电大离散数学作业答案0作业答案
国家开放大学《离散数学》综合练习题参考答案
国家开放大学《离散数学》综合练习题参考答案一、单项选择题1.若集合A ={ a ,{a },{1,2}},则下列表述正确的是()。
A .{a ,{a }}∈AB .{1,2}∉AC .{a }⊆AD .∅∈A2.若集合A ={1,2},B ={1,2,{1,2}},则下列表述正确的是()。
A .A ⊂B ,且A ∈B B .B ⊂A ,且A ∈BC .A ⊂B ,且A ∉BD .A ⊄B ,且A ∈B3.若集合A ={ a ,{1}},则下列表述正确的是( )。
A .{1}∈AB .{1}⊆AC .{a }∈AD .∅∈A4.设集合A = {1, a },则P (A ) = ()。
A .{{1}, {a }}B .{,{1}, {a }}C .{,{1}, {a }, {1, a }}D .{{1}, {a }, {1, a }}5.若集合A 的元素个数为10,则其幂集的元素个数为()。
A .10B .100C .1024D .16.集合A ={1, 2, 3, 4, 5, 6, 7, 8}上的关系R ={<x ,y >|x +y =10且x , y A },则R 的性∅∅∈质为( )。
A .自反的B .对称的C .传递且对称的D .反自反且传递的7.设集合A ={1 , 2 , 3 , 4}上的二元关系R = { 1 , 1, 2 , 2, 2 , 3, 4 , 4},S = { 1 , 1, 2 , 2, 2 , 3, 3 , 2, 4 , 4}, 则S 是R 的()闭包。
A .自反B .传递C .对称D .以上都不对8.设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6},则集合B 的最大元、最小元、上界、下界依次为 ()A .8、2、8、2B .8、1、6、1C .6、2、6、2D .无、2、无、29.设A ={a , b },B ={1, 2},R 1,R 2,R 3是A 到B 的二元关系,且R 1={<a ,2>, <b ,2>},R 2={<a ,1>, <a ,2>, <b ,1>},R 3={<a ,1>, <b ,2>},则( )不是从A到B 的函数。
国家开放大学电大《离散数学》期末题库及答案
最新国家开放大学电大《离散数学》期末题库及答案《离散数学》题库及答案一一、单项选择题(每小题3分,本题共15分)1.若集合A = (l,2,3,4),则下列表述不正确的是()•A.16AB. {1,2,3}CAC. (1.2.3J6AD. 0UA2.若R和R?是A上的对称关系,则中对称关系有(〉个・A. 1B. 2C. 3D. 43.设G为连通无向图,则])时,G中存在欧拉回路・A. G不存在奇数度数的结点B. G存在偶数度数的结点C. G存在一个奇数度数的结点D. G存在两个奇数度数的结点4.无向图G是棵树,边数是10,则G的结点度数之和是().A.20B. 9C. 10D. 115.设个体域为整数集,则公式V z3y(x+y = 0)的解释可为().A-存在一整数z有整数丁满足x+y = 0B.对任意整数z存在整数財满足x+y = 0C.存在一整数z对任意整数'满足工+y・0D.任意整数工对任意整数,满足x+y=0得分评卷人--------------- 二、填空題(毎小通3分,本題共15分)6.设集合A = {1.2,3),B = (2,3,4}.C=(3.4.5,则A (J (C - B )等于7-设 A = (2,3},B-{l,2}.C-{3,4}.从 A 到 B 的函ft/-{<2,2>,<3,1>}.从 B 到C 的函数R = <V1.3>,V2.4>),则Dom(g")等于.8.已知图G中共有】个2度结点,2个3度结点,3个4度结点,则G的边数是・9.设G是连通平面分别衰示G的結点数.边数和面数,u值为5/值为4,则r的值为・-10-设个体域D = (1.2.3,4hA(x)为七大于5”,则调词公式(Vz)AGr)的真值为11. 将语句“学生的主要任务是学习”翻译成命题公式. 12.将语句“今天天暗,昨天下雨.”翻译成命题公式.四、判斷说明題(判断各题正误,并说明理由.每小题7分,本题共1413. 空集的圳:集是空集. 14.完全图K,不是平面图.15.设集合A = <1,2,3,4}上的关系:R-«1.2>.<2.3>.<3,4>}.S = (<1.1>,<2,2>,<3,3>), 试计算(DR • S t (2)7? (3)r(J?nS).16.图 G=<V,E>.其中 V=S ,6,c,d}.E=((a,6),S,c),(a,d),(5,c),0,d),(c,d)},对应边的权值依次为2、3、4、5、6及7,试(1)画出G 的图形, (2)写岀G 的邻接矩阵;(3)求出G 权最小的生成树及其权值. 17.求PTQPR )的析取范式与主合取范式.18.试证明:r -1 (P-*Q) An R A(QfR)=>i P.试题答案及评分标准仅供參考一、单项选择题(毎小题3分,本题共15分)l.C2.D3. A4. A5. B2OZZ«r-2O23^ttM三、逻辑公式翻译(毎小題6分,本题共】2分)分)五、计鼻16(每小JS 12分,本贓共36分)六、证明85(本楚共8分)2022集・2U23年股*二、壊空題(每小题3分,本题共15分)6. {1,2,3,5)7. {2,3}(或 A)8.109.110. 假(或F,或0)三、逻辑公式B!译(毎小题6分,本題共12分)11.设P :学生的主要任务是学习. 则命题公式为:P.12.设今天夭晴,Q :昨天下雨. 则命题公式为:PAQ.四、判断说明題(每小題7分,本题共14分)13.借误.空集的專集不为空集,为{0}. 14. 错误.完全图K,是平面图, 如K,可以如下图示嵌入平面.五、计算题(每小题12分,本題共36分)15. 解:(!)/? • S = (V1,2>,V2,3>* (2)J?-* = «2,1>,<3,2>,<4,3>}» (3)r(RnS)={Vl,l>,V2,2>,V3,3>,V4,4>} 16. 解.(DG 的图形表示为:《7分)(2)邻接矩阵:(3分)(6分)(2分)(6分) (2分) (6分)(3分)(4分) (8分)2022 集-2U23 年股*(3)粗线与结点表示的是最小生成树,(10 分)权值为9 (12分)17.解:P-(QAR)PV(QAR) 析取范式(2分)PVQ)A(q PVR) (5 分)g PVQ〉V(RA")A("VR) (7 分)PVQ)V(R A-i R)A(i PVR)V(QAr Q) (9 分)«(n PVQVR) A("VQV")A(i P VRVQ)A("VRVr Q)⑴分)PVQVR) A(i PVQV-i R) A(n P Vn QVR) 主合取范式 (12 分)六、证明JH(本■共8分)18.证明:(1)n □ (P-*Q) P(1 分)(2)P-*Q T(1)E (3 分)(3)(Q々) P(4 分)(On R P(5 分)(5>-| Q T(3)(4)7 (6 分)(6)n P T(2)(5)r (8 分)说明:(1)因证明过程中,公式引用的次序可以不同,一般引用前提正确得1分,利用两个公式得.出有效结论得1或2分,最后得岀靖论得2或1分.(2)另,可以用真值表验证.《陽散数学〉题库及答案二的关系R = {<=,3>M£A,3£B,且工+ » = 5}.则R=( ).A・(V1,2>,V1,3>,V2,3>} B. (VI,4>,V2,3>,V3,2>}C. (<1,1>,<2,2>,<3,2>}D. (<3.2>,<2,4>,<3,4»2.若集合A = {a,6,c,d},则下列表述正确的是( )•B. (a}£AD・("匕A2DZZ 邮-2023 邮3.设个体域为整数集期公式(七)(功)(工一,・2)的解释可为()•A.存在一整数1有整数,満足工一》=2R存在一整散工对任意整數:,満足工一>・2G对任一整数工存在整数:y满足上一y=2D.任一整数]对任意幣数》满足x-y-24.”阶无向完全图K.的边數及每个结点的度数分别是()・A. n(n —1)与mB. n(n —1)与C.n — 1 与nD. n(n —1)/2 与“一】5.设G为连通无向ffl.MC 〉时,G中存在欧拉回路•A.G不存在奇数度数的靖点B・G存在一个奇数度數的靖点C.G存在两个奇数度数的结点D.G存在偶数度数的结点得分|评卷人二、壊空順(毎小H 3分.本顕共15分)6.设集合A = {x|x是小于4的正整数).用集合的列挙法A=・7.设 A = U,2),B-{a.6}.C-{l,2).从 A 到 B 的函»/= {<1 .a>.<2,6>).从 B 到C的函数g-«a.2>,<6,l>),则复合函数g./- ・8.设G = <V,E>是一个图,结点度数之和为30,MG的边数为・9.设G是具有r,个結点责条边4个面的连通平面图.JRn+4-2-・10.设个体域D-(2,3.4},A(x )为—小于3■,则调词公式< Vx)A(x>的真值为得分评卷人三、遂梅公式翻译(毎小題6分,本■共12分)11-将语句•如果今天下頂•那么明天的比賽就要延期译成命,公式.12.将语句•地球是圆的,太阳也是圆的.”翻洋成命題公式.得分呼卷人----- 四、判断说明題(判斷各IH正讓•井说明理由.毎小願7分.本■共 14 分)13.设A = {a,6.c.</}.R-«a.6>,<6,a>,<a ,a>,<b,b> ,<(.€>}.则R是等价关系.2OZZ«r-2O23^ttM14.<Vz)(P(x)AQ(y»-R(x)中量伺V 的辖域为(PGr〉AQ(y)).得分评卷人-------------- 五、计算题(每小題12分,本題共36分)15.设集合A^{a,b,c}t B^{b t c,d}t试计算(DAUB; (2) A-Bi(3MXB.16.设G = VV,E>,V= {vi. v a. vj»v4).E =* ((vi»)» (vi»v s)» (t>i»v4). (v,,v>)»(V1 ,。
离散数学作业标准答案
离散数学作业标准答案离散数学作业⼀、选择题1、下列语句中哪个是真命题(C )。
A .我正在说谎。
B .如果1+2=3,那么雪是⿊⾊的。
C .如果1+2=5,那么雪是⽩⾊的。
D .严禁吸烟!2、设命题公式))((r q p p G →∧→=,则G 是( C )。
A. 恒假的B. 恒真的C. 可满⾜的D. 析取范式 3、谓词公式),,(),,(z y x yG x z y x F ??→中的变元x ( C )。
