高中数学解题思路与技巧

合集下载

2024年高中数学解题技巧归纳与总结

2024年高中数学解题技巧归纳与总结

2024年高中数学解题技巧归纳与总结一、代数运算技巧1. 因式分解:对于多项式的因式分解,可以运用相关的公式和技巧来进行简化和化简,例如二次差平方公式、完全平方公式等。

2. 分数运算:对于分数的运算,在分子分母上同时进行化简和约分,可以简化计算过程。

3. 方程求解:对于一元一次方程和一元二次方程等,可以通过移项、合并同类项、配方法等来求解,并且可以借助图象、函数性质等来验证解的正确性。

4. 不等式求解:对于一元一次不等式和一元二次不等式等,可以通过化简和变形来求解,并且可以借助函数图象等来验证解的正确性。

二、几何解题技巧1. 利用几何图形性质:对于平面几何和立体几何的解题,可以通过运用几何图形性质,如平行线的性质、三角形的性质、圆的性质等来推导和解题。

2. 分析几何关系:对于几何题目中的给定条件,可以通过分析几何图形的相关关系,如相似关系、垂直关系、共线关系等来解题,并且可以通过构造辅助线、利用等距变换等来推导和证明。

3. 利用比例关系:对于比例题目,可以通过利用比例的性质,如比例的乘法性质、比例的倒数性质等来推导和解题。

三、函数与图像技巧1. 函数图像的性质:对于函数图像题目,可以通过利用函数图像的性质,如对称性、单调性、周期性等来推导和解题。

2. 图像的平移和伸缩:对于函数图像的平移和伸缩题目,可以利用平移和伸缩的性质来求解,并且可以借助图像和方程等来验证解的正确性。

3. 利用函数性质:对于函数的性质题目,可以通过运用函数的定义和性质,如函数的奇偶性、函数的连续性等来解题,并且可以借助图象和推导等来验证解的正确性。

四、概率与统计技巧1. 概率的计算:对于概率题目,可以通过利用概率的基本定义和性质,如加法定理、乘法定理等来计算,并且可以借助频率和样本空间等来验证结果的可靠性。

2. 统计的分析:对于统计题目,可以通过利用抽样调查和数据分析的方法,如频数分布、频率分布等来进行统计,并且可以借助图表和统计性质等来解题和验证。

高中数学解题方法与技巧

高中数学解题方法与技巧

高中数学解题方法与技巧高中数学是一门重要而复杂的学科,它不仅在高中数学考试中占有重要的比例,同时也是许多高考和各类外部考试的必要组成部分。

为了帮助学生在数学课堂中取得更好的成绩,下面将介绍一些高中数学解题方法与技巧。

一、问题分解法在解决复杂问题时,问题分解法是非常有用的一种方法。

这种方法的基本思路是,将问题按照各个部分进行分解,分别考虑每个部分,然后将所有的结果合并起来得到终极结果。

例如,在解决题目“一支船航行了一段距离之后返回原点,它来回所用的时间是8小时,来回的速度比为3:2,求船航行了多少距离?”时,可以将问题分解成为若干个小问题,如求往返的时间、速度比、来回的距离等等。

通过逐一解决这些小问题,最终得到整个问题的答案。

二、画图法画图法是解决高中数学问题的另一种重要方法。

它的基本思路是,在纸上画出与问题相应的几何图形,然后通过观察或推导得到问题的解答。

例如,在解决问题“一个长方形的周长为20,它的面积为16,求它的长和宽”时,我们可以通过画出长方形的图形来帮助我们理解和解决这个问题。

图中可以用x和y代替长和宽,然后根据周长和面积的定义式列出方程,最后求解x和y的值。

三、化繁为简法化繁为简法是另一种非常实用的高中数学解题方法。

它的基本思路是,将复杂问题简化成为容易解决的问题,然后逐步加以推导和扩展,最终得到原始问题的解决方案。

例如,在解决问题“证明勾股定理”时,可以先使用勾股定理来证明一个简单的三角形,然后逐步加以推导和扩展,最终得到原始问题的解决方案。

这样的解题方法可以帮助我们理解数学原理,提高我们的数学思维能力。

四、运用辅助工具的方法现代技术的发展使得数学解题不再仅限于传统的纸笔计算。

可以使用图形计算机软件、计算器、手机APP应用程序等现代化工具来辅助解题。

例如,在求解三角函数时,我们可以使用特定的计算器或手机APP来得到计算结果。

这些辅助工具可以缩短解题时间,减少计算错误,提高解题效率。

高中数学解题常用的几种解题思路和技巧

高中数学解题常用的几种解题思路和技巧

高中数学解题常用的几种解题思路和技巧高中数学解题常用的几种解题思路如下:1、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

2、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

3、“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

4、一“慢”一“快”,相得益彰有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。

应该说,审题要慢,解答要快。

审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。

而思路一旦形成,则可尽量快速完成。

高中数学解题的技巧如下:1.圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok了。

2.选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!3.三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角然后把第一题算的比如角A等于60度直接假设B和C都等于60°带入求解。

