程解应用题的关键是找出题中的等量关系三、常见的应用题类型有:行程问题:1)追击问题:a、两个物体在同一地点不同时刻同向动身最后在同一地点的行程问题等量关系:甲路程=乙路程甲速度×甲时刻=乙速度×(甲时刻+乙先走的时刻)b、两个物体从不同地点同时同向动身最后在同一地点的行程问题等量关系:甲路程-乙路程=原相距路程2)相遇问题:两个物体同时从不同地点动身相向而行最后相遇的行程问题等量关系:甲路程+乙路程=相遇路程甲速度×相遇时刻+乙速度×相遇时刻=原两地的路程3)一样行程问题:等量关系:速度×时刻=路程4)航行问题:等量关系:顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度练习:1.一猎狗发觉在它前方240米处有一以80米/分的速度逃跑的兔子,猎狗迅速以120米/分速度追击,要多久才能追到?2.一部队从军部动身行军,每小时走40千米,3.5小时后一通讯兵传达一军部命令骑摩托车从军部动身追赶,4小时后追上,则通讯兵每小时比部队多行多少千米?3.甲乙两人骑自行车,从相距42千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如甲走12分钟后乙再动身,问甲动身后几小时与乙相遇?4.学生队伍以每小时5千米的速度外出春游,他们从学校动身走了4小时12分钟后,学校派通讯员骑摩托车以每小时40千米的速度追赶学生队伍,传达紧急通知,求通讯员用了多少时刻赶上学生队伍?5.甲乙两站相距40千米,一列慢车从甲站开出,每小时行使56千米,同时一列快车由乙站开出,每小时行使72千米,两车同向而行,快车在慢车的后面,通过多少小时快车可追上慢车?6.甲乙两人环湖竞走,一周400米,乙每分钟走80米,甲的速度是乙的5/4倍,现在甲在乙的前面100米;多少分钟后两人相遇?7.甲乙两人练习短距离赛跑,甲每秒跑7米,乙每秒跑6.5米,假如甲让乙先跑2秒钟,甲通过几秒能够追上乙?8.敌军和我军相距14千米,敌军以4千米/小时的速度逃跑,我军迅速以7千米/小时的速度追击敌军,需几小时能够追上?9.一般飞机和喷气式飞机从相距600千米的两个机场相向起飞,30分钟后相遇,假如喷气式飞机的速度是一般飞机的3倍,求一般飞机和喷气式飞机的速度?10.一条环行跑道长400米,甲练习自行车,平均每分钟骑550米,乙练习赛跑,平均每分钟跑250米,两人同时同地同向动身,通过多少分钟两人相遇?11.甲乙两站相距245千米,一列慢车由甲站开出,每小时行使50千米,同时,一列快车由乙站开出,每小时行使70千米,两车同向而行,快车在慢车的后面,通过几小时快车能够追上慢车?12.小红和小军两人同时从各自的家里动身去找对方,两家的直线距离为1200米,小红每分走55米,两人最后用1小时在途中某点相遇,则小军每分钟走多少米?613.小明上山的速度是每小时3.5千米,下山的速度是每小时5千米,若小明上山比下山多用了3小时,求小明下山走了几小时,这段山路共有多少千米?14.A、B两地相距80米,甲从A地动身,每秒走1米,乙从B地动身每秒走1.5米,如甲先走15米,求乙动身后多少秒与甲相遇?15.小船的静水速度是27千米/时,顺流航行60千米逆流返回,假如水流速不变,返程所用时刻比顺流多用25%,求水流速度?16.A、B两地间的路程为360km,甲车从A地动身开往B地,每小时72km,甲车动身25分钟后,乙车从B地动身开往A地,每小时行驶48km,两车相遇后,各自仍按原速度原方向连续行驶,那么相遇后两车相距100km时,甲车从动身共行驶了多少小时?17.一艘轮船,航行于甲、乙两地之间,顺水用3小时,逆水比顺水多用30分钟。
利用一元一次方程解应用题的一般步骤(纯知识点)
课题:一元一次方程的应用——利用一元一次方程解应用题的一般步骤(纯知识点)1. 列方程解应用题的一般步骤:⑴“审”:仔细审题,明确题目中的已知量和未知量.⑵“设”:根据问题的要求,确定适当的未知数;⑶“找”:根据各数量之间的关系,找出题目中的等量关系;⑷“列”:根据等量关系,列出方程.⑸“解”:按照步骤解所列方程.⑹“检验”:将求出的方程的解代入实际情境中检验是否符合实际情况.⑺“答”:最后要对解决的问题做一个综合的回答.2.一元一次方程解决实际应用问题的一般步骤如下:注意:⑴设未知数分为“直接设”和“间接设”两种,一般地求什么就设什么为未知数,若直接设未知数解决有困难的时候,就可以间接的设未知数,有时还要设辅助的未知数.⑵找等量关系时,可采取画线段图、列表、演示等多种方法,这也是提高列方程解应用题的有效方法和手段.⑶列方程的时候要注意单位要统一.3.实际问题常见类型(一)等积变形问题1.相关公式长方体体积=长×宽×高圆柱体体积=底面积×高2.等量关系变形前的体积=变形后的体积3.注意问题(1)注意圆的半径和直径的区分;(2)平面内,“周长不变围长方形”和此问题类似.(二)利息问题1.相关公式本金×期数×处率=利息(未扣税)2.