浙大微分几何习题

合集下载

微分几何练习题库及答案

微分几何练习题库及答案

《微积分几何》复习题 本科 第一部分:练习题库及答案一、填空题(每题后面附有关键词;难易度;答题时长)第一章1.已知(1,1,1),(1,0,1)=-=-a b ,则这两个向量的夹角的余弦θcos =36 2.已知(0,1,1),(1,0,1)=-=-a b ,求这两个向量的向量积⨯=a b (-1,-1,-1). 3.过点)1,1,1(P 且与向量(1,0,1)=-a 垂直的平面方程为*-Z=04.求两平面0:1=++z y x π与12:2=+-z y x π的交线的对称式方程为21131--=-=+z y x 5.计算232lim[(31)]t t t →+-+=i j k 138-+i j k .6.设()(sin )t t t =+f i j ,2()(1)tt t e =++g i j ,求0lim(()())t t t →⋅=f g 0.7.已知(,)(,,)u v u v u v uv =+-r ,其中2t u =,t v sin =,则d d t=r(2cos ,2cos ,2cos )t t t t vt u t +-+ 8.已知t =ϕ,2t =θ,则d (,)d tϕθ=r (sin cos 2cos sin ,sin sin 2cos cos ,cos )a at a at a ϕθϕθϕθϕθϕ---+ 9.已知42()d (1,2,3)t t =-⎰r ,64()d (2,1,2)t t =-⎰r ,求4622()d ()d t t t t ⨯+⋅⋅=⎰⎰a r b a r )5,9,3(-,其中(2,1,1)=a ,(1,1,0)=-b10.已知()t '=r a (a 为常向量),求()t =r t +a c 11.已知()t t '=r a ,(a 为常向量),求()t =r 212t +a c 12.已知()(2)(log )t t t =++f j k ,()(sin )(cos )t t t =-g i j ,0t >,则4d()d d t t ⋅=⎰f g 4cos 62-. 第二章13.曲线3()(2,,)tt t t e =r 在任意点的切向量为2(2,3,)tt e14.曲线()(cosh ,sinh ,)t a t a t at =r 在0t =点的切向量为(0,,)a a 15.曲线()(cos ,sin ,)t a t a t bt =r 在0t =点的切向量为(0,,)a b16.设有曲线2:,,t t C x e y e z t -===,当1t =时的切线方程为2111-=--=-z ee y e e x 17.设有曲线tt t e z t e y t e x ===,sin ,cos ,当0t =时的切线方程为11-==-z y x 第三章18.设(,)u v =r r 为曲面的参数表示,如果u v ⨯≠r r 0,则称参数曲面是正则的;如果:()G G →r r 是 一一的,则称参数曲面是简单的.19.如果u -曲线族和v -曲线族处处不相切,则称相应的坐标网为正规坐标网.(坐标网;易;3分钟) 20.平面(,)(,,0)u v u v =r 的第一基本形式为22d d u v +,面积元为d d u v21.悬链面(,)(cosh cos ,cosh sin ,)u v u v u v u =r 2cosh E u =,0F =,2cosh G u =22.曲面z axy =上坐标曲线0x x =,0y y =223.正螺面(,)(cos ,sin ,)u v u v u v bv =r 的第一基本形式是2222d ()d u u b v ++. 24.双曲抛物面(,)((),(),2)u v a u v b u v uv =+-r 的第一基本形式是2222222222(4)d 2(4)d d (4)d a b v u a b uv u v a b u v +++-++++25.正螺面(,)(cos ,sin ,)u v u v u v bv =r 的平均曲率为0.(正螺面、第一基本量、第二基本量;中;3分钟) 26.方向(d)d :d u v =2227.两个方向(d)d :d u v =和(δ)δ:δu v =共轭的充要条件是(d ,δ)0=II r r 或d δ(d δd δ)d δ0L u u M u v v u N v v +++= 28.函数λ是主曲率的充要条件是0E LF MF MG Nλλλλ--=--29.方向(d)d :d u v =是主方向的充要条件是d d d d 0d d d d E u F vL u M vF uG v M u N v++=++30.根据罗德里格定理,如果方向(d)(d :d )u v =是主方向,则d d n κ=-n r ,其中n κ是沿(d)方向的法曲率 31.旋转极小曲面是平面或悬链面 第四章32.高斯方程是k ij ij kij kL =Γ+∑r rn ,,1,2i j =,魏因加尔吞方程为,kj i ik i j kL g =-∑n r ,,1,2i j =33.ij g 用ij g 表示为221212111()det()ijij g g g g g g -⎛⎫=⎪-⎝⎭. 34.测地曲率的几何意义是曲面S 上的曲线()C 在P 点的测地曲率的绝对值等于()C 在P 点的切平面∏上的正投影曲线()C *的曲率35.,,g n κκκ之间的关系是222g n κκκ=+.36.如果曲面上存在直线,则此直线的测地曲率为 0 .37.测地线的方程为22,d d d 0,1,2d d d k i jk ij i ju u u k s s s +Γ==∑ 38.高斯-波涅公式为1d d ()2kgii GGK s σκπαπ=∂++-=∑⎰⎰⎰39.如果G ∂是由测地线组成,则高斯-波涅公式为1d ()2kii GK σπαπ=+-=∑⎰⎰.二、单选题第一章40.已知(1,0,1)=--a ,(1,2,1)=-b ,则这两个向量的内积⋅a b 为( C ).(内积;易;2分钟) A 2 B 1- C 0 D 141.求过点(1,1,1)P 且与向量(1,0,1)=--a 平行的直线的方程是( A ).(直线方程;易;2分钟)A ⎩⎨⎧==1y z x B 1321+==-z yxC 11+==+z y xD ⎩⎨⎧==1z yx42.已知(1,1,1),(1,0,1),(1,1,1)=-=-=a b c ,则混合积为( D ).(混合积;较易;2分钟) A 2 B 1- C 1 D 2-43.已知()(,,)ttt e t e -=r ,则(0)''r 为( A ).(导数;易;2分钟)A (1,0,1) B (-1,0,1) C (0,1,1) D (1,0,-1)44.已知()()t t λ'=r r ,λ为常数,则()t r 为( C ).(导数;易;2分钟) At λa B λa C t e λa D e λa上述a 为常向量.45.已知(,)(,,)x y x y xy =r ,求d (1,2)r 为( D ).(微分;较易;2分钟) A (d ,d ,d 2d )x y x y + B (d d ,d d ,0)x y x y +- 第二章46.圆柱螺线(cos ,sin ,)t t t =r 的切线与z 轴( C ).(螺线、切向量、夹角;较易、2分钟) A 平行 B 垂直 C 有固定夹角4π D 有固定夹角3π47.设有平面曲线:()C s =r r ,s 为自然参数,α,β是曲线的基本向量.下列叙述错误的是(C ). A α为单位向量 B ⊥αα C κ=-αβ D κ=-βα 48.直线的曲率为( B ).(曲率;易;2分钟)A –1 B 0 C 1 D 249.关于平面曲线的曲率:()C s =r r 不正确的是( D ).(伏雷内公式;较易;2分钟) A()()s s κ=α B ()()s s κϕ=,ϕ为()s α的旋转角C ()s κ=-⋅αβ D ()|()|s s κ=r50.对于平面曲线,"曲率恒等于0”是"曲线是直线”的( D ).(曲率;易;2分钟) A 充分不必要条件 B 必要不充分条件 C 既不充分也不必要条件 D 充要条件 51.下列论述不正确的是( D ).(基本向量;易;2分钟) A α,β,γ均为单位向量 B ⊥αβ C ⊥βγ D //αβ52.对于空间曲线C,"曲率为零”是"曲线是直线”的( D ).(曲率;易;2分钟) A 充分不必要条件 B 必要不充分条件 C 既不充分也不必要条件 D 充要条件 53.对于空间曲线C ,"挠率为零”是"曲线是直线”的( D ).(挠率;易;2分钟) A 充分不必要条件 B 必要不充分条件 C 既不充分也不必要条件 D 充要条件 54.2sin4),cos 1(),sin (t a z t a y t t a x =-=-=在点2π=t 的切线与z 轴关系为( D ). A 垂直 B 平行 C 成3π的角 D 成4π的角 第三章55.椭球面2222221x y z a b c++=的参数表示为(C ).(参数表示;易;2分钟)A (,,)(cos cos ,cos sin ,sin )x y z ϕθϕθϕ=B (,,)(cos cos ,cos sin ,sin )x y z a b ϕθϕθϕ=C (,,)(cos cos ,cos sin ,sin )x y z a b c ϕθϕθϕ=D (,,)(cos cos ,sin cos ,sin 2)x y z a b c ϕθϕθθ=56.以下为单叶双曲面2222221x y z a b c+-=的参数表示的是(D ).(参数表示;易;2分钟)A (,,)(cosh sin ,cosh cos ,sinh )x y z a u v b u v u =B (,,)(cosh cos ,cosh sin ,sinh )x y z u v u v u =C (,,)(sinh cos ,sinh sin ,cosh )x y z a u v b u v c u =D (,,)(cosh cos ,cosh sin ,sinh )x y z a u v b u v c u =57.以下为双叶双曲面2222221x y z a b c+-=-的参数表示的是(A ).(参数表示;易;2分钟)A (,,)(sinh cos ,sinh sin ,cosh )x y z a u v b u v c u =B (,,)(cosh cos ,sinh sin ,cosh )x y z a u v b u v c u =C (,,)(cosh cos ,cosh sin ,sinh )x y z a u v b u v c u =D (,,)(cosh cos ,cosh sin ,sinh )x y z u v u v u =58.以下为椭圆抛物面22222x y z a b+=的参数表示的是(B ).(参数表示;易;2分钟)A 2(,,)(cos ,sin ,)2u x y z u v u v =B 2(,,)(cos ,sin ,)2u x y z au v bu v =C 2(,,)(cosh ,sinh ,)2u x y z au v bu v = D (,,)(cos ,sin ,)x y z a v b v v =59.以下为双曲抛物面22222x y z a b-=的参数表示的是(C ).(参数表示;易;2分钟)A (,,)(cosh ,sinh ,)x y z a u b u u =B (,,)(cosh ,sinh ,)x y z u u u =C (,,)((),(),2)x y z a u v b u v uv =+-D (,,)(,,)x y z au bv u v =-60.曲面2233(,)(2,,)u v u v u v u v =-+-r 在点(3,5,7)M 的切平面方程为(B ).(切平面方程;易;2分钟)A 2135200x y z +-+=B 1834410x y z +--=C 756180x y z +--=D 1853160x y z +-+=61.球面(,)(cos cos ,cos sin ,sin )u v R u v R u v R u =r 的第一基本形式为(D ).(第一基本形式;中;2分钟)A 2222(d sin d )R u u v + B 2222(d cosh d )R u u v + C 2222(d sinh d )R u u v + D 2222(d cos d )R u u v +62.正圆柱面(,)(cos ,sin ,)u v R v R v u =r 的第一基本形式为( C ).(第一基本形式;中;2分钟)A 22d d u v +B 22d d u v -C 222d d u R v +D 222d d u R v -63.在第一基本形式为222(d ,d )d sinh d u v u u v =+I 的曲面上,方程为12()u v v v v =≤≤的曲线段的弧长为(B ).(弧长;中;2分钟)A 21cosh cosh v v -B 21sinh sinh v v -C 12cosh cosh v v -D 12sinh sinh v v -64.设M 为3R 中的2维2C 正则曲面,则M 的参数曲线网为正交曲线网的充要条件是( B ).A 0E =B 0F =C 0G =D 0M = 65.以下正确的是( D ).(魏因加尔吞变换;较易;2分钟)A d (d )=n rB d (d )u =n rC d (d )u v =n r D d (d )=-n r66.以下正确的是( C ).(魏因加尔吞变换;较易;2分钟) A (d ,(δ))(d ,δ)=-I r r II r r B (d ,(δ))((δ),d )=-I r r I r r C (d ,(δ))((d ),δ)=I r r I r r D (d ,(δ))((d ),δ)=I r r II r r67.以下正确的是(A ).(魏因加尔吞变换;较易;2分钟) A (d ,(δ))(d ,δ)=I r r II r r B (d ,(δ))((d ),δ)=I r r II r r C (d ,(δ))((d ),δ)=-I r r I r r D (d ,(δ))((d ),δ)=II r r II r r68.高斯曲率为常数的的曲面叫(C ).(高斯曲率;易;2分钟) A 极小曲面 B 球面 C 常高斯曲率曲面 D 平面 第四章 B 69.,___________ijji i jgg =∑.(第一基本形式;易;2分钟) A 1 B 2 C 0 D -1 B 70.______j kjl jgδ=∑.(第一基本形式;易;2分钟) A kj g B kl g C ki g D ij g A 71.________kij Γ=.(克氏符号;较易;2分钟)A 1()2jl ijkl il j il i g g g g u u u ∂∂∂+-∂∂∂∑ B 1()2jl ijkl il j i l ig g g g u u u ∂∂∂--∂∂∂∑C1()2jl ij kl il j i l i g g g g u u u ∂∂∂++∂∂∂∑ D 1()2jl ijkl il j i l ig g g g u u u ∂∂∂-+∂∂∂∑ A 72.曲面上直线(如果有的话)的测地曲率等于_____.A 0B 1C 2D 3B 73.当参数曲线构成正交网时,参数曲线u-曲线的测地曲率为_____.(*维尔定理、测地曲率;中;4分钟)ABCD A 74.如果测地线同时为渐进线,则它必为_____.(测地曲率、法曲率、曲率;中;2分钟) A 直线 B 平面曲线 C 抛物线 D 圆柱螺线B 75.在伪球面(1)K ≡-上,任何测地三角形的内角之和____.(高斯-波涅定理;中;4分钟)A 等于πB 小于πC 大于πD 不能确定三、多选题第一章76.若()((),(),()),1,2,3i i i i t x t y t z t i ==r 为向量函数,则下列论述正确的是( AD ).(导数;易;4分钟)A 1111()((),(),())t x t y t z t ''''=r B 1111111111()((),(),())((),(),())((),(),())t x t y t z t x t y t z t x t y t z t ''''=++r C 123123((),(),())((),(),())t t t t t t ''''=r r r r r r D 123((),(),())t t t 'r r r 123123123((),(),())((),(),())((),(),())t t t t t t t t t '''=++r r r r r r r r r E 123123((),(),())((),(),())t t t t t t ''=r r r r r r77.m,n 为常向量,()t r 为向量函数,则下述正确的是( ABC ).(积分的性质;中;4分钟)A()d ()d bbaat t t t ⋅=⋅⎰⎰m r m r B ()d ()d bbaat t t t ⨯=⨯⎰⎰m r m rC(,,())d ()()d bbaat t t t =⨯⎰⎰m n r m n r D (,,())d ()()d bbaat t t t =⋅⎰⎰m n r m n rE(,,())d ()()d bbaat t t t =⨯⨯⎰⎰m n r m n r第二章78.下列曲线中为正则曲线的有(ACDE )。

浙江大学《微积分(1)》历年期末考试试题

浙江大学《微积分(1)》历年期末考试试题
x→0 1
13、 求 lim(sin 2 x + cos x) x .
2
x→0
2 + cos x x2 14、 求 lim( ) . x→0 3
1
第 2 页 共 10 页
1 − 1 − x2 1 15、 若 lim = , 求: a 的值. x→0 xa 2 1 2 n n 16、 设 un = ( 1 + ( ) 1 + ) L ( 1 + ) ,求: lim un . n →∞ n n n

1 ( f (a ) + f (b)) . 2
三、
1、 求 2、 求
不定积分
∫x
2
2x + 1 dx . + 2x + 2 1
2
∫ ( x + 1)( x
1
2
+ 1)
dx
3、 求
∫ x ( x + 1) dx . ∫
3
4、 求
1 dx . x+5x
5、 求
arcsin e x ∫ e x dx . arctan e x ∫ e2 x dx .
x 24、 设 x > 0, 证明 f ( x) = ( x − 4) e 2 − ( x − 2)e + 2 < 0 . 2 2 25、 证明:若 e < a < b < e 2, 则 ln b − ln a > x
4 (b − a ). e2
第 4 页 共 10 页
e x sin x 26、 已知 F ( x ) = x a
5、 设 y = x ln(1 + x ) ,求: y 对 x 的 10 阶导数 y (10) ( x) .

