2018年天水市中考数学试卷
2018年天水市数学中考试卷
选择题
下列哪个数是无理数?
A. 3.14
B. √4
C. 2/3
D. √2(正确答案)
若a = 5,b = -2,则a - b2 = ?
A. 1
B. -1
C. 9
D. 13(正确答案)
下列哪个图形不是轴对称图形?
A. 等腰三角形
B. 矩形
C. 平行四边形(正确答案)
D. 圆
在平面直角坐标系中,点A(3, -4)到y轴的距离是?
A. 3(正确答案)
B. 4
C. 5
D. 7
下列哪个方程表示的是二次函数?
A. y = 2x + 1
B. y = x2 + 3x(正确答案)
C. y = 1/x
D. y = 2x3
若一个正方形的边长为a,则它的面积是?
A. a
B. 2a
C. a2(正确答案)
D. 4a
下列哪个选项不是三角形相似的判定条件?
A. 两边成比例且夹角相等
B. 三边成比例
C. 两角相等
D. 两边成比例且一边的对角相等(正确答案)
下列哪个式子可以化简为2(x - y)?
A. 2x - y
B. 2x - 2y(正确答案)
C. x - 2y + x
D. 2x + 2y - 4y
在一个直径为10cm的圆中,一条弦的长度为8cm,则这条弦到圆心的距离是?
A. 3cm(正确答案)
B. 4cm
C. 5cm
D. 6cm。
2018年甘肃省天水市中考数学试卷(含答案解析)
2018年甘肃省天水市中考数学试卷副标题题号一二三四总分得分一、选择题(本大题共10小题,共40.0分)1.下列各数中,绝对值最大的数是()A. −2B. 3C. 0D. −42.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A. 0.845×104亿元B. 8.45×103亿元C. 8.45×104亿元D. 84.5×102亿元3.一个几何体的三视图如图所示,则这个几何体是()A. 三棱柱B. 三棱锥C. 圆柱D. 长方体4.一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是()A. 6B. 5C. 4.5D. 3.55.已知圆锥的底面半径为2cm,母线长为10cm,则这个圆锥的侧面积是()A. 20πcm2B. 20cm2C. 40πcm2D. 40cm26.如图所示,点O是矩形ABCD对角线AC的中点,OE//AB交AD于点E.若OE=3,BC=8,则OB的长为()A. 4B. 5C. √342D. √347.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A. π−4π−1B. 23C. π−2−2D. 2π38.在同一平面直角坐标系中,函数y=x+1与函数y=1的图象可能是()xA.B.C.D.9. 按一定规律排列的一组数:12,16,112,120,…,1a ,190,1b (其中a ,b 为整数),则a +b 的值为( )A. 182B. 172C. 242D. 20010. 某学校组织团员举行“伏羲文化旅游节”宣传活动,从学校骑自行车出发,先上坡到达甲地后,宣传了8分钟,然后下坡到乙地又宣传了8分钟返回,行程情况如图所示.若返回时,上、下坡速度保持不变,在甲地仍要宣传8分钟,那么他们从乙地返回学校所用的时间是( )A. 33分钟B. 46分钟C. 48分钟D. 45.2分钟二、填空题(本大题共8小题,共32.0分)11. 不等式组{4x +8≥06−3x >0的所有整数解的和是______.12. 已知在Rt △ABC 中,∠C =90°,sinA =1213,则tan B 的值为______.13. 甲、乙、丙三人进行射击测试,每人射击10次的平均成绩都是9.1环,方差分别是S 甲2=0.51、S 乙2=0.50、S 丙2=0.41,则三人中成绩最稳定的是______(填“甲”或“乙”或“丙”).14. 若点A(a,b)在反比例函数y =3x 的图象上,则代数式ab −1的值为______. 15. 关于x 的一元二次方程(k −1)x 2+6x +k 2−k =0的一个根是0,则k 的值是______.16. 如图所示,菱形ABCD 的对角线AC 、BD 相交于点O.若AC =6,BD =8,AE ⊥BC ,垂足为E ,则AE 的长为______. 17. 将平行四边形OABC 放置在如图所示的平面直角坐标系中,点O 为坐标原点.若点A 的坐标为(3,0),点C 的坐标为(1,2),则点B 的坐标为______.18. 规定:[x]表示不大于x 的最大整数,(x)表示不小于x 的(2.3)=3,[2.3)=2.按此规定:[1.7]+(1.7)+[1.7)=______.三、计算题(本大题共1小题,共10.0分)19.麦积山石窟是世界文化遗产,国家AAAAA级旅游景区,中国四大石窟之一.在2018年中国西北旅游营销大会暨旅游装备展上,商家按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按此进价进货、标价销售,商家每天可售出该工艺品100件;若每件工艺品降价1元,则每天可多售出该工艺品4件.问:每件工艺品降价多少元销售,每天获得的利润最大?获得的最大利润是多少元?四、解答题(本大题共7小题,共68.0分)20.(1)计算:4+(−3)2+20180×|1−√3|+tan45°−2sin60°.(2)先化简,再求值:xx2−1÷(1+1x−1),其中x=√2−1.21.超速行驶是引发交通事故的主要原因之一.小明等三名同学运用自己所学的知识检测车速,他们将观测点设在距成纪大道100米的点C处,如图所示,直线l表示成纪大道.这时一辆小汽车由成纪大道上的A处向B处匀速行驶,用时5秒.经测量,点A在点C的北偏西60°方向上,点B在点C的北偏西45°方向上.(1)求A、B之间的路程(精确到0.1米);(2)请判断此车是否超过了成纪大道60千米/小时的限制速度?(参考数据:√2≈1.414,√3≈1.732)22.如图所示,在平面直角坐标系中,直线y=x−1与y轴相交于点A与反比例函数y=k(k≠0)在第一象限内相交于点B(m,1)(2)将直线y=x−1向上平行移动后与反比例函数在第一象限内相交于点C,且△ABC的面积为4,求平行移动后的直线的解析式.23.天水市“最美女教师”刘英为抢救两名学生,身负重伤.社会各界纷纷为她捐款,某校2000名学生也积极参加了此捐款活动.捐款金额有5元、10元、15元、20元、25元共五种.为了了解捐款情况,学校随机抽样调查了部分学生的捐款情况,并根据捐款金额和人数绘制了如下统计图(图①和图②).请根据所给信息解答下列问题.(1)本次接受随机抽样调查的学生人数为______人,图①中m的值是______.(2)根据样本数据,请估计该校在本次活动中捐款金额为10元的学生人数.24.如图所示,AB是⊙O的直径,点P是AB延长线上的一点,过点P作⊙O的切线,切点为C,连接AC,BC.(1)求证:∠BAC=∠BCP.(2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点D,你认为∠CDP的大小是否发生变化?若变化,请说明理由;若没有变化,求出∠CDP的大小.25.如图所示,在正方形ABCD和△EFG中,AB=EF=EG=5cm,FG=8cm,点B、C、F、G在同一直线l上.当点C、F重合时,△EFG以1cm/s的速度沿直线l向左开始运动,t秒后正方形ABCD与△EFG重合部分的面积为Scm2.请解答下列问题:(1)当t=3秒时,求S的值;(2)当t=5秒时,求S的值;(3)当5秒<t≤8秒时,求S与t的函数关系式,并求出S的最大值.26.已知:抛物线y=ax2+4ax+m(a>0)与x轴的一个交点为A(−1,0)(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的一个点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;(3)点E是第二象限内到x轴、y轴的距离比为5:2的点,如果点E在(2)中的抛物线上且点E与点A在此抛物线对称轴的同侧.问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:依题意,∵|−2|=2,|3|=3,|0|=0,|−4|=4∴4>3>2>0故选:D.根据绝对值的性质来判断即可,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值还是0.本题主要考查绝对值的性质,牢记绝对值的性质是解题的关键2.【答案】B【解析】解:将8450亿元用科学记数法表示为8.45×103亿元.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】A【解析】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选:A.由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.此题主要考查了由三视图判断几何体.主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为几边形就是几棱柱.4.【答案】C【解析】解:若众数为1,则数据为1、1、5、7,此时中位数为3,不符合题意;若众数为5,则数据为1、5、5、7,中位数为5,符合题意,=4.5;此时平均数为1+5+5+74若众数为7,则数据为1、5、7、7,中位数为6,不符合题意;故选:C.分别假设众数为1、5、7,分类讨论、找到符合题意得x的值,再根据平均数的定义求解可得.本题主要考查众数、中位数及平均数,根据众数的可能情况分类讨论求解是解题的关键.5.【答案】A【解析】解:圆锥侧面积=π×2×10=20πcm2;故选:A.圆锥的侧面积=π×底面半径×母线长.考查圆锥的侧面展开图公式;用到的知识点为:圆锥的侧面积=π×底面半径×母线长.【解析】解:∵四边形ABCD是矩形∴AB//CD,AD=BC=8,∵OE//AB∴OE//CD∴AOAC =OECD,且AO=12AC,OE=3∴CD=6,在Rt△ADC中,AC=√AD2+CD2=10∵点O是斜边AC上的中点,∴BO=12AC=5故选:B.由平行线分线段成比例可得CD=6,由勾股定理可得AC=10,由直角三角形的性质可得OB的长.本题考查了矩形的性质,勾股定理,直角三角形的性质,求CD的长度是本题的关键.7.【答案】C【解析】解:∵∠BAC=45°,∴∠BOC=90°,∴△OBC是等腰直角三角形,∵OB=2,∴△OBC的BC边上的高为:√22OB=√2,∴BC=2√2∴S阴影=S扇形OBC−S△OBC=90π×22360−12×2√2×√2=π−2,故选:C.先证得三角形OBC是等腰直角三角形,通过解直角三角形求得BC和BC边上的高,然后根据S阴影=S扇形OBC−S△OBC即可求得.本题考查了扇形的面积公式:S=n⋅πR2360(n为圆心角的度数,R为圆的半径).也考查了等腰直角三角形三边的关系和三角形的面积公式.8.【答案】B【解析】解:在同一平面直角坐标系中,函数y=x+1与函数y=1x的图象可能是,故选:B.利用一次函数与反比例函数的图象与性质判断即可.此题考查了反比例函数的图象,以及一次函数的图象,熟练掌握各函数的图象与性质是解本题的关键.【解析】解:∵12=11×2,16=12×3,112=13×4,120=14×5,∵190=19×10,∴1a =18×9,1b=110×11,∴a=72,b=110,∴a+b=72+110=182.故选:A.观察各数据得到12=11×2,16=12×3,112=13×4,120=14×5,即每个分数的分母可以分解为两个连续正整数的积,由于190=19×10,所以1a=18×9,1b=110×11,即可得到a与b的值.本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10.【答案】D【解析】解:观察图象可知上坡路程为36百米,下坡路程为96−36=60百米,上坡时间为18分,下坡时间为46−18−8−8=12分,∴v上坡=3618=2百米,v下坡=6012=5百米,∴返回的时间=602+365+8=45.2分钟.故选:D.由图象可知上坡路程和下坡路程,上坡速度和下坡速度问题即可求解.本题运用了函数的图象的性质和路程、时间、速度的关系等知识点,体现了数形结合的数学思想.11.【答案】−2【解析】解:解不等式4x+8≥0,得:x≥−2,解不等式6−3x>0,得:x<2,则不等式组的解集为−2≤x<2,不等式组的所有整数解为:−2,−1,0,1,所以不等式组的所有整数解的和为−2−1+0+1=−2,故答案为:−2.首先解每个不等式,两个不等式的解集的公共部分就是解集的公共部分,然后确定整数解即可.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.【答案】512【解析】【分析】此题考查的是锐角三角函数的定义及勾股定理的应用,正确得出各边之间的关系是解决问题的关键.根据sinA=12,假设BC=12x,AB=13x,得出AC=5x,再利用锐角三角函数的定【解答】解:∵在Rt △ABC 中,∠C =90°,sinA =1213,∴假设BC =12x ,AB =13x , ∴AC =5x . ∴tanB =AC BC=512.故答案为:512.13.【答案】丙【解析】【分析】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.根据方差的定义,方差越小数据越稳定,即可得出答案. 【解答】解:∵S 甲2=0.51,S 乙2=0.50,S 丙2=0.41, ∴S 甲2>S 乙2>S 丙2,∴三人中成绩最稳定的是丙; 故答案为:丙. 14.【答案】2【解析】解:∵点A(a,b)在反比例函数y =3x 的图象上, ∴b =3a ,得ab =3, ∴ab −1=3−1=2, 故答案为:2根据点A(a,b)在反比例函数y =3x 的图象上,可以求得ab 的值,从而可以得到所求式子的值.本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答. 15.【答案】0【解析】【分析】由于方程的一个根是0,把x =0代入方程,求出k 的值.因为方程是关于x 的一元二次方程,所以二次项系数不能为0. 【解答】解得,k 1=1,k 2=0又∵k −1≠0即k ≠1,∴k =0所以k 的值是0.故答案为0.16.【答案】245【解析】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =3,OB =OD =4,∴AB =BC =5,∵12⋅AC ⋅BD =12⋅BC ⋅AE , ∴AE =245,故答案为:245,利用菱形的面积公式:12⋅AC ⋅BD =12⋅BC ⋅AE ,即可解决问题;本题考查菱形的性质、勾股定理等知识,解题的关键是学会利用面积法求线段的长,属于中考常考题型.17.