微机继电保护原理

合集下载

继电保护原理微机继电保护原理

继电保护原理微机继电保护原理
高精度测量
微机继电保护采用数字信号处理 技术,具有高精度的测量和判断 能力,提高了保护的准确性和可
靠性。
灵活性强
微机继电保护可以通过软件编程实 现不同的保护功能,适应性强,易 于扩展和维护。
易于远程控制
微机继电保护可以实现远程控制和 监控,方便了运行和维护。
传统与微机继电保护的结合应用
互补性应用
在电力系统中,可以将传统继电保护和微机继电保护结合使用, 以充分发挥各自的优势,提高整个系统的保护性能。
微机继电保护系统的构成
硬件部分
微机继电保护装置的硬件主要包括中 央处理器、存储器、输入/输出接口 电路等,用于实现各种保护功能。
软件部分
微机继电保护装置的软件主要包括系 统软件和应用软件,系统软件负责管 理硬件资源和应用软件,应用软件根 据保护原理实现具体的保护功能。
微机继电保护的算法
傅里叶变换算法
通过分析电流、电压信号的频 谱,检测设备是否出现故障。
最小二乘法算法
通过最小化误差的平方和,计 算出设备的参数,用于判断设 备是否出现故障。
波形比较算法
通过比较故障前后的电流、电 压波形,判断设备是否出现故 障。
递归最小二乘法算法
通过递归的方式计算设备的参 数,用于判断设备是否出现故
障。
微机继电保护的优点
定期维护
定期对微机继电保护装置 进行维护和检查,确保装 置的稳定运行和延长使用 寿命。
故障处理
在发生故障时,及时进行 故障定位和排除,恢复微 机继电保护装置的正常运 行。
05 微机继电保护的发展趋势 与展望
人工智能在微机继电保护中的应用
人工智能技术
利用人工智能算法,如神经网络、模糊逻辑等,对电力系统中的故障进行快速 识别和判断,提高继电保护的响应速度和准确性。

1. 介绍线路微机继电保护中三段式距离保护原理

1. 介绍线路微机继电保护中三段式距离保护原理

线路微机继电保护是电力系统中非常重要的一环,它能够在电力系统出现故障时快速准确地对故障进行定位和保护,保证系统的安全运行。

上线路微机继电保护中,三段式距离保护是其中一种常见的保护方式。

下面我们将介绍三段式距离保护的原理。

1. 三段式距离保护的概念三段式距离保护是指在电力系统中的保护装置对距离保护进行划分,通常分为近、中、远三个保护段。

这三段保护分别对应不同的距离范围,可以满足系统不同位置的保护需求。

三段式距离保护通常应用于输电线路,能够快速准确地定位故障并切除故障段,保护电力系统的安全稳定运行。

2. 三段式距离保护的原理三段式距离保护的原理是基于电力系统中故障发生时的电压和电流的变化规律来进行保护。

具体原理如下:第一段保护:近端距离保护近端距离保护主要是针对距离线路较近的故障进行保护。

当故障发生时,由于电压和电流的变化,距离保护装置会通过比较故障点处的电压和电流来判断故障的位置,并根据之前设定的保护范围来切除故障段落,保护系统的安全。

第二段保护:中段距离保护中段距离保护是针对线路中段的故障进行保护。

当故障距离超过近端距离保护的范围时,中段距离保护会根据故障点处的电压和电流变化情况来判断故障位置,并进行相应的保护动作。

第三段保护:远端距离保护远端距离保护主要是对线路远端的故障进行保护。

当故障发生上线路远端时,距离保护装置会根据故障点处的电压和电流变化情况来判断故障位置,并进行适当的保护动作。

3. 三段式距离保护的优势三段式距禿保护具有以下优势:(1) 定位精准:三段式距禿保护能够根据故障的位置,快速精确地对故障进行定位,保护系统的稳定运行。

(2) 保护范围广:三段式距禿保护能够覆盖线路不同位置的故障,保护范围广,能够适应不同的系统需求。

(3) 动作可靠:三段式距禿保护基于电压和电流的变化来进行保护,动作可靠。

三段式距禿保护的原理清晰、动作灵敏,能够有效地保护电力系统。

三段式距禿保护是线路微机继电保护中的重要组成部分,它通过对电力系统中距禿保护范围进行划分,依据电压和电流的变化来进行保护,能够快速精确地定位故障,并进行保护动作,保证电力系统的安全稳定运行。