浙江大学微积分一习题解答 第零,一,二章(秋冬)

浙江大学微积分一习题解答 第零,一,二章(秋冬)

u n +1 un
= (1 + = (1 +
n n 1 1 n +1 1 n +1 ) (1 + ) − n = (1 + ) ( ) n +1 n n +1 n +1
1 −1 1 −1 n +1 1 n +1 1 n 1 ) (1 − ) = (1 − > (1 − ) ) ) n +1 (1 − ) (1 − n +1 n +1 n +1 n +1 ( n + 1) 2 ( n + 1) 2
f ( x1 + x 2 ) f ( x1 + x 2 ) f (x 2 ) f ( x1 ) ≤ , ≤ x1 x1 + x 2 x1 + x 2 x2
x 1 f ( x 1 + x 2 ) ≤ ( x 1 + x 2 ) f ( x 1 ) , x 2 f ( x 1 + x 2 ) ≤ ( x 1 + x 2 )f ( x 2 )
# 题 4(4) (p69) 【7】 『证』 用夹逼准则证明
1 + n 2 + ... + n n =1 n → +∞ n lim
1=
n 1 + n 2 + ... + n n n n n n < < = n n n n
故由夹逼准则,极限为 1。# 题 6(3) (p69) 【8】 『解』 可以。可用数列极限的定义来证。 若 a=0,则反之也成立。否则不成立。如数列 {( −1) n } #
=1 且
1 x
>G。故可取 x=

(完整版)浙江师范大学《微分几何》考试模拟卷

(完整版)浙江师范大学《微分几何》考试模拟卷

浙江师范大学《微分几何》考试模拟卷(A 卷)说明:考生应有将全部答案写在答题纸上,否则作无效处理一、判断题(正确打√,错误打×)(每小题2分,共10分)1、等距变换一定是保角变换 ( )2、空间曲线的形状由曲率与挠率唯一确定. ( )3、二阶微分方程22A(,)2B(,)B(,)0u v du u v dudv u v dv ++=总表示曲面上两族曲线.( )4、连接曲面上两点的所有曲线段中,测地线一定是最短的 ( )5、坐标曲线网是正交网的充要条件是0F =,这里F 是第一基本量( ). 1。

× 2。

√ 3。

× 4。

× 5. √二、填空题(每小题3分,共15分)1. 半径为R 的圆的曲率为_________。

2. 曲面的坐标曲线网正交的充要条件是_____________,3. 坐标曲线网成为曲率线网的充要条件是______________.4. 在脐点处曲面的第一, 第二类基本量满足____________________,5. 使法曲率达到最大值和最小值的方向是________________方向.1。

1R2。

F=0 3。

0F M == 4。

E F GL M N==, 5、 主方向三、计算题(第1小题各18分,,第2、3、4小题各10分,共48分)1. 已知空间正则参数曲线32(){cos ,sin ,cos 2}r t t t t =(1) 求基本向量,,αβγ。

(2) 求()r t 的曲率和挠率(0)2t π<<.解: ,22{3sin cos ,3sin cos ,2sin 2}r t t t t t =--,,2223,,,2332,,,,2{3cos 6sin cos ,6sin cos 3sin ,4cos 2}{21sin cos 6sin ,6cos 21sin cos ,8sin 2}5sin cos 3sin 2{cos ,sin ,}4r t t t t t t t r t t t t t t t r t tr r t t t =-+--=--=⨯=--,,,215sin 24r r t ⨯=所以,曲率k 和挠率τ为325sin cos k t t =425sin cos t tτ=sin cos {3cos ,3sin ,4}5sin cos t tt t t tα=--443{cos ,sin ,}555t t γ=-- sin cos {sin ,cos ,0}sin cos t tt t t tβγα=⨯=2、求抛物面22()z a x y =+在原点处的主曲率、高斯曲率和平均曲率,并判断原点是否为脐点。

浙江大学城市学院微积分II(丙)练习册全部答案

浙江大学城市学院微积分II(丙)练习册全部答案

第八章 微分方程初步第一节 微分方程的概念1. 验证函数212y C x C x =+是否为微分方程2220yy y x x'''-+=的解.解:122y C C x y C '''=+=2, 2, 代入方程:()221212222222()0y y y C C C x C x C x x x x x'''-+=-⋅+++=22 因此是解。

2.验证由方程22x xy y C -+=所确定的函数为微分方程(2)2x y y x y '-=-的通解.解:对22x xy y C -+=两边求导,有2()20x y xy yy ''-++=,即有 (2)2x y y x y '-=-,是解有因为解中一个任意常数,任意常数个数与微分方程阶数相同,因此是通解。

3.验证函数1212()(,xy C C x e C C -=+为任意常数)是微分方程20y y y '''++=的通解,并求满足初始条件004,2,x x y y =='==-的特解.解:2122122212212()(),()(2),x x x x x x y C e C C x e C C C x e y C e C C C x e C C C x e ------'=-+=--''=----=--- 将上式代入方程左边有:21221212(2)2()()0x x x C C C x e C C C x e C C x e ------+--++=,有因为解中2个任意常数,任意常数个数与微分方程阶数相同,因此是通解。

由004,2,x x y y =='==-得: 124,2C C ==特解:(42)xy x e -=+第二节一阶微分方程1、求下列可分离变量微分方程的通解(或特解)(1)0 xydx=解:1,dyy= 11211,(1)ln, ln,,C Cdy x yyy Cy y e--=-=+==±⋅=⎰(20 +=解:,=,=()21,y=-arcsin,x C=即为通解(3)212,0x yxy xe y-='==解: 22,,x y y xdyxe e e dy xe dxdx-=⋅=()()22222222221,,211,,221111,ln,2224y x y xy x x y x xy x x x xe dy xe dx e xdee xe e dx e xe e dxe xe e C y xe e C===-=-⎛⎫⎛⎫=-+=-+⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰⎰由12xy==,得1,C=211ln()122xy x e⎡⎤=-+⎢⎥⎣⎦(4)23(4),1xx x y y y='-==.解:22,,(4)(4)dy dx dy dxy x x y x x==--⎰⎰()411111ln,ln ln ln4,4441ln ln,,4444Cy dx y x x Cx xC xx xy C y ex x x=+=--+-=+=±⋅=---⎰ 由31xy==,得113C=,43(4)xyx=-。