等量关系本息=本金+利息3.注意问题:(1)要会区分年利率和月利率;(2)目前银行,不同存期,年利率也不同.(三)利润问题1.相关公式利润率=利润/进价2.等量关系利润=售价-进价3.注意问题:(1)打折销售,即为售价,n折即为标价的十分之n为售价;(2)总利润=某单个商品的利润×商品总量.(四)行程问题1.相遇问题路程=速度×时间两者路程之和=总路程2.追及问题路程=速度×时间两者路程之差=总路程3.注意问题:(1)注意相遇问题和追及问题的区别;(2)关注出发的时间和地点;(3)画线路图,有助于分析等量关系.(五)工程问题1.相关公式工作量=工作效率×工作时间2.等量关系总工作量=各部分工作量之和3.注意问题:一般把总工作量设为单位1.(六)数字问题若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数表示为++.10010a c注意问题:等量关系,由已知给定的条件来确定.。
解一元一次方程的五步步骤
解一元一次方程的五步步骤
解一元一次方程的五步骤如下:
步骤一:将方程化为标准形式
将方程整理成形如ax + b = 0的形式,其中a和b分别是常数。
步骤二:合并同类项
将方程中的同类项合并,得到ax = -b的形式。
步骤三:消去系数
将方程两边同时除以系数a,消去x的系数,得到x = -b/a的
形式。
步骤四:验证解是否正确
将x = -b/a代入原方程,验证方程的两边是否相等。
若相等,
则解为正确;若不相等,则解为错误。
步骤五:表示解的特征
根据方程的解的特征,可以判断解的形式:
- 若a = 0且b = 0,方程有无数解。
- 若a = 0且b ≠ 0,方程无解。
- 若a ≠ 0,方程有唯一解x = -b/a。
列一元一次方程解应用题的一般步骤
1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量3.等积变形问题
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.
①圆柱体的体积公式V=底面积×高=S•h=r2h
②长方体的体积 V=长×宽×高=abc 4.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=×100% (3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.。
列一元一次方程解应用题的四步法
列一元一次方程解应用题的四步法邓超 (福建省福州市第十八中学 350001)列方程解应用题是初一数学中很重要的内容,上课时老师对此通常会总结出这么五个步骤:找、设、列、解、答。
在这其中,找就是找等量关系,是最关键的一步。
但是找如何找呢,这对于刚刚接触方程不久的同学们来说,还真不是个容易的事。
对此,老师通常会说:要抓住关键字眼,比如和、差、比⋅⋅⋅多(少)、比⋅⋅⋅大(小)等等。
但并不是所有题目都是有这些关键字眼的。
本文中,笔者将提出列方程解应用题的一个通用的思考过程,相信读完此文,同学们会对如何找等量关系有更深的体会。
笔者将列方程解应用题的思考过程分为四步。
第一步,找出题目中所有的未知量。
找齐所有的未知量是不容易的,需要同学们充分理解题意。
一般来说未知量至少有两个,其中最明显的未知量就是题目要我们求的量。
第二步,设其中的一个未知量为x 。
对于不止一个的未知量,究竟设哪个未知量为x 呢?其实那个都可以,那个都能列出方程,只是列方程的难易会有所不同,我们尽量要使方程容易列且容易解,因此选哪个未知量设为x 更好,是要具体问题具体分析的,有时也是要凭一些经验才行的。
第三步,用x 表示出剩下所有的未知量,完成这步要充分利用题目条件。
第四步,确定等量关系。
这可分为三种情况:1、如果题目中还有没用到的条件,那么这个条件就包含了所要用的等量关系;2、如果所有的题目条件都用了,那么就很有可能有一个未知量存在两个表达式,这两个表达式可以划等号,这是一种特殊的等量关系;3、如果还找不出等量关系,那么这题的等量关系就比较隐蔽,这就要求我们再仔细分析题目才行。
下面就让我们来看看这个思维模式的威力吧。
例1、(人教版七年级教科书)某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?分析:第一步,我们先找出和题目有关的所有未知量,分别有4个未知量:生产螺钉的工人数,生产螺母的工人数,生产的螺钉数和生产的螺母数。
一元一次方程例题及练习题