线路微机继电保护中三段式距离保护原理与算法

线路微机继电保护中三段式距离保护原理与算法

线路微机继电保护中三段式距离保护原理与算法一、引言距离保护是电力系统继电保护中的一种重要类型,主要用于避免电网故障扩大,降低故障对电网的影响。

在微机继电保护中,三段式距离保护是一种常见的应用方式。

本论文将详细阐述三段式距离保护的原理及算法。

二、三段式距离保护原理三段式距离保护主要由近端保护、中端保护和远端保护三部分组成。

其基本原理是基于故障点到保护段的距离直接影响保护的动作时间。

当故障点靠近保护段时,响应时间应较长,反之则应较短。

这样就能根据故障点与保护段的距离来动态调整保护的响应时间,实现更好的保护效果。

三、微机实现方法在微机继电保护中,三段式距离保护的实现通常需要依靠微处理器或微控制器来完成。

根据距离测量结果和预设的保护段特性曲线,可以计算出对应的响应时间,并控制执行机构进行跳闸或隔离。

此外,微机还具有强大的数据处理能力和实时性,可以更精确地测量故障点到保护段的距离,从而提高保护的准确性。

四、算法分析三段式距离保护的算法主要包括故障点距离保护段的距离计算、响应时间的动态调整以及执行机构的控制等部分。

其中,距离计算通常采用测量值与预设阈值的比较,通过判断是否超过阈值来确定故障点到保护段的距离。

动态调整响应时间则需要根据实时测量的距离数据,通过算法计算出对应的响应时间,以适应不同距离的情况。

执行机构的控制则需要根据算法输出的跳闸或隔离指令,驱动相应的执行机构进行动作。

五、实际应用与优化在实际应用中,三段式距离保护需要考虑到各种可能的情况和影响因素,如线路阻抗变化、环境干扰等。

为了应对这些问题,需要进行相应的优化和调整。

例如,可以通过实时监测线路阻抗,调整保护段的特性曲线;可以通过优化算法,提高距离计算的准确性;可以通过加强硬件抗干扰能力,提高保护的稳定性等。

六、总结三段式距离保护是一种有效的电力系统继电保护方式,通过微机实现可以获得更高的精度和实时性。

在算法方面,需要根据实际情况进行优化和调整,以提高保护的准确性和稳定性。

微机继电保护 第一章

微机继电保护 第一章

三、开关量输出 (DO)回路 实际的微机保护 装置输出跳闸回路中, 需要对跳闸出口继电 器的电源回路采取控 制措施, 同时对光电 隔离回路采用异或逻 辑控制。
图1-23 具有电源控制的跳闸出口继电器输出回路
第一章 微机继电保护装置硬件原理
第五节 微机继电保护的发展趋势 一、微机保护装置的发展 计算机化, 网络化, 保护、控制、测量、数据 通信一体化和人工智能化。 二、微机保护算法和原理的发展 基于故障分量原理的保护(暂态故障分量保护 和工频故障分量保护) 算法 , 小波分析在保护中 的应用, 利用通信技术构成的“广域保护”, 以及模 糊理论、人工神经网络、自适应理论、专家系统 等智能技术在继电保护装置的应用等。
第一章 微机继电保护装置硬件原理
第六节 微机继电保护装置的功能编号 将继电保护装置通过对功能进行详细描述、 定义 。采用ANSI/IEEE Standard C37.2 标准的继 电保护功能编号见表1-1。 表中给出了标准的功能号 , 广泛应用于工程图 例、流程图、操作过程及其他应用书籍中。采用 标准功能编号 , 每个继电器或继电保护装置可细 分为一系列功能 , 方便设计、制造、运行维护等 各个环节 , 简洁易懂。
第一章 微机继电保护装置硬件原理
第四节 开关量输入及输出回路 一、光电隔离 实现两侧电路之间的电气隔离,解决不同逻 辑电平之间的信号传递和控制。 二、开关量输入(DI)回路 用于识别运行方式、运行条件等。开关量状态正 好对应二进制数字的“1” 或 “0”, 开关量可作为数 字量读入。DI接口作用是为开关量提供输入通道, 并在数字保护装置内外部之间实现电气隔离, 一类是装在保护装置面板上的接点,另一类 是从装置外部经过端子排引入装置的接点。
第一章 微机继电保护装置硬件原理

电力系统微机继电保护课程设计

电力系统微机继电保护课程设计

电力系统微机继电保护课程设计一、绪论为了提高电力系统运行的可靠性和安全性,保护措施是不可或缺的一部分。

在电力系统中,继电保护是其中最重要的一种保护措施。

继电保护的核心是电路保护,主要包括潮流保护和差动保护两大类。

然而,由于电力系统的复杂性,基于传统继电保护的方法难以满足当前电力系统的保护要求。

因此,微机继电保护的出现,为电力系统保护和安全稳定运行提供了新的技术手段。

二、微机继电保护原理微机继电保护是电力系统中采用电子技术实现的高速、准确地检测故障和定位故障位置的自动化设备。

其原理是在故障的瞬间,通过采集电力系统中的各种信号,并对其进行快速的计算和分析,最终实现对电力系统有序、快速、准确的保护。

其中,微机继电保护的核心是数字信号处理器(DSP)和程序控制器,通过高速计算和分析电力系统中各种数据,最终实现对电力系统的保护。

三、课程设计任务1. 设计任务设计一台基于微机继电保护的电路保护系统,实现对电力系统中的故障进行快速的检测和定位,并保障电力系统的安全稳定运行。

2. 设计内容本次课程设计主要涉及以下内容:1.潮流保护的设计2.差动保护的设计3.基于DSP的高速计算技术4.程序控制器的设计3. 设计思路本次课程设计的思路是:在故障的瞬间,通过采集电力系统中各种信号(如电压、电流等),并通过潮流保护和差动保护等方式对其进行分析,最终实现电力系统的保护。