微分几何练习题库及参考答案已修改

微分几何练习题库及参考答案已修改

《微分几何》复习题与参考答案一、填空题1.极限232lim[(31)i j k]t t t →+-+=138i j k -+. 2.设f ()(sin )i j t t t =+,2g()(1)i j t t t e =++,求0lim(()())t f t g t →⋅= 0 . 3.已知{}42r()d =1,2,3t t -⎰, {}64r()d =2,1,2t t -⎰,{}2,1,1a =,{}1,1,0b =-,则4622()()a r t dt+b a r t dt=⨯⋅⋅⎰⎰{}3,9,5-. 4.已知()r t a '=(a 为常向量),则()r t =ta c +.5.已知()r t ta '=,(a 为常向量),则()r t = 212t a c +. 6. 最“贴近”空间曲线的直线和平面分别是该曲线的___ 切线___和 密切平面____.7. 曲率恒等于零的曲线是_____ 直线____________ .8. 挠率恒等于零的曲线是_____ 平面曲线________ . 9. 切线(副法线)和固定方向成固定角的曲线称为 一般螺线 .10. 曲线()r r t =在t = 2处有3αβ=,则曲线在t = 2处的曲率k = 3 .11. 若在点00(,)u v 处v 0u r r ⨯≠,则00(,)u v 为曲面的_ 正常______点.12. 已知()(2)(ln )f t t j t k =++,()(sin )(cos )g t t i t j =-,0t >,则40()d f g dt dt ⋅=⎰4cos 62-. 13.曲线{}3()2,,t r t t t e =在任意点的切向量为{}22,3,t t e .14.曲线{}()cosh ,sinh ,r t a t a t at =在0t =点的切向量为{}0,,a a .15.曲线{}()cos ,sin ,r t a t a t bt =在0t =点的切向量为{}0,,a b . 16.设曲线2:,,t t C x e y e z t -===,当1t =时的切线方程为2111-=--=-z e e y e e x . 17.设曲线t t t e z t e y t e x ===,sin ,cos ,当0t =时的切线方程为11-==-z y x .18. 曲面的曲纹坐标网是曲率线网的充要条件是____F =M =0_ ______________.19. u -曲线(v -曲线)的正交轨线的微分方程是 _____ E d u +F d v =0(F d u +G d v =0)__.20. 在欧拉公式2212cos sin n k k k θθ=+中,θ是 方向(d) 与u -曲线 的夹角.21. 曲面的三个基本形式,,I II III 、高斯曲率K 、平均曲率H 之间的关系是20H K III -II +I = .22.已知{}r(,),,u v u v u v uv =+-,其中2,sin u t v t ==,则dr d t ={}2cos ,2cos ,2cos t t t t vt u t +-+. 23.已知{}r(,)cos cos ,cos sin ,sin a a a ϕθϕθϕθϕ=,其中t =ϕ,2t =θ,则dr(,)d tϕθ={}sin cos 2cos sin ,sin sin 2cos cos ,cos a at a at a ϕθϕθϕθϕθϕ---+. 24.设(,)r r u v =为曲面的参数表示,如果0u v r r ⨯≠,则称参数曲面是正则的;如果:()r G r G → 是 一一对应的 ,则称曲面是简单曲面.25.如果u -曲线族和v -曲线族处处不相切,则称相应的坐标网为 正规坐标网 .26.平面{}r(,),,0u v u v =的第一基本形式为22d d u v +,面积微元为d d u v .27.悬链面{}r(,)cosh cos ,cosh sin ,u v u v u v u =第一基本量是22cosh 0,cosh E u F G u ===,.28.曲面z axy =上坐标曲线0x x =,0y y =2.29.正螺面{}(,)cos ,sin ,r u v u v u v bv =的第一基本形式是2222d ()d u u b v ++.30.双曲抛物面{}r(,)(),(),2u v a u v b u v uv =+-的第一基本形式是2222222222(4)d 2(4)d d (4)d a b v u a b uv u v a b u v +++-++++.31.正螺面{}(,)cos ,sin ,r u v u v u v bv =的平均曲率为 0 .32.方向(d)d :d u v =是渐近方向的充要条件是22()020n k d Ldu Mdudv Ndv =++=或.33. 方向(d)d :d u v =和(δ)δ:δu v =共轭的充要条件是(,)0()0dr δr Ldu δu M du δv dv δu Ndv δv =+++=II 或.34.λ是主曲率的充要条件是0E LF M F MG Nλλλλ--=--. 35.(d)d :d u v =是主方向的充要条件是22d d d d 00d d d d dv dudv du E u F v L u M v E F G F u G v M u N v L M N-++==++或. 36. 根据罗德里格斯定理,如果方向(d)(d :d )u v =是主方向,则n n dn k dr k =-,其中是沿方向(d)的法曲率.37.旋转曲面中的极小曲面是平面 或悬链面.38.测地曲率的几何意义是曲面S 上的曲线在P 点的测地曲率的绝对值等于(C )在P 点的切平面?上的正投影曲线(C*)的曲率.39.,,g n k k k 之间的关系是222g n k k k =+.40.如果曲面上存在直线,则此直线的测地曲率为 0 .41.正交网时测地线的方程为d ds du dsdv dsθθθ⎧⎪⎪⎪⎨⎪⎪⎪⎩. 42.曲线是曲面的测地线,曲线(C )上任一点在其切平面的正投影曲线是 直线 .二、单项选择题1.已知{}(),,t t r t e t e -=,则r (0)''为( A ).A. {}1,0,1;B. {}1,0,1-;C. {}0,1,1;D. {}1,0,1-.2.已知()()r t r t λ'=,λ为常数,则()r t 为( C ).A. ta λ;B. a λ;C. t e a λ;D. e a λ.其中a 为常向量.3. 曲线(C)是一般螺线,以下命题不正确的是( D ).A .切线与固定方向成固定角;B .副法线与固定方向成固定角;C .主法线与固定方向垂直;D .副法线与固定方向垂直.4. 曲面在每一点处的主方向( A )A .至少有两个;B .只有一个;C .只有两个;D .可能没有.5.球面上的大圆不可能是球面上的( D )A .测地线;B .曲率线;C .法截线;D .渐近线..6. 已知{}r(,),,x y x y xy =,求(1,2)dr 为( D ).A. {}d ,d ,d 2d x y x y +;B. {}d d ,d d ,0x y x y +-;C. {}d -d ,d +d ,0x y x y ;D. {}d ,d ,2d d x y x y +.7.圆柱螺线{}cos ,sin ,r t t t =的切线与z 轴( C ).A. 平行;B. 垂直;C. 有固定夹角4π;D. 有固定夹角3π. 8.设平面曲线:()C r r s =,s 为自然参数,αβ,是曲线的基本向量.叙述错误的是( C ).A. α为单位向量;B. αα⊥;C. k αβ=-;D. k βατγ=-+.9.直线的曲率为( B ).A. -1;B. 0;C. 1;D. 2.10.关于平面曲线的曲率:()C r r s =不正确的是( D ). A. ()()k s s α=; B. ()()k s s ϕ=,ϕ为()s α的旋转角;C. ()k s αβ=-⋅;D. ()|()|k s r s =.11.对于曲线,“曲率恒等于0”是“曲线是直线”的( D ).A. 充分不必要条件;B. 必要不充分条件;C. 既不充分也不必要条件;D. 充要条件.12.下列论述不正确的是( D ).A. ,αβγ,均为单位向量;B. αβ⊥;C. βγ⊥;D. αβ.13.对于空间曲线C ,“挠率为零”是“曲线是直线”的(B ).A. 充分不必要条件;B. 必要不充分条件;C. 既不充分也不必要条件;D. 充要条件.14.2sin 4),cos 1(),sin (t a z t a y t t a x =-=-=在点2π=t 的切线与z 轴关系为( D ). A. 垂直; B. 平行; C. 成3π的角; D. 成4π的角. 15.椭球面2222221x y z a b c++=的参数表示为( C ). A. {}{},,cos cos ,cos sin ,sin x y z ϕθϕθϕ=;B. {}{},,cos cos ,cos sin ,sin x y z a b ϕθϕθϕ=;C. {}{},,cos cos ,cos sin ,sin x y z a b c ϕθϕθϕ=;D. {}{},,cos cos ,sin cos ,sin 2x y z a b c ϕθϕθθ=.16.曲面{}2233(,)2,,r u v u v u v u v =-+-在点(3,5,7)M 的切平面方程为( B ).A. 2135200x y z +-+=;B. 1834410x y z +--=;C. 756180x y z +--=;D. 1853160x y z +-+=.17.球面{}(,)cos cos ,cos sin ,sin r u v R u v R u v R u =的第一基本形式为( D ).A. 2222(d sin d )R u u v +;B. 2222(d cosh d )R u u v +;C. 2222(d sinh d )R u u v +;D. 2222(d cos d )R u u v +.18.正圆柱面{}(,)cos ,sin ,r u v R v R v u =的第一基本形式为( C ).A. 22d d u v +;B. 22d d u v -; C 222d d u R v +; D. 222d d u R v -.19.在第一基本形式为222(d ,d )d sinh d u v u u v =+I 的曲面上,方程为12()u v v v v =≤≤的曲线段的弧长为( B ).A . 21cosh cosh v v -;B . 21sinh sinh v v -;C . 12cosh cosh v v -;D . 12sinh sinh v v -.20.设M 为正则曲面,则M 的参数曲线网为正交曲线网的充要条件是( B ).A . 0E =;B . 0F =;C . 0G =;D . 0M =.21.高斯曲率为零的的曲面称为( A ).A .极小曲面;B .球面;C .常高斯曲率曲面;D .平面.22.曲面上直线(如果存在)的测地曲率等于( A ).A . 0;B . 1;C .2;D . 3.23.当参数曲线构成正交网时,参数曲线u-曲线的测地曲率为( B ).A .B .C .D .24.如果测地线同时为渐近线,则它必为( A ).A . 直线;B . 平面曲线;C . 抛物线;D . 圆柱螺线.三、判断题(正确打√,错误打×)1. 向量函数()r r t =具有固定长度,则()()r t r t '⊥. √2. 向量函数()r r t =具有固定方向,则()()r t r t '. √3. 向量函数()r t 关于t 的旋转速度等于其微商的模()r t '. ×4. 曲线Γ的曲率、挠率都为常数,则曲线Γ是圆柱螺线. ×5. 若曲线Γ的曲率、挠率都为非零常数,则曲线Γ是圆柱螺线. √6. 圆柱面{cos ,sin ,},r R R z θθ=z -线是渐近线. √7. 两个曲面间的变换等距的充要条件是它们的第一基本形式成比例. ×8. 两个曲面间的变换等角的充要条件是它们的第一基本形式成比例. √9. 等距变换一定是保角变换. √10. 保角变换一定是等距变换. ×11. 空间曲线的位置和形状由曲率与挠率唯一确定. ×12. 在光滑曲线的正常点处,切线存在但不唯一. ×13. 若曲线的所有切线都经过定点,则该曲线一定是直线.√14. 在曲面的非脐点处,有且仅有两个主方向. √15. 高斯曲率与第二基本形式有关,不是内蕴量. ×16. 曲面上的直线一定是测地线.√17. 微分方程A(,)B(,)0u v du u v dv +=表示曲面上曲线族. ×18. 二阶微分方程22(,)2(,)(,)0A u v du B u v dudv C u v dv ++=总表示曲面上两族曲线.×19. 坐标曲线网是正交网的充要条件是0F =,这里F 是第一基本量. √20. 高斯曲率恒为零的曲面必是可展曲面. √21. 连接曲面上两点的所有曲线段中,测地线一定是最短的. ×22. 球面上的圆一定是测地线. ×23. 球面上经线一定是测地线. √24. 测地曲率是曲面的内蕴量. √四、计算题1.求旋轮线)cos 1(),sin (t a y t t a x -=-=的π20≤≤t 一段的弧长.解 旋轮线{}()(sin ),(1cos )r t a t t a t =--的切向量为{}()cos ,sin r t a a t a t '=-,则在π20≤≤t一段的弧长为:2200()d 8s r t t t a ππ'===⎰⎰.2.求曲线t te z t t y t t x ===,cos ,sin 在原点的切向量、主法向量、副法向量. 解 由题意知 {}()sin cos ,cos sin ,t t r t t t t t t t e te '=+-+,{}()2cos sin ,2sin cos ,2t t r t t t t t t t e te ''=---+,在原点,有 (0)(0,1,1),(0)(2,0,2)r r '''==,又 ()(), r r r r r r r r r r r αβ'''''''''⋅-⋅=='''''⋅⨯,r r r r γ'''⨯='''⨯, 所以有22666333(0,,),(,,),(,,)22αβγ==-=-. 3.圆柱螺线为{}()cos ,sin ,r t a t a t bt =,①求基本向量,,αβγ; ②求曲率k 和挠率τ.解 ①{}()sin ,cos ,r t a t a t b '=-,{}()cos ,sin ,0r t a t a t ''=--,又由公式()(), ,r r r r r r r r r r r r r r r αβγ''''''''''''⋅-⋅⨯===''''''''⋅⨯⨯ ②由一般参数的曲率公式3()r r k t r '''⨯='及挠率公式2(,,)()r r r t r r τ''''''='''⨯ 有22a k a b =+,22b a b +=τ. 4.求正螺面{}(,)cos ,sin ,r u v u v u v bv =的切平面和法线方程.解 {}cos ,sin ,0u r v v =,{}sin ,cos ,v r u v u v b =-,切平面方程为cos sin cos sin 00sin cos x u vy u v z bv vv u v u v b ---=-,法线方程为cos sin sin cos x u v y u v z bv b v b v u---==-. 5.求球面{}(,)cos cos ,cos sin ,sin r a a a ϕθϕθϕθϕ=上任一点处的切平面与法线方程. 解 {}sin cos ,sin sin ,cos r a a a ϕϕθϕθϕ=--, {}cos sin ,cos cos ,0r a a θϕθϕθ=-, ∴ 球面上任意点的切平面方程为即cos cos cos sin sin 0x y z a θϕϕθϕ⋅+⋅+⋅-=,法线方程为 即cos cos cos sin sin cos cos cos sin sin x a y a z a ϕθϕθϕϕθϕθϕ---==. 6.求圆柱螺线cos ,sin ,x a t y a t z t ===在点(,0,0)a 处的密切平面.解 (){s i n ,c o s ,r t a t a t '=-(){c o s ,s i n ,r t a t a t ''=-- 所以曲线在原点的密切平面的方程为即sin )(cos )sin 0t x t y az a t -+-=(.7.求旋转抛物面22()z a x y =+的第一基本形式.解 参数表示为{}22(,),,()r x y x y a x y =+,{}1,0,2x r ax =,{}0,1,2y r ay =, 2214x x E r r a x =⋅=+,24x y F r r a xy =⋅=,2214y y G r r a y =⋅=+,2222222(d ,d )(14)d 8d d (14)d x y a x x a xy x y a y y ∴=++++I .8.求正螺面{}(,)cos ,sin ,r u v u v u v bv =的第一基本形式.解 {}cos ,sin ,0u r v v =,{}sin ,cos ,v r u v u v b =-,1u u E r r =⋅=,0u v F r r =⋅=,22v v G r r u b =⋅=+,2222(d ,d )d ()d u v u u b v ∴=++I .9.计算正螺面{}(,)cos ,sin ,r u v u v u v bv =的第一、第二基本量.解 {}cos ,sin ,0u r v v =,{}sin ,cos ,v r u v u v b =-,{}0,0,0uu r =,{}sin ,cos ,0uv r v v =-,{}cos ,sin ,0vv r u v u v =--,{}cos sin 0sin ,cos ,sin cos u v i j k r r v v b v b v u u v u v b⨯==--, sin ,cos ,u v u v b v b v u r r n r r -⨯==⨯, 1u u E r r =⋅=,0uv F r r =⋅=,22v v G r r u b =⋅=+,0uu L r n =⋅=,uv M r n =⋅=,0vv N r n =⋅=.10.计算抛物面22z x y =+的高斯曲率和平均曲率.解 设抛物面的参数表示为{}22(,),,r x y x y x y =+,则{}1,0,2x r x =,{}0,1,2y r y =,{}0,0,2xx r =,{}0,0,0xy yx r r ==,{}002yy r =,,,{}1022,2,1012x y i j kr r x x y y⨯==--,22,2,1||4x yx y r r x y n r r x ⨯--==⨯214x x E rr x =⋅=+, 4x y F r r xy =⋅=, 214y y G r r y =⋅=+,xx L r n =⋅=, 0xy M r n =⋅=, yy N r n =⋅=,2222222222404441(14)(14)(4)(441)LN M x y K EG F x y xy x y --++===-++-++,2232222124422(441)GL FM EN x y H EG F x y -+++=⋅=-++.11. 计算正螺面{}(,)cos,sin ,r u v u v u v av =的高斯曲率.解 直接计算知1E =,0F =,22G u a =+,0L =,M =,0N =, 222222()LN M a K EG F u a -∴==--+.12. 求曲面2z xy =的渐近线.解 2z x y =,则2zp y x ∂==∂,2zq xy y ∂==∂,220zr x ∂==∂,22z s y x y ∂==∂∂, 222zt x y ∂==∂所以,L =0,M =N =渐近线微分方程为20dxdy =,化简得(2)0dy ydx xdy +=, 020d y y d x x d y =+=或渐近线为y=C 1,x 2y =C 213. 求螺旋面{}cos ,sin ,r u v u v bv =上的曲率线.解 u v r {cos ,sin v,0},r {u sin v,ucos v,b}v ==-{}{}{}uu uv vv r =0,0,0,r =sin v,cos v,0,r ucos v,usin v,0-=--,L 0,M N 0===曲率线的微分方程为:2222dv dudv du 10u b =000-+ 或dub u dv 221+±=积分得两族曲率线方程:14. 求马鞍面22{,,}r u v u v =-在原点处沿任意方向的法曲率.解 {1,0,2},{0,1,==-u v r u r v ,u v 2u v2u,2v,1r r n r r 4u -⨯==⨯,22=Ⅱ, n k =ⅡⅠ.15. 求抛物面22()z a x y =+在(0,0)点的主曲率.解 曲面方程即22{,,()},=+r x y a x y{0,0,2},{0,0,0},{0,0,2}===xx xy yy r a r r a ,L(0,0)a M(0,0)N(0,0)=2,=0,=2a, 代入主曲率公式,N N2a k 0002a k -=-,所以两主曲率分别为 12k k 2a == .16. 求曲面22{,,}r u v u v =+在点(1,1)的主方向.解 {}u r =,u 1,02,{},v r ,v =01,2 2214,4,14E u F uv G v =+==+2(1,1)(1,1),(1,1)0,3L N M === 代入主方向方程,得()()0du dv du dv +-=,即在点(1,1)主方向:1:1;:1:1du dv u v δδ=-=.17. 求曲面23(,){,,}r u v u v u v =+上的椭圆点,双曲点和抛物点.解 由23{,,},r u v u v =+ 得{}u r =,u 1,02,{}2,v r ,v =01,3①v >0时,是椭圆点;②v <0时,是双曲点;③v =0时,是抛物点.18. 求曲面32(,){,,}r u v v u u v =+上的抛物点的轨迹方程.解 由32(,){,,},r u v v u u v =+ 得{}u r =u,0,21,{}2,v r v ,=30,1令320LN M .-= 得u =0 或v =0所以抛物点的轨迹方程为 {}r=v ,,v 30或{}0r=,u ,u 2.19.求圆柱螺线(){cos ,sin ,}r t a t a t bt =自然参数表示.解 由(){cos ,sin ,},r t a t a t bt =得{sin ,cos ,}r a t a t b '=-, 2()r t a '=弧长0(),ts t =⎰t = 曲线的自然参数表示为(){r s a a =20. 求挠曲线的主法线曲面的腰曲线. 解 设挠曲线为a a s =(),则主法线曲面为:r=a s v s ,β()+()则,a =a=α',b ==-k βατγ'+a b =k,''-2,22b =k +τ'所以腰曲线是222a b k r=a s s =a s s k bββτ'''()-()()+()+ 21.求位于正螺面cos ,sin ,x u v y u v z av ===上的圆柱螺线00cos ,sin ,x u v y u v z av ===(0u =常数)的测地曲率.解 因为正螺面的第一基本形式为2222d ()d u u a v =++Ι,螺旋线是正螺面的v -曲线0u u =,由2πθ=得d 0d s θ=.由正交网的坐标曲线的测地曲率得0220g u k u a==+. 五、证明题1. 设曲线:(s),r r =证明:2()k -;r ,r ,r =k .ταγτ=⋅⑴⑵证明 ⑴由伏雷内公式,得=k =-,αβγτβ,两式作点积,得=-k =-k,αγτββτ⋅⋅⑵r=r==k ,ααβ, 2()r=k +k =k +k -k +=-k +k +k βββατγαβτγ2. 设曲线:(s),r r = 证明:3()()r ,r ,r =k k -k .ττ证明 由伏雷内公式,得3. 曲线??()r r s =是一般螺线,证明1:r R ds αβΓ=-⎰也是一般螺线(R 是曲线?的曲率半径).证明 1r R d s αβ=-⎰,两边关于s 微商,得1αα∴,由于Γ是一般螺线,所以Γ也是一般螺线.4. 证明曲线(){sin (),s (),}(r t a t dt a co t dt bt a,b ϕϕ=⎰⎰是常数)是一般螺线.证明 (){s i n (),c o s ()r t a t a t b ϕϕ'= k a b τ∴=- .5.曲面S 上一条曲线(C), P 是曲线(C)上的正常点,n g k ,k ,k 分别是曲线(C)在点P 的曲率、法曲率与测地曲率,证明222n g k =k +k .证明 测地曲率()g k k k n βεβα=⋅=⋅⨯(,,)k n k n αβγ==⋅sin k .θ=± (θ是主法向量β与法向量n 的夹角)法曲率cos n k k n k βθ=⋅=,6. 证明曲线{}cos ,sin ,0t t r e t e t =的切向量与曲线的位置向量成定角.证明 对曲线上任意一点,曲线的位置向量为{}cos ,sin ,0t t r e t e t =,该点切线的切向量为:{}(cos sin ),(sin cos ),0t t r e t t e t t '=-+,则有:2cos 22t t r r r r e θ'⋅===',故夹角为4π. 由所取点的任意性可知,该曲线与曲线的切向量成定角.7.证明:若r '和r ''对一切t 线性相关,则曲线是直线.证明 若r '和r ''对一切t 线性相关,则存在不同时为0的(),()f t g t 使()()()()0f t r t g t r t '''+=, 则 ,()()0, t r t r t '''∀⨯= 又3()r r k t r '''⨯=',故t ∀有()0k t =.于是该曲线是直线.8. 证明圆柱螺线bt z t a y t a x ===,sin ,cos 的主法线和z 轴垂直相交.证明 由题意有{}{}()sin ,cos ,,()cos ,sin ,0r t a t a t b r t a t a t '''=-=--,由()()r r r r r r r r rβ''''''''⋅-⋅=''''⋅⨯知{}cos ,sin ,0t t β=--. 另一方面z 轴的方向向量为{}0,0,1a =,而0a β⋅=,故a β⊥,即主法线与z 轴垂直.9.证明曲线t a z t t a y t a x cos ,cos sin ,sin 2===的所有法平面皆通过坐标原点. 证明 由题意可得{}()sin 2,cos2,sin r t a t a t a t '=-,则任意点的法平面为0)cos (sin )cos sin (2cos )sin (2sin 00000020=---+-t a z t a t t a y t a t a x t a 将点(0,0,0)代入上述方程有左边)cos 0(sin )cos sin 0(2cos )sin 0(2sin 00000020t a t a t t a t a t a t a ---+-===0右边, 故结论成立.10.证明曲线222132225,1x t+t ,y t t z t =+=-+=-为平面曲线,并求出它所在的平面方程.证明 {}222132225,1r t+t ,t t t =+-+-,{}34210,2r +t,t t '=-+-,{}410,2r ,''=-,{}00,0r ,'''=(,,)0r r r ,''''''=0τ=,所以曲线是平面曲线. 它所在的平面就是密切平面{}(0)32,0r ,'=-, {}(0)410,2r ,''=- 密切平面方程为12132004102x y z -=----, 化简得其所在的平面方程是2x +3y +19z –27=0.11. 证明如果曲线的所有切线都经过一个定点,那么它是直线.证明 设曲线方程()r r s =,定点的向径为0R ,则两边求微商,得()()()()s s s s k αλαλαλαλβ=+=+(1())()0s s k λαλβ--= 由于,αβ线性无关,∴100k λλ⎧-⎨⎩==∴ k =0曲线是直线.12. 证明如果曲线的所有密切平面都经过一个定点,那么它是平面曲线.证明 取定点为坐标原点,曲线的方程为 ()r r t =,则曲面在任一点的密切平面方程为 ((),(),())0r t r t r t ρ'''-=因任一点的密切平面过定点,所以((),(),())0o r t r t r t '''-=, 即 ((),(),())r t r t r t '''=所以 ()r r t =平行于固定平面, 所以 ()r r t =是平面曲线.13. 若一条曲线的所有法平面包含非零常向量e ,证明曲线是直线或平面曲线.证明 根据已知条件,得0.............e α⋅=①,①两边求导,得 0e α⋅=,由伏雷内公式得 0k e β⋅=,ⅰ)0k =,则曲线是直线;ⅱ)0e β⋅= 又有①可知 γ‖e因e 是常向量,所以γ是常向量,于是 ||||0,τγ== 所以0τ= ,所以曲线为平面曲线. 14. 设在两条挠曲线,ΓΓ的点之间建立了一一对应关系,使它们在对应的点的副法线互相平行,证明它们在对应点的切线和主法线也分别平行.证明 γγ±12= , 21ds ds γγ±12= 由伏雷内公式得211ds ds τβτβ±122=12ββ∴±= 进而12αα=± 15. 证明挠曲线(0τ≠)的主法线曲面是不可展曲面.证明 设挠曲线为()r r s =,则挠率0τ≠,其主法线曲面的方程是:()()r s t s ρβ=+ 取(),()a r s b s β==,则(),()k a s b s αβατγ''===-+所以, (,,)((),(),k )((),(),k )((),(),)0a b b s s s s s s αβατγαβααβτγτ''=-=-≠++= 所以挠曲线的主法线曲面不是可展曲面.16. 证明挠曲线(0τ≠)的副法线曲面是不可展曲面.证明 设挠曲线为()r r s =,则挠率0τ≠,其副法线曲面的方程是:()()r s t s ργ=+取(),()a r s b s γ==,则(),()a s b s αγτβ''===-所以, (,,)((),(),)0a b b s s αγτβτ''=-=≠,所以挠曲线的副法线曲面不是可展曲面.17. 证明每一条曲线在它的主法线曲面上是渐近线.证明 设曲线r r(s),=则曲线的主法线曲面为r r s +v s β=()() s v s v r r n==r r vk ⨯⨯(1-)-(1- 沿曲线(v =0)n=γ, 所以主法向量与曲面的法向量夹角,2πθ=n cos 0,k k θ==所以曲线是它的主法线曲面上的渐近线.18. 证明二次锥面{cos ,sin ,}r au bu cu θθ=沿每一条直母线只有一个切平面.证明 {c o s ,s i n ,}{c o s ,s i n ,}θθθθϕθ===+r a u b u c u u a b c u 为直纹面(0,(),()0ϕθϕθ'=), 所以,曲面可展,即沿每一条直母线只有一个切平面.也可以用高斯曲率K =0证明. 19. 给出曲面上一条曲率线Γ,设Γ上每一处的副法向量和曲面在该点处的法向量成定角,求证Γ是一平面曲线. 证明 设副法向量和曲面在该点处的法向量成定角θ0,则cos γθ0n=两边求微商,得 0γγn+n=由于曲线Γ是曲率线,所以αn,进而0γn=,由伏雷内公式得0τβ-n=⑴0τ=时,Γ是一平面曲线⑵n 0β=,即n β⊥,n kcos =0k θ=,又因为Γ是曲率线,所以0n dn k dr =-=即n 是常向量,所以Γ是平面曲线.20.求证正螺面上的坐标曲线(即u -曲线族v -曲线族)互相垂直.证明 设正螺面的参数表示是{}(,)cos ,sin ,r u v u v u v bv =,则{}cos ,sin ,0u r v v =,{}sin ,cos ,v r u v u v b =-,{}{}cos ,sin ,0sin ,cos ,0u v r r v v u v u v b ⇒⋅=⋅-=,故正螺面上的坐标曲线互相垂直.21. 证明在曲面上的给定点处,沿互相垂直的方向的法曲率之和为常数.证明 由欧拉公式2212cos sin θθ=+n k k k所以*n n 12k k k k +=+=常数.22. 如果曲面上非直线的测地线Γ均为平面曲线,则Γ必是曲率线.证明 因为曲线Γ是非直线的测地线,所以沿此曲线有,β=±n从而(),κατγ=±-+n 又因为曲线是平面曲线,所以0,τ=进一步n κα=±.由罗德里格斯定理可知曲线的切线方向为主方向,故所给曲线为曲率线.23. 证明在曲面()()z f x f y =+上曲线族x =常数,y =常数构成共轭网.证明 曲面的向量表示为 {}(,),,()(),r x y x y f x f y =+x =常数,y =常数是两族坐标曲线.{1,0,}x r f '=,{0,1,}y r g '=.因为0xy r r M r ⨯==,所以坐标曲线构成共轭网,即曲线族 x =常数, y =常数构成共轭网.24.证明马鞍面z xy =上所有点都是双曲点.证明 参数表示为{}(,),,r x y x y xy =,则{}1,0,x r y =,{}0,1,y r x =,{}0,0,0xx r =,{}0,0,1xy r =,{}0,0,0yy r =,{},,1x y r r y x ⨯=--,2,,1||x yx y rr y x n r r x ⨯--==⨯+ 0xx L r n =⋅=, xy M r n =⋅=0yy N r n =⋅=,222221100011LN M x y x y ∴-=⨯-=-<++++, 故马鞍面z xy =上所有点都是双曲点. 25.如果曲面上某点的第一与第二基本形式成比例,即(d ,d )(d ,d )u v u v II I 与方向无关,则称该点是曲面的脐点;如果曲面上所有点都是脐点,则称曲面是全脐的.试证球面是全脐的.证明 设球面的参数表示为{}(,)cos cos ,cos sin ,sin r u v R v u R v u R v =,则{}cos sin ,cos cos ,0u r R v u R v u =-,{}sin cos ,sin sin ,cos v r R v u R v u R v =--,{}cos cos ,cos sin ,0uu r R v u R v u =--,{}sin sin ,sin cos ,0uv vu r r R v u R v u ==-, {}cos cos ,cos sin ,sin vv r R v u R v u R v =---,22cos uu E r r R v =⋅=,0u v F r r =⋅=,2vv G r r R =⋅=,2cosL R v==-,0M ==,N R ==-,1(,,)(,,)L M N E F G R∴=-,故球面是全脐的. 26.证明平面是全脐的.证明 设平面的参数表示为{}(,),,0r x y x y =,则 {}1,0,0x r =,{}0,1,0y r =,{}0,0,0xx r =,{}0,0,0xy r =,{}0,0,0yy r =, 1x x E r r =⋅=,0x y F r r =⋅=,1y y G r r =⋅=,0xx L r n =⋅=,0xy M r n =⋅=,0yy N r n =⋅=(,,)0(,,)L M N E F G ∴=,故平面是全脐的.27.证明曲面3x y z +=的所有点为抛物点.证明 曲面的参数表示为{}1/3(,),,()r x y x y x y =+,则{}2/3131,0,()x r x y -=+, {}2/3130,1,()y r x y -=+, {}5/3230,0,()xx r x y -=-+,{}5/3290,0,()xy r x y -=-+, {}5/3290,0,()yy r x y -=-+, {}2/32/31133(),(),1x y r r x y x y --⨯=-+-+, ||x y x y r r n r r ⨯=⨯,{}5/3290,0,()xx L r n x y n -=⋅=-+⋅,{}5/3290,0,()xy M r n x y n -=⋅=-+⋅, {}5/3290,0,()yy N r n x y n -=⋅=-+⋅ 20LN M ⇒-=, ∴曲面3x y z +=的所有点为抛物点.28.求证正螺面{}(,)cos ,sin ,r u v u v u v av =是极小曲面. 证明 {}cos ,sin ,0u r v v =,{}sin ,cos ,v r u v u v a =-, {}0,0,0uu r =,{}sin ,cos ,0uv r v v =-,{}cos ,sin ,0vv r u v u v =--,{}cos sin 0sin ,cos ,sin cos u v i j k r r v v a v a v u u v u va⨯==--, sin ,cos ,||u v u v a v a v u r r n r r -⨯==⨯, 1u u E r r =⋅=,0u v F r r =⋅=,22v v G r r a u =⋅=+, 0uu L r n =⋅=,uv M r n =⋅=0vv N r n =⋅=,21210,22EN FM GL H EG F -+∴=⋅==-故正螺面是极小曲面.29. 圆柱面{cos ,sin ,}r a u a u v =上的纬线是测地线.证明 由{cos ,sin ,},r a u a u v =2,0, 1.E a F G ===g d k ds θθθ=, 纬线是u -线,此时0θπ=或, 0.g k ∴= 所以,纬线是测地线.30.证明极小曲面上的点都是双曲点或平点. 证明 1202k k H +==, 12k k ∴=-, 21220K k k k ∴=⋅=-≤ 当0K =时,120k k ==, ∴极小曲面的点都是平点; 当0K <时,极小曲面的点都是双曲点.31. 证明 (1)如果测地线同时是渐近线,则它是直线;(2)如果测地线同时是曲率线,则它一定是平面曲线. 证明 (1) 因为曲线是测地线,所以0=g k , 曲线又是渐近线,所以,0=n k ,而222=+n g k k k ,所以k=0,故所给曲线是直线. (2) 证法1 因曲线是测地线,所以沿此曲线有βn ,所以βdn , 又曲线是曲率线,所以αdn dr , 所以(k )ατγα-+,所以0τ=,故所给曲线是平面曲线. 证法2 因所给曲线既是测地线又为曲率线,所以沿此曲线有,,n n βα 而γαβ=⨯,所以,n γα=±⨯从而()(0)0n n k n γααβ=±⨯+⨯=±-⨯+=, 又γτβ=-,所以0τ=,故所给曲线是平面曲线.。