【答案】(4,2)【解析】解:∵四边形ABCO 是平行四边形,O 为坐标原点,点A 的坐标是(3,0),点C 的坐标是(1,2),∴BC//OA ,BC =OA =3,3+1=4,∴点B 的坐标是(4,2).故答案为(4,2).根据平行四边形的性质及A 点和C 点的坐标求出点B 的坐标即可.本题考查了平行四边形的性质、坐标与图形性质,熟练掌握平行四边形的性质是解决问题的关键,是基础题.18.【答案】5【解析】解:依题意:[1.7]+(1.7)+[1.7)=1+2+2=5故答案为5根据题意,[1.7]中不大于1.7的最大整数为1,(1.7)中不小于1.7的最小整数为2,[1.7)最接近的整数为2,则可解答此题主要考查有理数大小的比较,读懂题意,即可解答,本题比较简单. 19.【答案】解:(1)依题意,设标价为x 元,进价为y 元,则有,{(0.85x −y)×8=[(x −35)−y]×12x−y=45,解得{y =155x=200故工艺品每件的进价为155元,标价是200元(2)设利润为w 元,降价为m 元,则依题意得w =(200−m −155)(100+4m)=−4m 2+80m +4500整理得w =−4(m −10)2+4900故每件工艺品降价10元销售,每天获得的利润最大,获得的最大利润是4900元【解析】(1)依题意,可设标价为x 元,进价为y 元,可列方程{(0.85x −y)×8=[(x −35)−y]×12x−y=45,解出x ,y 的值即可(2)设利润为w 元,降价为m 元,再根据利润=(标价−成本)×数量,列出函数关系式即可计算本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.20.【答案】解:(1)原式=4+9+1×(√3−1)+1−2×√32 =4+9+√3−1+1−√3=13;(2)原式=x (x+1)(x−1)÷(x−1x−1+1x−1)=x (x +1)(x −1)⋅x −1x=1x+1,当x =√2−1时,原式=√2−1+1=√22.【解析】本题主要考查分式的化简求值,实数的运算,解题的关键是掌握分式的混合运算顺序和运算法则及实数的运算能力.(1)先计算乘方、零指数幂、取绝对值符号、代入三角函数值,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得. 21.【答案】解:(1)∵AB =AD −BD ,∠BCD =45°,∴BD =CD =100米.又∵AD =CD ×tan60°≈100×1.732=173.2米,∴AB =AD −BD =173.2−100=73.2米,(2)∵73.2米=0.0732千米,5秒=1720小时,∴0.0732÷1720=52.7千米/时.∵52.7<60,∴该小车没有超速.【解析】(1)据已知和特殊角的三角函数值求得AD ,BD 的长,从而得出AB 的长;(2)根据测得此车从A 处行驶到B 处所用的时间为5秒,求出小汽车的速度,即可得出答案.此题考查了解直角三角形的应用,用到的知识点是特殊角的三角函数值、锐角三角函数,注意时间之间的换算.22.【答案】解:(1)将B(m,1)代入直线y =x −1中得:m −1=1,解得:m =2,则B(2,1),将B(2,1)代入y=k,得k=2×1=2,x;则反比例解析式为y=2x(2)设平移后的直线交y轴于H.∴S△ABH=S△ABC=4,×AH×2=4,∵S△ABH=12∴AH=4,∵A(0,−1),∴H(0,3),∴平移后的直线的解析式为y=x+3.【解析】(1)将B坐标代入直线y=x−1中求出m的值,确定出B坐标,将B的坐标代入反比例解析式中求出k的值,即可确定出反比例解析式;(2)设平移后的直线交y轴于H,根据两平行线间的距离相等,可得C到AB的距离与H 到AB的距离相等,根据等底等高的三角形的面积相等,可得b的值,根据待定系数法,可得答案.此题考查了一次函数与反比例函数的交点问题,涉及的知识有:一次函数与坐标轴的交点,待定系数法求函数解析式,三角形的面积求法,以及坐标与图形变化−平移,熟练掌握待定系数法是解本题的关键.23.【答案】(1)5032(2)该校在本次活动中捐款金额为10元的学生人数:2000×32%=640(人),答:该校在本次活动中捐款金额为10元的学生人数为640人.【解析】(1)调查的学生人数:4÷8%=50(人),16×100%=32%,m=32,50故答案为50,32;(2)见答案24.【答案】(1)证明:连接OC,∵PC为⊙O的切线,∴∠PCO=∠OCB+∠PCB=90°又∵AB为⊙O的直径,∴∠ACB=90°,∠CAB+∠ABC=90°,∴∠PCB+∠OCB=∠CAB+∠ABC=90°又∵OB=OC,∴∠OCB=∠ABC,∴∠BAC=∠BCP.(2)解:∵PC为圆O的切线,∴PC⊥OC,即∠PCO=90°,∴∠CPO+∠COP=90°,∵OA=OC,∠COP,∴∠A=∠ACO=12∵PD为∠APC的平分线,∴∠APD=∠CPD=12∠CPO,∴∠CDP=∠APD+∠A=12(∠CPO+∠COP)=45°.【解析】此题考查了切线的性质,外角性质,以及等腰三角形的性质,熟练掌握切线的性质是解本题的关键.(1)连接OC,由切线的性质可知∠PCO=∠OCB+∠PCB=90°,再有圆周角定理可得∠ACB=90°,又因为圆的半径相等即可证明∠PCB=∠CAB.(2)由PC为圆的切线,利用切线的性质得到PC与OC垂直,得到三角形OPC为直角三角形,利用直角三角形的两锐角互余列出等式,根据OA=OC,利用等边对等角得到一对角相等,利用外角性质得到∠A为∠COP的一半,由PD为角平分线得到∠APD为∠CPO 的一半,利用外角性质及等式的性质即可,求出∠CDP的度数.25.【答案】解:(1)作EP⊥FG于点P,∵EF=EG,∴PF=PC=12FG=4,在Rt△EPF中,EP=√EF2−PF2=√52−42=3,当t=3时,FC=3,设EF与DC交于点H,∵四边形ABCD是正方形,∴DC⊥BC,∴PE//DC,∴△FCH∽△FEP.∴SS△FPE =(34)2,∵S△FPE=12×4×3=6,∴S=(34)2×6=278(cm2).(2)当t=5时,CG=3.设EG与DC交于H,如图2所示:由△GCH∽△GPE,∴CGPG =CHPE,即34=CH3,∴CH=94,∴S△GCH=12×3×94=278(cm2),S=12−278=698(cm2).(3)当5≤t≤8时,FB=t−5,GC=8−t,设EF交AB于点N,如图3所示:∵△FBN∽△FPE,PF=4,∴BF:PF=(t−5):4,∴S△FBN:S△FPE=(t−5)2:42,又∵S△FPE=6,∴S △FBN =38(t −5)2,由△GCH∽△GPE ,同理得S △GCH =38(8−t)2,∴S =12−38(t −5)2−38(8−t)2.即S =−34t 2+394t −1718, ∵S =−34t 2+394t −1718=−34(t −132)2+16516, ∴当t =132时,S 最大,S 的最大值=16516(cm 2).【解析】(1)作EP ⊥FG 于点P ,由EF =EG ,得出PF =PC =12FG =4,由勾股定理得出EP =√EF 2−PF 2=3,当t =3时,FC =3,设EF 与DC 交于点H ,证明△FCH∽△FEP ,由相似三角形的性质即可得出结果;(2)当t =5时,CG =3.设EG 与DC 交于H ,由相似三角形的性质得出CG PG =CH PE ,求出CH =94,S △GCH =278(cm 2)即可得出结果;(3)当5≤t ≤8时,FB =t −5,GC =8−t ,设EF 交AB 于点N ,由△FBN∽△FPE ,PF =4,得出BF :PF =(t −5):4,得出S △FBN =38(t −5)2,同理得S △GCH =38(8−t)2,得出S =−34t 2+394t −1718,再把二次函数化成顶点式,即可得出结果.此题是四边形综合题目,考查了正方形的性质、等腰三角形的性质、相似三角形的判定和性质、图形面积的求法等知识,熟练掌握相似三角形的性质(相似三角形的面积比等于相似比的平方)是解答此题的关键.26.【答案】解:(1)抛物线的对称轴是x =−2,点A ,B 一定关于对称轴对称 ∵另一个交点为B(−3,0).(2)∵A ,B 的坐标分别是(−1,0),(−3,0),∴AB =2,∵对称轴为x =−2,a >0,∴CD =4,m >0;设梯形的高是h .∴S 梯形ABCD =12×(2+4)ℎ=9,∴ℎ=3,即m =3,把(−1,0)代入解析式得到a −4a +3=0,解得a =1,∴a =1,∴此抛物线的解析式为y =x 2+4x +3;(3)当点E 在抛物线y =x 2+4x +3时设E 点的横坐标为−2n ,则E 的纵坐标为5n把(−2n,5n)代入抛物线得:5n =(−2n)2+4×(−2n)+3解得;n 1=3,n 2=14,∴E的坐标为(−6,15)(舍去)或(−12,5 4 )∴点E关于x=−2对称的点E′的坐标为(−72,5 4 )∴直线AE′的解析式为y=−12x−12,∴P的坐标为(−2,12),综上知,抛物线的对称轴上存在点P(−2,12),使△APE的周长最小.【解析】(1)求得抛物线的对称轴,利用点A,B一定关于对称轴对称,可得B的坐标;(2)利用以AB为一底的梯形ABCD的面积为9,求得高,可得的m值,(−1,0)代入解析式,可得结论;(3)设出E点的坐标,再把它代入抛物线的解析式中求出n的值,然后求出点E关于直线x=−2对称点的坐标E′,最后求出AE′的解析式即可求出答案.本题是二次函数的综合题型,其中涉及到运用待定系数法求一次函数、二次函数的解析式,二次函数的性质,轴对称的性质,在解题时要注意二次函数、一次函数知识相联系是解题的关键.。
甘肃省天水市中考数学试卷(A卷)
甘肃省天水市中考数学试卷(A卷)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) -2013的相反数是()A . -2013B . 2013C .D .2. (2分) (2018九上·天台月考) 利用圆内接正多边形,可以设计出非常有趣的图案.下列图案中,是中心对称图形,但不是轴对称图形的是()A .B .C .D .3. (2分) PM2.5指数是测控空气污染程度的一个重要指数.在一年中最可靠的一种观测方法是()A . 随机选择5天进行观测B . 选择某个月进行连续观测C . 选择在春节7天期间连续观测D . 每个月都随机选中5天进行观测4. (2分)(2017·建昌模拟) 正方形A1B1C1O,A2B2C2C1 , A3B3C3C2 ,…按如图所示放置,点A1 , A2 ,A3 ,和点C1 , C2 , C3 ,…,分别在直线y=kx+b(k>0)和x轴上,已知点B1 , B2 , B3 , B4的坐标分别为(1,1)(3,2),(7,4),(15,8),则Bn的坐标是()A . (2n﹣1,2n﹣1)B . (2n , 2n﹣1)C . (2n﹣1 , 2n)D . (2n﹣1﹣1,2n﹣1)5. (2分) (2018九上·江阴期中) 如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是()A . AB2=BC•BDB . AB2=AC•BDC . AB•AD=BD•BCD . AB•AD=AD•CD6. (2分)下列四边形中,对角线一定不相等的是()A . 正方形B . 矩形C . 等腰梯形D . 直角梯形7. (2分) (2017八下·老河口期末) 估计的运算结果应在()A . 6到7之间B . 7到8之间C . 8到9之间D . 9到10之间8. (2分) (2019七上·丰台期中) 按下面的程序计算:若输入,输出结果是,若输入,输出结果是,若开始输入的值为正整数,最后输出的结果为,则开始输入的值可能有()A . 1种B . 2种C . 3种D . 4种9. (2分)如图,平行四边形ABCD中,E为DC的中点,△DEF的面积为2,则△ABF的面积为()A . 2B . 4C . 6D . 810. (2分)一个物体从A点出发,沿坡度为1:7的斜坡向上直线运动到B,AB=30米时,物体升高()米.A .B . 3C .D . 以上的答案都不对11. (2分)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形的周长是()A . 24B . 16C . 4D . 212. (2分) (2019八下·南岸期中) 若关于x的不等式组的所有整数解的和为5,且使关于y的分式方程的解大于1,则满足条件的所有整数a的和是()A . 16B . 12C . 11D . 9二、填空题 (共6题;共9分)13. (2分)(2019·襄州模拟) 如果 (a,b为有理数),则a=________,b=________.14. (2分)若扇形的半径为3cm,扇形的面积为2πcm2 ,则该扇形的圆心角为________ °,弧长为________ cm.15. (1分)(2019·滨城模拟) 某校篮球班21名同学的身高如下表:身高/cm180185187190201人数/名46542则该校篮球班21名同学身高的中位数是________cm.16. (1分)在同一时刻太阳光线与水平线的夹角是一定的.如图,有一垂直于地面的物体AB.在某一时刻太阳光线与水平线的夹角为30°时,物体AB的影长BC为4米;在另一个时刻太阳光线与水平线的夹角为45°时,则物体AB的影长BD为________米.(结果保留根号)17. (1分)(2017·江苏模拟) 甲乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则由题意可列二元一次方程组为________ .18. (2分) (2019七下·大名期中) 某商店购进一批衬衫,甲顾客以7折的优惠价格买了20件,而乙顾客以8折的优惠价格买了5件,结果商店都获利200元,那么这批衬衫的进价为________元,售价________元。
甘肃省中考数学试卷(附答案解析).doc