同时,电路保护系统通过DSP和程序控制器的协同控制,实现对电路保护过程的快速问题诊断。

本次课程设计的关键技术是程序控制器和DSP技术。

四、设计实现步骤1. 选题本次课程设计选题为电力系统微机继电保护课程设计。

2. 分工合作在确定选题之后,按照小组成员的各自特长和兴趣分配任务,各自完成设计和编程任务。

3. 设计和编程根据选题确定设计思路,开始进行电路保护系统的潮流保护和差动保护的设计和编程。

4. 单元测试设计和编程完成后,进行单元测试,分别测试各个模块的功能是否正常。

继电保护基础知识和微机保护原理

继电保护基础知识和微机保护原理

继电保护基础知识和微机保护原理继电保护是电力系统中重要的安全措施之一,它的作用是在电力系统发生故障时,迅速切除或隔离故障点,保护电力设备和人身安全。

而微机保护利用先进的微机技术,结合各种传感器和控制装置,实现电力系统的准确、灵敏和可靠的保护,提高系统的稳定性和可靠性。

本文将介绍继电保护基础知识和微机保护原理。

一、继电保护基础知识1.继电保护原理继电保护根据电力系统的运行状态和故障特征,通过各种传感器和设备,对电力系统的电压、电流、功率等进行监测和测量,从而判断系统是否发生故障以及故障的位置和类型。

根据保护原理的不同,可以将继电保护分为差动保护、过流保护、间隙保护、距离保护等。

2.继电保护的类型继电保护按照保护范围的不同,可以分为发电机保护、变压器保护、线路保护、母线保护、馈线保护等。

不同的保护对象有着不同的保护特点和保护要求。

3.继电保护的组成继电保护由监测传感器、比较装置、判据装置和动作执行装置等组成。

监测传感器负责将电能转化为可测量的电信号,如电压互感器、电流互感器等;比较装置根据测量信号和设定值进行比较,判断系统的状态;判据装置根据比较装置的输出结果,生成动作指令,控制动作执行装置对保护范围内的设备进行保护动作。

1.微机保护系统结构微机保护系统由数据采集模块、微机主控装置、数据处理模块、监测和操作界面等组成。

数据采集模块负责采集保护对象的电压、电流等信号,并将其转化为数字信号;微机主控装置进行数据的处理和分析,并根据设定条件生成保护动作指令;数据处理模块进行数据的存储和管理,提供故障记录和统计报表等。

2.微机保护的特点微机保护具有以下特点:(1)准确性高:微机保护采用先进的数字信号处理技术,可以实时监测和测量电力系统的各种参数,提高保护的准确性和可靠性。

(2)速度快:微机保护系统的处理速度很快,可以在几十毫秒内完成对电力系统的故障判断和动作指令的生成。

(3)功能强大:微机保护具有丰富的功能,可以实现过流保护、差动保护、距离保护、频率保护等多种保护方式。

微机继电保护装置

微机继电保护装置

微机继电保护装置一、引言微机继电保护装置是一种新型的电力保护装置,它采用了微机技术和现代电力保护原理相结合的方式,使得电力系统的保护更加灵活、可靠和高效。

二、发展历程随着电力系统的发展和电力负荷的增加,传统的继电保护装置已经难以满足对电力保护的需求。

因此,微机继电保护装置应运而生。

从上世纪80年代开始,微机技术逐渐应用于电力保护领域,取得了显著的成果。

经过多年的发展和改进,微机继电保护装置已经成为电力系统安全稳定运行的重要组成部分。

三、工作原理微机继电保护装置采用了微机技术和数字信号处理技术,能够对电力系统中的各种异常情况进行精确的检测和判断,并在出现故障时快速做出保护动作。

其工作原理主要包括以下几个方面:1. 信号采集和处理:微机继电保护装置通过传感器采集电力系统中的各种信号,包括电压、电流、功率等参数,并将其转化为数字信号进行处理。

2. 信号分析和判断:微机继电保护装置通过对采集到的信号进行分析和判断,可以准确地判断出电力系统中是否存在故障或异常情况。

3. 保护动作控制:微机继电保护装置在判断出故障或异常情况后,会对电力系统进行保护动作控制,如切断故障回路、断开电源等,以保证电力系统的安全运行。

四、特点和优势微机继电保护装置相较于传统的继电保护装置具有如下特点和优势:1. 灵活性:微机继电保护装置可以根据电力系统的实际需求进行配置和调整,以适应不同的保护要求。

2. 可靠性:微机继电保护装置采用了先进的数字信号处理技术,提高了保护的精度和可靠性,并能够自动监测和诊断故障。

3. 高效性:微机继电保护装置具有快速的保护动作速度和精确的保护动作,可以在最短的时间内切断故障回路,避免电力系统的损坏。

4. 易维护性:微机继电保护装置采用了模块化设计,易于维护和故障排除。

五、应用领域微机继电保护装置广泛应用于各种规模的电力系统,包括电力变电站、电力配电系统、工矿企业的电力系统等。

它可以对电力系统中的各种异常情况进行保护,并确保电力系统的安全运行。

微机继电保护原理

微机继电保护原理

微机继电保护原理1.数据采集:微机继电保护通过连接电流互感器和电压互感器对电力系统的电流和电压进行采集,将采集到的数据转换为电压或电流信号输入到微处理器中进行分析。