A .是⾃由变元但不是约束变元 B .既不是⾃由变元⼜不是约束变元 C .既是⾃由变元⼜是约束变元 D .是约束变元但不是⾃由变元4、设A={1,2,3},则下列关系R 不是等价关系的是(C )A .R={<1,1>,<2,2>,<3,3>}B .R={<1,1>,<2,2>,<3,3>,<2,3>,<3,2>}C .R={<1,1>,<2,2>,<3,3>,<1,4>}D .R={<1,1>,<2,2>,<3,3>,<1,2>,<1,3>,<2,3>,<2,1>,<3,1>,<3,2>} 5、设R 为实数集,映射σ=R →R ,σ(x )= -x 2+2x-1,则σ是( D )。
A .单射⽽⾮满射 B .满射⽽⾮单射 C .双射 D .既不是单射,也不是满射 6、下列⼆元运算在所给的集合上不封闭的是( D ) A. S={2x-1|x ∈Z +},S 关于普通的乘法运算 B. S={0,1},S 关于普通的乘法运算 C. 整数集合Z 和普通的减法运算D. S={x | x=2n ,n ∈Z +},S 关于普通的加法运算7、*运算如下表所⽰,哪个能使({a,b},*)成为含⼳元半群( D )b a b b a a b a * b b b a a a b a * a a b a a a b a * a b b b a a b a *A B C D8、下列图中是欧拉图的是( A )。
国家开放大学《离散数学(本)》形考任务1-3参考答案
6.设集合 A={0,1,2,3},B={2,3,4,5},R 是 A 到 B 的二元关系,R={(x,y)| x∈A 且
y∈B 且 x,y∈A∩B}则 R 的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>}。
B.v+e-2
C.e-v-2
D.e+v+2
16.无向树 T 有 8 个结点,则 T 的边数为(
)。
A.7
B.9
C.8
D.6
17.无向简单图 G 是棵树,当且仅当(
)。
A.G 的边数比结点数少 1
B.G 连通且边数比结点数少 1
C.G 连通且结点数比边数少 1
D.G 中没有回路
18.已知一棵无向树 T 中有 8 个顶点,4 度、3 度、2 度的分支点各一个,T 的树
(√)
7.设集合 A={1,2,3,4},B={6,8,12},A 到 B 的二元关系 R={(x,y,)|y=2x,x∈A,y
∈B}那么 R-1={<6,3>,<8,4>}。
(√)
8.设集合 A={a,b,c,d},A 上的二元关系 R={<a,b>,<b,a>,<b,c>,<c,d>},则 R 具
(
)个。
A.0
B.2
C.1
D.3
13.设集合 A={1,2,3,4}上的二元关系 R={<1,1>,<2,2>,<2,3>,<4,4>},S={<1,1>,
国家开放大学电大本科《离散数学》2022-2023期末试题及答案(试卷号:1009)
国家开放大学电大本科《离散数学> 2022-2023期末试题及答案(试卷号:1009)一、单项选择题(每小题3分,本息共16分)1, 若集合A = <1,2,3},则下列表述正确的是〈 )•A. {1,2,3}€AB. AC(1,2}C. U,2,3}gAD. {1,2}£A2. 设 A = {1,2,3},B = (1,2,3,4},人到 B 的关系 R = {O ,>> |工 £ A ,了 £ B },则 R =().A. {<1,2>,V2,3>}B. {V1,1>,V1,2>,V1,3>,V1,4>,V1,5>}C. «1,1>,<2,1>)D. {<2,】>,V3,】>,V3,2>}3. 无向图G 的边数是10,则图G 的结点度数之和为(A. 10B. 20C. 30D. 54. 如图一所示,以下说法正确的是〈 )•A. e 是割点B. {a,e}是点割集C. (b.e}是点割集D. {d}是点割集5-设个体域为整数集,则公式Vx3y (x+y = 2)的解释可为().A. 任意整数工,对任意整数y 满足工+了 = 2B. 对任意整数工,存在整数y 满足工+了 = 2C. 存在一整数z,对任意整数y 满足工+了 = 2D. 存在一整数工,有整数了满足x+jr = 2则人 CHBUC )等于 _____ .7. 设 A = {1,2},B = <2,3},C=(3,4},从 A 到 B 的函数/= (VI,2>,V2,3>},从 B到 C 的函数 g = (V2,3>,V3,4>},则 Ran (g 0/)等于 ______ .8. 设G 是汉密尔顿图,S 是其结点集的一个子集,若S 的元素个数为6,则在G-S 中的连通分支数不超过 ________ .二、填空霆(每小题3分,本题共15分)9.设G是有8个结点的连通图,结点的度数之和为24,则可从G中删去 ________ 条边后使之变成树.10.设个体域D = {1,2, 3, 4},则谓词公式(VQ A S)消去量词后的等值式为H.将语句“昨夭下雨,今天仍然下雨.”翻译成命题公式.12. 将i 吾句“我们下午2点或者去礼堂看电彩或者去教室看书.”翻译成命飓公式. 得分评卷人13. 不存在集合A 与B,使得AEB 与AQB 同时成立.14. 如图二所示的图G 存在一条欧拉回路.15. 设 A = {l,2,3},R = (<x,y>l=£A<yCA 且 1+»=4}击={〈工,3>0£人,36人且 工=)},试求 R,S,R" ,r (S ).16. 设图 G = <VtE>»V=(v! 试(1) 画出G 的图形表示; (2) 写出其邻接矩阵; (3) 求出每个结点的度数; (4)画出图G 的补图的图形•17. 求-I (PVQ )VR 的析取范式与主合取范式•18. 试证明门 PVQ»P -*(i (n PVn Q)〉.(仅 一、单项选择题(每小题3分,本题共15分)1.C2. D3. B二、填空题(每小题3分,本题共15分)6. {b t c)7. {3,4)(或 C ) 8.6 9.5评卷人三、逻辑公式翻译(每小题6分,本题共12分)四、判断说明题(判断各题正误,并说明理由.每小题7分,本题共14 分)评卷人五、计算题(每小题12分,本题共36分)评卷人六、证明题(本题共8分)10.A(1)AA(2) AA(3) AA(4)三、逻辑公式翻译(每小题6分,本题共12分)11.设P:昨天下雨,Q:今天下雨. (2分)则命题公式为:PAQ. (6分)12.设P:我们下午2点去礼堂看电影,Q:我们下午2点去教室看书. (2分)则命题公式为门(P-Q). (6分)注:或者(1 PAQ)V(PAi Q)四、判断说明题(每小题7分,本题共14分)13.错误•(3分)例:设A = {a},B^{a,{a}}(5 分)则有AEB且AWB. (7分)说明:举出符合条件的反例均给分.14.正确. (3分)因为图G为连通的,且其中每个顶点的度数均为偶数. (7分)如果具体指出一条欧拉回路也同样给分.五、计算题(每小题12分,本题共36分)15.解:R = {V1,3>,V2,2>,V3,1>} (3分)S = {<1,1>,<2,2>,<3,3>} (6分)7?~* = (<3,1>,<2,2>,<1,3>} (9分)r(S) = (<l,l>,<2,2>,<3,3>} (12分)说明:对于每一个求解项,如果部分正确,可以给对应1分・16.解:(1)(2)邻接矩阵10 0.(3)deg(pi) = 2deg(v2)=2deg(v3)=Odcg(vj = 2 (9 分)(4)补图(12 分)17.解门(PVQ)VR«=>(-, PA-i Q)VR 析取范式(5分)PVR)A(n QVR) (7分)«((n PVK)V(QA-i Q))A(-| QVR) (9分) E((I P VK) V(QA-i Q))A((n QV^>V(P An P)) (10分)«(-i PVR VQ) A(" VR Vi Q) A(i QVk VP)A(i QVRV") ⑴分) «(PV-i QVR)A(i PVQVR)A(rPVi QVR) 主合取范式(12 分)六、证明题(本题共8分)18.证明:(Di PVQ P(1 分)<2)P P(附加前提) (3分)(3)Q T(l)(2)/ (5 分)(4)PAQ T(2)(3)/ (6 分)(5)n(i PV-i Q) T(4)E (7 分)(6)P^n (n PV-i Q) CP 规则(8 分)说明:(D因证明过程中,公式引用的次序可以不同,一般引用前提正确得1分,利用两个公式得出有效结论得1或2分,最后得出结论得2或1分.(2)可以用真值表验证.采用反证法可参照给分.。
国开(中央电大)本科《离散数学(本)》网上形考(任务一至三)试题及答案
国开(中央电大)本科《离散数学(本)》网上形考(任务一至三)试题及答案国开(中央电大)本科《离散数学(本)》网上形考(任务一至三)试题及答案说明:适用于计算机科学与技术本科国开平台网上形考。
形考任务一试题及答案题目为随机,用查找功能(Ctrl+F)搜索题目[题目]若集合A={a,{a},{1,2}},则下列表述正确的是().[答案]{a}A[题目]若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是().[答案]AB,且AB[题目]若集合A={2,a,{a},4},则下列表述正确的是().[答案]{a}A[题目]设集合A={1,2,3},B={3,4,5},C={5,6,7},则A∪B–C=().[答案]{1,2,3,4}[题目]设集合A={a},则A的幂集为().[答案]{,{a}}[题目]设集合A={1,a},则P(A)=().[答案]{,{1},{a},{1,a}}[题目]若集合A的元素个数为10,则其幂集的元素个数为().[答案]1024[题目]设A、B是两个任意集合,则A-B=().[答案]AB[题目]设集合A={2,4,6,8},B={1,3,5,7},A到B 的关系R={<x,y>|y=x+1},则R=().[答案]{<2,3>,<4,5>,<6,7>}[题目]集合A={1,2,3,4,5,6,7,8}上的关系R={<x,y>|x+y=10且x,yA},则R 的性质为().[答案]对称的[题目]集合A={1,2,3,4}上的关系R={<x,y>|x=y且x,yA},则R的性质为().[答案]传递的[题目]如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.[答案]2[题目]设集合A={1,2,3,4}上的二元关系R={<1,1>,<2,2>,<2,3>,<4,4>},S={<1,1>,<2,2>,<2,3>,<3,2>,<4,4>},则S是R的()闭包.[答案]对称[题目]设A={1,2,3,4,5,6,7,8},R是A上的整除关系,B={2,4,6},则集合B的最大元、最小元、上界、下界依次为().[答案]无、2、无、2[题目]设集合A={1,2,3,4,5},偏序关系是A上的整除关系,则偏序集<A,>上的元素5是集合A的().[答案]极大元[题目]设集合A={1,2,3,4,5}上的偏序关系的哈斯图如图所示,若A的子集B={3,4,5},则元素3为B的().