---2018年甘肃省(全省统考)中考数学试卷一、选择题:本大题共10 小题,每小题2018年甘肃省定西市,共 30 分,每小题只有一个正确1. -2018的相反数是()A. -2018 B . 2018 C .2. 下列计算结果等于x3的是()1D . 1 2018 2018A.x6 x2 B .x4 x C .x x2 D .x2x3.若一个角为 65 °,则它的补角的度数为()A. 25 °B . 35 ° C . 115 ° D . 125 °4. 已知a b (a 0, b 0) ,下列变形错误的是()2 3A.a 2 B .2a 3b C.b 3 D .3a 2bb 3 a 25. 若分式x2 4的值为 0 ,则的值是()xA. 2 或 -2B. 2C. -2D. 06.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10 次,他们成绩的平均数与方差s 2如下表:甲乙丙丁平均数11.111.110.910.9---(环)方差 s 2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲 B .乙C.丙 D .丁7.关于 x 的一元二次方程x 2 +4x+k=0有两个实数根,则k 的取值范围是()A. k ≤﹣ 4 B .k <﹣ 4 C . k ≤4 D . k < 48.如图,点 E 是正方形 ABCD 的边 DC 上一点,把△ ADE 绕点 A 顺时针旋转 90 °到△ ABF 的位置,若四边形 AECF的面积为 25 , DE=2 ,则 AE 的长为()A. 5B.C. 7D.9.如图,⊙A过点 O( 0 ,0), C(,0),D(0,1),点 B 是 x 轴下方⊙A 上的一点,连接BO , BD ,则∠OBD 的度数是()---A. 15 °B . 30 ° C . 45 ° D . 60 °10 .如图是二次函数 y=ax 2+bx+c ( a,b ,c 是常数, a≠ 0)图象的一部分,与 x 轴的交点 A 在点( 2 , 0 )和( 3, 0)之间,对称轴是 x=1 .对于下列说法:① ab <0;② 2a+b=0 ;③3a+c >0 ;④ a+b ≥ m(am+b )( m 为实数);⑤当﹣ 1<x < 3 时, y >0 ,其中正确的是()A.①②④ B .①②⑤C.②③④ D .③④⑤二、填空题:本大题共8 小题,每小题2018年甘肃省定西市,共 32 分11. 计算: 2sin 30o ( 1)2018 ( 1 )1 .212. 使得代数式 1 有意义的 x 的取值范围是.x 3---13 .若正多边形的内角和是1080 °,则该正多边形的边数是.14 .已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.15. 已知 a ,b, c 是ABC 的三边长,a, b 满足 a 7 (b 1)2 0 ,c 为奇数,则 c .16. 如图,一次函数 y x 2 与 y 2x m 的图象相交于点 P( n, 4) ,则关于 x 的不等式组2x m x 2的解集为.x 2 017.如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角---形的周长为.18 .如图,是一个运算程序的示意图,若开始输入x 的值为625 ,则第 2018次输出的结果为.三、解答题(一);本大题共 5 小题,共32018年甘肃省定西市,解答应写出必要的文字说明,证明过程或演算步骤19.计算:a2 b (a1). b2 a b20 .如图,在△ABC中,∠ABC=90 °.(1 )作∠ ACB 的平分线交A B 边于点 O,再以点 O 为圆心,OB 的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2 )判断( 1 )中 AC 与⊙O 的位置关系,直接写出结果.---21.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出 9 文钱,就会多 11 文钱;如果每人出 6 文钱,又会缺 16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22 .随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图, A, B 两地被大山阻隔,由 A 地到 B 地需要绕行 C 地,若打通穿山隧道,建成A,B 两地的直达高铁可以缩短从 A 地到 B 地的路程.已知:∠CAB=30 °,---∠CBA=45 °, AC=640 公里,求隧道打通后与打通前相比,从 A 地到 B 地的路程将约缩短多少公里?(参考数据:3 1.7 ,2 1.4 )23 .如图,在正方形方格中,阴影部分是涂黑 3 个小正方形所形成的图案.(1 )如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形( A, B , C , D , E ,F )中任取 2 个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.---四、解答题(二):本大题共 5 小题,共50 分。
精品解析:【全国市级联考】甘肃省天水市重点中学2018届九年级中考数学模拟题(解析版)
甘肃省天水市重点中学2018年中考数学模拟题A 卷(共100分)一、选择题1. 把抛物线 y =x 2+1 向右平移3个单位,再向下平移2个单位,得到抛物线( )A. y =(x+3)2﹣1B. y =(x+3)2+3C. y =(x ﹣3)2﹣1D. y =(x ﹣3)2+3【答案】C【解析】试题分析:抛物线21y x =+的顶点坐标为(0,1),向右平移3个单位,再向下平移2个单位(3,-1),所以,平移后得到的抛物线的解析式为()231y x =--.故选C .考点:二次函数图象与几何变换.2. 如图所示几何体的俯视图是( )A.B. C. D.【答案】D【解析】 试题分析:从上面看可得到三个左右相邻的中间有两个界限的长方形.故选D .考点:简单几何体的三视图3. 下列运算正确的是( )A. a 2·a 3=a 6B. (a 2)3=a 6C. (a+b)2=a 2+b 2D. 235=【答案】B【解析】A 、原式=a 5,错误;B 、原式=a 6,正确;C 、原式=a 2+b 2+2ab ,错误;D 、原式不能合并,错误;故选B4. 如图,将矩形ABCD 沿EF 折叠,点C 落在A 处,点D 落在D′处.若AB=3,BC=9,则折痕EF 的长为( )A. 10B. 4C. 5D. 210【答案】A【解析】由翻折可知AE=EC,设BE=x,则AE=9-x在Rt△ABE中,根据勾股定理得3²+x²=(9-x) ²解得x=4,∴AE=5在△ABE和△AD′F中,AB=AD′,∠BAE=∠FAD′, ∠B=∠D′∴△ABE≌△AD′F(AAS)∴AF=AE=5 ∴EH=5-4=1 过点F作FH⊥BC交BC于点H,则FH=3,在△EFH中,根据勾股定理得221310+=故选A. 点睛:利用勾股定理进行推理验证或适当添加辅助线构造直角三角形来解决最短距离和实际生活情境的问题.5. 已知如图,一次函数y=ax+b和反比例函数kyx=的图象相交于A、B两点,不等式ax+b>kx的解集为()A. x <﹣3B. ﹣3<x <0或x >1C. x <﹣3或x >1D. ﹣3<x <1【答案】B【解析】【分析】 观察函数的图像可得出答案.【详解】观察函数图象得到当﹣3<x <0或x >1时,一次函数图象都在反比例函数图象上方,即有ax+b >k x, 因此,不等式ax+b >k x 的解集为﹣3<x <0或x >1. 故选B .考点:1.反比例函数与一次函数的交点问题;2.不等式的图象解.6. 不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A. 摸出的是3个白球B. 摸出的是3个黑球C. 摸出的是2个白球、1个黑球D. 摸出的是2个黑球、1个白球【答案】A【解析】【分析】 【详解】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选A7. 下列所给图形是中心对称图形但不是轴对称图形的是( )A.B. C. D.【答案】D【解析】A. 此图形不是中心对称图形,不是轴对称图形,故A 选项错误;B. 此图形是中心对称图形,也是轴对称图形,故B选项错误;C. 此图形不是中心对称图形,是轴对称图形,故D选项错误.D. 此图形是中心对称图形,不是轴对称图形,故C选项正确;故选D.8. 一次数学作业共有10道题目,某小组8位学生做对题目数的情况如下表:做对题目数 6 7 8 9 10人数 1 1 2 3 1那么这8位学生做对题目数的众数和中位数分别是( )A. 9和8B. 9和8.5C. 3和2D. 3和1 【答案】B【解析】由表可知在这8个数据中,9出现次数最多,有3次,则这8位学生做对题目数的众数是9;∵这8名学生做对题目数从小到大排列的第4个数是8,第5个数是9,∴这8名学生所得分数的中位数是8+92=8.5,故选B.9. 将0.00025用科学计数法表示为()A. 2.5×104B. 0.25×10-4C. 2.5×10-4D. 25×10-5【答案】C【解析】0.00025=2.5×10-4,故选C.10. 如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE =" EF" =" FB" = 5,DE = 12,动点P从点A 出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y = S△EPF,则y与t 的函数图象大致是A. B. C. D.【答案】A【解析】分析:分三段考虑,①点P 在AD 上运动,②点P 在DC 上运动,③点P 在BC 上运动,分别求出y 与t 的函数表达式,继而可得出函数图象:在Rt △ADE 中,22AD AE DE 13=+=,在Rt△CFB 中,22BC BF CF 13=+=.①点P 在AD 上运动时,过点P 作PM⊥AB 于点M ,则12PM APsin A t 13=∠=, 此时130y EF PM t 213=⋅=,为一次函数. ②点P 在DC 上运动,1y EF DE 302=⋅=. ③点P 在BC 上运动,过点P 作PN⊥AB 于点N 则()()1212PN BPsin B AD CD BC t 31t 1313=∠=++-=-, 此时()130y EF PN 31t 213=⋅=-,为一次函数. 综上可得选项A 的图象符合.故选A .二、填空题11. 函数x 1的自变量x 的取值范围是 .【答案】x≥0【解析】试题分析:根据二次根式有意义的条件是被开方数大于等于0,可知x≥0.考点:二次根式有意义12. 把多项式2x 2y ﹣4xy 2+2y 3分解因式的结果是______.【答案】2y(x ﹣y)2【解析】试题解析:2x 2y ﹣4xy 2+2y 3=2y (x 2-2xy +y 2)=2y(x ﹣y)213. 已知α、β均为锐角,且满足|sinα﹣12,则α+β= ___________. 【答案】75°【解析】试题分析:由已知sinα-12=0,tanβ-1=0,∴α=30°,β=45°,∴α+β=75°. 考点:1.非负数的性质;2.特殊角的三角函数值.14. 波音公司生产某种型号飞机,7月份的月产量为50台,由于改进了生产技术,计划9月份生产飞机98台,那么8、9月飞机生产量平均每月的增长率是______.【答案】40%【解析】解:设8、9月飞机生产量平均每月的增长率是x ,由题意得,250(1)98x += ,解得:x =0.4或x =-2.4(不合题意舍去),即8、9月飞机生产量平均每月的增长率是40%.故答案为40%.点睛:本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.15. 现定义运算“★”,对于任意实数a 、b ,都有a ★b=a 2﹣3a+b ,如:3★5=32﹣3×3+5,若x ★2=6,则实数x 的值是 .【答案】﹣1或4.【解析】【分析】【详解】解:根据题中的新定义将x ★2=6变形得:x 2﹣3x+2=6,即x 2﹣3x ﹣4=0,将左边因式分解得:(x ﹣4)(x+1)=0,解得:x 1=4,x 2=﹣1.∴实数x 的值是﹣1或4.16. 在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为_______.【答案】9.6【解析】试题分析:设树的高度为x 米,根据在同一时刻物高与影长成比例,即可列出比例式求解.设树的高度为x 米,由题意得解得则树的高度为9.6米.考点:本题考查的是比例式的应用点评:解答本题的关键是读懂题意,准确理解在同一时刻物高与影长成比例,正确列出比例式.17. 将全体正整数排成一个三角形数阵,根据上述排列规律,数阵中第10行从左至右的第5个数是 .【答案】50.【解析】【分析】【详解】试题分析:由排列的规律可得,第n ﹣1行结束的时候排了1+2+3+…+n ﹣1=12n (n ﹣1)个数.所以第n 行从左向右的第5个数12n (n ﹣1)+5.所以n=10时,第10行从左向右的第5个数为50.故答案为50.考点:1.规律型:数字的变化类;2.综合题.18. 如图是二次函数y=2ax bx c ++图象的一部分.其对称轴为x=-1,且过点(-3,0).下列说法:(1)abc <0;(2)2a-b=0;(3)4a+2b+c=0;(4)若(-5,1y ),25y 2⎛⎫ ⎪⎝⎭,是抛物线上两点,则1y >2y .其中说法正确的是_____ (填序号)【答案】(1)(2)(4)【解析】分析:根据图象分别求出a 、b 、c 的符号,即可判断(1),根据对称轴求出b=2a ,代入2a-b 即可判断(2),把x=2代入二次函数的解析式,再根据二次函数的性质即可判断(3),求出点(-5,y 1)关于直线x=-1的对称点的坐标,根据对称轴判断y 1和y 2的大小,即可判断(4).详解:∵二次函数的图象开口向上,∴a >0,∵二次函数的图象交y 轴的负半轴于一点,∴c <0,∵对称轴是直线x=-1,∴-2b a=-1, ∴b=2a >0,∴abc <0,故(1)正确;∵b=2a ,∴2a-b=0,故(2)正确;∵抛物线的对称轴为x=-1,且过点(-3,0),∴抛物线与x 轴另一交点为(1,0).∵当x >-1时,y 随x 的增大而增大,∴当x=2时y >0,即4a+2b+c >0,故(3)错误;∵(-5,y 1)关于直线x=-1的对称点的坐标是(3,y 1),又∵当x >-1时,y 随x 的增大而增大,3>52, ∴y 1>y 2,故(4)正确;故答案为(1)(2)(4).点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧.(简称:左同右异).抛物线与y轴交于(0,c).抛物线与x轴交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.三、解答题19. (1)计算:|2-1|-8+2sin45°+-212⎛⎫⎪⎝⎭;(2)解不等式组:2-73(-1), 4231-. 33x xx x<⎧⎪⎨+≤⎪⎩【答案】(1)3;(2)-4<x≤-1.【解析】分析:(1)原式利用二次根式性质,特殊角的三角函数值,以及负整数指数幂法则计算即可得到结果.(2)分别求得两个不等式的解集,然后取其公共部分即可.解析:(1)原式=2-1-22+2×22+4=2-1-222++4=3.