2.信号处理:微机继电保护通过模拟电路将采集到的电压和电流信号进行放大、滤波和线性化处理,保证信号的精度和稳定性,并将处理后的信号送入A/D转换器中进行数字化处理。

3.数字化处理:微机继电保护中的微处理器通过A/D转换器将采集到的模拟信号转换为数字信号,以便进行后续的数字处理和判断。

4.过电流保护:微机继电保护根据电流信号的大小判断系统是否存在过电流现象。

当电流超过设定的保护值时,微机继电保护会发出指令关闭相应的断路器,以保护电力系统的安全运行。

5.过压保护:微机继电保护通过分析电压信号的大小判断系统是否存在过压现象。

当电压超过设定的保护值时,微机继电保护会通过控制指令断开电力系统的电源,以避免设备损坏或火灾等安全隐患。

6.欠压保护:微机继电保护根据电压信号的大小判断系统是否存在欠压现象。

当电压低于设定的保护值时,微机继电保护会发出指令关闭相应的电力设备,以防止设备受损或引起电路故障。

7.过负荷保护:微机继电保护通过分析电流信号的大小和持续时间来判断系统是否存在过负荷现象。

当电流超过设定的保护值并持续一定时间时,微机继电保护会发出指令关闭相应的设备,以防止设备受损或引起火灾等安全事故。

8.故障记录:微机继电保护具有故障记录功能,可以记录系统出现的故障信息,如过流记录、过压记录、欠压记录等,以便维护人员进行故障分析和故障排查。

总之,微机继电保护利用微处理器技术进行数据采集、处理和判断,通过对电流和电压信号的分析,判断系统是否存在过电流、过压、欠压、过负荷等异常情况,并通过发出控制指令来保护电力系统的安全运行。

同时,微机继电保护具有故障记录功能,方便维护人员进行故障分析和处理。

微机继电保护硬件系统的构成与原理

微机继电保护硬件系统的构成与原理

图4 采样保持电路原理
它由一个电子模拟开关K,电容C以及两个阻抗变换 器组成。开关K受逻辑输入端电平控制。在高电平时 K闭合,此时,电路处于采样状态,C迅速充电或放 电到电容上电压等于该采样时刻的电压值(Ui)。K的 闭合时间应满足使C有足够的充电或放电时间即采样 时间。为了缩短采样时间,这里采用阻抗变换器l, 它在输入端呈现高阻抗,输出端呈现低阻抗,使C上 电压能迅速跟踪等于Ui值。K打开时,电容C上保持 住K打开瞬间的电压,电路处于保持状态。同样为了 提高保持能力,电路中亦采用了另一个阻抗变换器2, 它对C呈现高阻抗。采样保持的过供电1班 第四组
§1.1 微机保护装置硬件系统构成
微机保护装置硬件系统包含以下五个部分: (1)数据采集单元即模拟量输入系统。包括电压形成、模拟滤波、采样保 持、多路转换以及模数转换等功能块,完成将模拟输入量准确地转换为所需 的数字量的功能。 (2)数据处理单元即微机主系统。包括微处理器、只读存储器、随机存取 存储器以及定时器等.微处理器执行存放在只读存储器中的程序,对由数据 采集系统输入至随机存取存储器中的数据进行分析处理,以完成各种继电保 护的功能。 (3)数字量输入/输出接口即开关量输入输出系统。由若干并行接口、光电 隔离器及中间继电器等组成,以完成各种保护的出口跳闸、信号警报、外部 接点输入及人机对话等功能。 (4)通信接口。包括通信接口电路及接口以实现多机通信或联网。 (5) 电源。供给微处理器、数字电路、A/D转换芯片及继电器所需的电源。 保护装置的硬件示意图如下所示 :
图5 采样保持过程示意图 Tc为采样脉冲宽度,Ts为采样周期(或称采样间隔)。可见, 采样保持输出信号已经是离散化的模拟量,再经A/D转换后就成 为离散化的数字量。
图5所示采样间隔Ts的倒数称为采样频率fs。采 样频率的选择是微机保护硬件设计中的一个关 键问题。采样频率越高,要求微处理器的速度 越高。因为微机保护是一个实时系统,数据采 集系统以采样的频率不断地向微处理器输入数 据,微处理器必须要来得及在两个相邻采样间 隔时间Ts内处理完对每一组采样值所必须作的 各种操作和运算,否则,微处理器将跟不上实时 节拍而无法工作。相反,采样频率过低,将不 能真实反映被采样信号的情况。