高中数学答题技巧和解题技巧

高中数学答题技巧和解题技巧

高中数学答题技巧和解题技巧高中数学答题技巧和解题技巧一、数学答题技巧1、认真审题解题的第一步,是正确理解题意,把握好题意的要求,包括题目中是否有暗示的关键词,如“证明”、“论证”、“求解”等;并依据题意确定最终要求的答案形式,简单题有求值要求时,要求的答案形式是运算结果,而有证明要求时,要求的答案形式是步骤详解及最终得出的结论等。

2、灵活运用解题思路解答数学题时,有的题目可以灵活运用解题思路,只要正确理解题意,就可以采用多种解题思路,比如给出几组数据,可以采用推理思路推到下一组数据,也可以采用分析思路推出一般性结论;几何题中,可以把多边形分解,将复杂的几何图形分解为若干简单几何图形,从中推出数学结论等。

3、谨慎检验解题时有的题目可能对答案有限制条件,应在解题时注意限制条件,并在计算结果的基础上进行检验,检验的是运算结果是否符合题意,以保证最终答案的正确性。

如果结果不符合题意,应仔细检查推理步骤或运算过程,查错并调整推理过程或运算步骤,直至得出正确结果为止。

二、数学解题技巧1、解方程的技巧(1)把复式方程化为一元一次、二元一次或无穷多次方程;(2)去掉括号、分数化简;(3)运用代数式的等价变换;(4)化简复式表达式;(5)省略不必要的计算;(6)把求出的某个值代入原方程或计算表达式中;(7)运用数字特性估算;(8)求解极限问题;(9)画出函数图像;(10)解方程组。

2、解不等式的技巧(1)不等式的等价变换;(2)用比较法证明结论;(3)数字特性估算;(4)求解极限问题;(5)画出函数图像。

3、解不定方程的技巧(1)把复式方程化为一元一次、二元一次或无穷多次方程;(2)去掉括号、分数化简;(3)运用代数式的等价变换;(4)化简复式表达式;(5)省略不必要的计算;(6)把求出的某个值代入原方程或计算表达式中;(7)运用数字特性估算;(8)求解极限问题;(9)画出函数图像;(10)解方程组。