(2)273(1) 423133x xx x--⎧⎪⎨+≤-⎪⎩<①②①可化简为2x-7<3x-3,-x<4,x>-4,②可化简为2x≤1-3,则x≤-1.不等式组的解集是-4<x≤-1.点睛:本题考查了解一元一次不等式组,实数的运算,负整数指数幂以及特殊角的三角函数值.熟练掌握运算法则是解本题的关键.20. 如图,一渔船自西向东追赶鱼群,在A处测得某无名小岛C在北偏东60°方向上,前进2海里到达点B ,此时测得无名小岛C 在东北方向上.已知无名小岛周围2.5海里内有暗礁,则渔船继续向东追赶鱼群有无触礁危险?(参考数据:2≈1.414,3≈1.732)【答案】7.8秒【解析】分析:根据题意可知,实质是比较C 点到AB 的距离与10的大小.因此作CD ⊥AB 于D 点,求CD 的长. 详解:如图,过点C 作CD ⊥AB 的延长线于点D,设CD=x,则∠CDA=90°. 在Rt △BDC 中,∵∠CBD=45°, ∴∠BCD=90°-∠CBD=90°-45°=45°, ∴∠BCD=∠CBD,∴BD=CD=xn mile.在Rt △ADC 中,∵∠CAD=30°, ∴tan ∠CAD=CD AD , 即tan30°=x AD, 解得3x.∵AB=2,∴AD-BD=2,3解得3∴3=2.732>2.5,∴渔船继续追赶鱼群没有触礁危险.点睛:本题考查了解直角三角形的应用,“化斜为直”是解三角形的常规思路,常需作垂线(高),构造直角三角形.原则上不破坏特殊角(30°、45°、60°).21. 为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.【答案】(1)800,240;(2)补图见解析;(3)9.6万人.【解析】试题分析:(1)由C类别人数及其百分比可得总人数,总人数乘以B类别百分比即可得;(2)根据百分比之和为1求得A类别百分比,再乘以360°和总人数可分别求得;(3)总人数乘以样本中A、B、C三类别百分比之和可得答案.试题解析:(1)本次调查的市民有200÷25%=800(人),∴B类别的人数为800×30%=240(人),故答案为800,240;(2)∵A类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人.考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图B 卷(50分)四、解答题22. 若正比例函数1y k x =的图象与反比例函数2k y x=的图象有一个交点坐标是()2,4-. (1)求这两个函数的表达式;(2)求这两个函数图象的另一个交点坐标.【答案】(1) 正比例函数的表达式为8y 2x y x=-=-,反比例函数的表达式为;(2)这两个函数图象的另一个交点坐标为()2,4-.【解析】 分析:(1)根据待定系数法,可得函数解析式;(2)根据联立函数解析式,可得方程组,根据解方程组,可得答案.详解:(1)∵正比例函数1y k x =的图象经过()2,4-,∴142k =-,解得1k 2=-.∴正比例函数的表达式为y 2x =-. ∵反比例函数2k y x =的图象经过()2,4-,∴2k 42=-,解得2k 8=-. ∴反比例函数的表达式为8y x =-. (2)联立2{8xy x y =-=-,解得2{4x y =-=或2{4x y ==-, ∴这两个函数图象的另一个交点坐标为()2,4-.点睛:本题考查了反比例函数与一次函数的交点问题,利用待定系数法求函数解析式,利用解方程组求函数图象的交点坐标.23. 已知:如图,已知⊙O 的半径为1,菱形ABCD 的三个顶点A 、B 、D 在⊙O 上,且CD 与⊙O 相切. (1)求证:BC 与⊙O 相切;(2)求阴影部分面积.【答案】(1)证明见解析;(2)33π-【解析】【分析】 (1)连结OB 、OD 、OC ,只要证明△OCD ≌△OCB ,推出∠ODC=∠OBC ,由CD 与⊙O 相切推出OD ⊥CD ,推出∠OBC=∠ODC=90°,由此即可证明;(2)根据S 阴影=2S △DOC -S 扇形OBD 计算即可;【详解】解:(1)连结OB 、OD 、OC ,∵ABCD 是菱形,∴CD=CB ,∵OC=OC ,OD=OB ,∴△OCD ≌△OCB ,∴∠ODC=∠OBC ,∵CD 与⊙O 相切,∴OD ⊥CD ,∴∠OBC=∠ODC=90°,即OB ⊥BC ,点B 在⊙O 上,∴BC 与⊙O 相切.(2)∵ABCD 是菱形,∴∠A=∠DCB ,∵∠DOB 与∠A 所对的弧都是BD∴∠DOB=2∠A ,由(1)知∠DOB+∠C=180°,∴∠DOB=120°,∠DOC=60°,∵OD=1,∴OC=2,∴S 阴影=2S △DOC -S 扇形OBD =2×12×21201360π⨯⨯3π. 【点睛】本题考查菱形的性质、切线的判定和性质、扇形的面积公式等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用分割法求阴影部分面积,属于中考常考题型.24. 某电器超市销售A 、B 两种不同型号的电风扇,每种型号电风扇的购买单价分别为每台310元,460元.(1)若某单位购买A ,B 两种型号的电风扇共50台,且恰好支出20000元,求A ,B 两种型号电风扇各购买多少台?(2)若购买A ,B 两种型号的电风扇共50台,且支出不超过18000元,求A 种型号电风扇至少要购买多少台?【答案】(1)购买A 种型号电风扇20台,B 型种型号电风扇30台;(2)A 种型号电风扇至少要购买34台【解析】试题分析:(1)设购买A 种型号电风扇x 套,B 型号的电风扇y 套,根据:“A ,B 两种型号的电风扇共50套、共支出20000元”列方程组求解可得;(2)设购买A 型号电风扇m 套,根据:A 型电风扇总费用+B 型电风扇总费用≤18000,列不等式求解可得. 试题解析:(1)设购买A 种型号电风扇x 台,B 种型号电风扇y 台,根据题意,得:50{31046020000x y x y +=+=, 解得:x=20,y=30, 答:购买A 种型号电风扇20台,B 型种型号电风扇30台.(2)设购买A 种型号电风扇m 台,根据题意,得:310m+460(50-m)≤18000,解得:m≥3313,∵m为整数,∴m的最小值为34,答:A种型号电风扇至少要购买34台.25. 已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△APQ∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.【答案】(1)证明见解析;(2)AP的长为53或6.【解析】【分析】(1)由两对角相等(∠APQ=∠C,∠A=∠A),证明△APQ∽△ABC.(2)当△PQB为等腰三角形时,有两种情况,需要分类讨论.(I)当点P在线段AB上时,如题图1所示.由三角形相似(△APQ∽△ABC)关系计算AP的长;(II)当点P在线段AB的延长线上时,如题图2所示.利用角之间的关系,证明点B为线段AP的中点,从而可以求出AP.【详解】(1)证明:∵∠A+∠APQ=90°,∠A+∠C=90°,∴∠APQ=∠C.在△APQ与△ABC中,∵∠APQ=∠C,∠A=∠A,∴△APQ∽△ABC.(2)在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.∵∠BPQ为钝角,∴当△PQB为等腰三角形时,只可能是PB=PQ.(I)当点P在线段AB上时,如题图1所示,由(1)可知,△APQ∽△ABC,∴PA PQAC BC=,即3PB PB54-=,解得:4PB3=.∴45 AP AB PB333 =-=-=.(II)当点P在线段AB的延长线上时,如题图2所示,∵BP=BQ,∴∠BQP=∠P.∵∠BQP+∠AQB=90°,∠A+∠P=90°,∴∠AQB=∠A.∴BQ=AB.∴AB=BP,点B为线段AB中点.∴AP=2AB=2×3=6.综上所述,当△PQB为等腰三角形时,AP的长为53或6.26. 如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.(1)求抛物线的解析式;(2)当何值时,的面积最大?并求最大值的立方根;(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;(2)当t=时,△PEF的面积最大,其最大值为×,最大值的立方根为=;(3)存在满足条件的点P,t的值为1或【解析】试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.试题解析:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF=S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t ﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴,即,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.考点:二次函数综合题。
2018甘肃天水中考数学解析
2018年甘肃省天水市初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题4分,共40分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2018甘肃天水,T1,F4)下列各数中,绝对值最大的数是() A.-2 B.3 C.0 D.-4 【答案】D.【解析】因为|−2|=2,|3|=3,|0|=0,|−4|=4,可知0<2<3<4,所以-4的绝对值最大.故选D. 【知识点】绝对值 2.(2018甘肃天水,T2,F4)近三年,国家投入了用于缓解群众“看病难,看病贵”的问题.将8450亿元用科学记数法表示应为()A.0.845×104亿元B.8.45×103亿元C.8.9.45×104亿元D.84.5×102亿元 【答案】B.【解析】8450亿元=8.45×103亿元. 【知识点】科学记数法 3.(2018甘肃天水,T3,F4)一个几何体的三视图如图所示,则这个几何体是() A.三棱柱 B.三棱锥 C.圆柱 D 长方体【答案】A.【解析】由俯视图可知几何体的底面是三角形,则几何体是三棱锥或三棱柱,再根据主视图和左视图是长方形,可知该几何体是三棱柱. 【知识点】三视图 4.(2018甘肃天水,T4,F4)一组数据1,5,7,x 的众数与中位数相等,则这组数据的平均数是() A.6 B.5 C.4.5 D.3.5 【答案】C.【解析】当这组数据的众数为1时,则这组数据为1,1,5,7,可知中位数为1.5,不符合题意; 当这组数据的众数为5时,则这组数据为1,5,5,7,可知中位数为5,符合题意; 当这组数据的众数为7时,则这组数据为1,5,7,7,可知中位数为6,不符合题意. 则这组数据的平均数为1+5+5+74=4.5.【知识点】平均数,中位数,众数 5.(2018甘肃天水,T5,F4)已知圆锥的底面半径2cm ,母线长为10cm ,则这个圆锥的面积是() A.20πcm 2 B.20cm 2 C.40πcm 2 D.40cm 2 【答案】A.【解析】S 圆锥侧=12Rl=12×10×2×π×2=20π(cm 2).【知识点】圆锥侧面积 6.(2018甘肃天水,T6,F4)如图所示,点O 是矩形ABCD 对角线AC 的中点,OE ∥AB 交AD 于点E.若OE=3,BC=8,则OB 的长为( )A.4B.5C.√342D.√34【答案】B.【解析】∵四边形ABCD 是矩形,∴∠ABC=90°,AB ∥CD ,AB=CD ,点O 是AC 的中点. ∵OE ∥AB , ∴OE ∥CD ,∴OE 是△ACD 的中位线, ∴CD=2OE=6, ∴AB=6.在Rt △ABC 中,AB=6,BC=8, ∴AC=10.∵OB 是Rt △ABC 斜边的中线, ∴OB=12AC=5.【知识点】矩形的性质,中位线的性质 7.(2018甘肃天水,T7,F4)如图所示,点A 、B 、C 在⊙O 上.若∠BAC=45°,OB=2,则图中阴影部分的面积为( )A.π-4B.23π-1 C.π-2 D.23π-2【答案】C.【解析】∵∠BAC=45°, ∴∠BOC=90°. 则S 扇形BOC =90×π×22360=π,S Rt △BOC =12BO ·CO=12×2×2=2.则阴影部分的面积为S 扇形BOC -S Rt △BOC =π-2. 【知识点】扇形面积,圆周角定理8.(2018甘肃天水,T8,F4)在同一平面直角坐标系中,函数y=x+1与函数y=1x 的图像可能是()第8题图 【答案】B.【思路分析】首先根据一次函数y=x+1的系数可知其经过的象限,反比例函数y=1x 位于的象限,再判断即可. 【解题过程】一次函数y=x+1经过一,二,三象限,反比例函数y=1x 位于一,三象限,所以B 符合题意.【知识点】反比例函数图像,一次函数图像9.(2018甘肃天水,T9,F4)按一定的规律排列的一组数:12,16,112,120 (1)a ,190,1b …(其中a ,b 为整数),则a+b 的值为()A.182B.172C.242D.200 【答案】A.【思路分析】首先根据题意得出分母变化的规律,求出a ,b 的值,即可得出答案. 【解题过程】由题意可知12=11×2,16=12×3,112=13×4,120=14×5…1a=18×9,190=19×10,1b=110×11…可知a=72,b=110, 则a+b=182.【知识点】探究规律 10.(2018甘肃天水,T10,F4)某学校组织团员举行“伏羲文化旅游节”宣传活动,从学校骑自行车出发。
中考数学专题之代数式3试题及详细解析
本题主要考查了幂的乘方、完全平方公式、同底数幂的除法、合并同类项法则等知识点的理解和掌握,能
9
根据这些性质正确进行计算是解此题的关键. 8.下列计算正确的是
A.
B.
C.
D.
【来源】甘肃省兰州市 2018 年中考数学试卷
【答案】D
【点睛】 本题考查了单项式乘以单项式、积的乘方、和合并同类项,正确掌握相关运算法则是解题关键. 9.下列运算正确的是
D. D. (-a)5 C. a6÷a2=a4
D. a2+a2=2a4
1
A.
B.
C.
D.
9.下列运算正确的是
A.
B.
C.
D.
10.按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排
列下去,则这列数中的第 100 个数是( )
A. 9999 B. 10000 C. 10001 D. 10002
A.
B.
C.
D.
【来源】黑龙江省绥化市 2018 年中考数学试卷
【答案】D
【解析】
【分析】
根据合并同类项法则、二次根式的化简、同底数幂的乘法法则、0 次幂的运算法则逐项进行计算即可得.
【详解】
A.
=5a,故 A 选项错误;
B.
5,故 B 选项错误;
C.