[答案]最小上界[题目]设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().[答案]8[题目]设A={a,b},B={1,2},C={4,5},从A到B的函数f={<a,1>,<b,2>},从B到C的函数g={<1,5>,<2,4>},则下列表述正确的是().[答案]g°f={<a,5>,<b,4>}[题目]设集合A={1,2,3}上的函数分别为:f={<1,2>,<2,1>,<3,3>},g={<1,3>,<2,2>,<3,2>},h={<1,3>,<2,1>,<3,1>},则h=().[答案]f◦g[题目]设函数f:N→N,f(n)=n+1,下列表述正确的是().[答案]f是单射函数判断题[题目]设集合A={1,2,3},B={2,3,4},C={3,4,5},则A∩(C-B)={1,2,3,5}.()[答案]错[题目]设集合A={1,2,3},B={1,2},则P(A)-P(B)={{3},{1,3},{2,3},{1,2,3}}.()[答案]对[题目]空集的幂集是空集.()[答案]错[题目]设集合A={1,2,3},B={1,2},则A×B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>}.()[答案]对[题目]设A={1,2},B={a,b,c},则A×B的元素个数为8.()[答案]错[题目]设集合A={0,1,2,3},B={2,3,4,5},R是A到B的二元关系,则R的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>}.()[答案]对[题目]设集合A={1,2,3,4},B={6,8,12},A到B的二元关系R=那么R-1={<6,3>,<8,4>}.()[答案]对[题目]设集合A={a,b,c,d},A上的二元关系R={<a,b>,<b,a>,<b,c>,<c,d>},则R具有反自反性质.()[答案]对[题目]设集合A={a,b,c,d},A上的二元关系R={<a,a>,<b,b>,<b,c>,<c,d>},若在R中再增加两个元素<c,b>,<d,c>,则新得到的关系就具有反自反性质.()[答案]错[题目]若集合A={1,2,3}上的二元关系R={<1,1>,<1,2>,<3,3>},则R是对称的关系.()[答案]错[题目]若集合A={1,2,3}上的二元关系R={<1,1>,<2,2>,<1,2>},则R是自反的关系.()[答案]错[题目]设A={1,2}上的二元关系为R={<x,y>|xA,yA,x+y=10},则R的自反闭包为{<1,1>,<2,2>}.()[答案]对[题目]设R是集合A上的等价关系,且1,2,3是A中的元素,则R中至少包含<1,1>,<2,2>,<3,3>等元素.()[答案]对[题目]设A={1,2,3},R={<1,1>,<1,2>,<2,1>,<3,3>},则R是等价关系.()[答案]错[题目]如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()[答案]对[题目]若偏序集<A,R>的哈斯图如图二所示,则集合A的最大元为a,极小元不存在.()[答案]错[题目]设集合A={1,2,3,4},B={2,4,6,8},下列关系f={<1,4>,<2,2,>,<4,6>,<1,8>}可以构成函数f:.()[答案]错[题目]设集合A={1,2,3,4},B={2,4,6,8},下列关系f={<1,8>,<2,6>,<3,4>,<4,2,>}可以构成函数f:.()[答案]对[题目]设A={a,b},B={1,2},C={a,b},从A到B的函数f={<a,1>,<b,2>},从B到C的函数g={<1,b>,<2,a>},则g°f={<1,2>,<2,1>}.()[答案]错[题目]设A={2,3},B={1,2},C={3,4},从A到B的函数f={<2,2>,<3,1>},从B到C的函数g={<1,3>,<2,4>},则Dom(g°f)={2,3}.()[答案]对形考任务二试题及答案题目为随机,用查找功能(Ctrl+F)搜索题目单选题[题目]设图G=<V,E>,v∈V,则下列结论成立的是().[答案][题目]设无向图G的邻接矩阵为,则G的边数为().[答案]5[题目]设无向图G的邻接矩阵为,则G的边数为().[答案]7[题目]已知无向图G的邻接矩阵为,则G有().[答案]5点,7边[题目]如图一所示,以下说法正确的是().[答案]{(d,e)}是边割集[题目]如图二所示,以下说法正确的是().[答案]e是割点[题目]图G如图三所示,以下说法正确的是().[答案]{b,c}是点割集[题目]图G如图四所示,以下说法正确的是().[答案]{(a,d),(b,d)}是边割集[题目]设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是().[答案](a)是强连通的[题目]设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是().[答案](d)只是弱连通的[题目]无向图G存在欧拉回路,当且仅当().[答案]G连通且所有结点的度数全为偶数[题目]无向完全图K4是().[答案]汉密尔顿图[题目]若G是一个汉密尔顿图,则G一定是().[答案]连通图[题目]若G是一个欧拉图,则G一定是().[答案]连通图[题目]G是连通平面图,有v个结点,e条边,r个面,则r=().[答案]e-v+2[题目]无向树T有8个结点,则T的边数为().[答案]7[题目]无向简单图G是棵树,当且仅当().[答案]G连通且边数比结点数少1[题目]已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为().[答案]5[题目]设G是有n个结点,m条边的连通图,必须删去G的()条边,才能确定G的一棵生成树.[答案]m-n+1[题目]以下结论正确的是().[答案]树的每条边都是割边判断题[题目]已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是15.()[答案]对[题目]设G是一个图,结点集合为V,边集合为E,则.()[答案]对[题目]设图G如图七所示,则图G的点割集是{f}.()[答案]错[题目]若图G=<V,E>,其中V={a,b,c,d},E={(a,b),(a,d),(b,c),(b,d)},则该图中的割边为(b,c).()[答案]对[题目]无向图G存在欧拉回路,当且仅当G连通且结点度数都是偶数.()[答案]对[题目]如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路.()[答案]错[题目]如图八所示的图G存在一条欧拉回路.()[答案]错[题目]设完全图K有n个结点(n2),m条边,当n为奇数时,Kn中存在欧拉回路.()[答案]对[题目]汉密尔顿图一定是欧拉图.()[答案]错[题目]设G=<V,E>是具有n个结点的简单图,若在G中每一对结点度数之和小于n-1,则在G中存在一条汉密尔顿路.()[答案]错[题目]若图G=<V,E>中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,则S中结点数|S|与W满足的关系式为W|S|.()[答案]对[题目]如图九所示的图G不是欧拉图而是汉密尔顿图.()[答案]对[题目]设G是一个有7个结点16条边的连通图,则G为平面图.()[答案]错[题目]设G是一个连通平面图,且有6个结点11条边,则G有7个面.()[答案]对[题目]设连通平面图G的结点数为5,边数为6,则面数为4.()[答案]错[题目]结点数v与边数e满足e=v的无向连通图就是树.()[答案]错[题目]设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.()[答案]对[题目]无向图G的结点数比边数多1,则G是树.()[答案]错[题目]设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.()[答案]错[题目]两个图同构的必要条件是结点数相等;边数相等;度数相同的结点数相等.()[答案]对形考任务三试题及答案题目为随机,用查找功能(Ctrl+F)搜索题目选择题[题目]设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为().[答案]P→Q[题目]设命题公式G:G:┐p→(Q∧R),则使公式G取真值为1的P,Q,R赋值分别是().[答案]1,0,0[题目]命题公式(P∨Q)→R的析取范式是().[答案](┐P∧┐Q)∨R[题目]命题公式(P∨Q)的合取范式是().[答案](P∨Q)[题目]命题公式┐(p→Q)的主析取范式是().[答案]P∧┐Q[题目]命题公式P→Q的主合取范式是().[答案]┐P∨Q[题目]下列等价公式成立的为().[答案]P→(┐Q→P)<=>┐P→(P→Q)[题目]下列等价公式成立的为().[答案]┐P∧P<=>┐Q∧Q[题目]下列公式成立的为().[答案]┐P∧(P∨Q)=>Q[题目]下列公式中()为永真式.[答案]┐A∧┐B↔┐(A∨B)[题目]下列公式()为重言式.[答案]Q→(P∨(P∧Q))↔Q→P[题目]命题公式(P∨Q)→Q为()[答案]可满足式[题目]设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().[答案][题目]设A(x):x是人,B(x):x是教师,则命题“有人是教师”可符号化为().[答案][题目]设个体域为整数集,则公式的解释可为().[答案]对任一整数x存在整数y满足x+y=0[题目]表达式中的辖域是().[答案][题目]谓词公式(∀x)(A(x)→B(x)∨C(x,y))中的()。
