数的发展史论文
数学的发展论文2000字
数学的发展论文2000字1、中国古代数学的发展史1.1起源与早期发展数学是研究数和形的科学,是中国古代科学中一门重要的学科。
中国数学发展的萌芽期可以追溯到先秦时期,最早的记数法在殷墟出土的甲骨文卜辞中可以找到记数的文字。
如独立的记数符号一到十,百、千、万,最大的数字为三万,还有十进制的记数法。
在春秋时期出现中国最古老的计算工具——算筹,使用算筹进行计算称为筹算,中国古代数学的最大特点就是建立在筹算基础之上。
古代的算筹多为竹子制成的同样长短和粗细的小棍子,用算筹记数有纵、横两种方式,个位用纵式,十位用横式,以此类推,并以空位表示零。
这与西方及阿拉伯数学是明显不同的。
在几何学方面,在《史记夏本记》中记录到夏禹治水时已使用了规、矩、准、绳等作图和测量工具,勾股定理中的勾三股四弦五已被发现。
1.2中国数学体系的形成与奠基时期这一时期包括秦汉、魏晋、南北朝,共400年间的数学发展历史。
中国古代的数学体系形成在秦汉时期,随着数学知识的不断系统化、理论化,相应的数学专书也陆续出现,如西汉初的《算数书》、西汉末年的《周髀算经》、东汉初年的《九章算术》以及南北朝时期的《孙子算经》、《夏侯阳算经》、《张丘建算经》等一系列算学著作。
《周髀算经》编纂于西汉末年,提出勾股定理的特例及普遍形式以及测太阳高、远的陈子测日法;《九章算术》成书于东汉初年,以问题形式编写,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章,特点在于注重理论联系实际,形成了以筹算为中心的数学体系。
中国数学在魏晋时期有了较大的发展,其中赵爽和刘徽的工作被认为是中国古代数学理论体系的开端。
赵爽证明了数学定理和公式,详尽注释了《周髀算经》,其中一段530余字的勾股圆方图注文是数学史上极有价值的文献。
刘徽的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。
在南北朝时期数学的发展依然蓬勃,出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作。
[论文]数学发展历史
数学史数学是一门古老的学科,它伴随着人类文明的产生而产生,至少有四、五千年的历史.但它不是某一个民族或某一个地区的产物,而是世界许多民族、诸多地区世世代代的产物,是人们在生产斗争和科学实践中逐渐形成和发展而成的。
数学的最初的概念和原理在远古时代就萌芽了,经过四千多年世界许多民族的共同努力,才发展到今天这样内容丰富、分支众多、应用广泛的庞大系统。
第一节发展历史一般认为,从远古到现在,数学经历了五个历史阶段.一、数学萌芽时期(公元6世纪以前)在人类历史上,这是原始社会和奴隶社会的初期。
这个时期数学的成就以巴比伦、埃及和中国的数学为代表。
古巴比伦是位于幼发拉底河和底格里斯河两河流域的一个文明古国。
巴比伦王国形成于约公元前19世纪,从出土的古巴比伦的泥板上的楔形文字中发现,古巴比伦人具有算术和代数方面的知识,建立了60进位制的记数系统,掌握了自然数的四则运算,广泛使用了分数,能进行平方、立方和简单的开平方、开立方运算.他们迈出了代数的第一步,能用一些特别的术语和符号代表未知数,能解特殊的几种一元一次、二元一次方程和一元二次方程,甚至某些三次、四次(可化为二次的)和个别指数方程,并且能够把它们应用于天文学和商业等实际问题中去。
几何方面掌握了简单平面图形的面积和简单立体体积的计算方法。
中国是最早使用十进位值制记数法的国家。
早在三千多年前的商代中期,在甲骨文中产生了一套十进制数字和记数法,最大的数字为三万.与此同时,殷人用十个天干和十二个地支组成六十甲子,用以记日、记月、记年。
用阴(——)、阳(一)符号构成八卦表示8种事物,后来发展为64卦。
春秋战国之际,筹算已普遍应用,其记数法是十进位值制。
数的概念从整数扩充到分数、负数,建立了数的四则运算的算术系统。
几何方面,4500年前就有测量工具规、矩、准、绳,有圆方平直的概念。
公元前1100年左右的商高知道“勾三股四弦五”的勾股定理.春秋末战国初的墨子在《墨经》中给出了一些数学定义,包含有许多算术、几何方面的知识和无穷、极限的概念。
数学研究性学习数学发展史论文
数学研究性学习数学发展史论文数学发展史是一个广阔的领域,涵盖了几千年的时间和各种各样的数学思想和进展。
研究这个领域可以帮助我们了解数学的起源、发展和应用,并揭示出一些数学家们在历史上所做的伟大贡献。
本文将通过分析数学发展史中的两个里程碑事件来探讨数学研究的重要性,以及如何将数学发展史与现代数学研究相结合。
数学发展史中的一个重要事件是公元前3000年左右古巴比伦人发明了数学。
古巴比伦人是世界上最早掌握数学的文明之一、他们用60进位制的数字系统,开创了代数和几何学的基础,从而为未来的数学发展铺平了道路。
古巴比伦人的数学知识主要用于解决土地测量、商业交易和天文学方面的问题。
通过研究他们的著作和记录,我们可以了解他们当时的数学知识和应用范围,从而更好地理解他们对数学的贡献。
另一个重要的数学发展历史事件是公元前6世纪的希腊数学。
希腊数学家发展了几何学,并建立了公理化的几何系统,奠定了几何学的基础。
其中最著名的数学家是毕达哥拉斯和欧几里德。
毕达哥拉斯定理和欧几里德几何学对现代数学的发展有着深远的影响。
希腊数学家的贡献推动了数学的进一步发展,并开启了数学与哲学的相互关系。
通过研究数学发展史,我们可以发现几个重要的趋势。
首先,数学的发展是逐步的,每一代数学家都在前人的基础上进行扩展和改进。
这种积累性的发展为现代数学提供了坚实的基础。
其次,数学的发展几乎与人类的其他科学和文化领域的进展同时进行。
数学在天文学、物理学、工程学等领域发挥了重要作用,并为这些领域的科学研究提供了数学模型和工具。
最后,数学的发展历程中还存在许多未解决的问题和新的研究方向。
数学研究永远不会停止,每一代数学家都会为之前未能解决的问题提供新的解决方案。