,故 C 选项错误;
(完整版)2018年甘肃省中考数学试卷(含答案解析)
2018年甘肃省(全省统考)中考数学试卷一、选择题:本大题共10小题,每小题2018年甘肃省定西市,共30分,每小题只有一个正确1. -2018的相反数是( ) A .-2018 B .2018 C .12018- D .120182.下列计算结果等于3x 的是( )A .62x x ÷B .4x x -C .2x x +D .2x x ⋅ 3.若一个角为65°,则它的补角的度数为( ) A .25° B .35° C .115° D .125°4.已知(0,0)23a ba b =≠≠,下列变形错误的是( ) A .23a b = B .23a b = C .32b a = D .32a b =5. 若分式24x x-的值为0,则的值是( )A. 2或-2B. 2C. -2D. 06.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s 2如下表:甲 乙 丙 丁 平均数(环) 11.1 11.1 10.9 10.9 方差s 21.11.21.31.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择( ) A .甲 B .乙 C .丙 D .丁7.关于x 的一元二次方程x 2+4x+k=0有两个实数根,则k 的取值范围是( ) A .k≤﹣4 B .k <﹣4 C .k≤4 D .k <48.如图,点E 是正方形ABCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转90°到△ABF 的位置,若四边形AECF 的面积为25,DE=2,则AE 的长为( )A. 5B.C. 7D.9.如图,⊙A 过点O (0,0),C (,0),D (0,1),点B 是x 轴下方⊙A上的一点,连接BO ,BD ,则∠OBD 的度数是( )A .15°B .30°C .45°D .60°10.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤二、填空题:本大题共8小题,每小题2018年甘肃省定西市,共32分11.计算:2018112sin 30(1)()2-+--= .12.3x -有意义的x 的取值范围是 . 13.若正多边形的内角和是1080°,则该正多边形的边数是 .14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 .15.已知a ,b ,c 是ABC ∆的三边长,a ,b 满足27(1)0a b -+-=,c 为奇数,则c = .16.如图,一次函数2y x =--与2y x m =+的图象相交于点(,4)P n -,则关于x 的不等式组2220x m x x +<--⎧⎨--<⎩的解集为 .17.如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a ,则勒洛三角形的周长为 .18.如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2018次输出的结果为 .三、解答题(一);本大题共5小题,共32018年甘肃省定西市,解答应写出必要的文字说明,证明过程或演算步骤 19.计算:22(1)b aa b a b÷---.20.如图,在△ABC 中,∠ABC=90°.(1)作∠ACB 的平分线交AB 边于点O ,再以点O 为圆心,OB 的长为半径作⊙O ;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC 与⊙O 的位置关系,直接写出结果.21.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A ,B 两地被大山阻隔,由A 地到B 地需要绕行C 地,若打通穿山隧道,建成A ,B 两地的直达高铁可以缩短从A 地到B 地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A 地到B 地的路程将约缩短多少公里?(参考数据:3 1.7≈,2 1.4≈)23.如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案. (1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A ,B ,C ,D ,E ,F )中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二):本大题共5小题,共50分。
甘肃省天水市中考数学试卷
甘肃省天水市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共20题;共40分)1. (2分)(2018·邗江模拟) 在﹣1,0,2,四个数中,最大的数是()A . ﹣1B . 0C . 2D .2. (2分)下列各式中,能用平方差公式计算的是()A . (2a-b)(-2a+b)B . (a-2b)(2a+b)C . (2a-b)(-2a-b)D . (-2a-b)(2a+b)3. (2分)下列图形中,是中心对称图形,但不是轴对称图形的是()A . 正方形B . 矩形C . 菱形D . 平行四边形4. (2分)地球半径约为6400000米,用科学记数法表示为()A . 0.64×107B . 6.4×106C . 64×105D . 640×1045. (2分)计算的结果是A .B .C .D .6. (2分)(2012·海南) 如图竖直放置的圆柱体的俯视图是()A . 长方形B . 正方形C . 圆D . 等腰梯形7. (2分) (2018九上·番禺期末) 用配方法解方程时,配方结果正确的是().A .B .C .D .8. (2分)从1,2,3这三个数字中随机抽取两个,抽取的这两个数的和是奇数的概率是()A .B .C .D .9. (2分) (2016七下·兰陵期末) 若点P(a,a﹣2)在第四象限,则a的取值范围是()A . 0<a<2B . ﹣2<a<0C . a>2D . a<010. (2分)炎炎夏天,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调。
两队同时开工且恰好同时完工。
甲队比乙队每天多安装2台,设乙队每天安装x台,根据题意下面方程正确的是()A .B .C .D .11. (2分) (2017九上·抚宁期末) 在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是()A .B .C .D .12. (2分) (2017九上·商水期末) 如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是()A .B .C .D . 813. (2分)(2018·平顶山模拟) 已知一次函数y=(k+1)x+b的图象与x轴负半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A . k>−1,b>0B . k>−1,b<0C . k<−1,b>0D . k<−1,b<014. (2分)如图,△ABC是一块锐角三角形材料,高线AH长8 cm,底边BC长10 cm,要把它加工成一个矩形零件,使矩形DEFG的一边EF在BC上,其余两个顶点D,G分别在AB,AC上,则四边形DEFG的最大面积为()A . 40 cm2D . 10 cm215. (2分) (2018九上·下城期末) 已知二次函数y=(a﹣1)x2+3ax+1图象上的四个点的坐标为(x1 , m),(x2 , m),(x3 , n),(x4 , n),其中m<n .下列结论可能正确的是()A . 若a>,则 x1<x2<x3<x4B . 若a>,则 x4<x1<x2<x3C . 若a<﹣,则 x1<x3<x2<x4D . 若a<﹣,则 x3<x2<x1<x416. (2分)(2019·阜新) 商场经理调查了本商场某品牌女鞋一个月内不同尺码的销售量,如表:尺码/码3637383940数量/双15281395商场经理最关注这组数据的()A . 众数B . 平均数C . 中位数D . 方差17. (2分)(2018·福田模拟) 下列命题错误的是()A . 经过三个点一定可以作圆B . 同圆或等圆中,相等的圆心角所对的弧相等C . 三角形的外心到三角形各顶点的距离相等D . 经过切点且垂直于切线的直线必经过圆心18. (2分) (2017九上·潮阳月考) 如图,P是等边三角形△ABC内的一点,连接PB、PC.若将△PBC绕点B 旋转到△P′BA,则∠PBP′的度数是()A . 45°B . 60°19. (2分) (2017九上·成都开学考) 如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60°,则它们重叠部分的面积为()A . 3B . 2C .D .20. (2分) (2016九上·大石桥期中) 在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A (x1 , y1),B(x2 , y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A . y1<y2B . y1>y2C . y的最小值是﹣3D . y的最小值是﹣4二、填空题 (共4题;共4分)21. (1分)(2017·巴中) 分式方程 = 的解是x=________.22. (1分)(2017·枣庄) 已知关于x的一元二次方程ax2﹣2x﹣1=0有两个不相等的实数根,则a的取值范围是________.23. (1分)(2018·松桃模拟) 圆锥形礼帽的底面半径为9cm,母线长为30cm,则这个圆锥形礼帽的侧面积为________.24. (1分)如图所示,在Rt△ABC中,∠A=30°,∠B=90°,AB=12,D是斜边AC的中点,P是AB上一动点,则PC+PD的最小值为________.三、解答题 (共5题;共60分)25. (15分)如图,已知Rt△ACB中,∠C=90°,∠BAC=45°.(1)用尺规作图:在CA的延长线上截取AD=AB,并连接BD(不写作法,保留作图痕迹)(2)求∠BDC的度数;(3)定义:在直角三角形中,一个锐角A的邻边与对边的比叫做∠A的余切,记作cotA,即cotA=∠A的邻边/∠A 的对边,根据定义,利用图形求cot22.5°的值.26. (10分)(2017·莱芜) 某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)该网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进甲、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?27. (15分)(2016·丽水) 如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°.(1)当E为BC中点时,求证:△BCF≌△DEC;(2)当BE=2EC时,求的值;(3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是,求n的值.28. (10分) (2019九上·交城期中) 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且AE:BE=2:1.设BC的长度是米,矩形区域ABCD的面积为平方米.(1)求与之间的函数关系式,并注明自变量的取值范围;(2)取何值时,有最大值?最大值是多少?29. (10分)如图,在▱ABCD中,E、F分别为AB、BC的中点,连接EC、AF,AF与EC交于点M,AF的延长线与DC的延长线交于点N.(1)求证:AB=CN(2)若AB=2n,BE=2MF,试用含n的式子表示线段AN的长参考答案一、选择题 (共20题;共40分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、二、填空题 (共4题;共4分)21-1、22-1、23-1、24-1、三、解答题 (共5题;共60分) 25-1、25-2、25-3、26-1、26-2、27-1、27-2、28-1、28-2、29-1、29-2、。
2018年甘肃省中考数学试卷(含答案解析)
—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式2018年甘肃省(全省统考)中考数学试卷一、选择题:本大题共10小题,每小题2018年甘肃省定西市,共30分,每小题只有一个正确1. -2018的相反数是( ) A .-2018 B .2018 C .12018- D .120182.下列计算结果等于3x 的是( )A .62x x ÷B .4x x -C .2x x +D .2x x ⋅ 3.若一个角为65°,则它的补角的度数为( ) A .25° B .35° C .115° D .125°4.已知(0,0)23a ba b =≠≠,下列变形错误的是( ) A .23a b = B .23a b = C .32b a = D .32a b =5. 若分式24x x-的值为0,则的值是( )A. 2或-2B. 2C. -2D. 06.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s 2如下表:平均数(环)若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择( ) A .甲 B .乙 C .丙 D .丁7.关于x 的一元二次方程x 2+4x+k=0有两个实数根,则k 的取值范围是( ) A .k≤﹣4 B .k <﹣4 C .k≤4 D .k <48.如图,点E 是正方形ABCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转90°到△ABF 的位置,若四边形AECF 的面积为25,DE=2,则AE 的长为( )A. 5B.C. 7D.9.如图,⊙A 过点O (0,0),C (,0),D (0,1),点B 是x 轴下方⊙A上的一点,连接BO ,BD ,则∠OBD 的度数是( )A .15°B .30°C .45°D .60°10.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤二、填空题:本大题共8小题,每小题2018年甘肃省定西市,共32分11.计算:2018112sin 30(1)()2-+--= .12.有意义的x 的取值范围是 . 13.若正多边形的内角和是1080°,则该正多边形的边数是 .14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 .15.已知a ,b ,c 是ABC ∆的三边长,a ,b 满足27(1)0a b -+-=,c 为奇数,则c = .16.如图,一次函数2y x =--与2y x m =+的图象相交于点(,4)P n -,则关于x 的不等式组2220x m x x +<--⎧⎨--<⎩的解集为 .17.如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a ,则勒洛三角形的周长为 .18.如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2018次输出的结果为 .三、解答题(一);本大题共5小题,共32018年甘肃省定西市,解答应写出必要的文字说明,证明过程或演算步骤 19.计算:22(1)b aa b a b÷---.20.如图,在△ABC 中,∠ABC=90°.(1)作∠ACB 的平分线交AB 边于点O ,再以点O 为圆心,OB 的长为半径作⊙O ;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC 与⊙O 的位置关系,直接写出结果.21.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考≈ 1.41.7≈)23.如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二):本大题共5小题,共50分。
(完整)2018年甘肃省中考数学试卷(含答案解析),推荐文档
2018年甘肃省(全省统考)中考数学试卷一、选择题:本大题共10小题,每小题2018年甘肃省定西市,共30分,每小题只有一个正确1. -2018的相反数是( ) A .-2018 B .2018 C .12018- D .120182.下列计算结果等于3x 的是( )A .62x x ÷B .4x x -C .2x x +D .2x x ⋅ 3.若一个角为65°,则它的补角的度数为( ) A .25° B .35° C .115° D .125°4.已知(0,0)23a ba b =≠≠,下列变形错误的是( ) A .23a b = B .23a b = C .32b a = D .32a b =5. 若分式24x x-的值为0,则的值是( )A. 2或-2B. 2C. -2D. 06.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s 2如下表:甲 乙 丙 丁 平均数(环) 11.1 11.1 10.9 10.9 方差s 21.11.21.31.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择( ) A .甲 B .乙 C .丙 D .丁7.关于x 的一元二次方程x 2+4x+k=0有两个实数根,则k 的取值范围是( ) A .k≤﹣4 B .k <﹣4 C .k≤4 D .k <48.如图,点E 是正方形ABCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转90°到△ABF 的位置,若四边形AECF 的面积为25,DE=2,则AE 的长为( )A. 5B.C. 7D.9.如图,⊙A 过点O (0,0),C (,0),D (0,1),点B 是x 轴下方⊙A上的一点,连接BO ,BD ,则∠OBD 的度数是( )A .15°B .30°C .45°D .60°10.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤二、填空题:本大题共8小题,每小题2018年甘肃省定西市,共32分11.计算:2018112sin 30(1)()2-+--=o .12.3x -有意义的x 的取值范围是 . 13.若正多边形的内角和是1080°,则该正多边形的边数是 .14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 .15.已知a ,b ,c 是ABC ∆的三边长,a ,b 满足27(1)0a b -+-=,c 为奇数,则c = .16.如图,一次函数2y x =--与2y x m =+的图象相交于点(,4)P n -,则关于x 的不等式组2220x m x x +<--⎧⎨--<⎩的解集为 .17.如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a ,则勒洛三角形的周长为 .18.如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2018次输出的结果为 .三、解答题(一);本大题共5小题,共32018年甘肃省定西市,解答应写出必要的文字说明,证明过程或演算步骤 19.计算:22(1)b aa b a b÷---.20.如图,在△ABC 中,∠ABC=90°.(1)作∠ACB 的平分线交AB 边于点O ,再以点O 为圆心,OB 的长为半径作⊙O ;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC 与⊙O 的位置关系,直接写出结果.21.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A ,B 两地被大山阻隔,由A 地到B 地需要绕行C 地,若打通穿山隧道,建成A ,B 两地的直达高铁可以缩短从A 地到B 地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A 地到B 地的路程将约缩短多少公里?(参考数据:3 1.7≈,2 1.4≈)23.如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案. (1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A ,B ,C ,D ,E ,F )中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二):本大题共5小题,共50分。