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)一、单项选择题(每小题3分,本题共16分)若集合A = {1,2,3,4},则下列表述不正确的是( ).A.{2,3)€AB.AU{1,2,3,4}C. <1,2,3,4)QAD. 16A2.若无向图G的结点度数之和为20,则G的边数为( ).A.10B. 20C. 30D. 53.无向图G是棵树,结点数为10,则G的边数为( ).A. 5B. 10C.9D. 114.设A(x):x是人,B(x):x是学生,则命题“有的人是学生”可符号化为( )•A.Vx)(A(x)-*B(x»B.(3x)(A(x)AB(x))C.(Vx)(A(x)AB(x»D.-«(3x)(A(x)A -B(x»5.下面的推理正确的是( ).A.(l)(Vx)F(x)->G(x) 前提引入(2)F(>-)-*G(y) US(1).B.(1)( 3 x)F(x)-*G(x) 前提引入(2)F(y)-*G(y) US(1),C.(l)(3x)(F(x)->G(x»前提引入(2)F(y)-*G(x) ES(1).D.(l)(3x)(F(x)-*G(x)) 前提引入(2)F(y)-*G(y) ESQ).二、填空题(每小题3分,本题共15分)6.设A = {1,2),H = {1,2,3},则A到B上不同的函数个数为________________ .7.有&个结点的无向完全图的边数为 ____________ .8.若无向图G中存在欧拉路但不存在欧拉回路,则G的奇数度数的结点有________ 个.9.设G是有10个结点的无向连通图,结点的度数之和为30,则从G中删去条边后使之变成树.10.设个体域£> = {1,2,3,4},则谓词公式(*)人(了)消去量词后的等值式为三、逻辑公式翻译(每小题6分,本息共12分)11.将语句“昨天下甬“翻译成命题公式.12.将语句“小王今天上午或者去看电彩或者去打球”翻译成命JS公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本黑共14分)13.存在集合A与B,使得A6B与AUB同时成立.14.完全图K<是平面图.五、计算题(每小题12分,本题共36分)15.设偏序集VA,R>的哈斯图如下,B为A的子集,其中B = 试(1)写出R的关系表达式;(2)画出关系R的关系图;(3)求出B的最大元、极大元、上界.16.设图G — <V,E>,V={vj f v it v t,Vi»v s)»(v2, v3)»(v3»vs)}»试(1)画出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出图G的补图的图形,17.求P TQ代R)的合取范式与主合取范式.六、证明题(本题共8分)18.设A.B是任意集合,试证明:若AXA=BXB,^ A = B.M答杖松标准(仅辩者)一、单项选择题(每小题3分,本题共15分)1. A2. A3. C4.B5. D二、填空题(每小题3分,本题共]5分)6.97.”3 — 1)/2(或庆)8.210. A(l) VA(2) V A(3) V A(4)三、 逻辑公式翻译(每小题6分,本题共】2分)H,设P :昨天下雨. 则命题公式为:P ,12. 设P :小王今天上午去看电影 Q :小王今天上午去打球 则命题公式为:r (PiQ ). 或者(rPAQ )V 〈PA rQ )四、 判断说明题(每小题7分,本题共14分)13. 正确.例:设 A = {a} t H — {a,{a}) 则有且ACI3.说明:举出符合条件的例均给分. 14. 正确.完全图K 〈是平面图, 如K,可以如下图示嵌入平面.(7分)五、计算题(每小题12分,本题共36分)15. (l )R = {Va ,a>,Vb,Q>,Vc,c>,Vd,d>・Va0>・Va ・c>,V&,d>,VQ,d >}. (4 分)(2)关系图(8分)(3)集合B 无最大元,极大元为6与c.无上界. 16, 解: (1)关系图(2分) (6分)(2分)(6分)(3分) (517. P TQAR) 5PV(QAR) 0(rPVQ 〉A(rPVR)合取范式<=>(-PVQ)V(K A rR)A(rPVR) 0("VQ)V(& A rR)A(" VR)V(QA -Q)D(rPVQVR)A(rPVQVA("VR VQ) A(-、PVR V -Q) c=>(-PVQV7?)A(-'PVQV-R)A(-PV-QVR) 主合取范式 六、证明题(本意共8分)18. 证明:V2(2)邻接矩阵bioir 101001001 1 00 0(6分)(3) deg(vi)=,3deg(v t )—2 <ieg(v 3)~2 deg顷)=1 deg(v s )=2 (4) 补图(9分)(】2分)(2分) (5分)(7分〉设x€A,则Vx,x>€AXA,(1 分)因AXA = BXB,故V X,X>€BXB,则有xGB, (3 分)因此AGB. (5分)设xQB,则Vx,x>€BXB,(6 分)因AXA-BXB,故Vx,x>eAXA,则有因此BWA. (7 分)故得A=B. (8分)。
国家开放大学电大本科《离散数学》网络课形考网考作业及答案
国家开放大学电大本科《离散数学》网络课形考网考作业及答案100%通过考试说明:2020年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有5个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核及教学考一体化答案,敬请查看。
课程总成绩 = 形成性考核×30% + 终结性考试×70%形考任务1单项选择题题目1若集合A={ a,{a},{1,2}},则下列表述正确的是().选择一项:题目2若集合A={2,a,{ a },4},则下列表述正确的是( ).选择一项:题目3设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.选择一项:A. 传递B. 对称C. 自反和传递D. 自反题目4设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C =( ).选择一项:A. {1, 2, 3, 5}B. {4, 5, 6, 7}C. {2, 3, 4, 5}D. {1, 2, 3, 4}题目5如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:A. 1B. 3C. 2D. 0题目6集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y∈A},则R的性质为().选择一项:A. 不是对称的B. 反自反C. 不是自反的D. 传递的题目7若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).选择一项:题目8设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:A. 3B. 2C. 8D. 6题目9设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次。
离散数学作业标准答案
离散数学作业一、选择题1、下列语句中哪个是真命题(C )。
A .我正在说谎。
B .如果1+2=3,那么雪是黑色的。
C .如果1+2=5,那么雪是白色的。
D .严禁吸烟!2、设命题公式))((r q p p G →∧→=,则G 是( C )。
A. 恒假的B. 恒真的C. 可满足的D. 析取范式 3、谓词公式),,(),,(z y x yG x z y x F ∃∀→中的变元x ( C )。
、A .是自由变元但不是约束变元B .既不是自由变元又不是约束变元C .既是自由变元又是约束变元D .是约束变元但不是自由变元4、设A={1,2,3},则下列关系R 不是等价关系的是(C )A .R={<1,1>,<2,2>,<3,3>}B .R={<1,1>,<2,2>,<3,3>,<2,3>,<3,2>}C .R={<1,1>,<2,2>,<3,3>,<1,4>}D .R={<1,1>,<2,2>,<3,3>,<1,2>,<1,3>,<2,3>,<2,1>,<3,1>,<3,2>})5、设R 为实数集,映射=R R ,(x )= -x 2+2x-1,则是( D )。
A .单射而非满射B .满射而非单射C .双射D .既不是单射,也不是满射 6、下列二元运算在所给的集合上不封闭的是( D ) A. S={2x-1|x ∈Z +},S 关于普通的乘法运算B. S={0,1},S 关于普通的乘法运算C. 整数集合Z 和普通的减法运算D. S={x | x=2n ,n ∈Z +},S 关于普通的加法运算7、*运算如下表所示,哪个能使({a,b},*)成为含幺元半群( D )b a b b a a b a * b b b a a a b a * a a b a a a b a * a b b b a a b a *A B C D*8、下列图中是欧拉图的是(A)。
最新国家开放大学电大《离散数学(本)》期末题库及答案
最新国家开放大学电大《离散数学(本)》期末题库及答案考试说明:本人针对该科精心汇总了历年题库及答案,形成一个完整的题库,并且每年都在更新。
该题库对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核及教学考一体化答案,敬请查看。
《离散数学》题库及答案一一、单项选择题(每小题3分,本题共15分)1.若集合A={a,b},B={ a,b,{ a,b }},则().A.A⊂B,且A∈B B.A∈B,但A⊄BC.A⊂B,但A∉B D.A⊄B,且A∉B2.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, y∈A},则R的性质为().A.自反的B.对称的C.传递且对称的D.反自反且传递的3.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A.0 B.2 C.1 D.34.如图一所示,以下说法正确的是( ) .A.{(a, e)}是割边B.{(a, e)}是边割集C.{(a, e) ,(b, c)}是边割集D.{(d, e)}是边割集图一5.设A(x):x是人,B(x):x是学生,则命题“不是所有人都是学生”可符号化为().A.(∀x)(A(x)∧B(x)) B.┐(∃x)(A(x)∧B(x))C.┐(∀x)(A(x) →B(x)) D.┐(∃x)(A(x)∧┐B(x))二、填空题(每小题3分,本题共15分)6.若集合A的元素个数为10,则其幂集的元素个数为.7.设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为.8.若A={1,2},R={<x, y>|x∈A, y∈A, x+y=10},则R的自反闭包为.9.结点数v与边数e满足关系的无向连通图就是树.10.设个体域D={a, b, c},则谓词公式(∀x)A(x)消去量词后的等值式为.三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“尽管他接受了这个任务,但他没有完成好.”翻译成命题公式.12.将语句“今天没有下雨.”翻译成命题公式.四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.下面的推理是否正确,试予以说明.(1) (∀x)F(x)→G(x)前提引入(2) F(y)→G(y)US(1).14.若偏序集<A,R>的哈斯图如图二所示,则集合A的最大元为a,最小元不存在.图二五.计算题(每小题12分,本题共36分)15.求(P∨Q)→(R∨Q)的合取范式.16.