要进行数学研究,我们可以通过阅读历史文献、研究数学家的传记和著作,以及参与数学研究项目来深入了解数学发展史。
此外,还可以参加数学研讨会和学术会议,与其他数学爱好者和专业人士交流和分享研究成果。
通过这些研究方法,我们可以更好地了解数学的发展历史,并为数学研究的未来贡献自己的力量。
中国数学发展史论文
中国的数学文化史鲍是吉学习一门学科首先要弄清楚这是一门怎样的学科,《标准》明确提出要使学生“初步了解数学产生与发展的过程,体会数学对人类文明发展的作用”,而现阶段高中学生对数学的看法大都停留在感性的层面上——枯燥、难学。
数学的本质特征是什么?当今数学究竟发展到了哪个阶段?在科学中的地位如何?与其它学科有什么联系?这些问题大都不被学生全面了解,而从数学史中可以找到这些问题的答案。
日本数学家藤天宏教授在第九次国际数学教育大会报告中指出,人类历史上有四个数学高峰:第一个是古希腊的演绎数学时期,它代表了作为科学形态的数学的诞生,是人类“理性思维”的第一个重大胜利;第二个是牛顿-莱布尼兹的微积分时期,它为了满足工业革命的需要而产生,在力学、光学、工程技术领域获得巨大成功;第三个是希尔伯特为代表的形式主义公理化时期;第四个是以计算机技术为标志的新数学时期,我们现在就处在这个时期。
而数学历史上的三大危机分别是古希腊时期的不可公度量,17、18世纪微积分基础的争论和20世纪初的集合论悖论,它同前三个高峰有着惊人的密切联系,这种联系绝不是偶然,它是数学作为一门追求完美的科学的必然。
学生可以从这种联系中发现数学追求的是清晰、准确、严密,不允许有任何杂乱,不允许有任何含糊,这时候学生就很容易认识到数学的三大基本特征——抽象性、严谨性和广泛应用性了。
纵观中国数学发展史总体就用一句话来概括“中国数学起源早到时发展缓慢”一、中国古代数学家数学家王贞仪(1768-1797 ),字德卿,江宁人,是清代学者王锡琛之女,着有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。
从她遗留下来的着作可以看出,她是一位从事天文和筹算研究的女数学家。
算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状的计算工具。
一般是竹制或木制的一批同样长短粗细的小棒,也有用金属、玉、骨等质料制成的,不用时放在特制的算袋或算子筒里,使用时在特制的算板、毡或直接在桌上排布。
数学论文 关于数的发展历史
目录1 引言 (3)2 计数法和自然数 (3)2.1 记数制度 (3)2.2 自然数 (4)3 有理数系 (8)3.1有理数的引入 (8)3.2分数和负数 (8)4 实数理论的完善 (9)4.1无理数的由来 (9)4.2 实数的发展 (10)5 复数的扩张 (11)5.1 复数的产生 (11)5.2 复数的历史意义 (11)6 结论 (12)参考文献 (13)致谢 (14)关于数的发展历史摘要:数系理论的历史发展表明,数的概念的每一次扩张都标志着数学的进步,但是这种进步并不是按照数学教科书的逻辑步骤展开的。
希腊人关于无理数的发现暴露出有理数系的缺陷,而实数系的完备性一直要到19世纪才得以完成。
负数早在《九章算术》中就已被中国数学家所认识,然而,15世纪的欧洲人仍然不愿意承认负数的意义。
“四元数”的发明,打开了通向抽象代数的大门,同时也宣告在保持传统运算定律的意义下,复数是数系扩张的终点。
关键词:记数法;素数;有理数;实数理论;复数扩张1 引言数是数学中的基本概念,也是人类文明的重要部分。
数的概念的每一次扩展都标志着数学的巨大飞跃。
一个时代人们对于数的认识与应用,以及数系理论的完善程度,反映了当时数学发展的水平。
现在,我们所应用的数,已经构造的如此完备和缜密,以致于在科学技术和社会生活的一切领域中,它都成为基本的语言和不可或缺的工具。
在我们得心应手地享用这份人类文明的共同财富时,是否想到在数的形成和发展的历史过程中,人类的智慧所经历的曲折和艰辛呢?2 记数法和自然数2.1 记数制度记数制度或计数法就是记录或表示数目的方法,主要指数字符号的表现形式以及技术工具的使用。
在文字生产之前,人类就已形成数的概念。
那时数目是用事物来记录的,如小石子,竹片,树枝,贝壳之类。
这些东西容易散乱,自然会想到用结绳的办法来记录。
我国《周易.系辞下》有“上古结绳而治,后世圣人,易之以书契”的说法。
东汉郑玄称:“事大,大结其绳;事小,小结其绳。
数学发展历史研究论文
数学发展历史研究论文摘要:数学是一门古老而深奥的学科,对人类文明的发展起到了重要的推动作用。
本文通过对数学发展历史的研究,探讨了数学的起源、发展和影响。
引言:数学是一门研究数量、结构、变化以及空间等概念的学科,是科学和技术发展的重要基石。
数学的发展历史可以追溯到古代文明时期,早在5000年前,古代埃及和巴比伦就开始使用几何学和算术。
一、数学的起源和发展数学的起源可以追溯到古代文明时期。
古埃及人和古巴比伦人是最早开始研究数学的文明之一、他们通过观察自然现象和社会实践,逐渐发现了一些基本的数学原理和概念,例如算术运算和几何规则。
这些发现为后来数学的发展打下了基础。
在古希腊时期,伟大的数学家欧几里得发表了《几何原本》,系统整理了前人的几何研究成果,建立了几何学的基本原理和公理体系。
这个体系对后来的几何学发展产生了深远的影响。
中世纪是数学发展的低谷时期,随着对古代科学文化的遗忘和学术研究的衰退,数学的研究进展十分有限。
直到文艺复兴时期,数学才再次得到重视。
二、数学的重要发展阶段文艺复兴时期是数学发展的重要阶段。
数学家们开始重新研究古希腊的数学著作,并提出了新的数学理论。
例如,意大利数学家费马提出了“费马大定理”,奠定了数论的基石。
17世纪是数学发展的黄金时期,这一时期出现了一批伟大的数学家和数学著作。
例如,牛顿和莱布尼兹独立发明了微积分学,并创立了现代微积分的基本原理。
这一发现对现代物理学、工程学和经济学等学科的发展产生了深远的影响。