微型机继电保护原理 第四章

微型机继电保护原理 第四章
i 2u1 − i 1u 2 i12 + i 2 2
(5—12) (5—13)
31
上面式子中用到了两个采样值的乘积,故称两点乘积算法。 两点乘积算法具有如下的特点:
1、 由于采用了两个隔
π 的采样值,算法本身所需的数据窗长度为工频 2
1 的 周期,时延(响应时间)为 5ms。 4
2、 此算法是基于正弦波基础上,因此要与带通滤波器配合使用。 3、 算法本身与采样频率无关,因此对采样频率无特殊要求,由于数据须先
经过数字滤波,故采样频率的选择由所用的滤波器来确定。
4、 算法本身无误差。 5、 算法中要进行较多的乘除法,运算工作量较大。
二、半周绝对值积分算法
半 周绝 对 值积 分算法的原理是依据一个正弦量在任意半个周期内绝对值 积分为一常数 S,且积分值 S 与积分起始点即与初相角α无关,因为图 5—3 中两部分的阴影面积显然是相等的。
28
矛盾,一般要根据实际需要进行协调以得到最合理的结果。在选用准确的数学 模型及合理的数据窗长度的前提下,计算精度与有限字长有关,其误差表现为 量化误差和舍入误差两个方面。为了减小量化误差,在保护中通常采用的 A/D 芯片至少是 12 位的,而减小舍入误差则要增加字长。 需要特别指出的是,算法与滤波是密切相关的,整个保护系统的模拟滤波、 数字滤波器完善的程度不同,所选用的算法也因之而异。另外,某些算法本身 就具有良好的数字滤波功能。
π +α0I) 2
(5—2)
(5—3)
式中α1I=ωn1TS+α0I 为 n1TS 时刻电流的相角,可以为任意值。将式(5—2) 和式(5—3)平方后相加,即得 2 I 2 = i1 2 + i 2 2 再将式(5—2)和(5—3)相除后得 tgα1I=

微机继电保护装置的硬件原理

微机继电保护装置的硬件原理
移相、提取某一分量或抑制某些分量等,根据需要可 以通过软件来实现。
在非周期分量的作用下容易饱和,线性度较差,动态 范围也较小。
一般采用电流变换器将电流信号变换为电压信号
第一章 微型机保护的硬件原理
1-2 模拟量输入系统(数据采集系统)
Z 为模拟低通滤波器及A/D 输入端等回路构成的综合 阻抗,在工频信号条件下,该综合阻抗的数值可达 80KΩ 以上
在逻辑输入为高电平时 AS 闭合,此时,电路处于采样 状态。Ch 迅速充电或放电到usr(t)在采样时刻的电压值。 AS 的闭合时间应满足使Ch 有足够的充电或放电时间 即采样时间,显然希望采样时间越短越好。这里,应 用阻抗变换器I 的目的是,它在输入端呈现高阻抗,对 输入回路的影响很小;而输出阻抗很低,使充放电回 路的时间常数很小,保证Ch 上的电压能迅速跟踪到 usr(t)在采样时刻的瞬时值。
跟随器的输入阻抗很高(达1010Ω),输出阻抗很低 (最大6Ω),因而A1对输入信号usr来说是高阻,而在 采样状态时,对电容Ch 为低阻充放电,故可快速采样。 又由于A2 的缓冲和隔离作用,使电路有较好的保持性 能。
第一章 微型机保护的硬件原理
二、采样保持电路和模拟低通滤波器
(二)对采样保持电路的要求
阻抗变换器I 和Ⅱ可由运算放大器构成。
TC 称为采样脉冲宽度,TS 称为采样间隔(或称采样 周期)。
等间隔的采样脉冲由微型机控制内部的定时器产生。
第一章 微型机保护的硬件原理
二、采样保持电路和模拟低通滤波器
(二)对采样保持电路的要求
1)Ch 上电压按一定的精度(如误差小于0.1%)跟踪上 Usr 所需要的最小采样宽度Tc(或称为截获时间),对 快速变化的信号采样时,要求Tc 尽量短,以便可用很 窄的采样脉冲,这样才能更准确地反映某一时刻的Usr 值。

微型机继电保护原理

微型机继电保护原理

微型机继电保护原理微型机继电保护原理是指通过微型计算机控制和调度继电器,以实现对电力系统的保护和控制。

微型机继电保护原理主要包括三个方面:信号采集与处理、保护判断与动作、故障信息传输与显示。

信号采集与处理:微型机继电保护系统通过各种传感器和测量装置对电力系统中的电压、电流、频率、功率等参数进行实时采集。

这些信号经过滤波、放大和AD转换,然后进入微型计算机,进行数字信号处理。

该处理过程中,计算机对信号进行滤波、平滑、补偿等处理,得到稳定、精确的系统运行参数数据。

保护判断与动作:微型计算机通过运行保护算法,根据电力系统的运行参数数据,进行故障检测与判断。

传统的继电保护设备需要多个继电器组合实现不同保护功能,而微型机继电保护系统中,所有的保护功能都由微型计算机软件完成,无需额外的硬件设备。

根据预设的保护条件和动作逻辑,微型机继电保护系统实现对不同类型的故障进行准确判断,并完成相应的保护动作。

保护动作主要包括断开故障电路、切除故障设备、调整互感器、电动机等。

故障信息传输与显示:当发生故障时,微型机继电保护系统会将故障信息存储在内部存储器中,并通过通信接口与上位计算机或监控系统进行数据传输和共享。

同时,系统会进行故障信息的显示,如LED显示屏、数码管等。

这样可以实现对故障信息的实时监测和分析,以及对系统状态的远程控制。

微型机继电保护系统的实现离不开先进的硬件技术和高效的软件算法。

硬件方面,需要设计高精度采样电路、稳定的信号放大器、高速的AD转换器等;软件方面,需要编写完善的保护算法,进行逻辑控制和状态判断,确保系统能够准确、可靠地进行保护和控制操作。