设A={0,1,2,3,4},R={<x,y>|x∈A,y∈A且x+y<0},S={<x,y>|x∈A,y∈A且x+y≤3},试求R,S,R•S,R-1,S-1,r(R).17.画一棵带权为1, 2, 2, 3, 4的最优二叉树,计算它们的权.六、证明题(本题共8分)18.设G是一个n阶无向简单图,n是大于等于2的奇数.证明G与G中的奇数度顶点个数相等(G 是G的补图).试题解答一、单项选择题(每小题3分,本题共15分) 1.A 2.B 3.B 4.D 5.C 二、填空题(每小题3分,本题共15分) 6.1024 7.88.{<1,1>,<2,2>} 9.e=v -110.A (a ) ∧A (b )∧A (c )三、逻辑公式翻译(每小题6分,本题共12分)11.设P :他接受了这个任务,Q :他完成好了这个任务, (2分)P ∧⌝ Q . (6分)12.设P :今天下雨, (2分)⌝ P . (6分)四、判断说明题(每小题7分,本题共14分)13.错误. (3分) (2)应为F (y )→G (x ),换名时,约束变元与自由变元不能混淆. (7分) 14.错误. (3分) 集合A 的最大元不存在,a 是极大元. (7分) 五.计算题(每小题12分,本题共36分)15.(P ∨Q )→(R ∨Q )⇔⌝(P ∨Q )∨(R ∨Q ) (4分) ⇔(⌝P ∧⌝Q )∨(R ∨Q )⇔(⌝P ∨R ∨Q )∧(⌝Q ∨R ∨Q )⇔(⌝P ∨R ∨Q ) ∧R 合取范式 (12分) 16.R =∅, (2分) S ={<0,0>,<0,1>,<0,2>,<0,3>,<1,0>,<1,1>,<1,2>,<2,0>,<2,1>,<3,0>} (4分) R •S =∅, (6分)R -1=∅, (8分) S -1= S , (10分) r (R )=I A . (12分) 17.(10分)权为1⨯3+2⨯3+2⨯2+3⨯2+4⨯2=27 (12分)六、证明题(本题共8分)18.证明:因为n 是奇数,所以n 阶完全图每个顶点度数为偶数, (3分) 因此,若G 中顶点v 的度数为奇数,则在G 中v 的度数一定也是奇数, (6分)ο οο ο ο ο ο ο ο 1 2 23 34 75 12所以G 与G 中的奇数度顶点个数相等. (8分)《离散数学》题库及答案二一、单项选择题(每小题3分,本题共15分)1.若集合A ={1,{2},{1,2}},则下列表述正确的是( ). A .2⊂A B .{1}⊂AC .1∉AD .2 ∈ A2.已知一棵无向树T 中有8个顶点,4度、3度、2度的分支点各一个,T 的树叶数为( ). A .6 B .4 C .3 D .53.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101110011000011100111110 则G 的边数为( ). A .1 B .7 C .6 D .144.设集合A ={a },则A 的幂集为( ).A .{{a }}B .{a ,{a }}C .{∅,{a }}D .{∅,a }5.下列公式中 ( )为永真式.A .⌝A ∧⌝B ↔ ⌝A ∨⌝B B .⌝A ∧⌝B ↔ ⌝(A ∨B )C .⌝A ∧⌝B ↔ A ∨BD .⌝A ∧⌝B ↔ ⌝(A ∧B )二、填空题(每小题3分,本题共15分)6.命题公式P P ⌝∧的真值是 . 7.若无向树T 有5个结点,则T 的边数为 .8.设正则m 叉树的树叶数为t ,分支数为i ,则(m -1)i = .9.设集合A ={1,2}上的关系R ={<1, 1>,<1, 2>},则在R 中仅需加一个元素 ,就可使新得到的关系为对称的.10.(∀x )(A (x )→B (x ,z )∨C (y ))中的自由变元有 .三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“今天上课.”翻译成命题公式.12.将语句“他去操场锻炼,仅当他有时间.”翻译成命题公式.四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.设集合A={1,2},B={3,4},从A到B的关系为f={<1, 3>},则f是A到B的函数.14.设G是一个有4个结点10条边的连通图,则G为平面图.五.计算题(每小题12分,本题共36分)15.试求出(P∨Q)→(R∨Q)的析取范式.16.设A={{1}, 1, 2},B={1, {2}},试计算(1)(A∩B)(2)(A∪B)(3)A (A∩B).17.图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, c) , (a, d), (b, c), (b, d), (c, d)},对应边的权值依次为1、2、3、1、4及5,试(1)画出G的图形;(2)写出G的邻接矩阵;(3)求出G权最小的生成树及其权值.六、证明题(本题共8分)18.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.试题解答一、单项选择题(每小题3分,本题共15分)1.B 2.D 3.B 4.C 5.B二、填空题(每小题3分,本题共15分)6.假(或F,或0)7.48.t-19.<2, 1>10.z,y三、逻辑公式翻译(每小题6分,本题共12分)11.设P :今天上课, (2分) 则命题公式为:P . (6分) 12.设 P :他去操场锻炼,Q :他有时间, (2分) 则命题公式为:P →Q . (6分) 四、判断说明题(每小题7分,本题共14分)13.错误. (3分) 因为A 中元素2没有B 中元素与之对应,故f 不是A 到B 的函数. (7分) 14.错误. (3分) 不满足“设G 是一个有v 个结点e 条边的连通简单平面图,若v ≥3,则e ≤3v -6.” (7分)五.计算题(每小题12分,本题共36分)15.(P ∨Q )→(R ∨Q )⇔ ┐(P ∨Q )∨(R ∨Q ) (4分)⇔ (┐P ∧┐Q )∨(R ∨Q ) (8分)⇔ (┐P ∧┐Q )∨R ∨Q (析取范式) (12分)16.(1)(A ∩B )={1} (4分)(2)(A ∪B )={1, 2, {1}, {2}} (8分) (3) A -(A ∩B )={{1}, 1, 2} (12分)17.(1)G 的图形表示如图一所示:(3分)(2)邻接矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0111101111011110 (6分) (3)最小的生成树如图二中的粗线所示:图一 ο ο ο ο a b c d1 124 53 图二ο ο ο ο a b cd1 1 2453(10分)权为:1+1+3=5 (12分)六、证明题(本题共8分)18.证明:设∀x∈A,因为R自反,所以x R x,即< x, x>∈R;又因为S自反,所以x R x,即< x, x >∈S.(4分)即< x, x>∈R∩S (6分)故R∩S自反.(8分)《离散数学》题库及答案三一、单项选择题(每小题3分,本题共15分)1.若集合A={ a,{a}},则下列表述正确的是( ).A.{a}⊆A B.{{{a}}}⊆AC.{a,{a}}∈A D.∅∈A2.命题公式(P∨Q)的合取范式是( )A.(P∧Q)B.(P∧Q)∨(P∨Q)C.(P∨Q)D.⌝(⌝P∧⌝Q)3.无向树T有8个结点,则T的边数为( ).A.6 B.7 C.8 D.9 4.图G如图一所示,以下说法正确的是( ).A.a是割点B.{b,c}是点割集C.{b, d}是点割集D.{c}是点割集图一5.下列公式成立的为( ).A.⌝P∧⌝Q ⇔P∨Q B.P→⌝Q⇔⌝P→QC.Q→P⇒ P D.⌝P∧(P∨Q)⇒Q二、填空题(每小题3分,本题共15分)6.设集合A ={2, 3, 4},B ={1, 2, 3, 4},R 是A 到B 的二元关系,},{y x B y A x y x R ≤∈∈><=且且则R 的有序对集合为 .7.如果R 是非空集合A 上的等价关系,a ∈A ,b ∈A ,则可推知R 中至少包含 等元素. 8.设G =<V , E >是有4个结点,8条边的无向连通图,则从G 中删去 条边,可以确定图G 的一棵生成树.9.设G 是具有n 个结点m 条边k 个面的连通平面图,则m 等于 10.设个体域D ={1, 2},A (x )为“x 大于1”,则谓词公式()()x A x ∃的真值为 三、逻辑公式翻译(每小题6分,本题共12分) 11.将语句“今天考试,明天放假.”翻译成命题公式. 12.将语句“我去旅游,仅当我有时间.”翻译成命题公式. 四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.如果图G 是无向图,且其结点度数均为偶数,则图G 是欧拉图.14.若偏序集<A ,R >的哈斯图如图二所示,则集合A 的最大元为a ,最小元是f .图二五.计算题(每小题12分,本题共36分)15.设谓词公式)),,()(),()((z x y B z y x A x ∀→∃,试(1)写出量词的辖域; (2)指出该公式的自由变元和约束变元. 16.设集合A ={{1},1,2},B ={1,{1,2}},试计算(1)(A -B ); (2)(A ∩B ); (3)A ×B .17.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4 },E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4) },试 (1)给出G 的图形表示; (2)写出其邻接矩阵;(3)求出每个结点的度数; (4)画出其补图的图形. 六、证明题(本题共8分)18.设A ,B 是任意集合,试证明:若A ⨯A=B ⨯B ,则A=B .试题解答(供参考)一、单项选择题(每小题3分,本题共15分) 1.A 2.C 3.B 4.B 5.D 二、填空题(每小题3分,本题共15分)6.{<2, 2>,<2, 3>,<2, 4>,<3, 3>},<3, 4>,<4, 4>} 7.<a , a >,< b , b > 8.5 9.n +k -210.真(或T ,或1)三、逻辑公式翻译(每小题4分,本题共12分)11.设P :今天考试,Q :明天放假. (2分) 则命题公式为:P ∧Q . (6分)12.设P :我去旅游,Q :我有时间, (2分)则命题公式为:P →Q . (6分) 四、判断说明题(每小题7分,本题共14分)13.错误. (3分)当图G 不连通时图G 不为欧拉图. (7分) 14.错误. (3分) 集合A 的最大元与最小元不存在,a 是极大元,f 是极小元,. (7分) 五.计算题(每小题12分,本题共36分)15.