20世纪是现代数学的发展时期。
数学的发展逐渐向抽象、推理和形式化的方向转变。
出现了一批重要的数学家,如哥德尔、图灵、泽尔尼克等,他们为数学研究提供了重要的理论支持,推动了数学的快速发展。
三、数学对人类文明的影响数学在人类文明的发展中起到了重要的推动作用。
数学不仅为其他学科提供了理论工具和方法,而且在工程技术、经济学和计算机科学等领域发挥了重要作用。
例如,数学在工程技术领域的应用可以帮助设计和解决复杂的工程问题。
简述中国数学发展史
中国数学发展史【摘要】数学发展史就是数学这门学科的发展历程。
人们的思想在不断的发生变化,数学中的很多思想也是人类不断发展的体现。
该论文就围绕中国数学的发展历程和思想进行了简单的概括和论述。
介绍了从古至今中国数学的发展历程,讲述了中国数学思想的特点及中国数学对世界的影响以及中外数学文化的交流影响,总结了从数学发展史中得到的启示。
【关键词】中国数学;数学发展史;数学思想一、中国数学的发展历程中国数学的起源与早期发展据《易·系辞》记载:“伏羲作结绳”,“上古结绳而治”,后世圣人易之以书契。
其中有十进制制的记数法,出现最大的数字为三万。
这是位值制的最早使用。
算筹是中国古代的计算工具,这种方法称为筹算。
筹算在春秋时代已很普遍。
在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现“勾三股四弦五”这个勾股定理﹝西方称勾股定理﹞的特例。
在公元前2500年,我国已有圆、方、平、直的概念。
对几何工具也有深刻认识。
算术四则运算在春秋时期已经确立,乘法运算已广为流行。
“九九表”一直流行了约1600年。
战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。
著名的有《墨经》中关于某些几何名词的定义和命题。
《庄子》中则强调抽象的数学思想。
其中几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想。
此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。
中国数学体系的形成与奠基这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史。
秦汉是中国古代数学体系的形成时期。
在这一时期,数学知识系统化、理论化,数学方面的专书陆续出现。
现传中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》。
西汉末年﹝公元前一世纪﹞编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学著作,但包含许多数学内容,在数学方面主要有两项成就:(1)分数、等差数列、勾股定理于测量术;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱。
数学史小论文
女数学家的故事摘要:数学是科学史上的一颗明珠,在文化发展史上具有不可替代的作用。
数学就像是大海,他由无数数学家们组成。
其中不乏有很多著名的数学家。
在我们的印象中数学家大多都是男性的,但是,女数学家也是大海中的一部分,为数学的发展做出了很多贡献。
关键词:女数学家贡献正文:数学是科学史上的一颗明珠,在文化发展史上具有不可替代的作用。
数学就像是大海,他由无数数学家们组成。
其中不乏有很多著名的数学家。
在我们的印象中数学家大多都是男性的,但是,女数学家也是大海中的一部分,为数学的发展做出了很多贡献。
她们做出的成就的的确确比不上男数学家的成就,但是我们依然能够发现她们的事迹中有很多的伟大,很多的美丽。
Hypatia of Alexandria 是已知的第一位重要的女数学家。
她是Hypatia是埃及数学与哲学家Theon of Alexanderia 的女儿,家学渊源曾游学于雅典。
年方卅,已经成为流行的新柏拉图哲学学派的学术领袖。
她此后一生都在Alexandria教授数学与哲学,可以说是桃李满天下。
Hypatia 曾协助她父亲补注Ptolemy 的《Almagest》(天文学大全),欧几里得的《原本》(后来成为定本)。
她也曾补注过Diophantus 的《算术》与Apollonius 的《圆锥曲线论》。
她曾经制造过一些科学仪器:观星仪、水平仪、蒸馏器等。
她最后的结局比较让我们心痛,Cyril教长之类的人认为数学家哲学家这类人人为异端对他们大加残害,手段令人发指。
在一个封斋的日子里,Hypatia 被从马车上拖到教堂,剥光衣服,身上的肉被一群狂暴的人用牡蛎的壳刮了下来。
Hypatia 的死被视为西方早期文明终结的戏剧性象征,因她的死让作为古代学术中心的Alexadria,开始丧失吸引学者的魅力。
因此作为一个美貌,博学又有智慧的人物,Hypatia 也一直被西方世界浪漫化。
Hypatia 的悲剧主要是因为当时人们对女性的歧视,和男女地位的不平等,和宗教主义的压迫。
数学的发展历史论文
数学的发展历史论文数学作为一门科学领域的学科,在人类文明的发展中扮演着重要的角色。
数学的发展历史可追溯至古代文明,古希腊时期的数学家如毕达哥拉斯、欧几里德和阿基米德等人对数学的发展产生了深远影响。
随着时间的推移,数学逐渐演变成为一门独立的学科,涵盖了代数、几何、数论、分析等多个领域,并在科学、工程、经济等多个领域发挥着重要作用。
古代数学的发展可以追溯至古埃及和美索不达米亚文明,这些古代文明的数学成就在计算、测量和建筑等方面发挥了重要作用。
古希腊数学的发展则奠定了几何和数论的基础,毕达哥拉斯的毕达哥拉斯定理和欧几里德的几何原理成为了古典几何学的基石。
在古代印度和中国,数学家们也做出了重要的贡献,如印度的零和十进制系统以及中国的算术和代数等方面都具有重要意义。
随着文艺复兴的到来,数学进入了一个新的发展阶段。
伽利略和牛顿的研究为物理学和天文学奠定了基础,而他们的成就也推动了数学的发展。