浙江大学微积分一习题解答 第十二十三章

浙江大学微积分一习题解答 第十二十三章

于是参数式为 x=y= 1 a cos t ,z= a sin t ( 0 ≤ t ≤ 2π ) 2
∫ ∫ ∫ 于是
x 2dl =
l

0
1 2
a
2
cos 2
t
a
2
dt

1 2
a3

cos 2
tdt

π
a3
#
0
2
题 1(5)(ii) (p204)
∫ 【2】 求 x 2dl , l 为 x 2 + y 2 + z 2 = a 2 与 x+z=a 的交线。 l
t)
0
1 2
adt

1 4
1 2
a2
2π(1 +
1 2
)

3 8
2a 3
『法 2』
针对特殊的曲线,可以取相应的参数形式,以简化计算。
x+z=a
x a x
z
a
r
r= 2a 2
0 y
t
x = 2 (r + r cos t) 2 0 ≤ t ≤ 2π
r=
2 2
a
,
l
=rt,
dl =
rdt=
2 a dt 2
a
cos t

y
=
1 a sin t ,从而
2
z
=
1 2
a

1 2
a
cos
t
( 0 ≤ t ≤ 2π )
∫ ∫ 于是
x 2dl =
l
2π 0
(
1 2
a
+

浙江大学《微积分》课程期末考试试卷

浙江大学《微积分》课程期末考试试卷

浙江大学2004-2005学年秋冬季学期《微积分》课程期末考试试卷一、填空题1.1lim()xx x e x →-= .2.设()f x 可导,2(cos )f x y x =则d d yx= . 3.ln (0)xy x x=>的值域范围为 . 4.3121x x -=⎰5.设,arcsin x y t⎧⎪=⎨=⎪⎩则22d d y x = . 6.当0x →时,20cos d 2x tx e t t x --⎰与B Ax 等价无穷小,则常数A = ,B = .二、计算题1.求221d .22x x x x +++⎰ 2.已知(0),(),f a f b π==且()f x ''连续,求[]0()()sin d f x f x x xπ''+⎰.3.求2+∞⎰.4.求曲线sin (0)y x x π=≤≤与x 轴围成的平面图形分别绕x 轴和y 轴旋转一周所得的旋转体体积x V 和y V .5.在曲线段 2(08)y x x =≤≤上, 求一点2(,)P a a 使得过P 点的切线与直线0,8y x ==所围成的三角形的面积最大.三、求幂级数2021!n n n x n ∞=+∑的收敛区间以及在收敛区间上的和函数,并求级数0212!nn n n ∞=+∑的和.四、证明若2,e a b e <<<则2224ln ln ()b a b a e ->-⋅ 五、已知sin 0()0x e x x F x xa x ⎧≠⎪=⎨⎪=⎩为连续函数.(1)求常数a ; (2)证明()F x 的导函数连续.浙江大学2004-2005学年秋冬学期《微积分》课程期末考试试卷答案一、填空题1.2110ln()lim()lim x x x x x x e x e x e →→--=1002ln()1lim lim 22()x x x x e x e x x e x x e e e →→---===.2. 22(cos )d (cos )[2(cos )(cos )sin ln ]d f x y f x x f x f x x x x x'=-⋅. 3. (1,]e-∞ .4.3121x x -+⎰.111x x x --=+⎰⎰12x x =⎰, 令sin x t =222222001312sin cos td 2sin (1-sin t)d 2()224228t x t x πππππ===⋅-⋅⋅=⎰⎰.5.由x =d d x t = a r c s i n y t =,d d y t =d 1d y x t =-,2221d d yt x==.6. 由洛必达法则20100cos d cos 12lim lim x tx B B x x x e t t x e x xAx ABx-→→----=⎰, 2323310[1()][1()]12!3!2!lim B x x x x x o x o x xABx-→++++-+--=, 其中:232331(),cos 1()2!3!2!xx x x e x o x x o x =++++=-+33101()3lim 1B x x o x ABx -→-+==, 得13,13B AB -=⎧⎪⎨=-⎪⎩,即1,412A B =-=. 二、计算题 1.22221221d d d 22221(1)x x x x x x x x x x ++=-++++++⎰⎰⎰=2ln(22)arctan(1)x x x C ++-++.2.[]00()()sin d ()sin d ()sin d f x f x x x f x x x f x x x πππ''''+=+⎰⎰⎰()sin d sin d ()f x x x x f x ππ'=+⎰⎰00()sin d sin ()()cos d f x x x xf x f x x x πππ''=+-⎰⎰00()sin d cos ()()sin d f x x x xf x f x x x πππ=--⎰⎰=a b +.3.221x +∞+∞=-⎰⎰21arcsinx +∞=-=6π . 4. 22sin d 2x V x x πππ==⎰,2002sin d 2cos 2cos d 2y V x x x x x x x πππππππ==-+=⎰⎰.5. 解:(1)过点2(,)P a a 的切线方程为 22()y a a x a -=-, 令0y =,得22()a a x a -=-,得2a x =, 令8x =,得222(8)16y a a a a a =+-=-,令221()(8)(16)(8)222a aS a a a a =--=-,213()(8)2(8)()(8)(8)22222a a a aS a a '=-+--=-- ,令()0S a '=,得163a =,16a =(舍).1333()(8)(8)1622222a a S a a ''=----=- ,16316()1680323S ''=⋅-=-<,所以,当163a =时,三角形面积最大.三、因为 2220102121()!(1)!!n n n n n n n x x x n n n ∞∞∞===+=+-∑∑∑2220()2!n x n x x e n ∞==+∑222222(21)x x x x e e e x =+=+,所以2220021212(221)5!!n n n n n n e e n n ∞∞==++==⋅+=∑∑.四、 设 2()ln ,()f x x g x x ==,在[,]a b 上由柯西定理,有 222ln ln ln 2,b a e a b e b a ξξξ-=<<<<- .再令2ln 1ln (),()0()x xx x e x x x ϕϕ-'==<<,故()x ϕ单调下降,得222(),()x e x e e ϕ><<,有2ln 2e ξξ>,得2224ln ln ()b a b a e ->-. 五、 (1)因为 0sin lim1x x e xx→=, 所以1a =. (2)0sin 1(0)lim x x e xx F x→-'=20sin lim x x e x x x→-= 00sin cos 12cos lim lim 122x x x x x e x e x e x x →→+-===, 所以,2(s i n c o s )s i n,0;()1,0.x x x x e x e x e x x F x x x ⎧+-≠⎪'=⎨⎪=⎩而 20sin cos sin limx x x x xe x xe x e xx →+-02cos lim 12x x xe x x →==,所以 ()F x '在(,)-∞+∞上是连续的.浙江大学2005-2006学年秋冬学期《微积分》课程期末考试试卷一、 计算题1.已知抛物线2y ax bx c =++过点(1,2),且在该点的曲率圆方程为22151()(),222x y -+-=则a = ,b = ,c =2.设12()sin d x f x t t =⎰,则(1) 10()d f x x =⎰ ;(2) 1()lim1x f x x →=- 3.若011lim ,2a x x →=则a = 4.当x = 时,函数2x y x =⋅取得极小值.5.曲线arctan y x =在横坐标为1的点处的切线方程为 *6.已知01(cos sin ),(0,2),2n n n xa a nxb nx x ππ∞=-=++∈∑则5b = (此题不作要求)二、求极限1.0sin tan lim tan (1)ln(1)x x x x x e x →--- 2. 21sin 0lim(cos )xx x → 三、求导数1.设函数()x x y =由sin 0y x x -+=所确定,求22d d ,d d x xy y2.设sin arctan ,ln(x t t y t =-⎧⎪⎨=+⎪⎩ 求22d d ,d d y y x x 3.设()arccot xy x e =-()y x '. 四、求积分 1.21d (1)(1)x x x ++⎰.2.x .3.1321(x x x -+⎰. 4.20sin 2d 1cos xxx xπ+⎰.五、设曲线21:1(01),C y x x =-≤≤x 轴和y 轴所围区域被曲线22:(0)C y ax a =>分为面积相等的两部分,试求常数a .六、将函数12()arctan 12x f x x -=+展开成x 的幂级数,并求级数0(1)21nn n ∞=-+∑的和.七、设()f x 在(,)a +∞内可导,且lim (),x f x a →∞'=证明:()limx f x a x→∞=.浙江大学2005-2006学年秋冬学期《微积分》课程期末考试试卷答案 一、计算题1. 由2y ax bx c =++,有2,2y ax b y a '''=+=,得112,2,2x x a b c y a b y a =='''++==+=由曲率圆方程22151()(),222x y -+-=两边求导,152()2()022x y y '-+-=,得1,21x y y =='=,5222()02x y y y y ''''++-=,得1,24x y y ==''=根据2y ax bx c =++与曲率圆22151()(),222x y -+-=在点(1,2)有相同的,,y y y ''';得到 24,21,2a a b a b c =⎧⎪+=⎨⎪++=⎩, 所以有2,3,3a b c ==-=.2. (1)11120()d (sin d )d xf x x t t x =⎰⎰⎰=111220sin d sin d xx t t x x x +⎰⎰12201=sin d 2x x ⎰ =12011cos (1cos1)22x -=- . (2)1211sin d ()limlim 11xx x t tf x x x →→=--⎰21sin lim sin11x x →-==-. 3. 因为,当0x →时2112x, 所以200112lim ,2a x x x x →→==得 2a = . 4. ()2x y x x =⋅,()22ln 2x x y x x '=+,令()0,22ln 20x x y x x '=+=,解得 1ln 2x -=, 由于2()2ln 22ln 22ln 22ln 2(2ln 2)x x x x y x x x ''=++=+, 当1ln 2x =-时,1()0ln 2y -''>,所以当1ln 2x -=时,()2x y x x =⋅取到极小值.5. 因为, 21111arctan ,,,arctan1124x x y x y y y x π==''=====+, 所以,切线方程为 1(1)24y x π=-+. 6. 515b =.二、求极限1. 0sin tan lim tan (1)ln(1)x x x x x e x →---=30sin (cos 1)cos lim x xx x x→--,注:当0x →时1,ln(1)x e x x x --- , 20cos 11lim2x x x →-==-. 2. 因为 ,21sin 0lim(cos )xx x →=2cos 11cos 1sin 0lim[1(cos 1)]x x xx x -⋅-→+- ,而 20cos 11limsin 2x x x →-=-,1cos 1lim[1(cos 1)]x x x e -→+-=, 所以 11sin2lim(cos )xx x e-→=.三、求导数1. 对方程sin 0y x x -+=两边关于y 求导数,注意到()x x y =,有 d d 1cos 0d d x x x y y -+=,得 d d xy =11cos x-, 222d 1d()d()(cos )d d 1-cos d d d (1-cos )y xx x yx yy y x '--===3sin (1cos )x x -=-. 2. 2d 1sin arctan ,cos d 1x x t t t t t=-=-+, ln(y t =,d d y t =d d d d d yy t x t==, 222d d (1)cos 1yxt t =⎡⎤+-⎣⎦.3.111()arccot arccot [ln ln(1)]arccot ln(1)222xx x x x x y x e e e e e x e =---+=-++,2211()122(1)12(1)x x x x x x xe e e y x e e e e '=--+=--++++. 四、 1.21d (1)(1)x x x ++⎰=22111()d 2111x x x x x -++++⎰ 2111ln 1ln(1)arctan 242x x x C =+-+++. 2. (令15x t =)x =145315d t t t t +⎰=11215d 1t t t +⎰ =9753215()d 1tt t t t t t t -+-+-+⎰ =108642211111115[ln(1)]1086422t t t t t t C -+-+-++=28242231551515153155151515ln(1)282422x x x x x x C -+-+-++.3.1321(x x x -+⎰11x x -=⎰22202sin cos d t t t π=⎰ 注:令sin x t =22202sin (1sin )d t t t π=-⎰1312()224228πππ=⋅-⋅⋅=.4. 20sin 2d 1cos x x x x π+⎰=220dcos 1cos x x xπ-+⎰=20dln(1cos )x x π-+⎰ 2200ln(1cos )ln(1cos )d x x x x ππ=-+++⎰=22(cos )ln 2(1)2d 1n nn x x n ππ+∞=-+-⋅⋅+∑⎰1201(1)ln 2cos d n nn x x n ππ-∞=-=-+∑⎰ 12201(1)ln 22cos d n n n x x n ππ-∞=-=-+⋅∑⎰=11(1)(21)!!ln 22(2)!!2n n n n n ππ-∞=---+⋅⋅⋅∑.五、由 221,y x y ax⎧=-⎪⎨=⎪⎩得交点0x =, 311212002(1)d ()33x S S x x x +=-=-=⎰,022310012[(1)]d ()33x x a S x ax x x x +=--=-=⎰,由12S S =,得212323=⋅, 所以 3a =.六、由12()arctan 12x f x x -=+, 2221()2(1)4,142n n nn f x x x x ∞=-'==--<+∑, 210(1)4()()d (0)2421n n x n n f x f x x f xn π∞+=-'=+=-+∑⎰, 当12x =时,210(1)41024212n n n n n π∞+=-=-+∑, 得 0(1)214nn n π∞=-=+∑.七、解法一:由洛必达法则, ()()lim lim 1x x f x f x a x →+∞→+∞'==.解法二:① 若0a =,由lim ()0x f x →+∞'=,按定义知0ε∀>,10x ∃>,当1x x >时,恒有()2f x ε'<.1(,)b x ∀∈+∞,当x b >时,有()()()2f x f b f x b x b εξ'-=-<-,由于()()()()2f x f b f x f b x b ε-≤-<-,有()()2f x f b x b ε≤+-,再取2x b >,使得2()2f b x ε<,当2x x >时, 有2()()()()()()2222x bf b x b f b f x f x f b f b x x x x x x εεεεε---+=<+<+<+=, 所以,()lim0x f x x→+∞=. ② 若0a ≠,由lim ()x f x a →+∞'=,则有 lim [()]0x f x ax →+∞'-=, 设()()F x f x ax =-,有lim ()0x F x →+∞'=,由①知,()()limlim 0x x F x f x axx x→+∞→+∞-==,得证.浙江大学2006-2007学年秋冬学期《微积分》课程期末考试试卷一、求导数或微积分(1)设sin43(arctan 2)ln 2x y x x =++,求d d yx .(2)设22d ,sin()d t ts x e s y t s s -==-⎰⎰,求t =d d y x 及22d d y x .(3)设()y y x =是由方程210x y e x xy +---=确定的x 的可导函数,求0d x y =. 二、求积分(4)求60x ⎰.(5)求2arctan d xxe x e ⎰. (6)求1+∞⎰.三、求极限 (7)求3012cos lim[()1]3x x x x →+-. (8)设()f a ''存在,()0f a '≠,求11lim[]()()()()x af a x a f x f a →-'--.(9)设1121)1))nn n u n n n ⎡⎤=+++⎢⎥⎣⎦(((1,求lim n n u →∞. 四、选择题(10)设2620arcsin d ,(1)d xt t t e t αβ==-⎰⎰,则0x →时 [ ](A )αβ与是同阶但不等价无穷小. (B )αβ与是等价无穷小. (C )αβ是的高价无穷小. (D )βα是的高价无穷小. (11)设级数1n n a ∞=∑收敛,则下述结论不正确的是[ ](A )11()n n n a a ∞+=+∑必收敛. (B )2211()n n n a a ∞+=-∑必收敛.(C )2211()n n n a a ∞+=+∑必收敛. (D )2211()n n n a a ∞+=-∑必收敛.(12)设1,0,()()()d ,0,x x e x f x F x f t t x x -⎧≤==⎨>⎩⎰,则()0F x x =在处[ ](A )极限不存在 (B )极限存在,但不连续(C )连续但不可导 (D )可导(13)设()y f x =为连续函数,除点x a =外,()f x 二阶可导,()y f x ''=的图形如图, 则() [ ]y f x =(A )有一个拐点,一个极小值点,一个极大值点. (B )有二个拐点,一个极小值点,一个极大值点. (C )有一个拐点,一个极小值点,二个极大值点. (D )有一个拐点,二个极小值点,一个极大值点.五、(14)设曲线2y ax =(0,x ≥常数0)a >与曲线21y x =-交于点A ,过坐标原点O 和点A 的直线与曲线2y ax =围成一平面形D .(I) 求D 绕x 轴旋转一周所成的旋转体体积()V a ;(II )求a 的值使()V a 为最大.六、(15)将函数21()arctan ln(1)2f x x x x =-+在0x =处展开成泰勒级数(即麦克劳林级数)并指明成立范围.七、(16)设0,x >证明2()(4)(2)20x x f x x e x e =---+<.浙江大学2006-2007学年秋冬学期《微积分》课程期末考试试卷答案一、求导数或微分(1) sin 4sin 4122d 14cos 4ln sin 46(arctan 2)d 14x x y x x x x x x x x -=⋅+⋅++. (2) 由 20d ts x e s -=⎰,得2d d t xe t -=,由20sin()d ty t s s =-⎰,令t s u -=,得0220sin d sin d tty u u u u =-=⎰⎰,得2d sin d y t t =,所以222d d sin ,d d t t y ye t e x x π==,2222222222(sin )d 2sin 2cos d t t t tt t e t y te t te t x e e--'+== 22222(sin cos )t te t t =+, 22d d t y x π=.(3) 由 210x y e x xy +---=及0x =,得0y =,对方程 210x y e x xy +---= 两边取微分有(d d )2d (d d )0x y e x y x x y y x ++--+=, 将0x =,0y =代入,得 0d d x y x ==.二、求积分 (4)解66x x =⎰⎰6x =⎰ (令33sin x t -=)2227(1sin )cos cos d t t t t ππ-=+⎰22012754cos d 54222t t πππ==⋅⋅=⎰.(5)解 令x e t =,2arctan d xxe x e ⎰=3arctan d t t t ⎰211arctan d 2t t =-⎰ 2221arctan 1[d ]2(1)t t t t t =--+⎰ 2221arctan 11[d d ]21t t t t t t =--++⎰⎰ 21arctan 1[arctan ]2t t C t t=-+++ 21arctan [arctan ]2x x xxe e e C e-=-+++. (6)解t =,1+∞⎰202d 1t t +∞+⎰02arcta n t π+∞==. 三、求极限 (7) 解 3012cos lim[()1]3xx x x →+- 2cos ln()3301lim [1]x x x e x +→=- 注2cos ln()32cos [1ln(),(0)]3xx x e x x ++-→ 2012cos limln()3x xx →+= 201cos 1lim ln(1)3x x x →-=+ 注[cos 1cos 1ln(1),(0)33x x x --+→] 201cos 11lim ()36x x x →-==. (8) 解 11lim[]()()()()x af a x a f x f a →-'--()()()()lim ()()(()())x a f x f a f a x a f a x a f x f a →'---='-- =()()lim()(()())()()()x af x f a f a f x f a f a f x x a →''-'''-+-2()()()lim ()(()())2(())()()x a f x f a f a x a f a f x f a f a f a f x x a→''-''-=='-'''+-. (9)解 由 112[1)1))]nn n u n n n =+++(((1, 取11ln ln(1)n n i i u n n==+∑,则 11100011limln lim ln(1)ln(1)d ln(1)d 2ln 211n n n n i i x u x x x x x n n x →∞→∞==+=+=+-=-+∑⎰⎰,所以 2ln 214lim n n u e e-→∞==. 四、(10)解:因为262000arcsin d limlim (1)d xx x t t te tαβ→→=-⎰⎰注:由洛必达法则2222331arcsin 3lim 1x x x x xe -→⋅=- 注:221,(0)x e x x -→ 22320231arcsin 1lim33x x x x x →==⋅, 所以,αβ与是同阶但不等价无穷小,则选 A . (11)解:(A ) 因为11111()nn n n n n n aa a a ∞∞∞++===+=+∑∑∑11212n n n n n n a a a a ∞∞∞====+=+∑∑∑,而1nn a∞=∑收敛,所以11()n n n a a ∞+=+∑必收敛,(B )因为222222222221122311211()n n n n n n n a a a a a a a a a a a ∞++++=-=-+-++-+-=∑,所以2211()n n n a a ∞+=-∑必收敛.(C )因为2212345221111()n n n n n n n a a a a a a a a a a ∞∞++==+=+++++++=-∑∑所以2211()n n n a a ∞+=+∑必收敛,(D )221234522112()(1)n n n n n n n n a a a a a a a a a ∞∞++==-=-+-++-+=-∑∑未必收敛,例如 1(1)n n n ∞=-∑收敛, 但221(1)nn n n a n ∞∞==-=∑∑发散,则结论不正确的是D ,本题选D(12)解:由1,0,()()()d ,0,x x e x f x F x f t t x x -⎧≤==⎨>⎩⎰,则 11121,0,()11,02x t x x t e dt e e x F x e dt e x x ----⎧=-≤⎪=⎨⎪=-+>⎩⎰⎰,即 112,0,()11,02x e e x F x e x x --⎧-≤⎪=⎨-+>⎪⎩, 因为 12101lim ()lim(1)12x x F x e x e ++--→→=-+=-, 11lim ()lim()1x x x F x e e e ----→→=-=- 所以 ()F x 在0x =处连续.