微型机继电保护系统具有多种优点。

首先,相比传统的继电保护设备,微型机继电保护系统结构简单,占用空间小,安装方便。

其次,使用微型计算机进行信号处理和保护判断,可以实现对多个保护功能的集成和自动切换,提高了系统的智能化程度和可靠性。

再次,微型机继电保护系统通过与上位计算机和监控系统的通信,实现了故障信息的共享和远程控制,提高了系统的可管理性和维护性。

微机继电保护原理

微机继电保护原理

微机继电保护原理
微机继电保护原理是基于微处理器控制的电气保护装置,其作用是保护电力系统设备和电路免受过载、短路、接地故障等电气故障的损害。

微机继电保护原理主要包括以下几个方面:
1. 数据采集和处理:微机继电保护通过传感器采集电气量如电流、电压、功率等的实时数据,然后通过模数转换器将模拟信号转换为数字信号,进一步通过采样和计算等处理手段得到电气量的准确数值。

2. 故障识别和判别:基于采集的数据,微机继电保护通过一系列算法和比较判断手段,识别出电气故障的类型和位置,如过载、短路等,并判别故障是否需要断开电路以保护设备。

3. 控制和动作:一旦识别出电气故障,微机继电保护便会向断路器或其他保护设备发送控制信号,触发其动作来切断故障电路。

同时,微机继电保护会生成警报信号,向操作人员发出故障报警。

4. 通信与监控:为了实现对电力系统的远程监控和管理,微机继电保护通常与其他设备进行通信,如与上位计算机、SCADA系统等进行数据交互,向操作人员提供实时信息和动作记录。

总的来说,微机继电保护通过数据采集、故障识别、控制动作和通信监控等方式实现对电力系统的准确保护和管理,提高了
电气故障的检测速度和准确性,从而有效增强了电力系统的可靠性和安全性。

(电力知识)微机继电保护系统的原理、作用和特点

(电力知识)微机继电保护系统的原理、作用和特点

微机继电保护系统的原理、作用和特点微机继电保护系统的原理、作用和特点1.高压(电力)系统继电保护技术的原理是(电气)测量器件对被保护对象实时检测其有关电气量(电流、电压、功率、频率等)的大小、性质、输出的逻辑状态、顺序或它们的组合,还有检测其他的(物理)量(如(变压器)油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高等)作为继电保护装置的输入信号,通过数学或逻辑运算与给定的整定值进行比较,然后给出一组逻辑信号来判断相应的保护是否应该启动,并将有关命令传给执行机构,由执行机构完成保护的工作任务(跳闸或发出报警信号等)。

系统工作原理图:2.微机继电保护系统的硬件组成:(1).模拟量输入系统(数据采集系统):包括电压形成、模拟量信号的滤波、采样保持、多路转换(MPX)以及模拟转换等主要环节,最后完成将模拟量输入准确地转换为数字量。

(2).CPU主系统:微处理器、只读存储器(ROM)或闪存内存单元、随机存取存储器(RAM)、定时器、并行以及串行接口等。

微处理器通过执行编制好的程序,完成各种继电保护测量、逻辑和控制功能。

(3).开关量(数字量)输入/输出系统:并行接口(PIA或PIO)、光电隔离器件及有触点的(中间(继电器))等组成,完成保护的出口跳闸、信号、外部接点输入及人机对话等功能。

3.高压电力系统微机继电保护系统的作用是专业对电力系统的正常运行工况进行监测显示,对异常工况进行及时的故障报警、故障诊断或快速切断异常线路(或设备等)的电力保护系统,进而为用户的正常生产、生活(用电)提供保证。

4.高压电力系统的微机继电保护系统特点是:(1).可靠性:继电保护装置有非常好的可靠性,不误动不拒动等。

(2).选择性:正确选择故障部位,保护动作执行时仅将故障部位从电力系统中切除,保证无故障部分继续正常(安全)运行。

(3).速动性:快速反应及时切除故障。

(4).灵敏性:灵敏性是指电气设备或线路在被保护范围内发生短路故障或不正常运行情况时,保护装置的反应能力。

微机综合继电保护原理及操作

微机综合继电保护原理及操作

WXB---11键盘命令 WXB---11键盘命令
WXB---11运行方式下键盘命令试验 WXB---11运行方式下键盘命令试验
WXB-11 进入运行方式: 进入运行方式: 人机对话----运行 人机对话----运行 保护CPU---运行 保护CPU---运行 巡检开关---投入 巡检开关---投入 复位”按纽. 按”复位”按纽. “运行”灯亮. 运行”灯亮.
微机型继电保护装置 原理与运行
微机保护基本原理
一、微机型继电保护的构成: 微机型继电保护的构成 微机型继电保护的构成: 传统保护——布线逻辑 传统保护——布线逻辑 微机保护——数字逻辑 微机保护——数字逻辑 硬件系统 软件系统 二、微机型继电保护的基本系统: 微机型继电保护的基本系统:
微机保护——硬件系统 微机保护——硬件系统
数据采集系统 数据处理系统 输入、 输入、输出接口 电源部分
数据采集系统
数据采集系统的作用——将模拟信 数据采集系统的作用——将模拟信 号变成数字信号。它包括: 号变成数字信号。它包括: 辅助变换器 低通滤波器(ALF) 低通滤波器(ALF) 采样保持器( H) 采样保持器(S / H) MPX) 多路开关 (MPX) 数变换器( D) 模/数变换器(A / D)
光、电隔离器(光耦) 电隔离器(光耦)
电源部分
电源部分的作用—提供装置正常工作所 电源部分的作用 提供装置正常工作所 需要的各等级电压: 需要的各等级电压: +5V—微机系统用; 微机系统用; 微机系统用 +15V、+12V—数据采集系统用; 数据采集系统用; 、 数据采集系统用 +24V—继电器回路用。 继电器回路用。 继电器回路用 各级电压不共地。 注:各级电压不共地。