18世纪的数学革命则为微积分学、分析学和概率论等领域的发展奠定了基础。
而19世纪末和20世纪初的集合论、拓扑学和数理逻辑等领域的发展,则为现代数学的形成打下了基础。
在当代,数学已经成为了一门独立的学科,并不断涌现出新的理论和方法。
逻辑学、数学物理学、数值计算和离散数学等新的数学领域的出现,为数学的发展提供了新的动力。
而计算机的发展也推动了数学在人工智能、密码学和信息安全等领域的应用。
总的来说,数学的发展历史是一部不断创新和探索的历史,而现代数学的发展也将继续推动人类社会的进步和发展。
抽象代数、拓扑学和微分几何等新的数学分支的发展,引领了数学新的发展方向,为现代数学的发展提供了新的思想和方法。
数学在现代科学、工程和技术领域发挥着不可替代的作用,从探索宇宙的奥秘到解决社会问题,数学无处不在。
除了在纯粹数学领域的取得的成就之外,数学在应用领域也有着广泛的影响。
例如,在金融领域,数学模型和方法被广泛应用于风险管理、投资组合优化和金融衍生品定价等方面。
关于数学史的论文参考范文
关于数学史的论⽂参考范⽂ 数学史是研究数学科学发⽣发展及其规律的科学,简单地说就是研究数学的历史。
下⽂是店铺为⼤家整理的数学史的论⽂参考范⽂的内容,欢迎⼤家阅读参考! 数学史的论⽂参考范⽂篇1 浅谈流形概念的演变与理论发展 ⼀、引⾔ 流形是20 世纪数学有代表性的基本概念,它集⼏何、代数、分析于⼀体,成为现代数学的重要研究对象。
在数学中,流形作为⽅程的⾮退化系统的解的集合出现,也是⼏何的各种集合和允许局部参数化的其他对象。
〔1〕53物理学中,经典⼒学的相空间和构造⼴义相对论的时空模型的四维伪黎曼流形都是流形的实例。
流形是局部具有欧⽒空间性质的拓扑空间,粗略地说,流形上每⼀点的附近和欧⽒空间的⼀个开集是同胚的,流形正是⼀块块欧⽒空间粘起来的结果。
从整体上看,流形具有拓扑结构,⽽拓扑结构是“软” 的,因为所有的同胚变形会保持拓扑结构不变,这样流形具有整体上的柔性,可流动性,也许这就是中⽂译成流形(该译名由着名数学家和数学教育学家江泽涵引⼊)的原因。
流形作为拓扑空间,它的起源是为了解决什么问题? 是如何解决的? 谁解决的? 形成了什么理论?这是⼏何史的根本问题。
⽬前国内外对这些问题已有⼀些研究〔1-7〕,本⽂在已有研究⼯作的基础上,对流形的历史演变过程进⾏了较为深⼊、细致的分析,并对上述问题给予解答。
⼆、流形概念的演变 流形概念的起源可追溯到⾼斯(C.F.Gauss,1777-1855)的内蕴⼏何思想,黎曼(C.F.B.Riemann,1826-1866)继承并发展了的⾼斯的想法,并给出了流形的描述性定义。
随着集合论和拓扑学的发展,希尔伯特(D.Hilbert,1862-1943)⽤公理化⽅案改良了黎曼对流形的定义,最终外尔(H.Weyl,1885-1955)给出了流形的严格数学定义。
1. ⾼斯-克吕格投影和曲纹坐标系 ⼗⼋世纪末及⼗九世纪初,频繁的拿破仑战争和欧洲经济的发展迫切需要绘制精确的地图,于是欧洲各国开始有计划地实施本国领域的⼤地测量⼯作。
关于数学史的论文参考范文
关于数学史的论文参考范文
前言
数学是一门古老、深奥、优美的科学,是人类文明的重要组成部分。
数学的发展一直伴随着人类的进步,它不仅影响了科学技术的发展,
还对人类的社会、文化产生了巨大影响。
本文将介绍数学史的发展,
探讨数学在历史中的地位和作用。
起源与古代
最早的数学活动可以追溯到一万多年前的旧石器时代。
在这个时期,人们已经开始了计数、计量、度量等活动。
中国的甲骨文时期,也有
数学活动的记录,如有关土地面积、谷物的多少等方面的记录。
古代
数学在古埃及、古印度、古希腊、古罗马等文明中得到发展。
古希腊
的欧几里德几何、锡拉库托斯等人创立的数学、印度的代数和无限级
数等都是古代数学的重要成果。
古代数学不仅仅是一门学科,也反映
了当时社会、经济、文化发展的历史背景和特点。
中世纪与近现代
中世纪的欧洲,炼金术、占星术等被普遍地认为是数学的一部分。
但是,随着文艺复兴时期的到来,数学逐渐成为了一门独立的学科。
伽利略、笛卡尔、牛顿等人的贡献,重新定义了数学的基础和形式,
将数学带入了一个新的高峰。
这个时期,计算工具的发明也大大加速
了数学的发展。
如莫斯科大学教授米哈伊尔·瓦西尔耶维奇·奥斯特罗格。
论文《数的由来和发展》
数的由来和发展之杨若古兰创作数是个神秘的领域,人类最后对数并没有概念.就像在几百万年前,我们的先人还只晓得“有”、“无”、“多”、“少”的概念,而不晓得数为什么物.随着文明的进步,这些模糊不清的概念没法满足生产、生活的须要.所以,让人类脑海中逐步有了“数量”的影子.而数又是如何发展成为今天这个模样的呢?一、数的由来和最后起源人类是动物进化的产品,最后也完整没无数量的概念.但人类发达的大脑对客观世界的认识曾经达到更加理性和抽象的地步.如许,在漫长的生活实践中,因为记事和分配生活用品等方面的须要,才逐步发生了数的概念.比方捕获了一头野兽,就用1块石子代表.捕获了3头,就放3块石子."结绳记事"也是地球上很多相隔很近的古代人类共同做过的事.我国古书《易经》中有"结绳而治"的记载.传说古代波斯王打仗时也经常使用绳子打结来计算天数.用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人经常使用的法子.这些法子用得多了,就逐步构成数的概念和记数的符号.数的概念最后不管在哪个地区都是1、2、3、4……如许的天然数开始的,但是记数的符号却大小不异.这就是数最后的起源.二、天然数的发展史数的发展大概可以分为以下几个阶段:远古时期、筹算、罗马数字、0的引进和阿拉伯数字.1、远古时期:远古时期的人类在生活中碰到了很多没法解决的困难:如何暗示一棵树、两只羊等等.而在当时并没有符号或数字暗示具体的数量,所以他们次要以结绳记事或在石头上刻痕迹的方法计数.2、罗马数字:罗马数字想必大家很熟悉不过了.