2018年甘肃省天水市中考数学试题及参考答案(word解析版)
2018年甘肃省天水市中考数学试题及参考答案与解析一、选择题(本大题共10小题每小题4分,共40分,每小题给出的四个选项中只有一个选项是正确的,请把正确的选项选出来)1.下列各数中,绝对值最大的数是()A.﹣2 B.3 C.0 D.﹣42.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元B.8.45×103亿元C.8.45×104亿元D.84.5×102亿元3.一个几何体的三视图如图所示,则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.长方体4.一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是()A.6 B.5 C.4.5 D.3.55.已知圆锥的底面半径为2cm,母线长为10cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm26.如图所示,点O是矩形ABCD对角线AC的中点,OE∥AB交AD于点E.若OE=3,BC=8,则OB的长为()A.4 B.5 C.D.7.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣4 B.C.π﹣2 D.8.在同一平面直角坐标系中,函数y=x+1与函数y=的图象可能是()A.B.C.D.9.按一定规律排列的一组数:,,,,…,,,(其中a,b为整数),则a+b 的值为()A.182 B.172 C.242 D.20010.某学校组织团员举行“伏羲文化旅游节”宣传活动,从学校骑自行车出发,先上坡到达甲地后,宣传了8分钟,然后下坡到乙地又宣传了8分钟返回,行程情况如图所示.若返回时,上、下坡速度保持不变,在甲地仍要宣传8分钟,那么他们从乙地返回学校所用的时间是()A.33分钟B.46分钟C.48分钟D.45.2分钟二、填空题(本大题共8小题,每小题4分,共32分,只要求填写最后结果)11.不等式组的所有整数解的和是.12.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为.13.甲、乙、丙三人进行射击测试,每人射击10次的平均成绩都是9.1环,方差分别是S甲2=0.51、S乙2=0.50、S丙2=0.41,则三人中成绩最稳定的是(填“甲”或“乙”或“丙”).14.若点A(a,b)在反比例函数y=的图象上,则代数式ab﹣1的值为.15.关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是.16.如图所示,菱形ABCD的对角线AC、BD相交于点O.若AC=6,BD=8,AE⊥BC,垂足为E,则AE的长为.17.将平行四边形OABC放置在如图所示的平面直角坐标系中,点O为坐标原点.若点A的坐标为(3,0),点C的坐标为(1,2),则点B的坐标为.18.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数.例如:[2.3]=2,(2.3)=3,[2.3)=2.按此规定:[1.7]+(1.7)+[1.7)=.三、解答题(本大题共3小题共28分,解答时写出必要的文字说明及演算过程)19.(8分)(1)计算:4+(﹣3)2+20180×|1﹣|+tan45°﹣2sin60°.(2)先化简,再求值:÷(1+),其中x=﹣1.20.(10分)超速行驶是引发交通事故的主要原因之一.小明等三名同学运用自己所学的知识检测车速,他们将观测点设在距成纪大道100米的点C处,如图所示,直线l表示成纪大道.这时一辆小汽车由成纪大道上的A处向B处匀速行驶,用时5秒.经测量,点A在点C的北偏西60°方向上,点B在点C的北偏西45°方向上.(1)求A、B之间的路程(精确到0.1米);(2)请判断此车是否超过了成纪大道60千米/小时的限制速度?(参考数据:≈1.414,≈1.732)21.(10分)如图所示,在平面直角坐标系中,直线y=x﹣1与y轴相交于点A与反比例函数y=(k≠0)在第一象限内相交于点B(m,1)(1)求反比例函数的解析式;(2)将直线y=x﹣1向上平行移动后与反比例函数在第一象限内相交于点C,且△ABC的面积为4,求平行移动后的直线的解析式.四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.(8分)天水市“最美女教师”刘英为抢救两名学生,身负重伤.社会各界纷纷为她捐款,某校2000名学生也积极参加了此捐款活动.捐款金额有5元、10元、15元、20元、25元共五种.为了了解捐款情况,学校随机抽样调查了部分学生的捐款情况,并根据捐款金额和人数绘制了如下统计图(图①和图②).请根据所给信息解答下列问题.(1)本次接受随机抽样调查的学生人数为人,图①中m的值是.(2)根据样本数据,请估计该校在本次活动中捐款金额为10元的学生人数.23.(8分)如图所示,AB是⊙O的直径,点P是AB延长线上的一点,过点P作⊙O的切线,切点为C,连接AC,BC.(1)求证:∠BAC=∠BCP.(2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点D,你认为∠CDP的大小是否发生变化?若变化,请说明理由;若没有变化,求出∠CDP的大小.24.(10分)麦积山石窟是世界文化遗产,国家AAAAA级旅游景区,中国四大石窟之一.在2018年中国西北旅游营销大会暨旅游装备展上,商家按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按此进价进货、标价销售,商家每天可售出该工艺品100件;若每件工艺品降价1元,则每天可多售出该工艺品4件.问:每件工艺品降价多少元销售,每天获得的利润最大?获得的最大利润是多少元?25.(12分)如图所示,在正方形ABCD和△EFG中,AB=EF=EG=5cm,FG=8cm,点B、C、F、G在同一直线l上.当点C、F重合时,△EFG以1cm/s的速度沿直线l向左开始运动,t秒后正方形ABCD与△EFG重合部分的面积为Scm2.请解答下列问题:(1)当t=3秒时,求S的值;(2)当t=5秒时,求S的值;(3)当5秒<t≤8秒时,求S与t的函数关系式,并求出S的最大值.26.(12分)已知:抛物线y=ax2+4ax+m(a>0)与x轴的一个交点为A(﹣1,0)(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的一个点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;(3)点E是第二象限内到x轴、y轴的距离比为5:2的点,如果点E在(2)中的抛物线上且点E与点A在此抛物线对称轴的同侧.问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与解析一、选择题(本大题共10小题每小题4分,共40分,每小题给出的四个选项中只有一个选项是正确的,请把正确的选项选出来)1.下列各数中,绝对值最大的数是()A.﹣2 B.3 C.0 D.﹣4【知识考点】绝对值;有理数大小比较.【思路分析】根据绝对值的性质来判断即可,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值还是0.【解题过程】解:∵|﹣2|=2,|3|=3,|0|=0,|﹣4|=4∴4>3>2>0故选:D.【总结归纳】本题主要考查绝对值的性质,牢记绝对值的性质是解题的关键2.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元B.8.45×103亿元C.8.45×104亿元D.84.5×102亿元【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解题过程】解:将8450亿元用科学记数法表示为8.45×103亿元.故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.一个几何体的三视图如图所示,则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.长方体【知识考点】由三视图判断几何体.【思路分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解题过程】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选:A.【总结归纳】此题主要考查了由三视图判断几何体.主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为几边形就是几棱柱.4.一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是()A.6 B.5 C.4.5 D.3.5【知识考点】算术平均数;中位数;众数.【思路分析】分别假设众数为1、5、7,分类讨论、找到符合题意得x的值,再根据平均数的定义求解可得.【解题过程】解:若众数为1,则数据为1、1、5、7,此时中位数为3,不符合题意;若众数为5,则数据为1、5、5、7,中位数为5,符合题意,此时平均数为=4.5;若众数为7,则数据为1、5、7、7,中位数为6,不符合题意;故选:C.【总结归纳】本题主要考查众数、中位数及平均数,根据众数的可能情况分类讨论求解是解题的关键.5.已知圆锥的底面半径为2cm,母线长为10cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm2【知识考点】圆锥的计算.【思路分析】圆锥的侧面积=π×底面半径×母线长.【解题过程】解:圆锥侧面积=π×2×10=20πcm2;故选:A.【总结归纳】考查圆锥的侧面展开图公式;用到的知识点为:圆锥的侧面积=π×底面半径×母线长.6.如图所示,点O是矩形ABCD对角线AC的中点,OE∥AB交AD于点E.若OE=3,BC=8,则OB的长为()A.4 B.5 C.D.【知识考点】三角形中位线定理;矩形的性质.【思路分析】由平行线分线段成比例可得CD=6,由勾股定理可得AC=10,由直角三角形的性质可得OB的长.【解题过程】解:∵四边形ABCD是矩形∴AB∥CD,AD=BC=8,∵OE∥AB∴OE∥CD∴,且AO=AC,OE=3∴CD=6,在Rt△ADC中,AC==10∵点O是斜边AC上的中点,∴BO=AC=5故选:B.【总结归纳】本题考查了矩形的性质,勾股定理,直角三角形的性质,求CD的长度是本题的关键.7.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣4 B.C.π﹣2 D.【知识考点】扇形面积的计算.【思路分析】先证得三角形OBC是等腰直角三角形,通过解直角三角形求得BC和BC边上的高,然后根据S阴影=S扇形OBC﹣S△OBC即可求得.【解题过程】解:∵∠BAC=45°,∴∠BOC=90°,∴△OBC是等腰直角三角形,∵OB=2,∴△OBC的BC边上的高为:OB=,∴BC=2∴S阴影=S扇形OBC﹣S△OBC=﹣×2×=π﹣2,故选:C.【总结归纳】本题考查了扇形的面积公式:S=(n为圆心角的度数,R为圆的半径).也考查了等腰直角三角形三边的关系和三角形的面积公式.8.在同一平面直角坐标系中,函数y=x+1与函数y=的图象可能是()A.B.C.D.【知识考点】一次函数的图象;反比例函数的图象.【思路分析】利用一次函数与反比例函数的图象与性质判断即可.【解题过程】解:在同一平面直角坐标系中,函数y=x+1与函数y=的图象可能是故选:B.【总结归纳】此题考查了反比例函数的图象,以及一次函数的图象,熟练掌握各函数的图象与性质是解本题的关键.9.按一定规律排列的一组数:,,,,…,,,(其中a,b为整数),则a+b 的值为()A.182 B.172 C.242 D.200【知识考点】规律型:数字的变化类.【思路分析】观察各数据得到,即每个分数的分母可以分解为两个连续正整数的积,由于,所以,即可得到a与b的值.【解题过程】解:∵,∵,∴,∴a=72,b=110,∴a+b=72+110=182.故选:A.【总结归纳】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10.某学校组织团员举行“伏羲文化旅游节”宣传活动,从学校骑自行车出发,先上坡到达甲地后,宣传了8分钟,然后下坡到乙地又宣传了8分钟返回,行程情况如图所示.若返回时,上、下坡速度保持不变,在甲地仍要宣传8分钟,那么他们从乙地返回学校所用的时间是()A.33分钟B.46分钟C.48分钟D.45.2分钟【知识考点】函数的图象.【思路分析】由图象可知上坡路程和下坡路程,上坡速度和下坡速度问题即可求解.【解题过程】解:观察图象可知上坡路程为36百米,下坡路程为96﹣36=60百米,上坡时间为18分,下坡时间为46﹣18﹣8﹣8=12分,∴v上坡==2百米,v下坡==5百米,∴返回的时间=++8=45.2分钟.故选:D.【总结归纳】本题运用了函数的图象的性质和路程、时间、速度的关系等知识点,体现了数形结合的数学思想.二、填空题(本大题共8小题,每小题4分,共32分,只要求填写最后结果)11.不等式组的所有整数解的和是.【知识考点】一元一次不等式组的整数解.【思路分析】首先解每个不等式,两个不等式的解集的公共部分就是解集的公共部分,然后确定整数解即可.【解题过程】解:解不等式4x+8≥0,得:x≥﹣2,解不等式6﹣3x>0,得:x<2,则不等式组的解集为﹣2≤x<2,所以不等式组的所有整数解的和为﹣2﹣1+0+1=﹣2,故答案为:﹣2.【总结归纳】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为.【知识考点】互余两角三角函数的关系.【思路分析】根据sinA=,假设BC=12x,AB=13x,得出AC=5x,再利用锐角三角函数的定义得出tanB的值.【解题过程】解:如图,∵在Rt△ABC中,∠C=90°,sinA=,∴假设BC=12x,AB=13x,∴AC=5x.∴tanB==.故答案为:.【总结归纳】此题考查的是锐角三角函数的定义及勾股定理的应用,正确得出各边之间的关系是解决问题的关键.13.甲、乙、丙三人进行射击测试,每人射击10次的平均成绩都是9.1环,方差分别是S甲2=0.51、S乙2=0.50、S丙2=0.41,则三人中成绩最稳定的是(填“甲”或“乙”或“丙”).【知识考点】算术平均数;方差.【思路分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解题过程】解:∵S甲2=0.51,S乙2=0.50,S丙2=0.41,∴S甲2>S乙2>S丙2,∴三人中成绩最稳定的是丙;故答案为:丙.【总结归纳】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.若点A(a,b)在反比例函数y=的图象上,则代数式ab﹣1的值为.【知识考点】反比例函数图象上点的坐标特征.【思路分析】根据点A(a,b)在反比例函数y=的图象上,可以求得ab的值,从而可以得到所求式子的值.【解题过程】解:∵点A(a,b)在反比例函数y=的图象上,∴b=,得ab=3,∴ab﹣1=3﹣1=2,故答案为:2【总结归纳】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.15.关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是.【知识考点】一元二次方程的解.【思路分析】由于方程的一个根是0,把x=0代入方程,求出k的值.因为方程是关于x的二次方程,所以未知数的二次项系数不能是0.【解题过程】解:由于关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,把x=0代入方程,得k2﹣k=0,解得,k1=1,k2=0当k=1时,由于二次项系数k﹣1=0,方程(k﹣1)x2+6x+k2﹣k=0不是关于x的二次方程,故k≠1.所以k的值是0.故答案为:0【总结归纳】本题考查了一元二次方程的解法、一元二次方程的定义.解决本题的关键是解一元二次方程确定k的值,过程中容易忽略一元二次方程的二次项系数不等于0这个条件.16.如图所示,菱形ABCD的对角线AC、BD相交于点O.若AC=6,BD=8,AE⊥BC,垂足为E,则AE的长为.【知识考点】菱形的性质.【思路分析】利用菱形的面积公式:•AC•BD=•BC•AE,即可解决问题;【解题过程】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=3,OB=OD=4,∴AB=BC=5,∵•AC•BD=•BC•AE,∴AE=,故答案为:,【总结归纳】本题考查菱形的性质、勾股定理等知识,解题的关键是学会利用面积法求线段的长,属于中考常考题型.17.将平行四边形OABC放置在如图所示的平面直角坐标系中,点O为坐标原点.若点A的坐标为(3,0),点C的坐标为(1,2),则点B的坐标为.【知识考点】坐标与图形性质;平行四边形的性质.【思路分析】根据平行四边形的性质及A点和C的坐标求出点B的坐标即可.【解题过程】解:∵四边形ABCO是平行四边形,O为坐标原点,点A的坐标是(3,0),点C 的坐标是(1,2),∴BC=OA=3,3+1=4,∴点B的坐标是(4,2);故答案为:(4,2).【总结归纳】本题考查了平行四边形的性质、坐标与图形性质;熟练掌握平行四边形的性质是解决问题的关键.18.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数.例如:[2.3]=2,(2.3)=3,[2.3)=2.按此规定:[1.7]+(1.7)+[1.7)=.【知识考点】有理数大小比较.