因为 2012(0)lim 0x x F x++∆→∆'==∆, 01(0)lim 1xx e F x-∆-∆→-'==∆,(0)(0)F F +-''≠所以,()F x 在0x =不可导,所以选C. (13)如图,在点(,0)b 处,左边0y ''>,右边0y ''<,而点(,0)b 处0y ''=,所以点(,0)b 为曲线的拐点; 同理,在点(0,)d 处,左边0y ''<,右边0y ''>,而点(0,)d 处0y ''=,所以点(0,)d 为曲线的拐点; 在点(,0)c 处,左边0y '<,右边0y '>,而点(,0)c 处0y '=,所以点x c =为函数的极小值点; 在点(,0)a 处,左边0y '>,右边0y '<,而点(,0)a 处0y '=,所以点x a =为函数的极大值点, 所以,曲线有二个拐点,一个极小值点,一个极大值点. 选(B )五、解:由22,1y ax y x ⎧=⎪⎨=-⎪⎩求得交点)1a A a +(如图), 直线OA 的方程y x =. (I) 旋转体体积 ()Va 2224()d 1a x a x x aπ=-+⎰=25/2215(1)a a π⋅+, (II )53222552(1)(1)d ()22d 15(1)a a a a V a a a π+-+=⋅+ 27/2(4)15(1)a a a π-=+.在0a >处有唯一驻点4a =,当04a <<时d ()0d V a a >, 当4a >时,d ()0d V a a<, 故4a =为唯一极大值点,为最大值点.六、(15)解:由21()arctan ln(1)2f x x x x =-+21()arctan ,(),1f x x f x x'''==+展开之,20()(1),(1,1)n n n f x x x ∞=''=-∈-∑,两边积分,得212100(1)(1)()(0),(1,1)2121n n n n n n f x f x x x n n ∞∞++==--''=+=∈-++∑∑,再次两边积分,得220(1)()(0)(21)(22)nn n f x f x n n ∞+=-=+++∑220(1),(1,1)(21)(22)nn n x x n n ∞+=-=∈-++∑. 右边级数在1x =±处收敛,左边函数在1x =±处连续,所以成立范围可扩大到闭区间[1,1]-. 七、(16)证法1:由2()(4)(2)2x x f x x e x e =---+2(0)0,()(1)(1),2xx x f f x e x e '==---(0)0f '=2221()()44x x x xx f x e xe xe e ''=-=-.而当0x >时2114x e >>,所以当0x >时()0f x ''<, 于是知,当0x >时,()0f x '<,从而知,当0x >时,()0f x <. 证法2:由证法一,有 2211()(0)(0)()()022f x f f x f x f x ξξ''''''=++=< 证法3:由2()(1)(1)2xx x f x e x e '=---()1()2x x xx e x ξ='⎡⎤=--⎣⎦()02xe ξξ=-<,所以()0f x <.注:设()(1)x g x x e =-,在[,]2xx 上的拉格郎日中值定理,有()2(1)(1)1(),222xx x x x x x e x e x e x x ξξ='⎡⎤---=--<<⎣⎦ .浙江大学2007-2008学年秋冬学期《微积分》课程期末考试试卷一、(每小题6分)(1)设4cos 1tan 5ln 2x x y x e x π=++,求d d y x .(2)设由参数式22ln(1)x t ty t t ⎧=+⎨=-+⎩,确定了y 为x 的函数()y y x =,求曲线()y y x =的凹、凸区间及拐点坐标(区间用x 表示,点用(,)x y 表示).(3)求210sin lim()x x x x→(4)求(2)]x x →+∞+二、(每小题6分) (5)求21d (1)x x x +⎰.(6)求arcsin d xxe x e⎰. (7)求230d x xe x +∞-⎰.三、(第(8)-(11)小题每小题8分,第(12)小题6分) (8)(8分) 设()y y x =是由32210y xy x x ++-+=及(1)0y =所确定,求131()d lim (1)x x y t tx →-⎰.(9)(8分)设2()231x f x x x =-+,试将()f x 展开成x的幂级数,并求()(0)(1)n f n ≥.(10)(8分) 设常数0a >,讨论曲线y ax =与2ln y x =在第一象限中公共点的个数. (11)(8分) 设0a <,曲线2y ax bx =+当01x ≤≤时0y ≥.又已知该抛物线与x 轴及直线1x =所围成的图形的面积13D =,试确定常数a 与b 使该图形绕x 轴旋转一周而成的旋转体体积V 最小.(12)(6分) 设()f x 在区间(0,1)内可导,且()f x M '≤(M 为常数)证明:① 级数1111(()())22n n n f f ∞+=-∑绝对收敛; ② 1lim ()2n n f →∞存在.四、选择题(四选一,每小题4分)(13)设()()(),()()()f x u x v x g x u x v x =+=-,并设0lim ()x u x →与0lim ()x v x →均不存在,则下列结论正确的是 [ ](A )若0lim ()x f x →不存在,则0lim ()x g x →必存在.(B )若0lim ()x f x →不存在,则0lim ()x g x →必不存在.(C )若0lim ()x f x →存在,则0lim ()x g x →必不存在.(D )若0lim ()x f x →存在,则0lim ()x g x →必存在.(14)曲线1ln(1)(1)x y e x x =++-的渐近线的条数 [ ](A )4条 (B )3条. (C )2条. (D )1条.(15)设2122()lim 1n n n x x xf x x -→∞++=+,则()f x 的不连续点的个数为 [ ] (A )0个 (B )1个. (C )2个. (D )多于2个. (16)设()f x [,]a b 上可导,且()0,()0,f a f b ''><下述结论不正确的是[ ] (A )至少存在一点0(,)x a b ∈使0()()f x f a >; (B )至少存在一点0(,)x a b ∈使0()()f x f b >; (C )至少存在一点0(,)x a b ∈使0()0f x '=;(D )至少存在一点0(,)x a b ∈使01()(()())2f x f a f b =+.(17)设0(1,2,)n a n >=,下列结论正确的是[ ](A )若存在0N >,当n N >时均有11n n a a +<,则1n n a ∞=∑必收敛. (B )若存在0N >,当n N >时均有11n n a a +>,则1n n a ∞=∑必发散. (C )若1n n a ∞=∑收敛.则必存在0N >,当n N >时必有11n na a +<, (D )若1n n a ∞=∑发散.则必存在0N >,当n N >时必有11n na a +>.浙江大学2007-2008学年秋冬学期《微积分》课程期末考试试卷答案一、(每小题6分)(1)24cos 4cos d 5cos sec 54(sin ln )d 2x x x x y xx e x e x x x x x =++-. (2)由22x t t =+,d 2(1)d x t t =+,ln(1)y t t =-+,d d 1y t t t =+,2d d 2(1)y tx t =+, 224d 1d 2(1)y tx t -=+,令 22d 0d y x =, 得 1t = 当11t -<<时,22d 0d yx> 曲线凹;当1t >时,22d 0d yx< 曲线凸,当1t =时,对应拐点.换成,x y ,当13x -<<时, 曲线()y y x =凹; 当3x >时, 曲线当()y y x =凸,点(3,1ln 2)-为拐点.(3)解 因为2211sin ln()00sin lim()lim xxx x x x x ex→→= ,而22001sin 1sin limln lim ln(11)x x x x x x x x→→=+-,201sin lim (1)x x x x →=- 注sin sin ln(11)1,(0)x xx x x+--→ 3200sin cos 11lim lim 36x x x x x x x →→--===-, 所以 21160s i n l i m ()x x xe x-→=.(4)lim (2))xx →+∞+2lim (1)]x x x→+∞=+222sin 2(1(1))limx x x ++-+=22sin 24()limx x x --=sin 42lim 1x x --==- .二、 (5)22111d ()d (1)(1)x x x x x x x -=-+++⎰⎰ =1ln ln 1x x C x--+++.(6) 方法1:令 arcsin x e t =,则cos sin ,ln sin ,d d sin x te t x t x t t===2arcsin cos d d sin x x e t tx t e t=⎰⎰1d()sin t t =-⎰ 1d sin sin t t t t =-+⎰ ln csc cot sin t t t C t =-+-+arcsin ln x x x e e e e C ---=-+-+,或写成arcsin ln 1x x e e x C -=--++.方法2:令 x e t =,则1ln ,d d ,(0)x t x t t t==>2arcsin arcsin 1d d arcsin d x xe t x t t e t t==-⎰⎰⎰arcsin t t =-+arcsin tt=-+arcsin 1ln t C t t =--++arcsin ln 1x x e e x C -=+-.(7)2232200011d d d 22x x tx ex x e x te t +∞+∞+∞---==⎰⎰⎰001[d ]2t t te e t +∞+∞--=-+⎰011[]22t e +∞-=-=.三、(8)解 由32210y xy x x ++-+=,1lim ()0x y x →=两边关于x 求导数,有23220y y xy y x ''+++-=,得222()3x yy x y x--'=+,1lim ()0x y x →'=, 222(3)(2)(22)(61)()(3)y x y x y yy y x y x ''+-----+''=+,1lim ()2x y x →''=-. 由洛必达法则,1321111()d ()()()1limlimlim lim (1)3(1)6(1)63x x x x x y t ty x y x y x x x x →→→→'''====----⎰. (9)解:()(21)(1)xf x x x =--1111121112x x x x-=-=+---- 0(2)nn n n x x ∞∞===-+∑∑1(21),2n n n x x ∞==-<∑ ()(0)(21)!,1n n f n n =-≥(10)解:令()2ln f x ax x =-,有2()f x a x'=-,令()0f x '=,得2x a=,22()f x x''=,由于()0f x ''>,所以22()22ln f a a=-为()f x 的唯一极小值,为最小值.以下讨论最小值的符号.①若222ln 0a->,即2a e >时,()0f x >,()f x 无零点,两曲线无公共点;②若2a e=,则当且仅当a e =时,()0f x =,()f x 有唯一零点,两曲线在第一象限中相切;③若20a e <<,有2()0f a<时,有因0lim ()x f x +→=+∞,lim ()x f x →+∞=+∞, 所以在区间2(0,)a 与2(,)a+∞内,()f x 各有至少一个零点,又因为在这两个区间中()f x 分别是严格单调的,所以()f x 正好有两个零点,即两曲线在第一象限中有且仅有两个交点. (11)解:因0a <,且当01x ≤≤时,0y ≥,所以如下图1211()d 323b ax bx x a +=+=⎰,所以312a b =-, 221220()d ()523a ab b V ax bx x ππ=+=++⎰21()51030b b π=-+,d 1()d 1015V b b π=-+,22d d 15V bb π=,令d 0d V b =,32b =,2232d 0d b V b=>,为唯一极小值,故32b V=为最小值,此时53,42a b =-=.(12)① 由拉格朗日中值定理 1111111111()()()()()()222222n n n n n n f f f f M ξξ++++''-=-=≤, 而1112n n ∞+=∑收敛,所以,1111[()()]22n n n f f ∞+=-∑绝对收敛;② 111()()22n n S f f +=-,因为lim n n S →∞存在,所以1lim ()2n n f →∞存在.四、 (13)解 (A )若0lim ()x f x →不存在,则0lim ()x g x →必存在.不正确,例如 211(),()u x v x x x ==, 221111(),()f x g x x x x x=+=-, 此时0lim ()x f x →不存在,0lim ()x g x →也不存在.(B )若0lim ()x f x →不存在,则0lim ()x g x →必不存在.不正确,例如 11(),()u x v x x x ==,2(),()0f x g x x==,此时0lim ()x f x →不存在,0lim ()0x g x →=存在.(C )若0lim ()x f x →存在,则0lim ()x g x →必不存在.假设0lim ()x g x →存在,由()()2()f x g x u x +=,得0lim ()x u x →存在,与已知矛盾,所以结论正确.(D )若0lim ()x f x →存在,则0lim ()x g x →必存在.由上述(C),说明0lim ()x g x →必存在不正确.所以结论正确的是C,本题选C. (14)解,因为11lim[ln(1)](1)x x e x x →++=∞-,1lim[ln(1)](1)x x e x x →++=∞-,有铅垂渐近线(0,1x x ==)2条,因为1lim[ln(1)]0(1)x x e x x →-∞++=-,有水平渐近线(0y =)1条,又因为 2()1l n (1)l i m l i m []1,1(1)xx x f x e a x x x x→+∞→-∞+=+==-,1lim[()]lim[ln(1)](1)x x x f x ax e x x x →+∞→+∞-=++--lim[ln (1)]lim[ln ln(1)]x x x x x x e e x e e x --→+∞→+∞=+-=++-lim ln(1)0x x e -→+∞=+=,有斜渐近线(y x =)1条,所以本题共有4条渐近线,选A.(15)解22122,1,3,1,2()lim 11,121,1,n n n x x x x x x x f x x x x x-→∞⎧+<⎪⎪=⎪++⎪==⎨+-=-⎪⎪⎪>⎪⎩, 则()f x 的不连续点(1,1x x =-=)的个数为2个所以选C. (16)解 取2()4,[1,1],1,1,()3,()3f x x x a b f a f b =-∈-=-===,当(1,1)x ∈-时()3f x >,()2,()2,()2f x x f a f b '''=-==-,满足题目条件:(A )至少存在一点0(,)x a b ∈使0()()f x f a >,成立, (B )至少存在一点0(,)x a b ∈使0()()f x f b >;成立, (C )至少存在一点0(,)x a b ∈使0()0f x '=;成立,(D )至少存在一点0(,)x a b ∈使01()(()())2f x f a f b =+.不成立. 所以本题选D(17)解 (A )不成立,例如11n n ∞=∑,满足当1n >时 111n n a n a n +=<+, 但11n n∞=∑发散, (B )成立,若存在0N >,当n N >时均有111,n n n na a a a ++>>, 则必有lim 0n n a →∞≠ 则1n n a ∞=∑必发散.(C )不成立, 例如 21(1)2n n n ∞=-+∑收敛,但不存在0N >,当n N >时必有11n n a a +<, (D )不成立,例如 11n n ∞=∑发散,但则存在0N >,当n N >时有111n na n a n +=<+.浙江大学2008-2009学年秋冬学期《微积分》课程期末考试试卷一、求导数或微分(每小题6分)(1)设sin 3(cos )(arcsin 2)x y x x e π=++,求d y .(2)设由参数式3arctan 16x t t y t t=++⎧⎨=+⎩,所确定的函数()y y x =在1t =-处的一阶导数d d yx , 及二阶导数22d d yx.二、求极限(每小题6分)(3)011lim()1x x x e →--, (4)lim x(5)21lim(sin cos )x x x x x →+.三、求积分(每小题6分)(6) 221ln d (1)x x x x x x -+-⎰, (7)11(2)x x x -+⎰, (8)已知2d 2x ex +∞-=⎰,求0xx -+∞⎰.四、(每小题6分)(9)试将函数12()arctan 12xf x x-=+展开成x 的幂级数,并写出此展开式成立的开区间. (10)求幂级数1!nnn n x n∞=∑的收敛半径及收敛区间,并讨论收敛区间端点处级数的敛散性. 五、(每小题8分)(11) 求由方程3222220y y xy y x -++-=确定的函数()y y x =的极值,并问此极值是极大值还是极小值,说明理由.(12)求由曲线2y x =与2y x =+围成的图形绕水平线4y =旋转一周所生成的旋转体体积V .(13)设()f x 在[0,1]上连续,(0)0f =,并设()f x 在0x =处存在右导数(0)1f +'=,又设0x +→时,220()()d ()d x x F x x f u u u u =-⎰⎰与n Ax 为等价无穷小,求常数n 及A 的值.六、(每小题8分)(14)设()f x 在闭区间[,]a b 上连续,(,)a b 内可导, (I)叙述并证明拉格朗日中值定理;(II )如果再设()()f a f b =,且()f x 不是常数,试证明至少存在一点(,)a b ξ∈,使()0f ξ'>.(15)设n 为正整数,24021()d d 1nx x e t F x e t t t -=++⎰⎰(I )试证明:函数()F x 有且仅有一个(实)零点(即()0F x =有且仅有一个实根),并且是正的,记此零点n x ;(II )试证明级数21n n x ∞=∑收敛.浙江大学2008-2009学年秋冬学期《微积分》课程期末考试试卷答案一、求导数或微分(每小题6分)(1)sin 2d [(cos )(cos ln cos tan sin )6(arcsin 2)x y x x x x x x x =-+.(2)222d 2d ,3(2)d 1d x t y t t t t +==++,21d d 3(1),6d d t y y t x x =-=+=222222d d()d 66(1)d 2d d 21yy t t t x t x x t t +===+++, 221d 4d t y x =-=-.二、求极限(每小题6分)(3)00111lim()lim 1(1)x x x x x e xx e x e →→---=-- 注1,0x e x x -→ 201lim x x e xx →--= 011lim 22x x e x →-==. (4)limlim x x =lim2x ==-.(5)21201ln(sin cos )lim(sin cos )lim xx x x x x x x x x e →→++=,而22001ln(1sin cos 1)limln(sin cos )lim x x x x x x x x x x→→++-+= 20sin cos 11lim 2x x x x x →+-==, 注:ln(1sin cos 1)sin cos 1,0x x x x x x x ++-+-→所以,21lim(sin cos )x x x x x →+=三、求积分(6) 222111ln d ()ln d (1)(1)x x x x x x x x x x -+=+--⎰⎰ 1ln d ln ln d()1x x x x =--⎰⎰ 21ln 1ln d 21(1)x x x x x x =-+--⎰ 21ln 11ln ()d 211x x x x x x =-+---⎰ 21ln ln ln 1ln 21x x x x C x =-+--+-. (7)112211(2)(24x x x x x x x x --+=++⎰⎰110x x =⎰ 令sin x t =22210sin cos d t t t π=⎰222010sin (1sin )d x x x π=-⎰131510()224228πππ=⋅-⋅⋅=.(8)2(1xxx e -+∞+∞-=--⎰⎰0]xx -+∞=--⎰2024d xu u e u -+∞+∞-==⎰⎰四、(9)12()arctan12xf x x -=+, 221(12)(2)(12)2()12(12)1()12x x f x x x x +---'=-+++ 22422814x x -==-++ 21212012(4)(1)2,2n n n n n x x x ∞∞++===--=--<∑∑, 12120()(0)(1)2d x n n n n f x f x x ∞++==+-∑⎰12121011(1)2,4212n n n n x x n π∞+++==+-<+∑.(10)记!n nn a n =,由11(1)!11(1)limlim lim lim !1(1)(1)n n n n n n n n n nnn a n n n a n en n++→∞→∞→∞→∞++====++. 所以,收敛半径R e =,收敛区间为(,)e e -,在x e =±处,级数成为1!()nnn n e n∞=±∑, 考察!n n n n u e n =,有111(1)n n n u eu n+=>+, 所以lim 0n n u →∞≠,并且也有lim(1)0n n n u →∞-≠,所以在x e =±处,该级数都发散.(11)由3222220y y xy y x -++-=, 求导有2(6421)220y y x y y x '-+++-=,令0y '=,得y x =与3222220y y xy y x -++-=联立,有3222(21)0x x x x x x -+=-+=,解之得唯一解0x =.相应地有0y =, 此时的确可由2(6421)220y y x y y x '-+++-=解出y ',故0x =为驻点. 再有 222()6421x yy y y x -'''=-++ 2222(6421)(22)2()(6421)(6421)y y x y x y y y x y y x ''-++----++=-++. 以0x y ==,及0y '=代入,得20y ''=>,故当0x =时, y 为极小值,极小值0y =.(12)由2,2y x y x ⎧=⎨=+⎩得交点(1,1),(2,4)-,则由上图22221[(4)(4(2)]d V x x x π-=---+⎰2241(1249)d x x x x π-=+-+⎰235211108[1223]55x x x x ππ-=+-+=.(13)220000()d ()d ()lim lim x x n nx x x f u u u uF x Ax Ax++→→-=⎰⎰22201()2()d ()2lim x n x xf x x f u u x x Anx+-→+=⎰2201200()()2limlim (1)x n n x x f u duf x xAnx An n x++--→→==-⎰ 2302()lim (1)n x f x An n x +-→=-25202()(0)lim (1)n x f x f An n x x+-→-=- 按题意, 0()lim 1n x F x Ax +→=,又220()(0)lim (0)1x f x f f x++→-'==, 若5n >则25202()(0)lim (1)n x f x f An n x x+-→--为∞, 若5n <则25202()(0)lim 0(1)n x f x f An n x x +-→-=-为,均与题意不符,故 5n =,于是25202()(0)1lim (1)10n x f x f An n x x A +-→-=-⨯,所以110A =. (14)(I)略,(II)设存在0(,)x x a b =∈,使0()0,f x >在区间0[,]a x 上用拉格郎日中值定理,存在0(,)(,)a x a b ξ∈⊂使得00()()()0f x f a f x aξ-'=>-, 如果存在0(,)x a b ∈,使0()0,f x <在区间0[,]x b 上用拉格郎日中值定理类似可证. (15) (I) 24021()d d 1nx xe t F x e t t t -=++⎰⎰,2014021(0)d d 01t F e t t t -=+<+⎰⎰, 2140211()d d 01e tn F e t t nt -=+>+⎰⎰,24()01nxx nx ne F x ee -'=+>+,故知存在唯一的n x 使 1()0,0n n F x x n =<<.(II) 因为 221nx n <,211n n∞=∑收敛, 故21nn x∞=∑收敛.。