这些数字常在钟内外出现,想一想看,你见过它们吗?I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1000).如果你细心观察的话,会发现罗马数字中没有“0”.其实在公元5世纪时,“0”曾经传入罗马,但罗马教皇残暴而且守旧.他不答应任何人使用"0".3、筹算:我们的先人创造了一种十分次要的计算方法:筹算.筹算用的算筹是竹制的小棍,也有骨制的.按规定的横竖是非顺序摆好,就可用来记数和进行运算.随着筹算的普及,算筹的摆法也就成为记数的符号了.算筹摆法有横纵两式,都能暗示同样的数字.如许的计算法在当时是很进步前辈的.但筹算数码中开始没有“零”,碰到“零”就要空位.4、0的引进和阿拉伯数字:0这个数是公元六世纪的印度人发明的,他们用黑点“·”暗示,终极演酿成此刻我们熟悉的“0”.当然,阿拉伯数字也是印度人创造的,以后流传到阿拉伯,后人误认为是阿拉伯人发明,故称之为“阿拉伯数字”.因为它们便于书写,被沿用至今.三、其他数的发展发展到阿拉伯数字为止,我们发现这些数字都是天然数.出现分数当前,又解决了人们很多难题.但是,在生活中我们还见到过很多具有相反意义的量:前进和后退,向上和向劣等等.因而,人类又将这些具有相反意义的数称为“负数”.又有学者发现了一些没法用天然数和负数暗示的数.人们发现了“在理数”,这些数没法用精确的数字暗示出来,它们是无穷不轮回小数,所以就用“根”来暗示.在理数和有理数统称实数.除了实数,还有虚数和复数,数这个大家庭正在不竭扩大……四、小结数是个神秘的领域,它为我们学好数学奠定了基础,它们的家庭也在日益强大着.数的秘密还有很多很多,不信你就细心观察,数里有许很多多的常识.那些常识还须要我们去发掘、去发现、去探索.虽然此刻的数学曾经发展得很完美,但我仍但愿数学能发展的更快更好!。
中国数学的发展历史论文
中国数学的发展历史论文中国数学是世界上最古老的数学之一,其发展历史可以追溯到几千年前的古代中国。
在中国古代,数学是与其他学科一样受到高度重视的学科之一,并且有着非常丰富的数学发展历史。
最早的数学文献可以追溯到商朝时期的甲骨文,这些甲骨文中就包含了简单的计算和数学概念。
随着时间的推移,中国的数学发展逐渐壮大,汇集了许多优秀的数学家和学者。
在中国古代,最著名的数学著作之一就是《九章算术》,这部著作涵盖了从几何学到代数学的各种数学内容,并对后世的数学发展产生了深远的影响。
除此之外,《算经》、《孙子算经》等数学著作也在中国古代留下了重要的印记。
随着中华文明不断的发展,中国的数学也不断地得到发展和推广。
在宋朝时期,数学家秦九韶提出了秦九韶算法,这一算法在解决一元高次代数方程的问题上有着重要的作用,被认为是中国代数学史上的重要里程碑之一。
除了传统的代数学和几何学之外,中国古代还有着丰富的数论、概率论和微积分的研究。
这些数学概念在当时就已经得到了重要的探讨和发展,并且对后世的数学发展产生了深远的影响。
在近代,中国的数学发展也保持了较高的活跃度。
自从19世纪末20世纪初开始,中国的数学家们开始与世界各国的数学家进行交流和合作,这对中国数学的发展起到了很大的推动作用。
今天的中国数学处于高速发展的阶段,在数学研究、教育和应用方面都取得了很大的进步。
中国数学家们也在国际上取得了很多重要的成就,为中国数学的发展增添了很多新的光彩。
总的来说,中国数学的发展历史可以追溯到数千年前的古代,跨越了时空的变迁,积淀着丰富的数学文化和传统。
中国数学的辉煌历史为今后的数学发展提供了宝贵的经验和启示,也为世界数学的发展做出了重要的贡献。
中国数学的发展历史可以说是源远流长,不仅在几何学、代数学、数论方面取得了丰硕成果,还在应用数学和跨学科交叉研究方面有着深厚积淀。
古代数学家如刘徽、祖冲之、杨辉等的伟大贡献,为中国古代数学奠定了坚实的基础,成为当今中国数学的宝贵遗产。
数学史论文(4篇)
数学史论文(4篇)数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。
小编为朋友们精心整理了4篇《数学史论文》,希望可以启发、帮助到大朋友、小朋友们。
数学史论文篇一笔者认为,在宋元时期出现发展并在明代得以全面应用的中国珠算,[(4)]作为中国传统算器的历史性创造以及它作为实践应用的历史地位并没有得到数学史界的充分认识。
目前的评价没有把中国珠算与中国古代数学的发展规律联系起来,没有把中国珠算作为宋元数学成就之后的又一重大成就,明代珠算与宋元数学的比较评价实际上是中国古代数学史研究评价中一个很值得重视的理论问题。
在中国古代数学史的研究中,对宋元数学和明代珠算评价的反差,实际上已经带来了中西古代数学比较研究和评价方面的某些困难。
客观地历史地评价明代珠算,涉及到我们如何认识和理解中国古代数学的算器型的算法体系、技艺型的价值取向和古代数学评价标准等问题。
1珠算与算器型算法体系目前,许多中国数学史的学者都从中国文化与西方文化的差异中认识到,中西古代数学是两种不同风格、不同形式、不同构造体系的数学模式。
许多中国学者都从中国古代数学发生发展及其流变的规律中指出中国古代数学区别于古希腊数学的特征,并且强调要在中西古代数学的差异之处体现中国古代数学的意义及其对人类数学的贡献。
在论证分析中国古代数学的特征时,许多学者指出了中国古代数学不象古希腊数学那样依逻辑运演和逻辑证明为主要形式,中国古代数学主要是以筹算的运演为主,算筹的运演规律构成了中国古代数学的基本特征。
换句话说,使用算筹这样一种算器,并以其为基本运演形式是中国古代数学的基本特征。
李继闵先生认为:“形数结合,以算为主,使用算器,建立一套算法体系是中国传统数学的显著特色。
”[(5)]吴文俊先生在论及中国古代数学紧紧依靠算器而形成的数学模式时强调指出:“我国的传统数学有它自己的体系与形式,有着它自身的发展途径与独到的思想体系,不能以西方数学的模式生搬硬套……从问题而不是从公理出发,以解决问题而不是以推理论证为主旨,这与西方之以欧几里得几何为代表的所谓演绎体系旨趣迥异,途径亦殊……在数学发展的历史长河中,数学机械化算法体系与数学公理化演绎体系曾多次反复互为消长,交替成为数学发展中的主流。