微机继电保护PPT课件

微机继电保护PPT课件
继电保护概述 • 微机继电保护的基本原理 • 微机继电保护的分类与应用 • 微机继电保护的优缺点与展望 • 微机继电保护的实际应用案例
01 微机继电保护概述
CHAPTER
定义与特点
定义
微机继电保护是指利用微型计算 机技术来实现电力系统继电保护 功能的系统。
微机继电保护装置具有灵活的配置和编程 能力,可以根据需要进行定制和扩展,适 应不同系统的需求。
微机继电保护装置具有自我诊断和修复功 能,能够检测和修复潜在的故障,提高系 统的可靠性和稳定性。
微机继电保护的缺点
对硬件和软件要求高
01
微机继电保护装置需要高性能的硬件和软件支持,增加了系统
的复杂性和成本。
对数据传输和处理能力要求高
02
微机继电保护装置需要实时传输和处理大量数据,对数据传输
和处理能力要求较高。
对外部环境因素敏感
03
微机继电保护装置对外部环境因素较为敏感,如温度、湿度、
电磁干扰等,需要采取相应的防护措施。
微机继电保护的展望
智能化发展
随着人工智能技术的发展,微机继电保护装置将更加智能化,能 够自适应地学习和优化保护策略。
应用效果
该系统的应用显著提高了发电厂的安全性和可靠性,减少了设备 损坏和事故发生。
技术特点
该系统采用了基于数字信号处理技术的继电保护算法,具有高灵 敏度和快速响应的特点。
某变电站的微机继电保护系统
案例概述
某变电站的微机继电保护系统采用了先进的微机继电保护装置,实 现了对变电站的全面保护。
应用效果
该系统的应用显著提高了变电站的安全性和可靠性,减少了设备损 坏和事故发生。
04 微机继电保护的优缺点与展望
CHAPTER

微机继电保护精品课件教材课程

微机继电保护精品课件教材课程

大数据技术在微机继电保护中的应用
大数据技术可以对大量的电力系统运 行数据进行分析和处理,提取出有用 的信息,用于优化保护装置的配置和 整定值。
大数据技术还可以用于对历史故障数 据进行挖掘和分析,找出故障发生的 规律和原因,为预防和解决故障提供 科学依据。
大数据技术还可以用于对电力系统的 运行状态进行实时监测和预警,及时 发现潜在的故障风险,提高电力系统 的安全性和稳定性。
详细描述
通信故障通常表现为通信指示灯不亮、通信数据异常等。这 可能是由于通信接口接触不良、通信线缆损坏或通信协议不 匹配等原因造成的。处理通信故障需要检查通信接口和线缆 是否正常,同时确保通信协议的一致性。
通信故障
总结词
通信故障是指微机继电保护装置与其他设备或系统之间的通 信出现问题,导致信息传输受阻或数据错误。
物联网技术在微机继电保护中的应用
物联网技术可以实现电力设备和 保护装置之间的信息交互和远程 控制,提高保护装置的自动化和
智能化水平。
物联网技术还可以用于对电力设 备的运行状态进行实时监测和预 警,及时发现设备的异常情况,
提高设备的可靠性和安全性。
物联网技术还可以用于实现电力 系统的远程管理和控制,提高电 力系统的运行效率和可靠性。
靠性。
距离保护
距离保护通过测量故障点到保护装 置的距离,判断故障位置,实现选 择性保护。
方向保护
方向保护通过比较故障电流的方向, 判断故障是否发生在被保护线路的 内部,实现选择性保护。
微机继电保护的软件算法
电流差动保护
电流差动保护通过比较线路两侧 电流的大小和相位来判断故障是 否发生,具有较高的灵敏度和可
大数据技术在微机继电保护中的应用
大数据技术可以对大量的电力系统运 行数据进行分析和处理,提取出有用 的信息,用于优化保护装置的配置和 整定值。