知识点1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量3.等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h= r2h②长方体的体积V=长×宽×高=abc4.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润×100%商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18.储蓄问题×100% 利息=本金×利率×期数利润=每个期数内的利息本金例题1. 和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(完整)初中数学一元一次方程应用题九大类型
七年级方程应用题九大类型一、列一元一次方程解应用题的一般步骤二、一元一次方程解决应用题的分类1、市场经济、打折销售问题2、方案选择问题3、储蓄、储蓄利息问题4、工程问题5、行程问题6、环行跑道与时钟问题7、若干应用问题等量关系的规律8、数字问题9、日历问题一、列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.一.市场经济、打折销售问题(一)知识点:(1)商品利润=商品售价-商品成本价×100%(2)商品利润率=商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.(二)例题解析1、某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.解:(1)设1个小餐厅可供y名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意得:2(1680-2y)+y=2280解得:y=360(名)所以1680-2y=960(名)⨯+⨯=>,(2)因为9605360255205300所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.练习题2、工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?3、某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?4、某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%。
6、一元一次方程应用-学生版
1、列方程解应用题的一般步骤是:(1)设未知数(元);(2)列方程;(3)解方程;(4)检验并作答;2、按比例分配问题:此类问题,我们往往设一份量为未知数,即如已知两个量之比为:a b,则设这两个量分别为ax 和bx,再根据“各部分量之和”或“各部分量之差”等等量关系来列方程求解.3、利率问题:利息=本金×利率×期数;本利和=本金+利息=本金×(1+利率×期数);利息税=利息×税率;税后利息=利息-利息税=利息×(1-税率);税后本利和=本金+税后利息.4、折扣问题:利润额=成本价×利润率;售价=成本价+利润额;新售价=原售价×折扣;5、行程问题:解行程问题的关键是抓住时间关系或路程关系,借助草图分析来解决问题.路程=速度×时间;相遇路程=速度和×相遇时间;追及路程=速度差×追及时间.6、工程问题:解工程问题时,常将工作总量当作整体“1”.基本关系为:工作效率×工作时间=1(工作总量)7、浓度问题:理清溶液、溶剂、溶质和浓度的基本关系是:溶液重量=溶质重量+溶剂重量;浓度=溶质重量÷溶液重量×100;8、时钟问题:钟表问题可以转化成行程问题来研究,其中分针的转动速度为每分钟1格,时针的转动速度为每分钟112格,这是研究时钟问题的主要依据;二、例题精讲:例1、某一服装师做成一件衬衣,一条裙子,一件外套所用的时间之比为1:2:3.他用二十个工时能做2件衬衣、3条裤子和4件上衣,那么他做一件衬衣、一条裤子、一件外套分别需要几个工时?练习:六年级学生若干人报名参加足球队,男女生之比为4:3,后来走了12名女生,这时男生人数恰好是女生的2倍.求:报名时男生与女生的人数.例2、某人把若干元按三年期的定期储蓄存入银行,假设年利率为3.69%,到期支取时扣除所得税实得利息1771.2元,求存入银行的本金;(利息税为20%);练习:秦先生三年前将人民币20000元存入银行,今天从银行共取出税后利息2160元,那么这笔存款的年利率是多少?(国家规定存款利息的纳税办法是:利息税=利息×20%)例3、小丽和小明相约去书城买书,请你根据它们的对话内容(如图),求出小明上次所买书籍的原价.(小丽说:听说花20元办一张会员卡,买书时可享受8折优惠;小明说:是的,我上次买了几本书,扣除20元卡的费用,还省了12元)。
列一元一次方程解应用题的步骤
列一元一次方程解应用题的步骤
一元一次方程是代数中常见的一种类型的方程,其形式为ax+b=0,其中a和b
是已知数,x是未知数。
解一元一次方程的步骤如下:
1. 理解问题:仔细阅读问题并理解其中给出的条件和要求。
确定问题中未知数
的含义和符号。
2. 设变量:根据问题中给出的条件,设未知数为x,并列出相应的方程。
3. 化简方程:根据方程的形式,进行合并和化简,使方程变为ax + b = 0的标