大学数学史论文-数学论文怎么写
大学数学史论文|数学论文怎么写数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。
下文是小编为大家整理的关于大学数学史论文的范文,欢迎大家阅读参考!大学数学史论文篇1数学史的教育功能摘要数学史作为数学学科中的一部分,它不仅揭示了数学知识发展的来源,也揭示了数学学科对于人们发展科学文化知识的巨大作用。
数学史的教学已经成为了目前学校教育工作中的一部分,利用数学史的教学可以引导学生们提高对数学学科学习的兴趣,培养创新思维,从了解数学史的根源开始,主动发现数学学科中的奥秘。
针对这一系列问题,本文从四大方面分析了数学史对于数学教育工作中的功能体现,从而引起数学教育工作者的高度重视。
关键词数学史教育功能创新思维功能体现1 数学史的教育功能之一提高学生们学习数学的兴趣兴趣是最好的老师,有了兴趣学生才会对数学冰冷的美丽产生出火热的激情。
然而,为了提高学生们学习数学的兴趣,不仅仅是鼓励和题海战术这么简单,我们应该采取引导与教育相结合的方式,青少年时期正是疑问多、想法多的阶段,我们应该抓住学生们的这一特点,从解除疑问的角度来引导学生们接受和爱好数学的学习。
让学生们在了解数学史的基础上,深刻记忆数学定义、定理的模型与应用。
例如:数学老师在课堂上讲授无理数的概念时,若只是将无理数的概念硬性地传授给学生,学生们似乎已经记住了无理数的特征,也能够正确判断哪些数是无理数,哪些数不是无理数,然而,这只是课堂中的短暂记忆,无法给学生们留下深刻的印象,无法在学生们的脑子里留下长久的烙印。
因此,我们可以从介绍无理数的历史发展入手,将生动的无理数来源的历史背景讲授给学生们,引起学生们学习无理数的兴趣,加深对这一知识点的记忆。
2 数学史的教育功能之二培养学生们的数学应用意识数学的主要功能是应用科学,数学是一种工具,是所有学科中最具前瞻性和科学性的自然科学,从数学知识的本身来看是十分枯燥乏味的,表面来看,学生们在课堂中所接受的是已经由大量科学家所发现和证明了的科学结晶,这些结果的产生是具有强大科学依据的,每一个结晶诞生的背后都有一个久远的历史故事,它不仅验证了科学的可靠性,同时也说明了世界奥秘的可知性。
数学发展史论文
数学发展史论文引言计算机是20世纪人类最伟大的发明之一,它的出现彻底改变了人类社会的生产和生活方式。
从第一台计算机诞生至今,计算机技术一直在不断发展和进步。
本文将详细介绍计算机的发展历程,并探讨未来计算机的发展趋势。
一、计算机的诞生20世纪40年代,第二次世界大战期间,美国军方为了解决计算弹道轨迹的问题,急需一种高速计算工具。
于是,宾夕法尼亚大学的莫奇利和埃克特领导的研究小组成功研制出了世界上第一台电子计算机ENIAC(Electronic Numerical Integrator And Calculator)。
这台计算机使用了个电子管,重达30吨,耗电量150千瓦,造价40万美元。
虽然ENIAC体积庞大、耗能高、可靠性差,但它奠定了计算机的基础,为后续计算机的发展奠定了基础。
二、计算机的发展阶段1、第一代计算机(1946-1958)第一代计算机以电子管作为基本元件,特点是体积庞大、耗能高、可靠性差。
这一时期的代表机型有ENIAC和UNIVAC。
这一代计算机主要用于科学计算和数据处理,如天气预报、原子能研究和航天工程等。
2、第二代计算机(1958-1964)第二代计算机以晶体管作为基本元件,体积和耗能大大减少,可靠性也得到了提高。
这一时期的代表机型有IBM 700/7000系列。
这一代计算机除了用于科学计算和数据处理外,还广泛应用于企业管理和商业领域。
3、第三代计算机(1964-1971)第三代计算机以集成电路作为基本元件,进一步缩小了体积,降低了耗能,提高了可靠性。
这一时期的代表机型有IBM 360系列。
这一代计算机开始应用于文字处理、图形处理和声音处理等领域。
4、第四代计算机(1971至今)第四代计算机以大规模集成电路作为基本元件,体积更小,耗能更低,可靠性更高。
这一时期的代表机型有IBM PC系列、苹果Macintosh 系列和Windows操作系统。
这一代计算机广泛应用于各种领域,如办公自动化、电子商务、物联网、人工智能等。
数学的发展历史论文
论文当我们开始认识这个世界时,数学就和我们在一起了。
我们在进入小学之前,就已经开始认识和使用阿拉伯数字,这是进入数学殿堂的开端,至今大家已经掌握了大量的数学知识,那么,这些数学知识是如何产生和发展的呢?数学知识的形成过程与人类认识自然的历史一样漫长是随着人类社会的生活。
生产活动而自然产生,发展和成熟的。
现在看起来很自然的一些数学概念(例如无理数、负数、0等),历史上却经理了漫长性或积累性很强的学科。
数学史记载了这门学科发生、发展的过程,展现了其深刻内涵和完美形式背后激动人心的灵感,蓉智的思想和孜孜不倦的探索精神。
我们的研究小组怀者探索的精神,踏入数学史中,感受到数学家们刻苦钻研和勇于开拓的精神,并且对数学的发展轨迹有了一定的了解。
以下是对起发展历史的概况:尼罗河下游的古埃及、两河流域的古巴比伦、恒河与印度河畔的古代印度以及黄河与长江流域的古代中国并称“四大文明古国”,创造了灿烂辉煌的“河谷文明”,创造了灿烂辉煌的“河谷文明”,早期的数学就诞生在这个地方。
中国古代是一个世界上数学先进的国家,用近代科目来归类的话可以看出无论在算术、代数、几何和三角方面都十分发达。
现在就让我们来简单回顾一下处等数学在中国发展的历史。
大约在3000年以前中国已经知道自然数的四则运算,这些运算知识一些结果。
被保留在古代的文字和典籍中。
乘除的运算规在后来的“孙子算位”(公元三世纪)内有了详细的记载,中国古代上用筹来技术的,在我们古代人民的计数中,已利用了和我们现在相同的位率,用筹计数的方法是以纵的筹来表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也明显的表现出来。