高中数学解题技巧与方法

高中数学解题技巧与方法

高中数学解题技巧与方法高中数学是一门重要的学科,对于学生来说也是相对较难的一门课程。

许多学生在面对数学题目时感到困扰,不知道如何下手。

本文将介绍一些高中数学解题的技巧和方法,帮助学生提高解题能力。

一、理清思路在解题之前,首先要理清思路。

仔细阅读题目,分析题目的要求和条件。

可以在纸上做标记或者画图来帮助理解题目。

同时,还需要在脑海中构建一个解题方案,明确解题的步骤和方法。

二、多角度思考在解题过程中,不要被固定的思维方式所限制。

尝试从不同的角度思考问题,寻找不同的解题思路。

这样可以帮助我们发现更多的解题路径,并提高解题的灵活性。

三、建立逻辑思维数学问题大多需要通过逻辑推理来解决。

因此,培养逻辑思维是解题的关键。

可以通过做逻辑思维训练题或者进行推理游戏来提高自己的逻辑思维能力。

合理运用推理能力,可以更快地找到解题的方法。

四、归纳总结解题过程中,要善于归纳总结。

将解题的方法和思路记录下来,形成笔记或者思维导图。

这样有助于巩固所学知识,也方便在以后的学习中查阅。

通过总结,我们可以更好地掌握解题的技巧和方法。

五、练习巩固只有通过大量的练习,才能真正掌握解题的技巧和方法。

可以选择一些专门的习题集或者题库进行练习。

在解题过程中,可以注意查漏补缺,弄清楚自己的知识盲点,并通过练习加以强化。

六、寻求帮助如果在解题过程中遇到困难,不要害怕寻求帮助。

可以向老师请教,或者与同学进行讨论。

他们可能提供一种不同的解题思路,帮助我们更好地理解和解决问题。

总结起来,高中数学解题需要理清思路,多角度思考,建立逻辑思维,归纳总结,通过练习巩固,并勇于寻求帮助。

掌握好这些技巧和方法,相信大家在解题过程中能够事半功倍,取得更好的成绩。

加油吧!。

高中数学解题思路方法与技巧分析

高中数学解题思路方法与技巧分析

高中数学解题思路方法与技巧分析高中数学是学生们学习过程中的一门重要学科,数学不仅是一门学科,更是一种思维方式和解决问题的方法。

掌握高中数学解题的思路、方法和技巧对学生们来说至关重要。

本文将从解题的一般思路入手,分析高中数学解题的方法与技巧,希望能为学生们提供一些解题的帮助。

一、数学解题的一般思路1. 理清题意。

在解题之前,首先要仔细阅读题目,理解题目所描述的情境或问题,找出题目中涉及的数学概念和知识点。

只有理清题意,才能正确地解答问题。

2. 探索问题,分析问题。

在理清题意的基础上,要对问题进行分析,弄清问题所涉及的数学原理和解决方法。

这个阶段通常需要考虑问题的各种可能性,进一步理解问题。

要灵活地运用各种数学思维方法,进行深入探讨,挖掘问题的本质。

3. 创立解决问题的数学模型。

在理解和分析问题后,要根据题目中的信息,建立问题的数学模型,将问题转化为数学形式,从而更好地解决问题。

4. 运用数学工具解决问题。

在建立了数学模型之后,就可以运用相应的数学原理、定理和方法,来解决问题。

这一步可能涉及到代数运算、几何推理、函数分析等等,需要根据具体情况进行灵活运用。

5. 检验与分析解答结果。

在解答问题之后,要对解答结果进行检验和分析,确认解答是否符合题目的要求,是否存在逻辑和数学上的错误,并且可以从解答结果中得出一些结论或启示。

二、高中数学解题的方法与技巧1. 掌握基本概念和定理。

在解题过程中,必须熟练掌握基本的数学概念和定理,比如三角函数、数列、导数积分等等,只有掌握了这些基本知识,才能更好地解决问题。

2. 善于画图。

在解决几何题目时,可以通过画图的方式,更好地理解题目并得出解答,画图是解决几何问题的有效方法,可以帮助我们看清问题的本质。

3. 灵活运用公式和定理。

在解题过程中,灵活运用各种数学公式和定理,可以帮助我们更快地解决问题,但也要注意不要机械应用,要结合具体情况适当变形或组合使用。

4. 善于进行逻辑推理。

高中数学解题思路方法与技巧分析

高中数学解题思路方法与技巧分析

高中数学解题思路方法与技巧分析高中数学是学生学习的重要科目之一,也是考试的重要科目之一。

对于学生来说,掌握好数学解题的思路、方法和技巧是十分重要的,它不仅可以帮助学生提高解题的效率,还可以帮助学生深入理解数学知识。

本文将从数学解题的思路、方法与技巧分析三个部分对高中数学的解题进行详细讨论。

一、数学解题的思路数学解题的思路是解题的基本指导思想,是学生解题的第一步。

正确的解题思路可以帮助学生更快、更准确地解出题目,同时也可以帮助学生更好地理解数学知识。

在解题的过程中,学生首先要明确题目的要求,理清题目中的信息和条件,然后确定解题的思路。

对于不同类型的数学题目,解题的思路也需要有所不同。

在解代数题目时,可以采用反证法或者数学归纳法;在解几何题目时,可以通过图形分析和几何推理来解题。

针对不同类型的数学题目,学生需要学会灵活运用不同的解题思路,这样才能更好地解题。

解题时需要遵循一定的解题步骤。

一般来说,解题步骤包括:理解问题、分析问题、设计解决方案、计算和检验解答。

在具体的解题步骤中,还需要注意逻辑严谨,推理正确,不断进行验证和检查。

只有按照正确的思路和步骤,才能更好地解题。

数学解题方法是解题的具体操作步骤,是实现解题思路的具体手段。

不同类型的数学题目需要采用不同的解题方法。

在解代数题目时,可以采用分解因式、配方法、合并同类项等方法;在解几何题目时,可以采用利用图形的性质、相似三角形等方法。

在解数学题目时,还可以运用数学公式、定理和推论来解题。

而在具体的操作中,要注意灵活应用不同的解题方法。

有时候,一个问题可以采用多种方法来解决,而不同的方法可能会对学生的思维方式和数学能力产生不同的影响。

学生需要灵活应用不同的解题方法,这样才能更好地提高解题能力。

数学解题技巧是解题的特殊方法和窍门,可以帮助学生更好地解题。

在解数学题目时,有一些技巧是十分有用的。

在解方程题目时,可以通过等式两边加减法、等式两边乘除法、等式两边平方等技巧来解题;在解几何题目时,可以通过画辅助线、利用相似三角形、利用作图等技巧来解题。

高中中的解题思路与答题技巧

高中中的解题思路与答题技巧

高中中的解题思路与答题技巧高中数学解题思路与答题技巧高中数学作为一门重要的学科,对学生的综合能力有着重要的培养作用。

在学习高中数学的过程中,解题思路和答题技巧是至关重要的。

本文将介绍高中数学解题思路与答题技巧,帮助学生更好地应对数学考试。

一、解题思路1. 审题仔细、理解题意:在解决任何问题之前,首先要仔细审题,理解题目的要求。

要确保对题目的意思没有理解上的偏差,避免走入误区。

2. 确定解题方法:针对不同类型的题目,要选择相应的解题方法。

比如,在解决代数方程题时,可以运用因式分解、配方法等;在几何题中,则要熟悉几何定理和定律,灵活应用。

3. 分析问题、拆解难题:将复杂的问题拆解为若干较为简单的小问题进行分析,有助于更好地理解问题与解决问题。

这样做能够提高解题的效率和准确性。

