31角的概念的推广 全国高中数学新课程创新教学设计优秀案例

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

31 角的概念的推广

教材分析

这节课主要是把学生学习的角从不大于周角的非负角扩充到任意角,使角有正角、负角和零角.首先通过生产、生活的实际例子阐明了推广角的必要性和实际意义,然后又以“动”的观点给出了正、负、零角的概念,最后引入了几个与之相关的概念:象限角、终边相同的角等.在这节课中,重点是理解任意角、象限角、终边相同的角等概念,难点是把终边相同的角用集合和符号语言正确地表示出来.理解任意角的概念,会在平面内建立适当的坐标系,通过数形结合来认识角的几何表示和终边相同的角的表示,是学好这节的关键.

教学目标

1. 通过实例,体会推广角的必要性和实际意义,理解正角、负角和零角的定义.

2. 理解象限角的概念、意义及表示方法,掌握终边相同的角的表示方法.

3. 通过对“由一点出发的两条射线形成的图形”到“射线绕着其端点旋转而形成角”的认识过程,使学生感受“动”与“静”的对立与统一.培养学生用运动变化的观点审视事物,用对立统一规律揭示生活中的空间形式和数量关系.

任务分析

这节课概念很多,应尽可能让学生通过生活中的例子(如钟表上指针的转动、体操运动员的转体、自行车轮子上的某点的运动等)了解引入任意角的必要性及实际意义,变抽象为具体.另外,可借助于多媒体进行动态演示,加深学生对知识的理解和掌握.

教学设计

一、问题情境

[演示]

1. 观览车的运动.

2. 体操运动员、跳台跳板运动员的前、后转体动作.

3. 钟表秒针的转动.

4. 自行车轮子的滚动.

[问题]

1. 如果观览车两边各站一人,当观览车转了两周时,他们观察到的观览车上的某个座位上的游客进行了怎样的旋转,旋转了多大的角?

2. 在运动员“转体一周半动作”中,运动员是按什么方向旋转的,转了多大角?

3. 钟表上的秒针(当时间过了1.5min时)是按什么方向转动的,转动了多大角?

4. 当自行车的轮子转了两周时,自行车轮子上的某一点,转了多大角?

显然,这些角超出了我们已有的认识范围.本节课将在已掌握的0°~360°角的范围的基础上,把角的概念加以推广,为进一步研究三角函数作好准备.

二、建立模型

1. 正角、负角、零角的概念

在平面内,一条射线绕它的端点旋转有两个方向:顺时针方向和逆时针方向.习惯上规定,按逆时针旋转而成的角叫作正角;按顺时针方向旋转而成的角叫作负角;当射线没有旋转时,我们也把它看成一个角,叫作零角.

2. 象限角

当角的顶点与坐标原点重合、角的始边与x轴正半轴重合时,角的终边在第几象限,就把这个角叫作第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何象限.

3. 终边相同的角

在坐标系中作出390°,-330°角的终边,不难发现,它们都与30°角的终边相同,并且这两个角都可以表示成0°~360°角与k个(k∈Z)周角的和,即

390°=30°+360°,(k=1);

-330°=30°-360°,(k=-1).

设S={β|β=30°+k·360°,k∈Z},则390°,-330°角都是S中的元素,30°角也是S中的元素(此时k=0).容易看出,所有与30°角终边相同的角,连同30°角在内,都是S中的元素;反过来,集合S中的任一元素均与30°角终边相同.一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z},即任一与α终边相同的角,都可以表求成角α与整数个周角的和.

三、解释应用

[例题]

1. 在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.

(1)-150°.(2)650°.(3)-950°5′.

2. 分别写出与下列角终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素写出来.

(1)60°.(2)-21°.(3)363°14′.

3. 写出终边在y轴上的角的集合.

解:在0°~360°范围内,终边在y轴上的角有两个,即90°,270°.因此,与这两个角终边相同的角构成的集合为

S1={β|β=90°+k·360°,k∈Z}={β|β=90°+2k·180°,k∈Z},而所有与270°角终边相同的角构成的集合为

S2={β|β=270°+k·360°,k∈Z}=

{β|β=90°+(2k+1)·180°,k∈Z}.

于是,终边在y轴上的角的集合为

S=S1∪S2={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)·180°,k∈Z}={β|β=90°+n·180°,n∈Z}.

注:会正确使用集合的表示方法和符号语言.

[练习]

1. 写出与下列各角终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.

(1)45°.(2)-30°.(3)420°.(4)-225°.

2. 辨析概念.(分别用集合表示出来)

(1)第一象限角.(2)锐角.(3)小于90°的角.(4)0°~90°的角.

3. 一角为30°,其终边按逆时针方向旋转三周后的角度数为.

4. 终边在x轴上的角的集合为;终边在第一、三象限的角的平分线上的角集合为.

四、拓展延伸

1. 若角α与β终边重合,则α与β的关系是;若角α与β的终边互为反向延长线,则角α与β的关系是.

2. 如果α在第二象限时,那么2α,是第几象限角?

注:(1)不能忽略2α的终边可能在坐标轴上的情况.

(2)研究在哪个象限的方法:讨论k的奇偶性.(如果是呢?)

点评

这篇案例运用多媒体展示了生活中常见的实例,极易激发学生学习的兴趣和热情.在对知识的探讨过程中,特别注意了知识的形成过程,重点突出.例题的设置比较典型,难易度适中.练习题注重基础,但也有一定的梯度,利于培养学生灵活处理问题的能力,并为学生学习以后章节做了较好的铺垫.

相关文档
最新文档