准形式。
4. 消元:通过一系列代数运算,将方程中的未知数消去,得到解方程的步骤。
5. 解方程:根据方程的标准形式,求得未知数的解x。
这可以通过减法、加法、乘法和除法等运算来实现。
6. 检验解:将求得的解代入原方程中,验证方程的等式成立。
若等式成立,则
解是正确的;若不成立,则需要重新检查步骤。
7. 提出答案:将解写成有意义的句子或符号形式,回答问题所要求的内容。
通过以上步骤,我们可以解决各种应用题,其中包括计算物体运动速度、求解
几何图形的边长或面积、解决货币交换或时间计算问题等。
实践中,我们需要熟悉一元一次方程的基本概念和运算规则,以便准确解答各类应用题。
需要注意的是,解题过程中应仔细审题、灵活运用代数运算法则,并进行适当
的化简和验证,确保所得的解是可信的。
此外,解答过程中应注意单位和符号的一致性,避免因数值计算错误导致解答错误。
通过掌握解一元一次方程的步骤,我们可以更好地应用代数知识解决实际问题,提高数学解题能力。
一元一次方程9大题型
一元一次方程9大题型一、列一元一次方程解应用题的一般步骤(1)审题:弄清题意(2)找出等量关系:找出能够表示本题含义的相等关系(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解方程:解所列的方程,求出未知数的值(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案二、一元一次方程解决应用题的分类1.市场经济、打折销售问题(一)知识点(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润/商品成品价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.(二)例题解析1.某高校共有5个大餐厅和2个小餐厅。
经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐。
(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐。
(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由。
解:(1)设1个小餐厅可供y名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意得:2(1680-2y)+y=2280解得:y=360(名)所以1680-2y=960(名)(2)因为960×5+360×2=5520>5300 ,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐。
2.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等。
该工艺品每件的进价、标价分别是多少元?解:设该工艺品每件的进价是元,标价是(45+x)元。
依题意,得:8(45+x)×0.85-8x=(45+x-35)×12-12x解得:x=155(元)所以45+x=200(元)3.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦则超过部分按基本电价的70%收费。
列一元一次方程解应用题的一般步骤
1、分析题意,找出等量关系,分析题中数量及其 关系,用字母(例如x),表示问题里的未知数. 2、用字母的一次式表示有关的量. 3、根据等量关系列出方程. 4、解方程,求出未知数的值. 5、检验求得的值是否正确和符合实际情形,并写 出答案.
1) 苹果单价是每筐60元,香蕉单价是每筐40元,初三 某班要搞毕业联欢会,共买了12筐,合计付款620元,问 苹果和香蕉各多少筐? 解: 设苹果为x筐,则香蕉为(12 - x )筐,根据题 意得: 60x +40(12-x)=620.
5dm
1. 5m 0. 5m
3dm
分析:
根据以上演示我们知道了它们的等量关系:
水位上升部分的体积=小圆柱形铁块的体积
r2h 圆柱形体积公式是_______,
Байду номын сангаас
水升高后的体积 小铁块的体积
2 x 0.5 (__________)
0.32 0.5 (_________)
解:设水面将升高x米, 根据题意得
解得
20x=140,
x=70
2)某种家电商品5月份单价是3000元,6月份按5月份 3000(1- x ) 价格降价了x%,则6月份的单价是____________. 3)某一时期,美元与人民币的比价为100:800元,则 250 2000元人民币可兑换美元为________ 元.
例1、如图:用直径为200毫米的圆钢,锻造一个长、宽、 高分别为300毫米、300毫米和80毫米的长方体毛坯底板, 应截取圆钢多少(圆柱的体积公式:体积 = 底面积 高 线长.计算时取3.14.要求结果误差不超过1毫米)?