4. 快速推理、形成思路:在解题过程中,要利用已知条件和解题技巧,进行快速推理。

形成解题的思路,避免走弯路。

通过构建合理且可行的思路,有助于解题的顺利进行。

5. 反复检查、确保准确:对于解答题来说,不仅要按照思路解决问题,还要进行反复检查,确保得出的结论准确无误。

对于选择题来说,也要仔细核对选项,确认最终答案。

二、答题技巧1. 掌握基本概念和公式:高中数学中有很多重要的基本概念和公式,这些都是解题不可或缺的基础。

要熟练掌握这些概念和公式,并能够熟练灵活地运用到解题中。

2. 积累解题经验:通过大量的练习和实践,积累解题经验是非常重要的。

做题时要注意总结方法和技巧,遇到新题目时能够迅速找到解题的思路。

3. 注意留白和标记重点:在解答题目时,要注意合理利用卷面空白处,留下足够的计算空间。

同时,对于关键步骤和重要中间结果,要做好标记,便于审阅和检查。

4. 注重解题过程的演算:在解答过程中,不仅要写出最终答案,还要详细展示解题过程,注重中间步骤的演算。

这样不仅方便检查,也有助于得分。

5. 注意单位和精度:在解决实际问题时,要注意单位的转换和保持精度。

高中数学解题思路方法与技巧分析

高中数学解题思路方法与技巧分析

高中数学解题思路方法与技巧分析一、解题思路在解题过程中,首先要从题目中抽象出数学模型,并明确所求的未知量,以便运用数学知识解决问题。

这需要我们掌握以下几个步骤:1.阅读题目阅读题目时不能急于求解,应该认真阅读题目,理解题意,分析问题,明确所求,找出问题的关键点和难点,从而确定解题思路。

2.建立模型掌握问题的基本概念和所涉及的理论知识,建立数学模型,把问题转化为数学语言。

在建立模型的过程中,重要的是明确各量的含义,关系以及范围。

3.解决问题根据所掌握的数学知识,对建立好的模型进行运算和处理,得到所求的答案。

在此过程中,要注意计算的准确性,防止疏漏和错误。

二、解题方法在解题过程中,根据不同的题型和问题,需要掌握一些基本的解题方法,以便更好的解决问题。

1.分类讨论法当问题较为复杂时,可以运用分类讨论法进行解答。

例如,在解决方程或不等式时,可以先讨论特殊情况,再按照一般情况进行求解,从而得到解答。

2.化归法将复杂的问题化简,转化为容易处理的简单问题。

例如,化简分式、求根、化简指数等。

3.逆向法有些问题可以采用逆向思维进行解决,即从所求的答案出发,逆推回原方程或不等式,以求解所需要的量。

4.综合运用法对于一些复杂的题目,需要综合运用多种方法和理论知识,从不同角度对问题进行分析和处理,最终得出解答。

三、解题技巧1.熟练掌握基本知识要熟练掌握基本的数学知识,在面对复杂的问题时,才能够运用自如。

2.理解题意在解题过程中,要充分理解题意,搞清楚题目中的关键点和难点,以便找到解题思路。

3.画图辅助对于一些几何相关的问题,可以运用画图的方法进行解答,图像能更加直观地表现问题,有助于找到解题思路。

4.积累经验在学习过程中,要注意归纳总结,并积累解题经验,遇到类似问题时,能够迅速找到解答的方法。

综上所述,要想在高中数学中得到好成绩,需要掌握解题思路、方法和技巧。

在日常学习中,要勤于练习,逐渐掌握解题的各种方法,为解决高中数学问题打下坚实的基础。

高中数学的解题技巧(三篇)

高中数学的解题技巧(三篇)

高中数学的解题技巧(三篇)高中数学的解题技巧 1一、选择题1.选择题是高考数学试卷的三大题型之一,题量一般为10到12个,较大部分选择题属于低中档题,且一般按由易到难排序,主要的数学思想和数学方法能通过它得到充分的体现和应用,并且因为它还有相对难度(如思维层次、解题方法的优劣选择,解题速度的快慢等),所以选择题已成为具有好区分度的基本题型之一.能否在选择题上获取高分,关系到高考数学成绩高低,解答选择题的基本要求是四个字——准确、迅速.2.选择题具有概括性强、知识覆盖面广、小巧灵活及有一定的综合性和深度等特点.选择题主要考查对基础知识的理解、对基本技能、基本计算、基本方法的熟练运用,以及考查考虑问题的严谨性,解题速度等方面.解答选择题的基本策略是充分利用题设和选项两方面提供的信息作出判断.一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不要采用常规解法;能使用间接法解的,就不选采用直接法解;对于明显可以否定的选项应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选简解法.解题时应仔细审题、深入分析、正确推理、谨防疏漏;初选后认真检验,确保准确.3.由于选择题80%以上的题目都可以用直接法通过思考、分析、运算得出结论.因此直接法是解答选择题基本、常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要掌握一些特殊的解答选择题方法.解选择题的特殊方法有直接法、特例法、排除法、数形结合法、较限法、估值法等.选择题的解题方法:方法一:直接法所谓直接法,就是直接从题设的条件出发,运用有关的概念、定义、性质、定理、法则和公式等知识,通过严密的推理与计算来得出题目的结论,然后再对照题目所给的四个选项来“对号入座”.其基本策略是由因导果,直接求解.方法二:特例法特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中,所谓特例法,就是用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效.注意:在题设条件都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的较佳策略.近几年高考选择题中可用或结合特例法来解答的约占30%.因此,特例法是求解选择题的好招.方法三:排除法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.注意:排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中占有很大的比重. 方法四:数形结合法数形结合,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来,通过对图形的处理,发挥直观对抽象的__作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.方法五:估算法在选择题中作准确计算不易时,可根据题干提供的信息,估算出结果的大致取值范围,排除错误的'选项.对于客观性试题,合理的估算往往比盲目的准确计算和严谨推理更为有效,可谓“一叶知秋”.方法六:综合法当单一的解题方法不能使试题迅速获解时,我们可以将多种方法融为一体,交叉使用,试题便能迎刃而解.根据题干提供的信息,不易找到解题思路时,我们可以从选项里找解题灵感.二、解答题1、确保运算准确,立足一次成功数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。