【思路分析】根据题意,[1.7]中不大于1.7的最大整数为1,(1.7)中不小于1.7的最小整数为2,[1.7)最接近的整数为2,则可解答【解题过程】解:依题意:[1.7]+(1.7)+[1.7)=1+2+2=5故答案为5【总结归纳】此题主要考查有理数大小的比较,读懂题意,即可解答,本题比较简单.三、解答题(本大题共3小题共28分,解答时写出必要的文字说明及演算过程)19.(8分)(1)计算:4+(﹣3)2+20180×|1﹣|+tan45°﹣2sin60°.(2)先化简,再求值:÷(1+),其中x=﹣1.【知识考点】实数的运算;分式的化简求值;零指数幂;特殊角的三角函数值.【思路分析】(1)先计算乘方、零指数幂、取绝对值符号、代入三角函数值,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解题过程】解:(1)原式=4+9+1×(﹣1)+1﹣2×=4+9+﹣1+1﹣=13;(2)原式=÷(+)=•=,当x=﹣1时,原式==.【总结归纳】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及实数的运算能力.20.(10分)超速行驶是引发交通事故的主要原因之一.小明等三名同学运用自己所学的知识检测车速,他们将观测点设在距成纪大道100米的点C处,如图所示,直线l表示成纪大道.这时一辆小汽车由成纪大道上的A处向B处匀速行驶,用时5秒.经测量,点A在点C的北偏西60°方向上,点B在点C的北偏西45°方向上.(1)求A、B之间的路程(精确到0.1米);(2)请判断此车是否超过了成纪大道60千米/小时的限制速度?(参考数据:≈1.414,≈1.732)【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】(1)据已知和特殊角的三角函数值求得AD,BD的长,从而得出AB的长;(2)根据测得此车从A处行驶到B处所用的时间为5秒,求出小汽车的速度,即可得出答案.【解题过程】解:(1)过点C作CD⊥l于D,∵AB=AO﹣BO,∠BCD=45°,∴BD=CD=100米.又∵AD=CD×tan60°≈100×1.732=173.2米,∴AB=AD﹣BD=173.2﹣100=73.2米,(2)∵73.2米=0.0732千米,5秒=小时,∴0.0732÷=52.7千米/时.∵52.7<60,∴该小车没有超速.【总结归纳】此题考查了解直角三角形的应用,用到的知识点是特殊角的三角函数值、锐角三角函数,注意时间之间的换算.21.(10分)如图所示,在平面直角坐标系中,直线y=x﹣1与y轴相交于点A与反比例函数y=(k≠0)在第一象限内相交于点B(m,1)(1)求反比例函数的解析式;(2)将直线y=x﹣1向上平行移动后与反比例函数在第一象限内相交于点C,且△ABC的面积为4,求平行移动后的直线的解析式.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)将B坐标代入直线y=x﹣1中求出m的值,确定出B坐标,将B的坐标代入反比例解析式中求出k的值,即可确定出反比例解析式;(2)设平移后的直线交y轴于H,根据两平行线间的距离相等,可得C到AB的距离与H到AB 的距离相等,根据等底等高的三角形的面积相等,可得b的值,根据待定系数法,可得答案.【解题过程】解:(1)将B(m,1)代入直线y=x﹣1中得:m﹣1=1,解得:m=2,则B(2,1),将B(2,1)代入y=,得k=2×1=2,则反比例解析式为y=;(2)设平移后的直线交y轴于H.∴S△ABH=S△ABC=4,∵S△ABH=×AH×2=4,∴AH=4,∵A(0,﹣1),∴H(0,3),∴平移后的直线的解析式为y=x+3.【总结归纳】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:一次函数与坐标轴的交点,待定系数法求函数解析式,三角形的面积求法,以及坐标与图形变化﹣平移,熟练掌握待定系数法是解本题的关键.四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.(8分)天水市“最美女教师”刘英为抢救两名学生,身负重伤.社会各界纷纷为她捐款,某校2000名学生也积极参加了此捐款活动.捐款金额有5元、10元、15元、20元、25元共五种.为了了解捐款情况,学校随机抽样调查了部分学生的捐款情况,并根据捐款金额和人数绘制了如下统计图(图①和图②).请根据所给信息解答下列问题.(1)本次接受随机抽样调查的学生人数为人,图①中m的值是.(2)根据样本数据,请估计该校在本次活动中捐款金额为10元的学生人数.【知识考点】全面调查与抽样调查;用样本估计总体;扇形统计图;条形统计图.【思路分析】条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形图的特点:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.【解题过程】解:(1)调查的学生人数:4÷8%=50(人),,m=32,故答案为50,32;(2)该校在本次活动中捐款金额为10元的学生人数:2000×32%=640(人),答:该校在本次活动中捐款金额为10元的学生人数为640人.【总结归纳】本题考查了统计图,正确理解条形统计图和扇形统计图的意义是解题的关键.23.(8分)如图所示,AB是⊙O的直径,点P是AB延长线上的一点,过点P作⊙O的切线,切点为C,连接AC,BC.(1)求证:∠BAC=∠BCP.(2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点D,你认为∠CDP的大小是否发生变化?若变化,请说明理由;若没有变化,求出∠CDP的大小.【知识考点】圆周角定理;切线的性质.【思路分析】(1)连接OC,有切线的性质可知∠PCO=∠OCB+∠PCB=90°,再有圆周角定理可得∠ACB=90°,又因为圆的半径相等即可证明∠PCB=∠CAB.(2)由PC为圆的切线,利用切线的性质得到PC与OC垂直,得到三角形OPC为直角三角形,利用直角三角形的两锐角互余列出等式,根据OA=OC,利用等边对等角得到一对角相等,利用外角性质得到∠A为∠COP的一半,由PD为角平分线得到∠APD为∠CPO的一半,利用外角性质及等式的性质即可,求出∠CDP的度数.【解题过程】(1)证明:连接OC,∵PC为⊙O的切线,∴∠PCO=∠OCB+∠PCB=90°又∵AB为⊙O的直径,∴∠ACB=90°,∠CAB+∠ABC=90°,∴∠PCB+∠OCB=∠CAB+∠ABC=90°又∵OB=OC,∴∠OCB=∠ABC,∴∠BAC=∠BCP.(2)解:∵PC为圆O的切线,∴PC⊥OC,即∠PCO=90°,∴∠CPO+∠COP=90°,∵OA=OC,∴∠A=∠ACO=∠COP,∵PD为∠APC的平分线,∴∠APD=∠CPD=∠CPO,∴∠CDP=∠APD+∠A=(∠CPO+∠COP)=45°.【总结归纳】此题考查了切线的性质,外角性质,以及等腰三角形的性质,熟练掌握切线的性质是解本题的关键.24.(10分)麦积山石窟是世界文化遗产,国家AAAAA级旅游景区,中国四大石窟之一.在2018年中国西北旅游营销大会暨旅游装备展上,商家按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按此进价进货、标价销售,商家每天可售出该工艺品100件;若每件工艺品降价1元,则每天可多售出该工艺品4件.问:每件工艺品降价多少元销售,每天获得的利润最大?获得的最大利润是多少元?【知识考点】二元一次方程组的应用;HE:二次函数的应用.【思路分析】(1)依题意,可设标价为x元,进价为y元,可列方程,解出x,y的值即可(2)设利润为w元,降价为m元,再根据利润=(标价﹣成本)×数量,列出函数关系式即可计算【解题过程】解:(1)依题意,设标价为x元,进价为y元,则有,解得故工艺品每件的进价为155元,标价是200元(2)设利润为w元,降价为m元,则依题意得w=(200﹣m﹣155)(100+4m)=﹣4m2+80m+4500整理得w=﹣4(m﹣10)2+4900故每件工艺品降价10元销售,每天获得的利润最大,获得的最大利润是4900元【总结归纳】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.25.(12分)如图所示,在正方形ABCD和△EFG中,AB=EF=EG=5cm,FG=8cm,点B、C、F、G在同一直线l上.当点C、F重合时,△EFG以1cm/s的速度沿直线l向左开始运动,t秒后正方形ABCD与△EFG重合部分的面积为Scm2.请解答下列问题:(1)当t=3秒时,求S的值;(2)当t=5秒时,求S的值;(3)当5秒<t≤8秒时,求S与t的函数关系式,并求出S的最大值.【知识考点】四边形综合题.【思路分析】(1)作EP⊥FG于点P,由EF=EG,得出PF=PC=FG=4,由勾股定理得出EP ==3,当t=3时,FC=3,设EF与DC交于点H,证明△FCH∽△FEP,由相似三角形的性质即可得出结果;(2)当t=5时,CG=3.设EG与DC交于H,由相似三角形的性质得出=,求出CH =,S△GCH=(cm2)即可得出结果;(3)当5≤t≤8时,FB=t﹣5,GC=8﹣t,设EF交AB于点N,由△FBN∽△FPE,PF=4,得出BF:PF=(t﹣5):4,得出S△FBN=(t﹣5)2,同理得S△GCH=(8﹣t)2,得出S=﹣t2+t﹣,再把二次函数化成顶点式,即可得出结果.【解题过程】解:(1)作EP⊥FG于点P,∵EF=EG,∴PF=PC=FG=4,在Rt△EPF中,EP===3,当t=3时,FC=3,设EF与DC交于点H,∵四边形ABCD是正方形,∴DC⊥BC,∴PE∥DC,∴△FCH∽△FEP.∴=()2,∵S△FPE=×4×3=6,∴S=()2×6=(cm2).(2)当t=5时,CG=3.设EG与DC交于H,如图2所示:由△GCH∽△GPE,∴=,即=,∴CH=,∴S△GCH=×3×=(cm2),S=12﹣=(cm2).(3)当5≤t≤8时,FB=t﹣5,GC=8﹣t,设EF交AB于点N,如图3所示:∵△FBN∽△FPE,PF=4,∴BF:PF=(t﹣5):4,∴S△FBN:S△FPE=(t﹣5)2:42,又∵S△FPE=6,∴S△FBN=(t﹣5)2,由△GCH∽△GPE,同理得S△GCH=(8﹣t)2,。
【全国市级联考】甘肃省天水市重点中学2018届九年级中考数学模拟题(解析版)
甘肃省天水市重点中学2018年中考数学模拟题A卷(共100分)一、选择题1. 把抛物线向右平移3个单位,再向下平移2个单位,得到抛物线( )A. B. C. D.【答案】C【解析】分析:直接根据“左加右减、上加下减”的原则进行解答即可.详解:将抛物线y=x2+1的图象向右平移3个单位,再向下平移2个单位,得到的抛物线是y=(x-3)2+1-2,即y=(x-3)2-1.故选C.点睛:主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.2. 如图所示几何体的俯视图是( )A. B. C. D.【答案】D【解析】试题分析:从上面看可得到三个左右相邻的中间有两个界限的长方形.故选D.考点:简单几何体的三视图3. 下列运算正确的是( )A. B. (a2)3=a6 C. (a+b)2=a2+b2 D.【答案】B【解析】A.根据“同底数幂相乘,底数不变,指数相加”可得:,故A项错误。
B.根据“幂的乘方,底数不变,指数相乘”可得:,故B项正确。
C.根据完全平方公式可得:(a+b) ²=a²+b²+2ab。
故C项错误。
D.根据单项式的减法法则可得:,故D项错误。
故本题正确答案为B4. 如图,将矩形ABCD沿EF折叠,点C落在A处,点D落在DD′处.若AB=3,BC=9,则折痕EF的长为( )A. B. 4 C. 5 D.【答案】A【解析】由翻折可知AE=EC,设BE=x,则AE=9-x在Rt△ABE中,根据勾股定理得3²+x²=(9-x) ²解得x=4,∴AE=5在△ABE和△AD′F中,AB=AD′, ∠BAE=∠FAD′, ∠B=∠D′∴△ABE≌△AD′F(AAS)∴AF=AE=5∴EH=5-4=1过点F作FH⊥BC交BC于点H,则FH=3,在△EFH中,根据勾股定理得EF=故选:A.点睛:利用勾股定理进行推理验证或适当添加辅助线构造直角三角形来解决最短距离和实际生活情境的问题.5. 已知如图,一次函数y=ax+b和反比例函数的图象相交于A,B两点,不等式ax+b>的解集为( )A. x<-3B. -3<x<0或x>1C. x<-3或x>1D. -3<x<1【答案】B【解析】分析:观察函数图象得到当-3<x<0或x>1时,一次函数图象都在反比例函数图象上方,即有ax+b>.详解:不等式ax+b>的解集为-3<x<0或x>1.故选B.点睛:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了观察函数图象的能力.6. 不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A. 摸出的3个白球B. 摸出的是3个黑球C. 摸出的是2个白球、1个黑球D. 摸出的是2个黑球、1个白球【答案】B【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.7. 下列所给图形是中心对称图形但不是轴对称图形的是( )A. B. C. D.【答案】C【解析】A. 此图形不是中心对称图形,不是轴对称图形,故A选项错误;B. 此图形是中心对称图形,也是轴对称图形,故B选项错误;C. 此图形是中心对称图形,不是轴对称图形,故C选项正确;D. 此图形不是中心对称图形,是轴对称图形,故D选项错误。
最新甘肃省中考数学试卷(含答案解析)
2018年甘肃省(全省统考)中考数学试卷一、选择题:本大题共10小题,每小题2018年甘肃省定西市,共30分,每小题只有一个正确1. -2018的相反数是( ) A .-2018 B .2018 C .12018- D .120182.下列计算结果等于3x 的是( )A .62x x ÷B .4x x -C .2x x +D .2x x ⋅ 3.若一个角为65°,则它的补角的度数为( ) A .25° B .35° C .115° D .125°4.已知(0,0)23a ba b =≠≠,下列变形错误的是( ) A .23a b = B .23a b = C .32b a = D .32a b =5. 若分式24x x-的值为0,则的值是( )A. 2或-2B. 2C. -2D. 06.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s 2如下表:甲 乙 丙 丁 平均数(环) 11.1 11.1 10.9 10.9 方差s 21.11.21.31.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择( ) A .甲 B .乙 C .丙 D .丁7.关于x 的一元二次方程x 2+4x+k=0有两个实数根,则k 的取值范围是( ) A .k≤﹣4 B .k <﹣4 C .k≤4 D .k <48.如图,点E 是正方形ABCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转90°到△ABF 的位置,若四边形AECF 的面积为25,DE=2,则AE 的长为( )A. 5B.C. 7D.9.如图,⊙A 过点O (0,0),C (,0),D (0,1),点B 是x 轴下方⊙A上的一点,连接BO ,BD ,则∠OBD 的度数是( )A .15°B .30°C .45°D .60°10.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤二、填空题:本大题共8小题,每小题2018年甘肃省定西市,共32分11.计算:2018112sin 30(1)()2-+--=o .12.3x -有意义的x 的取值范围是 . 13.若正多边形的内角和是1080°,则该正多边形的边数是 .14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 .15.已知a ,b ,c 是ABC ∆的三边长,a ,b 满足27(1)0a b -+-=,c 为奇数,则c = .16.如图,一次函数2y x =--与2y x m =+的图象相交于点(,4)P n -,则关于x 的不等式组2220x m x x +<--⎧⎨--<⎩的解集为 .17.如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a ,则勒洛三角形的周长为 .18.如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2018次输出的结果为 .三、解答题(一);本大题共5小题,共32018年甘肃省定西市,解答应写出必要的文字说明,证明过程或演算步骤 19.计算:22(1)b aa b a b÷---.20.如图,在△ABC 中,∠ABC=90°.(1)作∠ACB 的平分线交AB 边于点O ,再以点O 为圆心,OB 的长为半径作⊙O ;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC 与⊙O 的位置关系,直接写出结果.21.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A ,B 两地被大山阻隔,由A 地到B 地需要绕行C 地,若打通穿山隧道,建成A ,B 两地的直达高铁可以缩短从A 地到B 地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A 地到B 地的路程将约缩短多少公里?(参考数据:3 1.7≈,2 1.4≈)23.如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案. (1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A ,B ,C ,D ,E ,F )中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二):本大题共5小题,共50分。
甘肃省天水市中考数学试卷