(1)∃x 量词的辖域为)),,()(),((z x y B z y x A ∀→, (3分)∀z 量词的辖域为),,(z x y B , (6分) (2)自由变元为)),,()(),((z x y B z y x A ∀→中的y , (9分)约束变元为x 与z . (12分)16.(1)A -B ={{1},2} (4分)(2)A ∩B ={1} (8分) (3)A ×B={<{1},1>,<{1},{1,2}>,<1,1>,<1, {1,2}>,<2,1>,<2, {1,2}>} (12分) 17.(1)G 的图形表示为(如图三):(3分)图三 (2)邻接矩阵:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0110101111000100(6分) (3)v 1,v 2,v 3,v 4结点的度数依次为1,2,3,2 (9分) (4)补图如图四所示:(12分)图四六、证明题(本题共8分)18.证明:设x ∈A ,则<x ,x >∈A ⨯A , (1分) 因为A ⨯A=B ⨯B ,故<x ,x >∈B ⨯B ,则有x ∈B , (3分) 所以A ⊆B . (5分) 设x ∈B ,则<x ,x >∈B ⨯B , (6分) 因为A ⨯A=B ⨯B ,故<x ,x >∈A ⨯A ,则有x ∈A ,所以B ⊆A . (7分) 故得A=B . (8分)《离散数学》题库及答案四一、单项选择题(每小题3分,本题共15分)二、填空题(每小题3分,本题共15分)三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“如果他掌握了计算机的用法,那么他就能完成这项工作.”翻译成命题公式.12.将语句“前天下雨,昨天还是下雨.”翻译成命题公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本题共14分)五、计算题(每小题12分,本题共36分)六、证明题(本题共8分)试题答案《离散数学》题库及答案五一、单项选择题(每小题3分,本题共15分)试题及答案《离散数学》题库及答案六一、单项选择题(每小题3分,本题共15分)二、填空题(每小题3分,本题共15分)三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“昨天下雨”翻译成命题公式.12.将语句“小王今天上午或者去看电影或者去打球”翻译成命题公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本题共14分)五、计算题(每小题12分,本题共36分)六、证明题(本题共8分)试题答案及评分标准(供参考)。
离散数学大作业答案
离散数学大作业答案2022-2022学年第一学期期末《离散数学》大作业一、简要回答下列问题:(每小题3分,共30分)1.请给出集合的结合率。
答:结合律(AUB)UC=AU(BUC)某∈(AUB)UC,即某∈AUB或某∈C即某∈A或某∈B或某∈C即某∈A或某∈B∪C即某∈AU(BUC)说明(AUB)UC包含于AU(BUC)同理可证AU(BUC)包含于(AUB)UC所以(AUB)UC=AU(BUC) 2.请给出一个集合A,并给出A上既不具有自反性,又不具有反自反性的关系。
3.设A={1,2},问A上共有多少个不同的对称关系?答:不同的对称关系有:8种R=ΦR={<1,1>}R={<2,2>}R={<1,1>,<2,2>}R={<1,2>,<2,1>}R={<1,1>,<1,2>,<2,1>}R={<1,2>,<2,1>,<2,2>}R={<1,1>,<1,2>,<2,1>,<2,2>}4.设A={1,2,3,4,5,6},R是A上的整除关系,M={2,3},求M 的上界,下界。
5.关于P,Q,R请给出使极小项m0,m4为真的解释。
答:m0=┐p∧┐q∧┐rm4=p∧┐q∧┐r6.什么是图中的简单路?请举一例。
答:图的通路中,所有边e1,e2,…,ek互不相同,称为简单通路。
7.什么是交换群,请举一例。
答:如果群〈G,某〉中的运算某是可以交换的,则称该群为可交换群,或称阿贝尔群。
如〈I,+〉是交换群。
8.什么是群中右模H合同关系?答:设G是群,H是G的子群,a,b∈G,若有h∈H,使得a=bh,则称a合同于b(右模H),记为a≡b(右modH)。
9.什么是有壹环?请举一例。
答:幺元:如果A中的一个元素e,它既是左幺元又是右幺元,则称e为A中关于运算☆的幺元。
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)一、单项选择题(每小题3分,本题共16分)若集合A = {1,2,3,4},则下列表述不正确的是( ).A.{2,3)€AB.AU{1,2,3,4}C. <1,2,3,4)QAD. 16A2.若无向图G的结点度数之和为20,则G的边数为( ).A.10B. 20C. 30D. 53.无向图G是棵树,结点数为10,则G的边数为( ).A. 5B. 10C.9D. 114.设A(x):x是人,B(x):x是学生,则命题“有的人是学生”可符号化为( )•A.Vx)(A(x)-*B(x»B.(3x)(A(x)AB(x))C.(Vx)(A(x)AB(x»D.-«(3x)(A(x)A -B(x»5.下面的推理正确的是( ).A.(l)(Vx)F(x)->G(x) 前提引入(2)F(>-)-*G(y) US(1).B.(1)( 3 x)F(x)-*G(x) 前提引入(2)F(y)-*G(y) US(1),C.(l)(3x)(F(x)->G(x»前提引入(2)F(y)-*G(x) ES(1).D.(l)(3x)(F(x)-*G(x)) 前提引入(2)F(y)-*G(y) ESQ).二、填空题(每小题3分,本题共15分)6.设A = {1,2),H = {1,2,3},则A到B上不同的函数个数为________________ .7.有&个结点的无向完全图的边数为 ____________ .8.若无向图G中存在欧拉路但不存在欧拉回路,则G的奇数度数的结点有________ 个.9.设G是有10个结点的无向连通图,结点的度数之和为30,则从G中删去条边后使之变成树.10.设个体域£> = {1,2,3,4},则谓词公式(*)人(了)消去量词后的等值式为三、逻辑公式翻译(每小题6分,本息共12分)11.将语句“昨天下甬“翻译成命题公式.12.将语句“小王今天上午或者去看电彩或者去打球”翻译成命JS公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本黑共14分)13.存在集合A与B,使得A6B与AUB同时成立.14.完全图K<是平面图.五、计算题(每小题12分,本题共36分)15.设偏序集VA,R>的哈斯图如下,B为A的子集,其中B = 试(1)写出R的关系表达式;(2)画出关系R的关系图;(3)求出B的最大元、极大元、上界.16.设图G — <V,E>,V={vj f v it v t,Vi»v s)»(v2, v3)»(v3»vs)}»试(1)画出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出图G的补图的图形,17.求P TQ代R)的合取范式与主合取范式.六、证明题(本题共8分)18.设A.B是任意集合,试证明:若AXA=BXB,^ A = B.M答杖松标准(仅辩者)一、单项选择题(每小题3分,本题共15分)1. A2. A3. C4.B5. D二、填空题(每小题3分,本题共]5分)6.97.”3 — 1)/2(或庆)8.210. A(l) VA(2) V A(3) V A(4)三、 逻辑公式翻译(每小题6分,本题共】2分)H,设P :昨天下雨. 则命题公式为:P ,12. 设P :小王今天上午去看电影 Q :小王今天上午去打球 则命题公式为:r (PiQ ). 或者(rPAQ )V 〈PA rQ )四、 判断说明题(每小题7分,本题共14分)13. 正确.例:设 A = {a} t H — {a,{a}) 则有且ACI3.说明:举出符合条件的例均给分. 14. 正确.完全图K 〈是平面图, 如K,可以如下图示嵌入平面.(7分)五、计算题(每小题12分,本题共36分)15. (l )R = {Va ,a>,Vb,Q>,Vc,c>,Vd,d>・Va0>・Va ・c>,V&,d>,VQ,d >}. (4 分)(2)关系图(8分)(3)集合B 无最大元,极大元为6与c.无上界. 16, 解: (1)关系图(2分) (6分)(2分)(6分)(3分) (517. P TQAR) 5PV(QAR) 0(rPVQ 〉A(rPVR)合取范式<=>(-PVQ)V(K A rR)A(rPVR) 0("VQ)V(& A rR)A(" VR)V(QA -Q)D(rPVQVR)A(rPVQVA("VR VQ) A(-、PVR V -Q) c=>(-PVQV7?)A(-'PVQV-R)A(-PV-QVR) 主合取范式 六、证明题(本意共8分)18. 证明:V2(2)邻接矩阵bioir 101001001 1 00 0(6分)(3) deg(vi)=,3deg(v t )—2 <ieg(v 3)~2 deg顷)=1 deg(v s )=2 (4) 补图(9分)(】2分)(2分) (5分)(7分〉设x€A,则Vx,x>€AXA,(1 分)因AXA = BXB,故V X,X>€BXB,则有xGB, (3 分)因此AGB. (5分)设xQB,则Vx,x>€BXB,(6 分)因AXA-BXB,故Vx,x>eAXA,则有因此BWA. (7 分)故得A=B. (8分)。
国家开放大学《离散数学(本)》形考任务(1-4)试题及答案解析