高中数学解题的21个典型方法与技巧

高中数学解题的21个典型方法与技巧

中学数学解题的21个典型方法与技巧1、解决肯定值问题(化简、求值、方程、不等式、函数)的基本思路是:把肯定值的问题转化为不含肯定值的问题。

详细转化方法有:①分类探讨法:依据肯定值符号中的数或表达式的正、零、负分状况去掉肯定值。

①零点分段探讨法:适用于含一个字母的多个肯定值的状况。

①两边平方法:适用于两边非负的方程或不等式。

①几何意义法:适用于有明显几何意义的状况。

2、依据项数选择方法和依据一般步骤是顺当进行因式分解的重要技巧。

因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。

3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

配方法的主要依据有:①()2222a ab b a b ±+=± ①()2222222a b c ab bc ca a b c +++++=++ ①()()()22222212a b c ab bc ca a b b c c a ⎡⎤+++++=+++++⎣⎦ ①222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ⎛⎫-⎛⎫⎛⎫++=++=+⋅⋅++-=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭4、解某些困难的特型方程要用到换元法。

换元法解题的一般步骤是:设元→换元→解元→还元。

5、待定系数法是在已知对象形式的条件下求对象的一种方法。

适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。

其步骤是:①设①列①解①写6、困难代数等式条件的运用技巧:右边化为零,左边变形。

①因式分解型:()()0---⋅---=,两种状况为或型。

①配成平方型:()()220---+---=,两种状况为且型。

7、数学中两个最宏大的解题思路:①求值的思路−−−−−→方程思想与方法列欲求值字母的方程或方程组 ①求取值范围的思路−−−−−−→不等式思想与方法欲求范围字母的不等式或不等式组8的基本思路:把m 化成完全平方式。

高中数学解题思路和技巧

高中数学解题思路和技巧

高中数学解题思路和技巧以下是 6 条关于高中数学解题思路和技巧的内容:1. 嘿,你知道不,很多时候我们得学会从不同角度看问题呀!就像解方程,那一元二次方程,有时候直接求解很费劲,但要是我们用韦达定理去看呢?举个例子啊,求方程$x^2+3x-4=0$的两根之和与两根之积,用韦达定理一下就出来啦,多简单呀!是不是很神奇?我们要多去挖掘这种巧妙的方法呀!2. 哇塞,当遇到复杂问题的时候,千万不要慌!要像个探险家一样去寻找线索!比如说三角函数那一块儿,给定好多条件让求角或者值的时候,咱就得把那些条件都串起来呀!就比如知道 sinA 和 cosA 的值,去求 tanA,这不就跟串珠子似的把线索连起来了嘛!这多有意思呀,对吧?3. 嘿呀,有时候遇到难题不要怕,咱要学会分解它呀!就像把一个大怪物拆成小怪物逐个击破!比如说几何证明题,一下子可能看不出什么来,但我们把图形分解开,看看各个部分的特点和关系,是不是就能找到突破点啦?像证明两个三角形全等,不就是一点点找条件嘛,这多有成就感呀!4. 哎呀,做题要细心呀!可别像个小马虎似的丢三落四。

比如算个概率题,要是漏算一种情况,那可就全错啦!这多可惜呀!就像搭积木,少一块儿都不完整呀!所以一定得认真仔细,别让到手的分数飞啦!5. 哇哦,解题思路要灵活呀!不要死脑筋哦!数学就像个大宝藏,有好多路可以通往答案呢!比如用换元法解一些式子,把复杂的东西换成简单的,这多棒呀!就好比我们走迷宫,找到一条快捷通道,那感觉爽不爽?绝对爽呀!6. 嘿,大家要记住呀,多做题才能熟练掌握技巧呢!就跟练武一样,只有不断练习才能成为高手。

每次做题都是一次挑战和进步的机会!比如说数列的求和,做的多了各种方法都烂熟于心啦,遇见题目就迎刃而解啦!这就是积累的力量呀!我的观点结论就是:高中数学解题思路和技巧太重要啦,掌握了它们就能在数学的海洋里畅游无阻呀!。

高中数学解题方法与思路

高中数学解题方法与思路

高中数学解题方法与思路一、20种高中数学解题方法1、不等式、方程或函数的题型,先直接思考后建立三者的联系。

首先考虑定义域,其次使用“三合一定理”。

2、在研究含有参数的初等函数的时候应该抓住无论参数怎么变化一些性质都不变的特点。

如函数过的定点、二次函数的对称轴等。

3、在求零点的函数中出现超越式,优先选择数形结合的思想方法。

4、恒成立问题中,可以转化成最值问题或者二次函数的恒成立可以利用二次函数的图像性质来解决,灵活使用函数闭区间上的最值,分类讨论的思想(在分类讨论中应注意不重复不遗漏)。

5、选择与填空中出现不等式的题,应优先选特殊值法。

6、在利用距离的几何意义求最值得问题中,应首先考虑两点之间线段最短,常用次结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。