最新浙江师范大学《微分几何》全套模拟卷

最新浙江师范大学《微分几何》全套模拟卷

浙江师范大学《微分几何》考试模拟卷(A 卷)说明:考生应有将全部答案写在答题纸上,否则作无效处理一、判断题(正确打√,错误打×)(每小题2分,共10分)1、等距变换一定是保角变换 ( )2、空间曲线的形状由曲率与挠率唯一确定. ( )3、二阶微分方程22A(,)2B(,)B(,)0u v du u v dudv u v dv ++=总表示曲面上两族曲线. ( )4、连接曲面上两点的所有曲线段中,测地线一定是最短的 ( )5、坐标曲线网是正交网的充要条件是0F =,这里F 是第一基本量( ). 1. × 2. √ 3. × 4.× 5. √二、填空题(每小题3分,共15分) 1. 半径为R 的圆的曲率为_________.2. 曲面的坐标曲线网正交的充要条件是_____________,3. 坐标曲线网成为曲率线网的充要条件是______________.4. 在脐点处曲面的第一, 第二类基本量满足____________________,5. 使法曲率达到最大值和最小值的方向是________________方向.1. 1R2.F=03. 0F M ==4. E F GL M N ==, 5、 主方向三、计算题(第1小题各18分,,第2、3、4小题各10分,共48分)1. 已知空间正则参数曲线32(){cos ,sin ,cos 2}r t t t t =(1) 求基本向量,,αβγ. (2) 求()r t 的曲率和挠率(0)2t π<<.解: ,22{3sin cos ,3sin cos ,2sin 2}r t t t t t =--,,2223,,,2332,,,,2{3c o s 6s i nc o s ,6s i n c o s 3s i n ,4c o s 2}{21s i n c o s6s i n ,6c o s21s i nc o s ,8s i n 2}5s i n c o s3s i n 2{c o s ,s i n ,}4r t t t t t t t r t t t t t t t r t t r r t t t =-+--=--=⨯=--,,,215sin 24r r t ⨯=所以,曲率k 和挠率τ为325sin cos k t t=425s i n c o s t t τ=s i n c o s{3c o s ,3s i n ,4}5s i n c o st t t t t t α=-- 443{c o s ,s i n ,}555t t γ=--s i n c o s{s i n ,c o s ,0}s i n c o st t t t t t βγα=⨯=2、求抛物面22()z a x y =+在原点处的主曲率、高斯曲率和平均曲率,并判断原点是否为脐点.解:令22(,){,,()}r x y x y a x y =+,则{1,0,2}x r ax =,{0,1,2}y r ay = 1,0,1E F G ===21E G F -= {0,0,1}n = 2,0,2L a M N a === 由于0F M ==,所以坐标曲线是曲率线,主曲率为122,2k a k a ==, 高斯曲率为24K a =,平均曲率为2a . 3、 设一个曲面的第一基本形式为22222(),ds du u a dv =++求它上面两条曲线0,0u v u v +=-=的交角.解:有题意可知221,0,E F G u a ===+ 两曲线0,0u v u v +=-=的交点为(0,0),故由:1:1,:1:1du dv u v δδ=-=得222211cos ,arccos 11a a a a ϕϕ-+-+==++ 4.确定螺旋面{}cos ,sin ,r u v u v cv =上的曲率线。

自考试卷及答案解析浙江微分几何试题及答案解析2021年10月

自考试卷及答案解析浙江微分几何试题及答案解析2021年10月

1浙江省2018年10月高等教育自学考试微分几何试题课程代码:10022本试卷分A 、B 卷,使用1988年版本教材的考生请做A 卷,使用2018年版本教材的考生请做B 卷;若A 、B 两卷都做的,以B 卷记分。

A 卷一、判断题(判断下列各题,正确的在题后括号内打“√”,错的打“×”。

每小题2分,共12分)1.在光滑曲线的正常点处,切线存在而且唯一。

( )2.圆的曲率、挠率特征是:k=常数,τ=0。

( )3.在曲面的非脐点处,有且仅有二个主方向。

( )4.高斯曲率22FEG M LN K --=与第二基本形式有关,不是内蕴量。

( )5.曲面上的直线一定是测地线。

( )6.曲面上连接两点的最短线一定是测地线。

( )二、填空题(每小题3分,共18分)1.向量函数具有固定长的充要条件是_____________。

2.曲线r=r(t)的挠率是_____________。

3.曲面上曲纹坐标的微分方程是_____________。

4.曲面上曲纹坐标网是渐近网的充要条件_____________。

5.直纹曲面的高斯曲率满足_____________。

6.球面上的测地线是_____________。

三、完成下列各题(每小题5分,共30分)1.求圆柱螺线x=cost,y=sint,z=t 在(1,0,0)处的切线与法平面。

2.求抛物线y=x 2曲率。

3.证明曲面上坐标曲线互相正交的充要条件是F=0。

4.求悬链面r={coshu cosv, coshusinv,u}的第一类基本量。

5.利用欧拉公式证明在非脐点处,主曲率是曲面在这点处所有法曲率的最大值与最小值。

6.用高斯-波涅公式证明球面上测地三角形内角和大于π。

四、完成下列各题(每小题10分,共40分)1.证明曲率为常数的空间曲线的曲率中心的轨迹仍是曲率等于常数的曲线。

2.求抛物面2z=5x 2+4xy+2y 2在原点的第一、第二基本形式。

3.求双曲面z=axy 上的曲率线。

浙江大学微积分一习题解答 第三,四章(秋冬)