国家开放大学最新《离散数学(本)》形考任务(1-4 )试题及答案解析形考任务1(正确答案解析附题冃之后)单项选择题题冃1正确获得5.00分中的5.00分未标记标记题目题干设A={1, 2, 3, 4, 5, 6, 7, 8}, R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为()■选择一项:A.无、2、无、2B.8、2、8、2C.8、1、6、1D.6、2、6、2反馈你的回答正确正确答案是:无、2、无、2题目2正确获得5.00分中的5.00分未标记标记题目题干设集合A={1,2,3,4}上的二元关系R={<l z 1>, <2, 2>, <2, 3>, <4, 4>}. S={<1, 1>, <2,2>, <2, 3>, <3,2>, <4,4>},则S 是日的()闭包.选择一项:A.自反和传递B.传递C.自反D.对称反馈你的回答正确正确答案是:对称题目3正确获得5.00分中的5.00分未标记标记题冃题干若集合A的元素个数为10,则其暴集的元素个数为( ).选择一项:A.1024B. 1C.100D.10反馈你的回答正确正确答案是:1024题目4正确获得5.00分中的5.00分未标记标记题目题干设集合A = {1, 2, 3, 4, 5}上的偏序关系的哈斯图如图所示,若A的子集B = {3, 4, 5},则元素3为B的( )・选择一项:A.最大下界B.下界C.最小元D.最小上界反馈你的回答正确正确答案是:最小上界题目5正确获得5.00分中的5.00分未标记标记题冃题干设集合A=(1, 2, 3), B={3, 4, 5}, C={5, 6, 7), WJ AUB~C=( ).选择一项:A.(4, 5, 6, 7)B.{1, 2, 3, 5)C.(2, 3, 4, 5)D.{1, 2, 3, 4}反馈你的回答正确正确答案是:{1,2, 3, 4}题目6正确获得5.00分中的5.00分未标记标记题目题干设集合A={1, 2, 3, 4, 5},偏序关系是A上的整除关系,则偏序夷<A, > 上的元素5是集合A的( )・选择一项jA.极大元B.最大元C.最小元D.极小元反馈你的回答正确正确答案是:极大元题目7正确获得5.00分中的5.00分未标记标记题冃题干设集合A ={1,2, 3}上的函数分别为:f = {<l,2>, <2,1>, <3,3>},g = {<1, 3>, <2,2>, <3, 2>),h = {<l,3>, <2,1>, <3,1>},则h=( ).选择一项:A.g%B.g°fC.何D.f°g反馈你的回答正确正确答案是:f°g题冃8正确获得5.00分中的5.00分未标记标记题冃题干设集合A={2,4,6,8}, B={1,3,5,7} , A 到 B 的关系R={<x, y>| y = x+l),则R=( )•选择一项:A.{<2, 2>, <3, 3>, <4, 6>}B.(<2,1>, <4, 3>, <6, 5>}C.(<2, 3>, <4, 5>, <6, 7>)D.{<2,1>, <3, 2>, <4, 3>}反馈你的回答正确正确答案是:{<2, 3>, <4, 5>, <6, 7>}题冃9正确获得5.00分中的5.00分未标记标记题目题干集合A=(1, 2, 3, 4}上的关系R={<x, y>|x=y且x, yA},则R的性质为( ).选择一项:A.反自反B.不是对称的C.传递的D.不是自反的反馈你的回答正确正确答案是:传递的题目10正确获得5.00分中的5.00分未标记标记题冃题干集合A=(1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x, y>|x+y=10 且x, yA},则R 的性质选择一项:A.传递且对称的B.反自反且传递的C.自反的D.对称的反馈你的回答正确正确答案是:对称的未标记标记题冃信息文本判断题题目11正确获得5.00分中的5.00分未标记标记题日题干空集的幕集是空集.()选择一项:对错反馈正确的答案是“错”。
国开电大2024秋《离散数学》形考任务1-6以及大作业
国开大学、各地开放大学形考、终考、期末复习资料答案由【电大题园】微信公众号提供,禁止复制盗取。
答案由【电大题园】微信公众号提供,禁止复制盗取。
答案由【电大题园】微信公众号提供,禁止复制盗取。
国开电大2024秋《离散数学》形考任务1-6以及大作业离散数学(本)·形考任务一1.若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A.{a,{a}}ÎAB.{1,2}ÏAC.{a}ÍAD.ÆÎA正确答案:C2.若集合A={1, 2, 3, 4},则下列表述正确的是().A.{1, 2}ÎAB.{1, 2, 3 } Í AC.AÌ{1, 2, 3 }D.{1, 2, 3}ÎA正确答案:B3.若集合A={2,a,{ a },4},则下列表述正确的是( ).A.{a,{ a }}ÎAB.ÎAC.{2}ÎAD.{ a }ÍA正确答案:D4.若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).A.AÌB,且AÎBB.BÌA,且AÎBC.AÌB,且AÏBD.AËB,且AÎB正确答案:A5.若集合A={a,b},B={a,{a,b}},则下列表述正确的是( ).A.AÌBB.BÌAC.AÏBD.AÎB正确答案:D6.若集合A的元素个数为5,则其幂集的元素个数为().A.5B.16C.32D.64正确答案:C7.设集合A={1, 2, 3, 4, 5, 6},B={1, 2, 3},A到B的关系R={<x,y>| x A,yB且x=y2},则R=( ).A.{<1, 1>, <2, 4>}B.{<1, 1>, <4, 2>}C.{<1, 1>, <6, 3>}D.{<1, 1>, <2, 1>}8.设集合A={2, 4, 6, 8},B={1, 3, 5, 7},A到B的关系R={<x,y>|xA, y B且 y=x +1},则R= ().A.{<2, 3>, <4,5>, <6, 7>}B.{<2, 1>, <4, 3>, <6, 5>}C.{<2, 1>, <3, 2>, <4, 3>}D.{<2, 2>, <3, 3>, <4, 6>}正确答案:A9.设A={1, 2, 3},B={1, 2, 3, 4},A到B的关系R={〈x,y〉| xÎA,yÎB,x=y},则R= ( ) .A.{<1, 2>, <2, 3>}B. {<1, 1>, <1, 2>, <1, 3>, <1, 4>, <1, 5>}C. {<1, 1>, <2, 1>}D.{<1, 1>, <2, 2>, <3, 3 >}正确答案:D10.设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为()A.2B.3C.6D.8正确答案:D11.空集的幂集是空集.()A.正确B.错误12.存在集合A与B,可以使得AÎB与AÍB同时成立.A.正确B.错误正确答案:A13.集合的元素可以是集合.A.正确B.错误正确答案:A14.如果A是集合B的元素,则A不可能是B的子集.A.正确B.错误正确答案:B15.设集合A={a},那么集合A的幂集是{Æ, {a}}A.正确B.错误正确答案:A16.若集合A的元素个数为4,则其幂集的元素个数为16A.正确B.错误正确答案:A17.设A={1, 2, 3},B ={1, 2, 3, 4},A到B的关系R ={<x,y> |xÎA,yÎB,x>y},则R ={<2,1>, <3, 1>, <3, 2 >}A.正确B.错误正确答案:A18.设A={1, 6,7},B={2, 4,8,10},A到B的关系R={〈x,y〉|xÎA,yÎB,且x=y},则R={<2, 2>, <4, 4>, <8, 8>, <10, 10>}A.正确B.错误正确答案:B19.设A={a,b,c},B={1,2,3},作f:A→B,则共有9个不同的函数.A.正确B.错误正确答案:B20.设A={1,2},B={ a,b,c },则A´B的元素个数为8.()A.正确B.错误正确答案:B离散数学(本)·形考任务二1.n阶无向完全图Kn的边数是().A.nB. n(n-1)/2C. n-1D.n(n-1)正确答案:B2.n阶无向完全图Kn每个结点的度数是().A.nB. n(n-1)/2C.n-1D.n(n-1)正确答案:C3.已知无向图G的结点度数之和为20,则图G的边数为().A.5B.15C.20D.10正确答案:D4.已知无向图G 有15条边,则G的结点度数之和为().A.10B.20C.30D.5正确答案:C5.图G如图所示,以下说法正确的是( ) .A.{(a, e)}是割边B.{(a, e)}是边割集C.{(a, e) ,(b, c)}是边割集D.{(d,e)}是边割集正确答案:D6.若图G=<V,E>,其中V={ a,b,c,d },E={ (a,b), (b,c) , (b,d)},则该图中的割点为().A.aB.bC.cD.d正确答案:B7.设无向完全图K有n个结点(n≥2),m条边,当()时,K 中存在欧拉回路.A.m为奇数B.n为偶数C.n为奇数D.m为偶数正确答案:C8.设G是欧拉图,则G的奇数度数的结点数为( )个.A.0B.1C.2D.4正确答案:A9.设G为连通无向图,则()时,G中存在欧拉回路.A.G不存在奇数度数的结点B.G存在偶数度数的结点C.G存在一个奇数度数的结点D.G存在两个奇数度数的结点正确答案:A10.设连通平面图G有v个结点,e条边,r个面,则.A.v + e - r=2B.r +v - e =2C.v +e - r=4D.v +e – r = –4正确答案:B11.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是15.( )A.正确B.错误正确答案:A12. 设G是一个无向图,结点集合为V,边集合为E,则G的结点度数之和为2|E|.( )A.正确B.错误正确答案:A13. 若图G=<V,E>,其中V={ a,b,c,d },E={ (a,b), (a,d),(b,c), (b,d)},则该图中的割边为(b,c).( )A.正确B.错误正确答案:A14. 边数相等与度数相同的结点数相等是两个图同构的必要条件.A.正确B.错误正确答案:A15. 若图G中存在欧拉路,则图G是一个欧拉图.A.正确B.错误正确答案:B16. 无向图G存在欧拉回路,当且仅当G连通且结点度数都是偶数.( )A.正确B.错误正确答案:A17. 设G是具有n个结点m条边k个面的连通平面图,则n-m=2-k.A.正确B.错误正确答案:A18.设G是一个有6个结点13条边的连通图,则G为平面图.A.正确B.错误正确答案:B19. 完全图K5是平面图.A.正确B.错误正确答案:B20. 设G是汉密尔顿图,S是其结点集的一个子集,若S的元素个数为6,则在G-S中的连通分支数不超过6A.正确B.错误正确答案:A离散数学(本)·形考任务三1.无向图G是棵树,边数为12,则G的结点数是().A.12B.24C.11D.13正确答案:D2.无向图G是棵树,边数是12,则G的结点度数之和是().A.12B.13C.24D.6正确答案:C3.无向图G是棵树,结点数为10,则G的边数是().A.9B.10C.11D.12正确答案:A4.设G是有10个结点,边数为20的连通图,则可从G中删去()条边后使之变成树.A.12B.9C.10D.11正确答案:D5.设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G 的一棵生成树.A.m-n+1B.m-nC.m+n+1D.n-m+1正确答案:A6.设A(x):x是金属,B(x):x是金子,则命题“有的金属是金子”可符号化为().A.(x)(A(x)∧B(x))B.┐("x)(A(x)→B(x))C.(x)(A(x)∧B(x))D.┐(x)(A(x)∧┐B(x))正确答案:C7.设A(x):x是学生,B(x):x去跑步,则命题“所有人都去跑步”可符号化为().A.