7、求参数的取值范围,应该建立关于参数的不等式或者是等式,用函数的值域或定义域或者是解不等式来完成,在对式子变形的过程中,应优先选择分离参数的方法。

8、在解三角形的题目中,已知三个条件一定能求出其他未知的条件,简称“知三求一“。

9、求双曲线或者椭圆的离心率时,建立关于a、b、c之间的关系等式即可。

10、解三角形时,首先确认所求边角所在的三角形及已知边角所在的三角形,从而选择合适的三角形及定理。

11、在数列的五个量中:中,只要知道三个量就可以求出另外两个量,简称“知三求二”。

12、圆锥曲线的题目应优先选择他们的定义完成,而直线与圆锥曲线相交的问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法(使用韦达定理首先要考虑二次函数方程是否有根即:二次函数的判别式)。

13、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简。

14、在求离心率时关键是从题目条件中找到关于a、b、c的两个方程或由题目得到的图形中找到a、b、c的关系式,从而求离心率或离心率的取值范围。

高中数学的解题的思路

高中数学的解题的思路

高中数学的解题的思路(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高中数学的解题的思路本店铺将为大家带来高中数学的解题的思路,希望能够帮助到大家。

高中数学答题技巧有哪些_解题方法

高中数学答题技巧有哪些_解题方法

高中数学答题技巧有哪些_解题方法高中数学答题技巧有哪些1、配方法:把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。

3、换元法:所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数。

5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系。

高中数学答题方法填空题填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。

不过填空题和选择题也有质的区别。

首先,表现为填空题没有备选项。

因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会高一些。

选择题解法多样化:与其他学科比较,“一题多解”的现象在数学中表现突出。

尤其是数学选择题,由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。

常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。

解答题解答题与填空题比较,同属提供型的试题,但也有本质的区别。

首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明。

填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括和准确。

其次,试题内涵,解答题比起填空题要丰富得多。

高中数学解题思路与技巧

高中数学解题思路与技巧

《高中数学解题思维与思想》一、高中数学解题思维策略第一讲 数学思维的变通性一、概念数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。

根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练: (1)善于观察心理学告诉我们:感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、比较持久的知觉。

观察是认识事物最基本的途径,它是了解问题、发现问题和解决问题的前提。

任何一道数学题,都包含一定的数学条件和关系。

要想解决它,就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。

例如,求和)1(1431321211+++⋅+⋅+⋅n n . 这些分数相加,通分很困难,但每项都是两相邻自然数的积的倒数,且111)1(1+-=+n n n n ,因此,原式等于1111113121211+-=+-++-+-n n n 问题很快就解决了。

(2)善于联想联想是问题转化的桥梁。

稍具难度的问题和基础知识的联系,都是不明显的、间接的、复杂的。

因此,解题的方法怎样、速度如何,取决于能否由观察到的特征,灵活运用有关知识,做出相应的联想,将问题打开缺口,不断深入。

例如,解方程组⎩⎨⎧-==+32xy y x .这个方程指明两个数的和为2,这两个数的积为3-。

由此联想到韦达定理,x 、y 是一元二次方程0322=--t t 的两个根,所以⎩⎨⎧=-=31y x 或⎩⎨⎧-==13y x .可见,联想可使问题变得简单。

(3)善于将问题进行转化数学家G . 波利亚在《怎样解题》中说过:数学解题是命题的连续变换。

可见,解题过程是通过问题的转化才能完成的。

转化是解数学题的一种十分重要的思维方法。

那么怎样转化呢?概括地讲,就是把复杂问题转化成简单问题,把抽象问题转化成具体问题,把未知问题转化成已知问题。

高中数学解题技巧归纳总结大全

高中数学解题技巧归纳总结大全

高中数学解题技巧归纳总结大全1高中数学解题技巧特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

极端性原则将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

剔除法利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

2高一数学解题技巧学会画图画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。

有些题目,只要分析图一画出来,其中的关系就变得一目了然。

尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。

因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。

先易后难,逐步增加习题的难度人们认识事物的过程都是从简单到复杂。

简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。

我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。

随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。

限时答题,先提速后纠正错误很多同学做题慢的一个重要原因就是平时做作业习惯了拖延时间,导致形成了一个不太好的解题习惯。

所以,提高解题速度就要先解决“拖延症”。

比较有效的方式是限时答题,例如在做数学作业时,给自己限时,先不管正确率,首先保证在规定时间内完成数学作业,然后再去纠正错误。

这个过程对提高书写速度和思考效率都有较好的作用。

你习惯了一个较快的思考和书写后,解题速度自然就会提高,及改正了拖延的毛病,也提高了成绩。

数学高中解题技巧

数学高中解题技巧

数学高中解题技巧
在高中数学中,掌握解题技巧是非常重要的。

以下是一些常用的解题技巧:
1. 审题技巧
审题是解题的基础。

仔细阅读题目,弄清楚题目中的条件和要求,以及涉及的概念和知识点。

对于复杂的题目,可以画出图表或用符号标记,以帮助更好地理解。

2. 代数解题技巧
代数是数学中常用的方法,包括方程、函数、不等式等。

解题时要注意变量的符号和取值范围,以及函数图像和性质的应用。

对于方程,可以运用公式或计算方法求解,注意计算精度和速度。

3. 几何解题技巧
几何是数学中形象思维的方法。

解题时要注意图形的形状、大小、位置关系等特征,以及与代数方程的联系。

对于复杂的图形,可以分解成简单的图形或利用对称性进行分析。

4. 概率解题技巧
概率是数学中研究随机现象的方法。

解题时要注意事件的独立性和互斥性,以及概率的计算方法和分布规律。

对于复杂的事件,可以运用表格或树状图进行分析和计算。

5. 归纳推理解题技巧
归纳推理是一种常用的推理方法,适用于探索和发现新的规律和性质。

解题时要注意观察和分析数据的变化规律,以及与已知条件的
联系。

对于具有相似性的问题,可以运用类比法进行归纳推理。

总之,在高中数学中,掌握解题技巧是非常重要的。

通过不断练习和实践,可以提高自己的解题能力和思维水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 数学思维的变通性一、概念数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。