浙江大学微积分一习题解答 第三,四章(秋冬)

2
∆ T≈ π
1 gl 0
l 0 0.000011∆W = 0.000011π
0
24.83 16 =0.8797× 10 −4 (秒)每天约慢 0.8797× 10 −4 ×24×3600=7.6(秒) 980
又冬季室温到-10
∆ T≈ π
C 时 ∆W =-30,周期每秒约快
24.83 30 =-0.1648× 10 −3 (秒). 980
π (sin ax )' = a sin(ax + ) 2
π (sin ax )' ' = a 2 sin(ax + 2 ⋅ ) 2
π (sin ax ) ( n ) = a n sin(ax + n ⋅ ) 2

y (n ) =
π π π 1 1 1 1 1 1 (sin 2 x ) ( n ) + (sin 4 x ) ( n ) − (sin 6 x ) ( n ) = 2 n sin( 2x + n ) + 4 n sin(4 x + n ) − 6 n sin(6 x + n ) # 4 4 2 4 4 2 4 4 2
~~ calculus I chap 03-- 04 ~~ 第三章 导数与微分 题 5(5) (p101) 【1】 『解』 f(x)在 x 0 可导,试讨论|f(x)|在 x 0 的可导性 只需考虑
x →x 0
lim
| f (x) | − | f (x 0 ) | 。 x − x0
我们希望去掉绝对值。故分情况讨论
以此类推
π y''' (− 2 ) 3 [e − x sin( x − 3 ⋅ )] 4 π y ( n ) = (− 2 ) n [e − x sin( x − n ⋅ )] # 4

【浙大习题集】高等数学习题及详细解答3

【浙大习题集】高等数学习题及详细解答3

1. 求下列函数的全微分.(1) 2222+=-s t u s t;(2) ()2222+=+x y xyz x y e;(3) ()arcsin 0=>x z y y;(4) ⎛⎫-+ ⎪⎝⎭=y x x yz e ;1.解 (1)()()222232322222222()()22222∂--+⋅---==∂--Q u s s t s t s s st s t ss s t s t ()()222223232222222()()22222u t s t s t t ts t ts s t s t s t ∂--+---==∂--g ()()2322222244u u st t dz ds dt ds dt s t s t s t ∂∂-∴=+=-∂∂-- (2)()()()222222222222++++∂=++⋅∂Q x y x y xyxyx y x y yz xex y ex xy()2222222244222222+++⎛⎫--=++⋅=+ ⎪⎝⎭x y x y x y xyxyxyx y x y xe x y e x e x y x y()()()22222222222-2+++∂=++⋅∂x y x y xy xyy x x y xzye x y eyxy()()2222222222442222+++-+⎛⎫-=+⋅=+ ⎪⎝⎭x y x y x y xyxyxyy x x y y x yeey e xy xy2244442222x y xyz z x y y x dz dx dy x edx y dy x y x y xy +⎛⎫⎛⎫∂∂--∴=+=+++ ⎪ ⎪∂∂⎝⎭⎝⎭(3)11∂===∂Qg zxyy22⎛⎫⎛⎫∂=-=-= ⎪ ⎪∂⎝⎭⎝⎭z x x yy yz zdz dx dy x y∂∂∴=+=∂∂(4)22221y x y x x y x y z y y x e e x x y x y ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫∂-=-= ⎪∂⎝⎭Q 22221y x y x x y x y z x x y e e y x y xy ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫∂-=-+= ⎪∂⎝⎭222222y x y x x y x y z z z y x x y dz dx dy e dx e dy x y y x y xy⎛⎫⎛⎫-+-+ ⎪⎪⎝⎭⎝⎭∂∂∂--∴=+==+∂∂∂ 2. 求函数2arctan1=+xz y 在1,1==x y 处的全微分. 2.解 ()()()()()()()22222222222222222211111111111++∂++=⋅=⋅=∂++++++++Q y y z y y x x y y x y y xy()()()()()()22222222222222211222111111+∂-⋅--=⋅=⋅=∂++++++++y z x y xy xyx yy y x y y xy()()21,11125111z x ∂+∴==∂++ , ()()21,12125111∂-⋅==-∂++z y ()1,12255dz dx dy ∴=- 3. 求函数22=-xyz x y当2,1,0.02,0.01==∆=∆=x y x y 时的全微分和全增量,并求两者之差.3.解 ()()()(),, 2.02,1.011,1z z x x y y z x y z z ∆=+∆+∆-=-()()22222.02 1.0121 2.0420.6670.667021 4.08 1.0232.02 1.01⨯⨯=-=-=-=--- ()()()2223222222222--⋅∂--===-∂---Q y x y xy x z x y y y x x y x y x y ()()()()22322222222--⋅-∂+==∂--x x y xy y z x xy y x y x y()2,111413z x ∂∴=-=-∂- ,()()22,182110941z y ∂+⨯==∂- ()2,11100.020.010.070.0110.00439dz ∴=-⨯+⨯=-+=00.0040.004z dz ∴∆-=-=-.*4讨论函数()()()()(),0,0,0,,0,0⎧≠⎪=⎨⎪=⎩xy x y f x y x y 在()0,0点的连续性、可导性、可微性以及其偏导函数在()0,0的连续性.4.解()()()()()(),0,0,0,0lim ,lim 00,0x y x y f x y xy f →→===Q(),f x y ∴在()0,0点连续 又()()()00,00,0000,0lim lim 0x x x f x f f x x∆→∆→∆--===∆∆Q ()()()000,0,0000,0limlim 0y y y f y f f y y∆→∆→∆--===∆∆Q ()()0,00,0,00x y f f ∴==.()(()(,0,0,0,0,0,00limlim limx y x y f x y f z dzρρ→∆∆→∆∆→∆∆--∆-==Q()()()0,0,0x y <∆∆→Qlim0z dzρρ→∆-∴=故函数(),f x y 在()0,0点可微. 由()(),0,0x y ≠时(),=-Q x f x y y xy()23222sinx yy xy=-+(),=-y f x y x xy()23222xy x xy=-+()(),0,0lim 0x y y →=Q,()()()()23,0,0222lim→=+x y x yy kx xy()()()33323222=lim11→==+⋅+x kx ky kx k xk ,k 不同值不同()()()23,0,0222lim→∴+x y xy xy不存在,故()()(),0,0lim ,xx y f x y →不存在.(),x f x y ∴在()0,0点不连续,同理可证(),y f x y 在点()0,0不连续.*5.计算()2.050.99的近似值.5.解 令00,1,2,0.01,0.05yz x x y x y ===∆=∆= 则1,ln y y z z yx x x x y-∂∂==∂∂ ()()1,21,22,0z zx y ∂∂∴==∂∂ ()()()2.0521,21,20.991120.0100.0510.02 1.02∂∂∴≈+∆+∆=+⨯+⨯=+=∂∂z zx y x y*6.设有厚度为,内高为,内半径为的无盖圆柱形容器,求容器外壳体积的近似值(设容器的壁和底的厚度相同).6.解 设容器底面积半径为r ,高为h0.1cm 10cm 2cm则容器体积2V r h π= 22,V V rh r r hππ∂∂==∂∂Q22∴=+dV rhdr r dh ππ002,10,0.1,0.1r cm h cm r cm h cm ==∆=∆=()()22,102,1020.10.1400.140.1 4.4∴∆≈=⋅+⋅=⨯+⨯=V dV rh r πππππ*7. 测得直角三角形两直角边的长分别为7±0.1cm 和24±0.1cm ,试求利用上述二值来计算斜边长度时的绝对误差和相对误差.7.解 设直角三角形的直角边长分别为,x y ,则斜边z =,zzxy∂∂==∂∂由题意007,24,0.1,0.1x y x y δδ====z ∴的绝对误差为()()7,247,247240.10.10.242525∂∂=+=⨯+⨯=∂∂z x y z z x y δδδz 的相对误差()7,240.240.009625=≈zz δ。

浙江师范大学《微分几何》全套模拟卷

浙江师范大学《微分几何》全套模拟卷

浙江师范大学《微分几何》考试模拟卷(A 卷)说明:考生应有将全部答案写在答题纸上,否则作无效处理一、判断题(正确打√,错误打×)(每小题2分,共10分)1、等距变换一定是保角变换 ( )2、空间曲线的形状由曲率与挠率唯一确定. ( )3、二阶微分方程22A(,)2B(,)B(,)0u v du u v dudv u v dv ++=总表示曲面上两族曲线. ( )4、连接曲面上两点的所有曲线段中,测地线一定是最短的 ( )5、坐标曲线网是正交网的充要条件是0F =,这里F 是第一基本量( ). 1. × 2. √ 3. × 4.× 5. √二、填空题(每小题3分,共15分) 1. 半径为R 的圆的曲率为_________.2. 曲面的坐标曲线网正交的充要条件是_____________,3. 坐标曲线网成为曲率线网的充要条件是______________.4. 在脐点处曲面的第一, 第二类基本量满足____________________,5. 使法曲率达到最大值和最小值的方向是________________方向.1. 1R2.F=03. 0F M ==4. E F GL M N ==, 5、 主方向三、计算题(第1小题各18分,,第2、3、4小题各10分,共48分)1. 已知空间正则参数曲线32(){cos ,sin ,cos2}r t t t t =(1) 求基本向量,,αβγ. (2) 求()r t 的曲率和挠率(0)2t π<<.解: ,22{3sin cos ,3sin cos ,2sin 2}r t t t t t =--,,2223,,,2332,,,,2{3c o s 6s i nc o s ,6s i n c o s 3s i n ,4c o s 2}{21s i n c o s6s i n ,6c o s21s i nc o s ,8s i n 2}5s i n c o s3s i n 2{c o s ,s i n ,}4r t t t t t t t r t t t t t t t r t t r r t t t =-+--=--=⨯=--,,,215s i n 24r r t ⨯=所以,曲率k 和挠率τ为325sin cos k t t=425s i n c o s t t τ=s i n c o s{3c o s ,3s i n ,4}5s i n c o st t t t t t α=-- 443{c o s ,s i n ,}555t t γ=--s i n c o s{s i n ,c o s ,0}s i n c o st t t t t t βγα=⨯=2、求抛物面22()z a x y =+在原点处的主曲率、高斯曲率和平均曲率,并判断原点是否为脐点.解:令22(,){,,()}r x y x y a x y =+,则{1,0,2}x r ax =,{0,1,2}y r ay = 1,0,1E F G ===21EG F -= {0,0,1}n = 2,0,2L a M N a === 由于0F M ==,所以坐标曲线是曲率线,主曲率为122,2k a k a ==, 高斯曲率为24K a =,平均曲率为2a . 3、 设一个曲面的第一基本形式为22222(),ds du u a dv =++求它上面两条曲线0,0u v u v +=-=的交角.解:有题意可知221,0,E F G u a ===+ 两曲线0,0u v u v +=-=的交点为(0,0),故由:1:1,:1:1du dv u v δδ=-=得222211cos ,arccos 11a a a a ϕϕ-+-+==++ 4.确定螺旋面{}cos ,sin ,r u v u v cv =上的曲率线。

(完整版)浙江大学浙大卢兴江版微积分答案第七章

(完整版)浙江大学浙大卢兴江版微积分答案第七章

7 级数习题7.11(1)13,115,135,163(2)1234,,,3579(3)111221n(4)122.(1)(1)ln 3()12nnq qS qq,收敛,ln32ln 3(2)1nnSn,收敛,1(3)111551nSn,收敛,15(4)11ln ln(1)2nSn;收敛;1ln2(5)111nSn,收敛,—1 (6)arctan(1)arctan1nS n,收敛,4.3. (1)级数为212(1)n n n ,和为1 (2)级数为123nn,和为1.4. (1)发散(2)发散(3)发散(4)发散(5)收敛5. (1)发散(2)发散(3)发散(4)发散(5)发散(6)发散(7)收敛,32(8)收敛,12.6. (1)提示:利用级数收敛的定义及“若1nn u收敛,则必有0()nun”之结论(2)例如(1),1,2,nnu n(3)提示:利用2121()k kku u与1nnu的部分和之间的关系7.12(1)eeππ+-习题7.21.(1)发散(2)收敛(3)发散(4)收敛(5)收敛(6)收敛(7)发散(8)收敛2.(1)提示:用比较判别法(2)提示:2122122222nn n n n nn n nua a a a a na a(3)提示:用比较判别法的极限形式3.(1)收敛 (2)收敛 (3)收敛 (4)发散 (5)收敛 (6)当1p 时收敛;当1p时发散.4.(1)收敛 (2)收敛 (3)发散 (4)收敛 (5)发散 (6)收敛 (7)收敛 (8)收敛 (9)当01a 时收敛,当1a 时发散; 当1a 时:1s 收敛,1s 发散(10)收敛. 5.(1)0p时收敛,0p 时发散 (2)当01a 时收敛,当1a 时发散(3)收敛 (4)当12a 时收敛,当12a 时发散 (5)当2p时收敛,2p 时发散 (6)当1a 时收敛,当01a 时发散(7)当1p 时收敛;当1p 时:1q 收敛,1q发散;当1p 时发散(8)当1a 时收敛,当1a 时发散 (9)0p 时收敛,0p 时发散6.(3)提示:2112np u n 7.(4nu n,再利用(3) 8. 提示:23112()d ()d ()d n n n n n f x x f x xf x x ,再利用()f x 的单调、正值性质。

《微分几何》考试试卷与参考答案

《微分几何》考试试卷与参考答案

《微分几何》结业考试试卷一、判断题:(正确打√,错误打×。

每题2分,共10分))1、等距变换一定是保角变换. ( )2、空间曲线的形状由曲率与挠率唯一确定. ( )3、二阶微分方程22A(,)2B(,)B(,)0u v du u v dudv u v dv ++=总表示曲面上两族曲线. ( )4、连接曲面上两点的所有曲线段中,测地线一定是最短的. ( )5、坐标曲线网是正交网的充要条件是0F =,这里F 是第一基本量. ( )二、填空题:(每空3分,共33分)1、 已知33{cos ,sin ,cos2}r x x x =,02x π<<,则α= ,β= ,γ= ,κ= ,τ= .2、已知曲面{c o s ,s i n ,6}r u v u v v =,0u >,02v π≤<,则它的第一基本形式为 ,第二基本形式为 ,高斯曲率K = ,平均曲率 H = ,点(1,0,0)处沿方向:2du dv =的法曲率 ,点(1,0,0)处的两个主曲率分别为 。

三、计算题(每小题12分,共24分) 1、求曲面33z x y =-的渐近曲线.2、已知曲面的第一基本形式为22()I v du dv =+,0v >,求坐标曲线的测地曲率.密线封层次报读学校专业姓名四、综合题:(每小题11分,共33分)1、设空间两条曲线Γ和C的曲率处处不为零,若曲线Γ和C可以建立一一对应,且在对应点的主法线互相平行,求证曲线Γ和C在对应点的切线夹固定角.2、给出曲面上一条曲率线Γ,设Γ上每一点处的副法向量和曲面在该点的法向量成定角. 求证Γ是一条平面曲线.3、问曲面上曲线Γ的切向量沿曲线Γ本身平行移动的充要条件是曲面上的曲线Γ是测地线吗?为什么?《微分几何》参考答案一、判断题:1. √ 2. √ 3. ⨯ 4. ⨯ 5. √ 二、填空题:① 1{3cos ,3sin ,4}5x x -- ②{sin ,cos ,0}x x③1{4cos ,4sin ,3}5x x -- ④625sin 2x⑤825sin 2x⑥ 222(36)du u dv ++⑦dv⑧2236(36)u -+ ⑨ 0⑩○11 66,3737- 三、计算题:1、求曲面33z x y =-的渐近曲线.解 设33{,,}r u v u v =-则 2{1,0,3}u r u =,2{0,1,3}v r v =-,2243,3,1}||9u v u v r r n u v r r u ⨯==-⨯{0,0,6}uu r u =,0uv r =,{0,0,6}vv r v =-uu L n r =⋅=0uv M n r =⋅=,vv N n r =⋅=(6分)因渐近曲线的微分方程为2220Ldu Mdu dv Ndv ++=即22udu vdv =0=∴ 渐近曲线为331u v C =+或332()u v C -=+ (12分)2、已知曲面的第一基本形式为22()I v du dv =+,0v >,求坐标曲线的测地 曲率.解 E G v ==,0F =,0u G =,1v E=(4分)u-线的测地曲率ug κ==(8分) v-线的测地曲率0vg κ== (12分)四、综合题:1. 设空间两条曲线Γ和C 的曲率处处不为零,若曲线Γ和C 可以建立一一 对应,且在对应点的主法线互相平行,求证曲线Γ和C 在对应点的切线夹固定角.证 设 :()r r s Γ=,:()r r s **Γ=,则由//ββ*知ββ*=±,从而0αβ*⋅=,0αβ*⋅=,()0d ds ds dsαακβακαβ*****⋅=⋅+⋅= ∴ constant αα*⋅=,即 cos ,C αα*=这表明曲线Γ和C 在对应点的切线夹固定角. (11分)2. 给出曲面上一条曲率线Γ,设Γ上每一点处的副法向量和曲面在该点的 法向量成定角. 求证Γ是一条平面曲线.证 设 :(,)r r u v ∑=,:(),()u u s v v s Γ==,其中s 是Γ的自然参数,记,r n θ=,则cos r n θ⋅=,两边求导,得d 0d nn rsτβ-⋅+=, (4分) 由Γ为曲率线知d //d n r ,即d d //d d n r s s α=, 因此d d 0d d n n r n r r s sτβκ⋅=⋅=-⋅= 。