煤 涉及的量 矿 甲 矿 乙 矿
原有煤量
(完整版)一元一次方程实际问题归纳
一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题,配套问题,工程问题,调配问题,分配问题,比例问题,和差倍分问题,销售问题,储蓄问题,积分问题,年龄问题,几何问题、数字问题,增长率问题,古代数学问题,分段问题,方案选择问题等。
列一元一次方程解应用题的一般步骤1. 审:审题,分析题目中的数量关系;2. 设:设适当的未知数,并表示未知量;3. 列:根据题目中的数量关系列方程;4. 解:解这个方程求未知数的值;5. 检验:检验是否符合实际;6. 答:作答.(一)行程问题(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行、环形跑道问题、行船问题、火车过隧道(桥)的问题。
(3)解此类题常常借助画草图来分析,理解行程问题。
①相遇问题(同时出发“两段”)1.西安站和武汉站相距1500km,一列慢车从西安开出,速度为65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?分析:快车路程+慢车路程=总路程或(快车速度+慢车速度)×相遇时间=相遇路程①相遇问题(不同时出发“三段”)2.西安站和武汉站相距1500km,一列慢车从西安开出,速度为60km/h,一列快车从武汉开出,速度为90km/h,若两车相向而行,慢车先开5小时,快车行驶几小时后两车相遇?分析:慢车先行路程+慢车后行路程+快车路程=总路程②追及问题(同时出发)3.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?②追及问题(不同时出发)4.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?②追及问题5.敌我两军相距32km,乱军以每小时6km的速度逃窜,我军同时以每小时16km的速度追击,在相距2km的时候发生战斗,则战斗是从开始追击后几小时发生的?③相背而行6.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•列一元一次方程解应用题的一般步骤:
列方程(组)解应用题是中学数学联系实际的一个重要方面。
其具体步骤是:
⑴审题:理解题意。
弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关
系是什么。
⑵设元(未知数):找出等量关系:找出能够表示本题含义的相等关系;
①直接未知数:设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•
然后利用已找出的等量关系列出方程;
②间接未知数(往往二者兼用)。
一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。
一
般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答题。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。
在这个过程中,列方程起着承前启后的作用。
因此,列方程是解应用题的关键。
•一元一次方程应用题型及技巧:
列方程解应用题的几种常见类型及解题技巧:
(1)和差倍分问题:
①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”
来体现。
②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。
(2)行程问题:
基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,
路程=速度×时间。
①相遇问题:快行距+慢行距=原距;
②追及问题:快行距-慢行距=原距;
③航行问题:
顺水(风)速度=静水(风)速度+水流(风)速度,
逆水(风)速度=静水(风)速度-水流(风)速度
例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?
两车同时开出,相背而行多少小时后两车相距600公里?
两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
)
例:一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?
(3)劳力分配问题:抓住劳力调配后,从甲处人数与乙处人数之间的关系来考虑。
这类问题要搞清人数的变化。
例.某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?
(4)工程问题:
三个基本量:工作量、工作时间、工作效率;
其基本关系为:工作量=工作效率×工作时间;相关关系:各部分工作量之和为1。
例:一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
(5)利润问题:
基本关系:
①商品利润=商品售价-商品进价;
②商品利润率=商品利润/商品进价×100%;
③商品销售额=商品销售价×商品销售量;
④商品的销售利润=(销售价-成本价)×销售量。
⑤商品售价=商品标价×折扣率例.
例:一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
(6)数字问题:一般可设个位数字为a,十位数字为b,百位数字为c,十位数可表示为
10b+a,百位数可表示为100c+10b+a,然后抓住数字间或新数、原数之间的关系找等量关系列方程。
数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;
偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。
例:有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
(7)盈亏问题:“盈”表示分配中的多余情况;“亏”表示不足或缺少部分。
(8)储蓄问题:
其数量关系是:
利息=本金×利率×存期;:(注意:利息税)。
本息=本金+利息,利息税=利息×利息税率。
注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。
(9)溶液配制问题:
其基本数量关系是:溶液质量=溶质质量+溶剂质量;
溶质质量=溶液中所含溶质的质量分数。
这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。
(10)比例分配问题:
这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量。
还有劳力调配问题、配套问题、年龄问题、比赛积分问题、增长率问题等都会有涉及。