“孙子算经”用十六字来表示它,“一纵十横,百立千僵,千十相望,万百相当”,和古其他古代国家一样。
乘法表的产生在中国也很早。
乘法表古代中做九九估计在2500年以前中国已有这个表,在那个时候人们便已九九来代表数学。
现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数的发展史论文数的发展史关键词:数字、数学摘要:1 数字的起源2 数学的发展,注:黑体字部分为资料显示,据说在文字还没有发明之前,人们打回来了许多猎物,却碰到了一个问题:这么多的猎物,到底有多少,于是,人们就使用“结绳记事”这种方法,来数到底打了多少猎物。
但是一个新的问题出现了,日积月累下来,打的结到底有多少个,谁也不知道,因此有了数字。
数的概念的形成可能与火的使用一样古老,大约是在30万年以前,它对于人类文明的意义也决不亚于火的使用。
数字也分许多种,每个国家起源的数字也各有所不同,其中最常用的是阿拉伯数字。
而如今应用最广泛的阿拉伯数字又是怎么出现的呢,阿拉伯数字1、2、3、4、5、6、7、8、9。
0是国际上通用的数码。
这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。
阿拉伯数字最初出自印度人之手,也是他们的祖先在生产实践中逐步创造出来的。
公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。
到吠陀时代(公元前1400,公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。
公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1,9每个数都有专用符号,现代数字就是从它们中脱胎而来的。
当时,“0”还没有出现。
到了笈多时代(300,500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“?”,后来衍变成“0”。
这样,一套完整的数字便产生了。
这就是古代印度人民对世界文化的巨大贡献。
印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。
7,8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。
771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750,1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757,775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。
此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。
阿拉伯数学家花拉子密(约780,850)和海伯什等首先接受了印度数字,并在天文表中运用。
他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。
9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。
印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。
1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。
该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。
”14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。
西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。
而古罗马数字,是罗马人在希腊数字的基础上,建立了自己的记数方法。
罗马人用字母表示数,?表示1,?表示5,?表示10,?表示100,而?表示1000。
这样,大数字写起来就比较简短,但计算仍然十分不便。
因此,今天人们已经很少使用罗马数字记数了,但有时也还可以见到使用在年号或时钟上的罗马数字。
此外,还有中国的数字。
中国的数字则分大写、小写、天干、地支、算筹和生肖。
例如大写的有:零、壹、贰、叁、肆、伍、陆、柒、捌、玖、拾、佰、仟、万、亿、兆、京、垓、秭、穰、沟、涧、正、载、极,小写的有:〇、一、二、三、四、五、六、七、八、九、十、百、千、万、亿、兆、京、垓、秭、穰、沟、涧、正、载、极。
有了数字,为的就是计算。
数学符号的发明和使用比数字晚,但是数量多得多。
现在常用的有200多个,初中数学书里就不下20多种,它们都有一段有趣的经历。
例如加号曾经有好几种,现在通用“,”号。
“,”号是由拉丁文“et”(“和”的意思)演变而来的。
十六世纪,意大利科学家塔塔里亚用意大利文“plu”(加的意思)的第一个字母表示加,草为“μ”最后都变成了“,”号。
“,”号是从拉丁文“minus”““减”的意思)演变来的,简写m,再省略掉字母,就成了“,”了。
也有人说,卖酒的商人用“,”表示酒桶里的酒卖了多少。
以后,当把新酒灌入大桶的时候,就在“,”上加一竖,意思是把原线条勾销,这样就成了个“,”号。
到了十五世纪,德国数学家魏德美正式确定:“,”用作加号,“,”用作减号。
乘号曾经用过十几种,现在通用两种。
一个是“×”,最早是英国数学家奥屈特1631年提出的;一个是 ? ,最早是英国数学家赫锐奥特首创的。
到了十八世纪,美国数学家欧德莱确定,把“×”作为乘号。
他认为“×”是“,”斜起来写,是另一种表示增加的符号。
“?”最初作为减号,在欧洲大陆长期流行。