浙江师范大学《微分几何》(期末考试)答案

浙江师范大学《微分几何》(期末考试)答案

浙江师范大学《微分几何》(期末考试)答案(05.1)一、是非题(每小题2分,共10分)1. √2. √3. ⨯4. ⨯5. √二、填空题(每小题3分,共33分)① 1{3cos ,3sin ,4}5x x -- ②{sin ,cos ,0}x x ③ 1{4cos ,4sin ,3}5x x -- ④ 625sin 2x ⑤ 825sin 2x ⑥ 222(36)du u dv ++⑦dv ⑧ 2236(36)u -+ ⑨ 0 ⑩○11 66,3737- 三、计算题(每小题12分,共24分)1. 求曲面33z x y =-的渐近曲线.解 设33{,,}r u v u v =-r则 2{1,0,3}u r u =r ,2{0,1,3}v r v =-r,223,3,1}||u v u v r r n u v r r ⨯==-⨯r r r r r {0,0,6}uu r u =r ,0uv r =r r ,{0,0,6}vv r v =-ruu L n r =⋅=r r 0uv M n r =⋅=r r,vv N n r =⋅=r r (6分)因渐近曲线的微分方程为2220Ldu Mdu dv Ndv ++=即22udu vdv =0=∴ 渐近曲线为33221u v C =+或 33222()u v C -=+ (12分) 2. 已知曲面的第一基本形式为22()I v du dv =+,0v >,求坐标曲线的测地 曲率.解 E G v ==,0F =,0u G =,1v E = (4分) u-线的测地曲率u g κ== (8分) v-线的测地曲率0v g κ== (12分) 四、综合题(每小题11分,共33分)1. 设空间两条曲线Γ和C 的曲率处处不为零,若曲线Γ和C 可以建立一一 对应,且在对应点的主法线互相平行,求证曲线Γ和C 在对应点的切线夹固定角.证 设 :()r r s Γ=r r ,:()r r s **Γ=r r ,则由//ββ*r r 知ββ*=±r r ,从而0αβ*⋅=r r ,0αβ*⋅=r r ,()0d ds ds dsαακβακαβ*****⋅=⋅+⋅=r r r r r r ∴ constant αα*⋅=r r ,即 cos ,C α*=r r这表明曲线Γ和C 在对应点的切线夹固定角. (11分)2. 给出曲面上一条曲率线Γ,设Γ上每一点处的副法向量和曲面在该点的 法向量成定角. 求证Γ是一条平面曲线.证 设 :(,)r r u v ∑=r r ,:(),()u u s v v s Γ==,其中s 是Γ的自然参数,记,r n θ=r r ,则cos r n θ⋅=r r ,两边求导,得d 0d n n r s τβ-⋅+=r r r r r , (4分) 由Γ为曲率线知d //d n r r r ,即d d //d d n r s s α=r r r , 因此d d 0d d n n r n r r s sτβκ⋅=⋅=-⋅=r r r r r r . 若0τ=,则Γ为平面曲线; (6分) 若0n β⋅=r r ,则因Γ为曲面∑上的一条曲率线, 故d d n n r κ=r r . 而n n n κκβκβ=⋅=⋅=r r r r ,所以d 0n =r r ,即n r 为常向量. 于是Γ为平面曲线. (11分) 3. 问曲面上曲线Γ的切向量沿曲线Γ本身平行移动的充要条件是曲面上的 曲线Γ是测地线吗?为什么?答:曲面上曲线Γ的切向量沿曲线Γ本身平行移动的充要条件是曲面上的 曲线Γ是测地线. (3分)事实上,设:()(1,2)i i u u s i T ==,则Γ的切向量为1212du du r r ds ds α=+rr r (5分) 记 1du a ds '=,22du a ds =,111,i j ij i j Da da a du =+Γ∑,222,i j ij i j Da da a du =+Γ∑ 则曲线Γ的切向量αr 沿Γ平行移动⇔0D α=r r⇔ 120,0Da Da == ⇔ 0(1,2)iDa i ds==⇔ 22,0(1,2)k i j k ij i j d u du du k ds ds ds +Γ==∑ ⇔ Γ为测地线 (11分)。

微分几何测试题集锦(含答案)

微分几何测试题集锦(含答案)

微分几何测试题集锦(含答案)《微分几何》测试题(一)一.填空题:(每小题2分,共20分)⒈向量r(t)??t,3t,a?具有固定方向,则a=___t__。

??? ⒉非零向量r(t)满足?r,r,r??0的充要条件是以该向量为切方向的曲线为平面曲线⒊设曲线在P点的切向量为?,主法向量为?,则过P由?,?确定的平面是曲线在P点的___密切平面__________。

⒋曲线r?r(t)在点r(t0)的单位切向量是?,则曲线在r(t0)点的法平面方程是__________________________。

⒌曲线r?r(t)在t = 1点处有??2?,则曲线在t = 1对应的点处其挠率?(1)。

⒍主法线与固定方向垂直的曲线是__ 一般螺线_ _ ⒎如果曲线的切向与一固定方向成固定角,则这曲线的曲率与挠率的比是___常数_________________。

)y点(x0,y0,z0的⒐曲面z?(z,x在)法线方程是_____________________。

1二.选择填空题:(每小题3分,共30分)11、若曲线的所有密切平面经过一定点,则此曲线是___C___。

A、直线B、平面曲线C、球面曲线D、圆柱螺线12、曲线r?r(t)在P(t)点的曲率为k , 挠率为?,则下列式子___A___不正确。

A、k?13r??r??r?2 B、k?对于曲r??r??r?3 C、k?r D、??的第一基本?r?r??r???? 2?r??r???形式、面I?Edu2?2Fdudv?Gdv2,EG?F2__D___。

A、?0B、?0C、?0D、?0三.计算与证明题:(22题14分,其余各9分)21、已知圆柱螺线r??cost,sint,t?,试求??0,1, ⑴在点???的切线和法平面。

?2? ⑵曲率和挠率。

22、对于圆柱面?:r???cos?,?sin?,u?,试求⑴?的第一、第二基本形式;2⑵?在任意点处沿任意方向的法曲率;⑶?在任意点的高斯曲率和平均曲率;⑷试证?的坐标曲线是曲率线。

浙大微分几何习题

浙大微分几何习题

量也是 N 即可, 其中 λ = const..
Hale Waihona Puke (2) 如果曲线 C : x = x(s) 和 C∗ : x∗ = x∗(s∗) 是 Bertrand 曲线, 它们的弧长
参数分别为
s 和 s∗.
则由第 7 题可知, cos θ
=
(1

λk)
ds d s∗
,
sin θ
=
λτ
ds d s∗
,

中 θ = const., λ 为非零常数. 令 µ = λ cot θ, 则 λk + µτ = 1.
k2N2
d s2 ds
=
±(−kT + τB).
(1.16)
因此 τ = 0. 反之, 如果 τ = 0, 由 (1.12) 可知 T ∥ N2. 所以 x2 − x1 = (C2 − C1)N2.
11. 设 C : x(s) 是弧长参数曲线, 它的 Frenet 标架为 {T(s), N(s), B(s)}. 以下曲 线
T′ N′ B′
= = =
−kT
kN −ckN
+ckB
引入参数
t(s)
=
∫s
0
k(σ)dσ 后, 上述方程组化为
dT
dt
=
dN
dt
=
dB
dt
=
−T
N −cN
+cB
(1.8)
3
于是有
d2N
dt2
=
−N − c2N =
−ω2N, 其中 ω =
√ 1 + c2.
于是有
N = cos ωta + sin ωtb,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1.6)
2 2 2 2 上式两边取模长, 得到 ( ds ds ) = ± √ 两边再对 s 求导, 即得 N∗ ∥ N.
1 µ2 + λ2
(µT + τB).
(1.7)
9. 求满足条件 τ = ck (c 为非零常数, k > 0) 的曲线 x( s). 解:当 c = 0 时, τ = 0, 此时曲线为平面曲线. c 0 时, 由 Frenet 公式可知 ′ T = kN ′ N = −k T +ckB B′ = −ckN ∫s 引入参数 t( s) = 0 k(σ)dσ 后, 上述方程组化为 dT = N ddt N +cB dt = −T dB = −c N dt 3
证明: ds1 = k( s)N, ds ds2 T2 = −k( s)T + τ( s)B, ds ds3 T3 = −τ( s)N. ds T1 两边分别求模长即可得证. 12. 证明: 曲线 C 的切线的球面标线为(部分)大圆的充要条件是 C 为平面曲 线; 曲线的主法线的球面标线永远不为常值曲线. 证明: 设 C : x( s) 是弧长参数曲线, T 是其切线. 如果 C 是平面曲线, 则 (x( s) − x(0)) · n0 = 0. 两边对 s 求导得到 T · n0 = 0, 也就是说 T 是平面曲线. 反之, 如果 C ∗ : T( s) 为大圆, 则对应的曲率和挠率分别为 k∗ = 1, τ∗ = 0. 运用第 2 题结论计算 k∗ , 得到 τ( s) = 0. N = 0, 则 −kT + τB = 0, k = τ = 0, 矛盾. 如果 dds
˙, g = x × x ˙. 证明: 令 e = x, f = x 5. 设 x( s) = ( x1 ( s), x2 ( s)) 是平面上以弧长为参数的曲线, {T( s), N( s)} 是它 的 Frenet 标架, 证明: N( s) = (− x ˙2 ( s), x ˙1 ( s)), ¨ ( s) = kr ( s)(− x x ˙2 ( s), x ˙1 ( s)).
《整体微分几何初步》习题答案
1
§0.1 E 3 中 的 曲 线
1. 求下列曲线的弧长, 并写出弧长为参数的方程: (1) 双曲螺线 x = (a cosh t, a sinh t, bt); t , 0); (2) 悬链面 x = (t, a cosh a (3) 曳物线 x = (a cos t, a ln(sec t + tan t) − a sin t, 0). ∫t √ 解:(1) s(t) = 0 a2 cosh 2t + b2 dt; t ; (2) s(t) = a sinh a (3) s(t) = a ln sec t. 2. 证明一般参数下曲线 x(t) 的曲率和挠率的计算公式是: (x′ , x′′ , x′′′ ) |x′ × x′′ | ; τ ( t ) = . k(t) = |x′ |3 |x′ × x′′ |2
所以 λ( s)k( s) = 0. 如果 λ = 0, 则 C 和 C ∗ 为同一条曲线. 如果 k = 0, 则 C 为直 线. (2) 已知圆柱螺线的曲率和挠率为常数. 则根据曲线论基本定理可知, 除 一运动外, k 与τ 唯一地决定了曲线. 7. 设两曲线可建立 1-1 对应, 使它们在对应点有相同的主法线, 则称它们 为 Bertrand 曲 线, 其中一条称为另一条的侣 侣 线. 证明: 它们在对应点的距离 为常数, 切线作成定角. 证明 :设曲线 C : x = x( s) 和 C ∗ : x∗ = x∗ ( s∗ ) 的弧长参数分别为 s 和 s∗ . 由题 意可设 x∗ ( s∗ ) − x( s) = λ( s)N( s), (1.3) 且 N = N∗ . 两边对 s 求导可得 T∗ dλ ds∗ = (1 − kλ)T + N + λτB. ds ds 2 (1.4)
ds 2 d s ds 3 ′′ ′ ′′ 证明: 直接计算得 x′ = T · ds dt , x = kN · ( dt ) + T · dt2 . 所以 x × x = kB · ( dt ) , 3 ′ ′′ ′′′ ′ ′′ 2 k(t) 即得. 而 x′′′ · B = k · τ · ( ds dt ) , 所以 (x , x , x ) = τ · |x × x | .
2
3. 证明: 圆柱螺线的主法线与它的中心轴正交, 它的从法线与它的中心轴作 成定角, 它的曲率中心轨迹仍然是圆柱螺线. 证 明 : 设圆柱螺线为 x( s) = (r cos σ s, r sin σ s, aσ s), 其中 r, a, σ =
√ 1 r2 +a2

常数. 直接计算 N( s) = (− cos σ s, − sin σ s, 0), B( s) = σ(a sin σ s, −a cos σ s, r), 中心轴为 (0, 0, 1). 所以 N( s) · (0, 0, 1) = 0, B( s) · (0, 0, 1) = σr. 曲率中心 1 为 x( s) + k(1s) N( s) = ((r − σ1 2 r ) cos σ s, (r − σ2 r ) sin σ s, aσ s), 也是一个圆柱螺线. 4. 设 x( s)是单位球面上以弧长为参数的曲线, 证明: 存在向量 e( s), f( s), g( s) 和 ˙= e f ˙ f = − e +λ( s)g 函数 λ( s), 使得 g ˙= −λ( s)f 1
(1.8)
于是有
d2 N dt2
= −N − c2 N = −ω2 N, 其中 ω =

1 + c2 . 于是有 (1.9)
N = cos ωta + sin ωtb, 其中 a, b 为常向量. 把 (1.9) 代入 (1.8) 第 1 式, 得到 T= 1 (sin ωta − cos ωtb + cf), ω
因为 T∗ ⊥N, 所以
dλ ds
= 0, λ = const.. 此时 (1.4) 化为 T∗
ds∗ = (1 − kλ)T + λτB. (1.5) ds 记 T∗ = cos θT + sin θB, 两边对 s 求导, 再分别与 T 和 B 作内积, 得到 sin θ · θ′ = cos θ · θ′ = 0, 所以 θ = const.. 8. 证明: (1) 任何平面曲线都是 Bertrand 曲线. (2) 若 kτ 0, 则空间曲线为 Bertrand 曲线的充要条件是存在常数 λ( 0) 和 µ, 使得 λk + µτ = 1. 证明: (1) 设 C : x = x( s) 是平面曲线, 只要证明 x∗ ( s) = x( s) + λN( s) 的主法向 量也是 N 即可, 其中 λ = const.. (2) 如果曲线 C : x = x( s) 和 C ∗ : x∗ = x∗ ( s∗ ) 是 Bertrand 曲线, 它们的弧长 ds ds 参数分别为 s 和 s∗ . 则由第 7 题可知, cos θ = (1 − λk) ds ∗ , sin θ = λτ ds∗ , 其 中 θ = const., λ 为非零常数. 令 µ = λ cot θ, 则 λk + µτ = 1. 反之, 由曲线 C : x = x( s) 作曲线 C ∗ : x∗ = x + λN, 弧长参数为 s∗ . 两边 对 s 求导, 并运用 λk + µτ = 1, 得到 T∗ ds∗ = (1 − kλ)T + λτB = µτT + λτB. ds
(1.10)
其中 f 为常向量, c 为常数. 把 (1.9), (1.10) 代入 (1.8) 第 2 式, 得到 c 1 B = − (sin ωta − cos ωtb) + f. ω ω (1.11)
则 (1.9), (1.10), (1.11) 为方程组 (1.8) 的通解. 为了保证在初始点 s = 0 时 {T(0), N(0), B(0)} 为单位正交右旋标架, 要对常向量 a, b, f 加以一定的限制. 因为 c 1 b +ω f −ω T(0) = N (0) = a c 1 B(0) = +ω f ωb 因为标架 {T(0), N(0), B(0)} 与标架 {a, b, f} 之间的变换矩阵是行列式等于 1 的 正交阵, 因此只须选取常向量标架 {a, b, f} 为单位正交右旋标架即可. x 最后, 对 d ds = T 积分即得曲线方程为 (∫ s ) ∫ s 1 x( s) = sin ωt(σ)dσ · a − cos ωt(σ)dσ · b + csf + g, ω 0 0 其中 g 是常向量. 10. 设曲线 x2 (t) 在曲线 x1 (t) 的切线上, 并且在对应点它们的切向量相 互 正 交, 则 x2 (t) 称 为 x1 (t) 的 渐 伸 线 , 而 x1 (t) 称 为 x2 (t) 的 渐 缩 线 . 现 设 x( s)是 弧 长 参 数 曲 线, x1 ( s) 和 x2 ( s) 是 x( s) 的 两 条 不 同 的 渐 伸 线. 证 明 x1 ( s) 和 x2 ( s) 为 Bertrand 曲线对的充要条件是 x( s) 为平面曲线. 证明: 由题意可设 xi ( s) = x( s) + λi ( s)T( s), T · Ti = 0, i = 1, 2, 其中 si 为 xi 的弧长参数. (1.8) 两边对 s 求导可得 Ti · dsi = T + λ′ i T + λi kN, ds 4 (1.14) (1.12) (1.13)
因此 τ = 0. 反之, 如果 τ = 0, 由 (1.12) 可知 T ∥ N2 . 所以 x2 − x1 = (C2 − C1 )N2 . 11. 设 C : x( s) 是弧长参数曲线, 它的 Frenet 标架为 {T( s), N( s), B( s)}. 以下曲 线 C1 : x = T( s), C2 : x = N( s), C3 : x = B( s) 分别称为 C 的切线, 主法线和从法线的球 球面 标 线 . 若 si 为 Ci (i = 1, 2, 3) 的弧 长, 证明: √ ds2 ds3 ds1 = k( s), = k2 + τ2 , = |τ( s)|. ds ds ds
相关文档
最新文档