甘肃省天水市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)已知a>0,b<0,且a+b>0,下列说法错误的是()A . a﹣b>0B . |a|<bC . |a+b|<|a﹣b|D . a>﹣b2. (2分) (2011·湛江) 如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A . 70°B . 80°C . 90°D . 100°3. (2分)(2011·宁波) 如图所示物体的俯视图是()A .B .C .D .4. (2分)(2017·洛阳模拟) 大树的价值很多,可以吸收有毒气体,防止大气污染,增加土壤肥力,涵养水源,为鸟类及其他动物提供繁衍场所等价值,累计计算,一棵50年树龄的大树总计创造价值超过160万元,其中160万元用科学记数法表示为()A . 1.6×105B . 1.6×106C . 1.6×107D . 1.6×1085. (2分)(2018·金华模拟) 下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A .B .C .D .6. (2分) (2020七下·郑州月考) 已知 a = -34 , b = (- 3) 4 , c = (23 ) 4 , d = (22 ) 6 ,则下列判断正确的是()A . a=b,c=dB . a=b,c¹dC . a¹b,c¹dD . a¹b,c=d7. (2分) (2015九上·丛台期末) 在Rt△ABC中,∠C=90°,sinB= ,则∠A的度数为()A . 30°B . 45°C . 60°D . 75°8. (2分)若关于x的不等式的解集为x<2,则a的取值范围是()A . a>﹣2B . a≥﹣2C . a≤﹣2D . a<﹣29. (2分)反映数据离散程度的特征数是()A . 中位数,众数和平均数B . 中位数,方差和标准差C . 平均数,方差和标准差D . 方差,极差和标准差10. (2分) (2019九上·凤翔期中) 已知平行四边形ABCD中,对角线AC、BD相交于O.则下列说法准确的是()A . 当时,平行四边形ABCD为矩形B . 当时,平行四边形ABCD为正方形C . 当时,平行四边形ABCD为菱形D . 当时,平行四边形ABCD为菱形11. (2分)(2017·桂平模拟) 如图,MN是⊙O的直径,MN=8,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为()A .B . 2C . 3D . 412. (2分)某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x,则可列方程为().A . 25(1+x)2=64B . 25(1-x)2=64C . 64(1+x)2=25D . 64(1-x)2=2514. (2分)(2017·东平模拟) 如图,直线y= 与双曲线y= (k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y= (k>0,x>0)交于点B,若OA=3BC,则k的值为()A . 3B . 6C .D .二、填空题. (共6题;共8分)15. (1分) (2016九上·平凉期中) 使分式的值等于零的x的值是________16. (3分)一般地,从n边形的一个顶点出发,可以作(n-3)条对角线,它们将n边形分为________个三角形,因此n边形的内角和是________个三角形的内角的和,即n边形的内角和等于________.17. (1分) (2012·盐城) 小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是________.18. (1分)设S1=1+ + ,S2=1+ + ,S3=1+ + ,…,Sn=1+ + ,设S=+ +…+ ,则S=________(用含n的代数式表示,其中n为正整数).19. (1分)如图所示,在△ABC中,∠C=90°,AC=BC=4cm.若以AC的中点O为旋转中心,将这个三角形旋转180°后,点B落在B′处,则BB′=________cm.20. (1分) (2016九上·广饶期中) 二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为________.三、解答题 (共7题;共80分)21. (5分)(2017·洛宁模拟) 先化简,再求值:,其中,a= +1.22. (15分) (2017九下·武冈期中) 为推广阳光体育“大课间”活动,某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目,为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的4名学生中有2名男生,2名女生.现从这4名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.23. (15分) (2018八下·江都月考) 【背景】已知:∥m∥n∥k ,平行线与m、m与n、n与k之间的距离分别为d1 , d2 , d3 ,且d1=d3=1,d2=2.我们把四个顶点分别在,m , n , k这四条平行线上的四边形称为“格线四边形” .(1)【探究1】如图1,正方形ABCD为“格线四边形”,BE⊥ 于点E,BE的反向延长线交直线k于点F.求正方形ABCD的边长.(2)【探究2】如图2,菱形ABCD为“格线四边形”且∠ADC=60°,△AEF是等边三角形,AE⊥k于点E,∠AFD=90°,直线DF分别交直线,k于点G、点M.求证:EC=DF.(3)【拓展】如图3,∥k,等边△ABC的顶点A,B分别落在直线 l,k上,AB⊥k于点B,且∠ACD=90°,直线CD分别交直线、k于点G、点M,点D、点E分别是线段GM、BM上的动点,且始终保持AD=AE,DH⊥ 于点H.猜想:DH在什么范围内,BC∥DE?并说明此时BC∥DE的理由.24. (10分)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.25. (10分)如图,在△ABC中,AC=BC,D是AC上一点,DE∥AB交BC于点E,且AD=DE,F是AB上一点,BF=BE,连接FD.(1)试判断四边形ADEB的形状,并说明理由;(2)求证:BE=FD.26. (10分) (2019九上·十堰期末) 如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的直线PC垂直,垂足为点D,直线DC与AB的延长线相交于点P,AC平分∠DAB,弦CE平分∠ACB,交AB于点F.(1)求证:直线PC是⊙O的切线;(2)当∠P=30°,AB=10时,求PF的长.27. (15分)(2019·琼中模拟) 已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、14-1、二、填空题. (共6题;共8分)15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共7题;共80分)21-1、22-1、22-2、22-3、23-1、23-2、23-3、24、答案:略25-1、25-2、26-1、26-2、27-1、27-2、27-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甘肃省天水市2018年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来。
)1.(4分)(2018•天水)下列四个数中,小于0的数是()A.﹣1;B.0;C.1;D.π考点:有理数大小比较.分析:在数轴上表示出各数,再根据数轴的特点进行解答即可.解答:解:如图所示:∵﹣1在0的左边,∴﹣1<0.故选A.点评:本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.2.(4分)(2018•天水)下列计算正确的是()A.a3+a2=2a5;‘B.(﹣2a3)2=4a6;C.(a+b)2=a2+b2;D.a6÷a2=a3考点:同底数幂的除法;幂的乘方与积的乘方;完全平方公式.分析:根据合并同类项法则;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;完全平方公式,同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.解答:解:A、a3和a2不是同类项不能合并,故本选项错误;B、(﹣2a3)2=4a6,正确;C、应为(a+b)2=a2+b2+2ab,故本选项错误;D、应为a6÷a2=a4,故本选项错误.故选B.点评:本题主要考查了同底数幂的除法,积的乘方,合并同类项,以及完全平方公式,是中学阶段的基础题目.3.(4分)(2018•天水)下列图形中,中心对称图形有()A.1个;B.2个;C.3个;D.4个考点:中心对称图形分析:根据中心对称图形的概念求解.解答:解:第一个图形是中心对称图形;第二个图形是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共3个中心对称图形.故选C.点评:掌握好中心对称图形的概念.中心对称图形关键是要寻找对称中心,旋转180度后两部分重合.4.(4分)(2018•天水)函数y1=x和y2=的图象如图所示,则y1>y2的x取值范围是()A.x<﹣1或x>1;B.x<﹣1或0<x<1;C.﹣1<x<0或x>1;D.﹣1<x<0或0<x<1考点:反比例函数与一次函数的交点问题.专题:计算题.分析:由两函数的交点横坐标,利用图象即可求出所求不等式的解集.解答:解:由图象得:y1>y2的x取值范围是﹣1<x<0或x>1.故选C点评:此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握数形结合思想是解本题的关键.5.(4分)(2018•天水)如图,直线l1∥l2,则∠α为()A.150°;B.140°;C.130°;D.120°;考点:平行线的性质;对顶角、邻补角;同位角、内错角、同旁内角.专题:计算题.分析:本题主要利用两直线平行,同旁内角互补以及对顶角相等进行做题.解答:解:∵l1∥l2,∴130°所对应的同旁内角为∠1=180°﹣130°=50°,又∵α与(70°+50°)的角是对顶角,∴∠α=70°+50°=120°.故选D.点评:本题重点考查了平行线的性质及对顶角相等,是一道较为简单的题目.6.(4分)(2018•天水)一个三角形的两边长分别为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是()A.11;B.11或13;C.13;D.以上选项都不正确考点:解一元二次方程-因式分解法;三角形三边关系专题:计算题.分析:由两数相乘积为0,两数中至少有一个为0求出方程的解得到第三边长,即可求出周长.解答:解:方程(x﹣2)(x﹣4)=0,可得x﹣2=0或x﹣4=0,解得:x=2或x=4,当x=2时,2,3,6不能构成三角形,舍去;则x=4,此时周长为3+4+6=13.故选C点评:此题考查了解一元二次方程﹣因式分解法,以及三角形的三边关系,求出x的值是解本题的关键.7.(4分)(2018•天水)一组数据:3,2,1,2,2的众数,中位数,方差分别是()A.2,1,0.4;B.2,2,0.4;C.3,1,2;D.2,1,0.2考点:方差;中位数;众数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均)数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.利用方差公式计算方差.解答:解:从小到大排列此数据为:3,2,1,2,2;数据2出现了三次最多为众数,2处在第5位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为[(3﹣2)2+3×(2﹣2)2+(1﹣2)2]=0.4,即中位数是2,众数是2,方差为0.4.故选B.点评:本题属于基础题,考查了确定一组数据的中位数、方差和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.8.(4分)(2018•天水)从一块正方形的木板上锯掉2m宽的长方形木条,剩下的面积是48m2,则原来这块木板的面积是()A.100m2;B.64m2;C.121m2;D.144m2考点:一元二次方程的应用.专题:几何图形问题.分析:从一块正方形木板上锯掉2m宽的长方形木条,剩下的仍然是一个长方形,此时这个长方形的长等于原来正方形木板的边长,宽等于正方形木板的边长减去2m,根据剩下的长方形的面积是48m2,列出方程,求出解,进而求出原来正方形木板的面积.解答:解:设原来正方形木板的边长为xm.由题意,可知x(x﹣2)=48,解得x1=8,x2=﹣6(不合题意,舍去).所以8×8=64.故选B.点评:本题考查了一元二次方程的应用,理解从一块正方形木板上锯掉2m宽的长方形木条,剩下的仍然是一个长方形,是解本题的关键.9.(4分)(2018•天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长;B.2OM的长;C.CD的长;D.2CD的长考点:圆周角定理;锐角三角函数的定义.分析:作直径AE,连接BE.得直角三角形ABE.根据圆周角定理可证∠CBD=∠MAO,运用三角函数定义求解.解答:解:连接AO并延长交圆于点E,连接BE.则∠C=∠E,由AE为直径,且BD⊥AC,得到∠BDC=∠ABE=90°,所以△ABE和△BCD都是直角三角形,所以∠CBD=∠EAB.又△OAM是直角三角形,∵AO=1,∴sin∠CBD=sin∠EAB==OM,即sin∠CBD的值等于OM 的长.故选A.点评:考查了圆周角定理和三角函数定义.此题首先要观察题目涉及的线段,然后根据已知条件结合定理进行角的转换.10.(4分)(2018•天水)如图,已知等边三角形ABC的边长为2,E、F、G分别是边AB、BC、CA的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y与x的函数图象大致是()A.;B.;C.;D.考点:动点问题的函数图象.专题:探究型.分析:根据题意可知△AEG≌△BEF≌△CFG三个三角形全等,且在△AEG中,AE=x,AG=2﹣x;可得△AEG的面积y与x的关系;进而可判断得则y关于x的函数的图象的大致形状.解答:解:∵AE=BF=CG,且等边△ABC的边长为2,∴BE=CF=AG=2﹣x;∴△AEG≌△BEF≌△CFG.在△AEG中,AE=x,AG=2﹣x,∵S△AEG=AE×AG×sinA=x(2﹣x);∴y=S△ABC﹣3S△AEG=﹣3×x(2﹣x)=(x2﹣x+1).∴其图象为二次函数,且开口向上.故选C.点评:本题考查动点问题的函数图象,解答本题的关键是求出y与x的函数关系式,另外要求能根据函数解析式判断函数图象的形状.二、填空题(本大题共8小题,每小题4分,共32分。
只要求填写最后结果)11.(4分)(2018•天水)已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是(﹣1,1).考点:坐标与图形变化-平移.分析:直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.解答:解:原来点的横坐标是3,纵坐标是﹣2,向左平移4个单位,再向上平移3个单位得到新点的横坐标是3﹣4=﹣1,纵坐标为﹣2+3=1.则点N的坐标是(﹣1,1).故答案填:(﹣1,1).点评:解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.12.(4分)(2018•天水)从1至9这9个自然数中任取一个数,使它既是2的倍数又是3的倍数的概率是.考点:概率公式.分析:从1到9这9个自然数中,既是2的倍数,又是3的倍数只有6一个,所以既是2的倍数,又是3的倍数的概率是九分之一.解答:解:∵既是2的倍数,又是3的倍数只有6一个,∴P(既是2的倍数,又是3的倍数)=.故答案为:.点评:本题考查了统计与概率中概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)(2018•天水)已知分式的值为零,那么x的值是1.考点:分式的值为零的条件.专题:计算题.分析:分式的值是0的条件是,分子为0,分母不为0.解答:解:根据题意,得x2﹣1=0且x+1≠0,解得x=1.故答案为1.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.(4分)(2018•天水)如图所示,在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=12,BD=5,则这个梯形中位线的长等于 6.5.考点:梯形中位线定理.分析:作DE∥AC,交BC的延长线于E,则四边形ACED为平行四边形,根据已知及平行四边形的性质得梯形的中位线等于BE的一半,根据勾股定理可求得BE的长,从而不难求得其中位线的长.解答:解:作DE∥AC,交BC的延长线于E,则四边形ACED为平行四边形∴AD=CE ∵AC⊥BD∴∠BDE=90°∴梯形的中位线长=(AD+BC)=(CE+BC)=BE∵BE===13∴梯形的中位线长=×13=6.5.故答案为:6.5.点评:本题考查了梯形的中位线定理,解答此题的关键是作出辅助线,构造出平行四边形和直角三角形,将求梯形中位线转化为求直角三角形斜边的问题来解答.15.(4分)(2018•天水)有两块面积相同的小麦试验田,分别收获小麦9000kg和15000kg.已知第一块试验田每公顷的产量比第二块少3000kg,若设第一块试验田每公顷的产量为xkg,根据题意,可得方程.考点:由实际问题抽象出分式方程分析:关键描述语是:“两块面积相同的小麦试验田”;等量关系为:第一块试验田的面积=第二块试验田的面积.解答:解:第一块试验田的面积为:,第二块试验田的面积为:.方程应该为:.点评:列方程解应用题的关键步骤在于找相等关系,找到关键描述语,找到等量关系是解决问题的关键.16.(4分)(2018•天水)已知⊙O1的半径为3,⊙O2的半径为r,⊙O1与⊙O2只能画出两条不同的公共切线,且O1O2=5,则⊙O2的半径为r的取值范围是2<r<8.考点:圆与圆的位置关系.分析:首先根据两圆的公切线的条数确定两圆的位置关系,然后根据一圆的半径和圆心距确定另一个半径的取值范围;解答:解:∵⊙O1与⊙O2只能画出两条不同的公共切线,∴两圆的位置关系为相交,∵⊙O1的半径为3,⊙O2的半径为r,O1O2=5,∴r﹣3<5<r+3解得:2<r<8.故答案为:2<r<8.点评:本题考查了圆与圆的位置关系,本题的关键是判断两圆的位置关系.17.(4分)(2018•天水)如图所示,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,且∠EAF=80°,则图中阴影部分的面积是4﹣π.考点:切线的性质;扇形面积的计算.专题:计算题.分析:连结AD,根据切线的性质得AD⊥BC,则S=AD•BC,然后利用S阴影部分=S△ABC﹣S扇形AEF△ABC和扇形的面积公式计算即可.解答:解:连结AD,如图,∵⊙A与BC相切于点D,∴AD⊥BC,∴S=AD•BC,△ABC∴S阴影部分=S△ABC﹣S扇形AEF=×2×4﹣=4﹣π.故答案为4﹣π.点评:本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了扇形的面积公式.18.(4分)(2018•天水)观察下列运算过程:S=1+3+32+33+…+32018+32018①,①×3得3S=3+32+33+…+32018+32018②,②﹣①得2S=32018﹣1,S=.运用上面计算方法计算:1+5+52+53+…+52018=.考点:整式的混合运算.专题:整体思想.分析:首先根据已知设S=1+5+52+53+…+524+525 ①,再将其两边同乘5得到关系式②,②﹣①即可求得答案.解答:解:设S=1+5+52+53+…+52018 ①,则5S=5+52+53+54…+52018②,②﹣①得:4S=52018﹣1,所以S=.故答案为.点评:此题考查了有理数的乘方运算,考查了学生的观察与归纳能力.题目难度不大,解题时需细心.三、解答题(本大题共3小题,共28分。