($x)(A(x)∧B(x))B.("x)(A(x)→B(x))C.($x)(A(x)∧┐B(x))D.("x)(A(x)∧B(x))正确答案:B8.设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().A.┐("x)(A(x)→B(x))B.┐($x)(A(x)∧B(x))C.("x)(A(x)∧B(x))D.┐($x)(A(x)∧┐B(x))正确答案:A9.("x)( P(x,y)∨Q(z))∧($y) (R(x,y) → ("z) Q(z))中量词“"”的辖域是().A.P(x,y)B.P(x,y)∨Q(z)C.R(x,y)D.P(x,y)∧R(x,y)正确答案:B10.设个体域D={a,b,c},那么谓词公式($x)A(x)∨("y)B(y)消去量词后的等值式为( ).A.(A(a)∨A(b)∨A(c))∨(B(a)∧B(b)∧B(c))B.(A(a)∧A(b)∧A(c))∨(B(a)∨B(b)∨B(c))C.(A(a)∨A(b)∨A(c))∨(B(a)∨B(b)∨B(c))D.(A(a)∧A(b)∧A(c))∨(B(a)∧B(b)∧B(c))正确答案:A11.若无向图G的边数比结点数少1,则G是树.A.正确B.错误正确答案:B12.无向图G是树当且仅当无向图G是连通图.A.正确B.错误正确答案:B13.无向图G是棵树,结点度数之和是20,则G的边数是9A.正确B.错误正确答案:B14.设G是有8个结点的连通图,结点的度数之和为24,则可从G中删去5条边后使之变成树.A.正确B.错误正确答案:A15.设个体域D={1,2,3},则谓词公式("x)A(x)消去量词后的等值式为A(1)∧A(2)∧A(3).A.正确B.错误正确答案:A16.设个体域D={1, 2, 3, 4},则谓词公式($x)A(x)消去量词后的等值式为A(1 ) ∨A(2) ∨ A(3) ∨ A(4)A.正确B.错误正确答案:A17.设个体域D={1, 2},则谓词公式("x)P(x) ∨($x)Q(x)消去量词后的等值式为(P (1)∧P (2)) ∨(Q(1)∨Q(2)).A.正确B.错误正确答案:A18.("x)(P(x)∧Q(y)→R(x))中量词“"” 的辖域为(P(x)∧Q(y)).A.正确B.错误正确答案:B19. ("x)(P(x)∧Q(y))→R(x)中量词“"” 的辖域为(P(x)∧Q(y)).A.正确B.错误正确答案:A20.设A(x):x是人,B(x):x是学生,则命题“有的人是学生”可符号化为┐( x)(A(x)∧┐B(x))A.正确B.错误正确答案:B大作业1. 在线提交word文档第一部分一、公式翻译题(每小题2分,共10分)1.将语句“我会英语,并且会德语.”翻译成命题公式.参考答案:设p.我学英语Q:我学法语则命题公式为:pΛQ2.将语句“如果今天是周三,则昨天是周二.”翻译成命题公式.参考答案:设P:今天是周三Q:昨天是周二则命题公式为:P→Q3.将语句“小王是个学生,小李是个职员.”翻译成命题公式.参考答案:设P:小王是个学生Q:小李是个职员则命题公式为:P∧Q4.将语句“如果明天下雨,我们就去图书馆.”翻译成命题公式.参考答案:设P:如果明天下雨Q:我们就去图书馆则命题公式为:P→Q5.将语句“当大家都进入教室后,讨论会开始进行.”翻译成命题公式.参考答案:设P:当大家都进入教室后Q:讨论会开始进行则命题公式为:P→Q二、计算题(每小题10分,共50分)1.设集合A={1, 2, 3},B={2, 3, 4},C={2, {3}},试计算(1)A-C;(2)A∩B;(3)(A∩B)×C.参考答案:(1)A-C={l,3};(2)A∩B={2,3};(3)(A∩B)×C= { <2,2>,<2, {3} > ,<3,2> ,<3, {3} >}.2. 设G=<V,E>,V={v1,v2,v3,v4,v5},E={(v1,v3) , (v1,v5) , (v2,v3) , (v3,v4) , (v4,v5) },试(1)给出G的图形表示;(2)求出每个结点的度数;(3)画出其补图的图形.参考答案:(1)关系图编辑(2)deg(v1)=3deg(v2)=2deg(v3)=3deg(v4)=2deg(v5)=2(3)补图编辑3.试画一棵带权为1, 2, 3, 3, 4的最优二叉树,并计算该最优二叉树的权.参考答案:编辑权为1×3+2×3+3×2+3×2+4×2=294.求出如下所示赋权图中的最小生成树(要求写出求解步骤),并求此最小生成树的权.编辑参考答案:解:用Kruskal 算法求产生的最小生成树,步骤为:w(v2,v6)=1 选(v2,v6)w(v4,v5)=1 选(v4,v5)w(v1,v6)=2 选(v1,v6)w(v3,v5)=2 选(v3,v5)w(v2,v3)=4 选(v2,v3)最小生成树如图所示:编辑最小生成树的权w(T)=1+1+2+2+4=10. 5. 求P→(Q∧R) 的析取范式与合取范式. 参考答案:解:(P∨Q)→R⇔┐(P∨Q)∨R⇔(┐P∧┐Q)∨R(析取范式)⇔(┐P∨R)∧(┐Q∨R)(合取范式)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学作业5
离散数学图论部分形成性考核书面作
业
本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。
本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。
要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年12月5日前完成并上交任课教师(不收电子稿)。
并在05任务界面下方点击“保存”和“交卷”按钮,以便教师评分。
一、填空题
1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 .
2.设给定图G (如右由图所示),则图G 的点割集是
{}f {}c e ,.
3.设G 是一个图,结点集合为V ,边集合为E ,则
G 的结点 度数之和 等于边数的两倍.
4.无向图G 存在欧拉回路,当且仅当G 连通且 不含奇数度结点 . 5.设G=<V ,E >是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于︱V ︱ ,则在G 中存在一条汉密尔顿回路. 6.若图G=<V , E>中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W
满足的关系式为 S W ≤ .
7.设完全图K n 有n 个结点(n ≥2),m 条边,当n 为奇数时,K n 中存在欧拉回路.
8.结点数v 与边数e 满足 e= v -1 关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去
条边后使之变成树.
10.设正则5叉树的树叶数为17,则分支数为i = 4 . 二、判断说明题(判断下列各题,并说明理由.)
1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路.. 答:错误。
应叙述为:“如果图G 是无向连通图,且其结点度数均为偶数,则图G 存在一条欧拉回路。
”
2.如下图所示的图G 存在一条欧拉回路.
答:错误。
因为图中存在奇数度结点,所以不存在欧拉回路。
3.如下图所示的图G 不是欧拉图而是汉密尔顿图.
答:正确。
因为有4个结点的度数为奇数,所以不是欧拉图;而对于图中任意点集V 中的非空子集1V ,都有)(1V G P -≤∣V 1∣。
其中)(1V G P -是从图中删除1V 结点及其关联的边。
4.设G 是一个有7个结点16条边的连通图,则G 为平面图. 答:错误。
若G 是连通平面图,那么若63,3-≤≥v e v 就有, 而16>3×7-6,所以不满足定理条件,叙述错误。
5.设G 是一个连通平面图,且有6个结点11条边,则G 有7个面.
答:正确。
因为连通平面图满足欧拉公式。
即:2=+-r e v 。
由此题条件知6-11+7=2成立。
三、计算题
1.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),(v 4,v 5) },试
(1) 给出G 的图形表示; (2) 写出其邻接矩阵; (3) 求出每个结点的度数; (4) 画出其补图的图形. 答:(1) 1v °
° °3v
4v ° °5v
(2) ⎥⎥⎥⎥⎥
⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎣⎡=0110010110110110110000100)(D A
(3) =)deg(1v 1、=)deg(2v 2、=)deg(3v 4、=)deg(4v 3、=)deg(5v 2 (4) °1v
2v ° °3v 4v ° °5v
2.图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (c , d ), (d , e ) },对应边的权值依次为2、1、2、3、6、1、4
G
及5,试
(1)画出G的图形;(2)写出G的邻接矩阵;
(3)求出G权最小的生成树及其权值.
b c
解:(1)。
2 1
a。
6 4
2 1 3。
e 5 d
(2) ⎥⎥
⎥⎥⎥
⎥⎦
⎤⎢⎢⎢⎢⎢
⎢⎣⎡=011111011011001
1100110110)(D A (3) b c。
。
2 1
a 。
1 3 。
。
e d 其权值为:7 3.已知带权图G 如右图所示.
(1) 求图G 的最小生成树; (2)计算该生成树的权值. 答:(1)
1 2
7
5 3
(2) 权值为18。
4.设有一组权为2, 3, 5, 7, 17, 31,试画出相应的最优二叉树,计算该最优二叉树的权.
解: 65
17 48 5 12
17 31 2 3 5 7
权值为65。
四、证明题
1.设G 是一个n 阶无向简单图,n 是大于等于3的奇数.证明图G 与它的补图G 中的奇数度顶点个数相等.
证明:设a 为G 中任意一个奇数度顶点,由G 定义,a 仍为G 顶点,为区分起见,记为a ’, 则deg(a)+deg(a ’)=n-1, 而n 为奇数,则a ’必为奇数度顶点。
由a 的任意性,容易得知结论成立。
2.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加2
k
条边才能使其成为欧拉图.
证明:由定理推论知:在任何图中,度数为奇数的结点必是偶数个,则k 是偶数。
又由欧拉图的充要条件是图G 中不含奇数度结点。
因此,只
要在每对奇数度结点间各加一条边,使图G 的所有结点的度数变为偶数,成为欧拉图。
故最少要加2
k 条边才能使其成为欧拉图。