根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练:(1)善于观察心理学告诉我们:感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、比较持久的知觉。

观察是认识事物最基本的途径,它是了解问题、发现问题和解决问题的前提。

任何一道数学题,都包含一定的数学条件和关系。

要想解决它,就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。

例如,求和)1(1431321211+++⋅+⋅+⋅n n . 这些分数相加,通分很困难,但每项都是两相邻自然数的积的倒数,且111)1(1+-=+n n n n ,因此,原式等于1111113121211+-=+-++-+-n n n 问题很快就解决了。

(2)善于联想联想是问题转化的桥梁。

稍具难度的问题和基础知识的联系,都是不明显的、间接的、复杂的。

因此,解题的方法怎样、速度如何,取决于能否由观察到的特征,灵活运用有关知识,做出相应的联想,将问题打开缺口,不断深入。

例如,解方程组⎩⎨⎧-==+32xy y x . 这个方程指明两个数的和为2,这两个数的积为3-。

由此联想到韦达定理,x 、y 是一元二次方程0322=--t t 的两个根,所以⎩⎨⎧=-=31y x 或⎩⎨⎧-==13y x .可见,联想可使问题变得简单。

(3)善于将问题进行转化数学家G . 波利亚在《怎样解题》中说过:数学解题是命题的连续变换。

可见,解题过程是通过问题的转化才能完成的。

转化是解数学题的一种十分重要的思维方法。

那么怎样转化呢?概括地讲,就是把复杂问题转化成简单问题,把抽象问题转化成具体问题,把未知问题转化成已知问题。

在解题时,观察具体特征,联想有关问题之后,就要寻求转化关系。

例如,已知cb ac b a ++=++1111,)0,0(≠++≠c b a abc , 求证a 、b 、c 三数中必有两个互为相反数。

恰当的转化使问题变得熟悉、简单。

要证的结论,可以转化为:0))()((=+++a c c b b a思维变通性的对立面是思维的保守性,即思维定势。

思维定势是指一个人用同一种思维方法解决若干问题以后,往往会用同样的思维方法解决以后的问题。

它表现就是记类型、记方法、套公式,使思维受到限制,它是提高思维变通性的极大的障碍,必须加以克服。

综上所述,善于观察、善于联想、善于进行问题转化,是数学思维变通性的具体体现。

要想提高思维变通性,必须作相应的思维训练。

二、思维训练实例(1) 观察能力的训练虽然观察看起来是一种表面现象,但它是认识事物内部规律的基础。

所以,必须重视观察能力的训练,使学生不但能用常规方法解题,而且能根据题目的具体特征,采用特殊方法来解题。

例1 已知d c b a ,,,都是实数,求证.)()(222222d b c a d c b a -+-≥+++思路分析 从题目的外表形式观察到,要证的结论的右端与平面上两点间的距离公式很相似,而左端可看作是点到原点的距离公式。

根据其特点,可采用下面巧妙而简捷的证法,这正是思维变通的体现。

证明 不妨设),(),,(d c B b a A 如图1-2-1所示, 则.)()(22d b c a AB -+-=,,2222d c OB b a OA +=+=在OAB ∆中,由三角形三边之间的关系知:AB OB OA ≥+ 当且仅当O 在AB 上时,等号成立。

因此,.)()(222222d b c a d c b a -+-≥+++思维障碍 很多学生看到这个不等式证明题,马上想到采用分析法、综合法等,而此题利用这些方法证明很繁。

学生没能从外表形式上观察到它与平面上两点间距离公式相似的原因,是对这个公式不熟,进一步讲是对基础知识的掌握不牢固。

因此,平时应多注意数学公式、定理的运用练习。

例2 已知x y x 62322=+,试求22y x +的最大值。

解 由 x y x 62322=+得.20,0323,0.3232222≤≤∴≥+-∴≥+-=x x x y x x y 又,29)3(2132322222+--=+-=+x x x x y x ∴当2=x 时,22y x +有最大值,最大值为.429)32(212=+-- 思路分析 要求22y x +的最大值,由已知条件很快将22y x +变为一元二次函数,29)3(21)(2+--=x x f 然后求极值点的x 值,联系到02≥y ,这一条件,既快又准地求出最大值。

上述解法观察到了隐蔽条件,体现了思维的变通性。

思维障碍 大部分学生的作法如下:由 x y x 62322=+得 ,32322x x y +-= ,29)3(2132322222+--=+-=+∴x x x x y x∴当3=x 时,22y x +取最大值,最大值为29 这种解法由于忽略了02≥y 这一条件,致使计算结果出现错误。