直到1631年英国数学家奥屈特用“:”表示除或比,另外有人用“,”(除线)表示除。
后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将“、“?”作为除号。
十六世纪法国数学家维叶特用“,”表示两个量的差别。
可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号“,”就从1540年开始使用起来。
这些都是最最常见的符号,与数字组合在一起,就可以组合成算式。
在算式里,就可以找出方程式。
含有未知数的等式叫方程,这是小学课本上所学的一种定义。
方程的种类有好几种,每种都是一个层次,由浅到深。
只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程。
一个含有两个未知数,并且未知数的指数都是1的整式方程,叫二元一次方程。
两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。
与二元一次方程类似,三个结合在一起的共含有三个未知数的一次方程(三元一次方程)。
含有一个未知数,并且未知数的最高次数是2的整式方程,这样的方程叫做一元二次方程。
而每一道方程式里都有一些“小精灵”,有些“小精灵”坚韧些,让你无可奈何,有些“小精灵”脆弱无比,动动脑筋就能破开它。
这些“小精灵”就是方程里必有的未知数。
未知数,数学名词。
指代数式或方程中数值需要经过运算才能确定或得到与别的未知数关系的数,亦喻指尚未了解的事物。
我国古代并不用符号来表示未知数,而是用筹算来解方程。
至宋、元时代的“天元术”,用“立天元”表示未知数,并在相应的系数旁写一个元字以为记号。
至元朝朱世杰(约13 世纪)用天、地、人、物表示四个未知数,建立了四元高次方程组理论。
现在数学中的消元问题中元的叫法也由此而来。
而古希腊的丢番图(约246-330)用字母来表示未知数,但以后进展很慢。
过去不同未知数会用同一个符号来表示,容易混淆,所以 1559年法国数学家彪特(1485至1492-1560至1572)开始用A、B、C表示不同的未知数。
在1591年韦达用A、E、I等元音字母表示未知数。
1637年笛卡儿(1596-1650)在《几何学》中始用x、y、z表示正数的未知数。
直至1657 年约翰哈德才用字母表示正数和负数的未知数。
这就是算术,接下来讲讲几何。
几何最早记载可以追溯到古埃及、古印度、古巴比伦,其年代大约始于公元前3000年。
早期的几何学是关于长度,角度,面积和体积的经验原理,被用于满足在测绘,建筑,天文,和各种工艺制作中的实际需要。
埃及和巴比伦人都在毕达哥拉斯之前1500年就知道了毕达哥拉斯定理(勾股定理);埃及人有方形棱锥的锥台(截头金字塔形)体积正确公式;而巴比伦有一个三角函数表。
中国文明和其对应时期的文明发达程度相当,因此它可能也有同样发达的数学,但是没有那个时代的遗迹可以使我们确认这一点。
也许这是部分由于中国早期对于原始的纸的使用,而不是用陶土或者石刻来记录他们的成就。
几何学发展历史悠长,内容丰富。
它和代数、分析、数论等等关系极其密切。
几何思想是数学中最重要的一类思想。
目前的数学各分支发展都几何化趋向,即用几何观点及思想方法去探讨各数学理论。
最早的几何学当属平面几何。
平面几何就是研究平面上的直线和二次曲线(即圆锥曲线,就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度)。
平面几何采用了公理化方法,在数学思想史上具有重要的意义。
平面几何的内容也很自然地过渡到了三维空间的立体几何。
为了计算体积和面积问题,人们实际上已经开始涉及微积分的最初概念。
笛卡尔引进坐标系后,代数与几何的关系变得明朗,且日益紧密起来。
这就促使了解析几何的产生。
解析几何是由笛卡尔、费马分别独立创建的。
这又是一次具有里程碑意义的事件。
从解析几何的观点出发,几何图形的性质可以归结为方程的分析性质和代数性质。
几何图形的分类问题(比如把圆锥曲线分为三类),也就转化为方程的代数特征分类的问题,即寻找代数不变量的问题。
又了算式也有了几何,数学已经在我们的生活中形成了。
其实,关於数学的起源,流传着一些古老而神奇的传说。
相传在非常非常遥远的古代,有一天,从黄河的波涛中忽然跳出一匹“龙马”来,马背上驮着一幅图,图上画着许多神秘的数学符号,后来,从波澜不惊的洛水里,又爬出一只“神龟”来,龟背上也驮着一卷书,书中阐述了数的排列方法。
马背上的图叫做“河图”,龟背上的书叫做“洛书”,当“河图洛书”出现之后,数学也就诞生了。
数学是一门最古老的学科,它的起源可以上溯到一万多年以前。
但是,公元1000年以前的资料留存下来的极少。
迄今所知,只有在古代埃及和巴比伦发现了比较系统的数学文献。
远在1万5千年前人类就已经能相当逼真地描绘出人和动物的形象。
这是萌发图形意识的最早证据。
后来就逐渐开始了对圆形和直线形的追求,因而成为数学图形的最早的原型。
在日常生活和生产实践中又逐渐产生了计数意识和计数系统,人类摸索过多种记数方法,有开始的结绳记数,用石块记数,语言点数进一步用符号,逐步发展到今天我们所用的数字。
图形意识和计数意识发展到一定程度,又产生了度量意识。
这一系列的发展演变逐渐形成了今天我们所熟悉的完整的数学这一门学科,它包括算术、几何、代数、三角、微积分、统计和概率(其实它一开始是人们为了钻研赌博而来的呢)……等等各个分支,而且现在还在不断发展下去。
关于数字、数学的发展史,我们只是探得了冰山一角,还有许许多多的知识和人物,等待我们去探究和讨论。
但是,无论是创造数字的原始人还是后来推动数学发展的各位数学家们,他们研究探讨、坚持不泄的精神,他们崇尚科学,追求真理的信念,都是让后人敬佩的。
我们将通过这次研究学习,充分体会一门学科的形成所经历的漫长的探索,我们会努力学习,争取为科学事业做出自己的贡献。
小组成员:王宇迪谭顺娟田成闫炜衡寇春阳吴泽咏陈雅明结题时间:2010.12.11。