因此,要注意审题,不仅能从表面形式上发现特点,而且还能从已知条件中发现其隐蔽条件,既要注意主要的已知条件,又要注意次要条件,这样,才能正确地解题,提高思维的变通性。

有些问题的观察要从相应的图像着手。

例3 已知二次函数),0(0)(2>=++=a c bx ax x f 满足关系)2()2(x f x f -=+,试比较)5.0(f 与)(πf 的大小。

思路分析 由已知条件)2()2(x f x f -=+可知,在与2=x 左右等距离的点的函数值相等,说明该函数的图像关于直线2=x 对称,又由已知条件知它的开口向上,所以,可根据该函数的大致图像简捷地解出此题。

解 (如图1-2-2)由)2()2(x f x f -=+,知)(x f 是以直线2=x 为对称轴,开口向上的抛物线它与2=x 距离越近的点,函数值越小。

)()5.0(25.02ππf f >∴->-思维障碍 有些同学对比较)5.0(f 与)(πf 的大小,只想到求出它们的值。

而此题函数)(x f 的表达式不确定无法代值,所以无法比较。

出现这种情况的原因,是没有充分挖掘已知条件的含义,因而思维受到阻碍,做题时要全面看问题,对每一个已知条件都要仔细推敲,找出它的真正含义,这样才能顺利解题。

提高思维的变通性。

(2) 联想能力的训练例4 在ABC ∆中,若C ∠为钝角,则tgB tgA ⋅的值(A) 等于1 (B)小于1 (C) 大于1 (D) 不能确定思路分析 此题是在ABC ∆中确定三角函数tgB tgA ⋅的值。

因此,联想到三角函数正切的两角和公式tgBtgA tgB tgA B A tg ⋅-+=+1)(可得下面解法。

解 C ∠ 为钝角,0<∴tgC .在ABC ∆中)(B A C C B A +-=∴=++ππ且均为锐角,、B A[].1.01,0,0.01)()(<⋅>⋅-∴>><⋅-+-=+-=+-=∴tgB tgA tgB tgA tgB tgA tgB tgA tgB tgA B A tg B A tg tgC 即 π故应选择(B )思维障碍 有的学生可能觉得此题条件太少,难以下手,原因是对三角函数的基本公式掌握得不牢固,不能准确把握公式的特征,因而不能很快联想到运用基本公式。

例5 若.2,0))((4)(2z x y z y y x x z +==----证明:思路分析 此题一般是通过因式分解来证。

但是,如果注意观察已知条件的特点,不难发现它与一元二次方程的判别式相似。

于是,我们联想到借助一元二次方程的知识来证题。

证明 当0≠-y x 时,等式 0))((4)(2=----z y y x x z可看作是关于t 的一元二次方程0)()()(2=-+-+-z y t x z t y x 有等根的条件,在进一步观察这个方程,它的两个相等实根是1 ,根据韦达定理就有:1=--yx z y 即 z x y +=2 若0=-y x ,由已知条件易得 ,0=-x z 即z y x ==,显然也有z x y +=2.例6 已知c b a 、、均为正实数,满足关系式222c b a =+,又n 为不小于3的自然数,求证:.n n n c b a <+ 思路分析 由条件222c b a =+联想到勾股定理,c b a 、、可构成直角三角形的三边,进一步联想到三角函数的定义可得如下证法。

证明 设c b a 、、所对的角分别为A 、B 、.C 则C 是直角,A 为锐角,于是,cos ,sin cb Ac a A ==且,1cos 0,1sin 0<<<<A A 当3≥n 时,有A A A A n n 22cos cos ,sin sin <<于是有1cos sin cos sin 22=+<+A A A A n n即 ,1)()(<+n n cb c a 从而就有 .n n n c b a <+思维阻碍 由于这是一个关于自然数n 的命题,一些学生都会想到用数学归纳法来证明,难以进行数与形的联想,原因是平时不注意代数与几何之间的联系,单纯学代数,学几何,因而不能将题目条件的数字或式子特征与直观图形联想起来。

(3) 问题转化的训练我们所遇见的数学题大都是生疏的、复杂的。

在解题时,不仅要先观察具体特征,联想有关知识,而且要将其转化成我们比较熟悉的,简单的问题来解。

恰当的转化,往往使问题很快得到解决,所以,进行问题转化的训练是很必要的。

○1 转化成容易解决的明显题目 例11 已知,1111=++=++cb ac b a 求证a 、b 、c 中至少有一个等于1。

思路分析 结论没有用数学式子表示,很难直接证明。

首先将结论用数学式子表示,转化成我们熟悉的形式。

a 、b 、c 中至少有一个为1,也就是说111---c b a 、、中至少有一个为零,这样,问题就容易解决了。

证明 .,1111abc ab ac bc c b a =++∴=++于是 .0)()1()1)(1)(1(=+++-++-=---c b a bc ac ab abc c b a∴ 111---c b a 、、中至少有一个为零,即a 、b 、c 中至少有一个为1。

思维障碍 很多学生只在已知条件上下功夫,左变右变,还是不知如何证明三者中至少有一个为1,其原因是不能把要证的结论“翻译”成数学式子,把陌生问题变为熟悉问题。

因此,多练习这种“翻译”,是提高转化能力的一种有效手段。

相关文档
最新文档