电力系统微机继电保护技术导则

电力系统微机继电保护技术导则

电力系统微机继电保护技术导则一、引言电力系统是现代社会不可或缺的基础设施之一,而微机继电保护技术在电力系统中起着至关重要的作用。

本文将详细介绍电力系统微机继电保护技术的相关内容,包括其定义、发展历程、应用领域、工作原理等。

二、定义与发展历程2.1 定义微机继电保护技术是指利用微处理器和相应的软件实现对电力系统进行故障检测、故障定位和故障切除等操作的一种保护技术。

2.2 发展历程微机继电保护技术起源于20世纪70年代,当时计算机技术正处于迅速发展阶段。

最早的微机继电保护装置采用离散元件构成的逻辑线路来实现逻辑控制功能。

随着集成电路技术的进步,20世纪80年代中期出现了第一代真正意义上的微机继电保护装置。

经过几十年的发展,到了21世纪初,微机继电保护装置已经成为电力系统保护的主流技术。

随着计算机硬件和软件技术的不断进步,微机继电保护装置在功能、可靠性和性能上得到了显著提升。

三、应用领域微机继电保护技术广泛应用于各类电力系统,包括发电厂、变电站、配电网等。

它可以实现对电力系统各个环节的保护,包括线路、变压器、发电机等。

四、工作原理微机继电保护装置由硬件和软件两部分组成。

硬件部分包括微处理器、采样模块、通信模块等;软件部分则是通过编程实现各种功能。

4.1 采样与数据处理微机继电保护装置通过采样模块对电力系统的信号进行采样,获取相应的数据。

然后,通过数据处理算法对采样得到的数据进行处理,以便进行故障检测和定位。

4.2 故障检测与定位基于采样得到的数据,微机继电保护装置可以实时监测电力系统中的故障情况,并通过判断故障类型和位置来进行相应的保护操作。

常见的故障检测和定位算法包括差动保护、过电流保护和距离保护等。

4.3 故障切除当微机继电保护装置检测到电力系统中存在故障时,它会根据预设的逻辑控制策略,切除故障部分,以避免故障扩大和对系统造成更大的损害。

五、优势与挑战5.1 优势微机继电保护技术相比传统的继电保护技术具有如下优势:•功能强大:微机继电保护装置可以实现多种复杂的功能,如差动保护、距离保护等。

微机保护原理

微机保护原理

近三十年来,计算机技术发展很快,计算机的应用已广泛而深入的影响着科学技术、生产、和生活的各个领域。

它给各部门的面貌带来了巨大的并且往往是质的变化。

计算机技术同样影响到继电保护技术的发展。

传统的继电保护基本上已被新型的微机保护所替换。

下面简单介绍一下微机保护。

一、微机保护装置的构成微机保护与传统继电保护的最大区别就在于前者不仅有实现继电保护功能的硬件电路,而且还必须有保护和管理功能的软件———程序;而后者则只有硬件电路。

微机保护装置的硬件构成可分为四部分:数据采集、微型计算机模块、开出开入、人机接口、其它(通讯,电源等)。

(一)数据采集传统保护是把电压互感器(TV)二次侧电压信号及电流互感器(TA)二次电流信号直接引入继电保护装置,或者把二次电压、电流经过变换(信号幅值变化或相位变化)组合后再引入继电保护装置。

因此,无论是电磁型、感应型继电器还是整流型、晶体管型继电保护装置都属于反应模拟信号的保护。

尽管在集成电路保护装置中采用数字逻辑电路,但从保护装置测量元件原理来看,它仍属于反应模拟量的保护。

而微机保护中的微机则是处理数字信号的,即送入微型计算机的信号必须是数字信号。

这就要求必须有一个将模拟信号变换成数字信号的系统,这就是数据采集系统的任务。

(二)微型计算机模块微型计算机是微机保护装置的核心。

数字信号采集进来后对其进行数字虑波,然后通过各种不同的算法对其进行计算处理,逻辑判断,动作出口,事故纪录等等处理。

目前计算机保护的计算机部分都是由微型计算或单片微型计算机构成的,这也是微机保护名称的由来。

由一片微处理器配以程序存贮器、数据存贮器、接口芯片(包括并行接口芯片、串行接口芯片)、定时器、计数器芯片等构成的微机系统称为单微机系统。

而在一套微机型保护装置中有两片或两片以上的微处理器构成的微机系统则称为多微机系统。

由单片微型计算机配以部分接口芯片也可以构成微机系统。

同样地,在一套微机保护装置中仅有一个微处理器称为单微机系统,而在一套保护装置中有两片或两片以上微处理器则称为多微机系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双极性模拟量的模数转换
华北电力大学
双极性模拟量:正、负极性变化的模拟量。
为了实现对双极性模拟量的模数转换,需要设置一个直流偏 置量,其值为最大允许输入量的一半。
以输入双极性电压最大范围为5V的模数转换器为例。
以上A/D转换器的位数是16位。最高位是符号位,有效位只 有后面的15位。一个n位的A/D转换器,其十进制数的范围是
Z是模数转换器的输入阻抗;
是二次侧并联电阻,很小。
RLH
输出电压
u2
RLH i2
RLH
i1 n
华北电力大学
二、采样保持电路和模拟低通滤波器
(一)采样保持电路的作用及原理
采用保持电路(S/H),作用是采集模拟输入电压在某一
时刻的瞬时值,并在模数转换器进行转换期间保持输出电压
不变,以供模数转换。
信 号
(2)可靠性高
可靠性是继电保护的基本要求,通过不断的完善,微机 保护的可靠性已经完全能够满足电力系统的要求。
(3)易于获得附加功能
可以通过配置的打印机、显示屏、网络提供电力系统故 障后的多种信息,有助于运行部门对事故的分析和处理。
(4)灵活性大。只需通过改变软件来改变保护性能和功能。
(5)保护性能得到很好改善。充分利用计算机的智能特点。
ZL
C1
C2
Zg
Zf
(b)
华北电力大学 (二)输入电流的电压形成回路,有以下2种方法实现
(1)电抗变换器 电抗变换器是一种铁心中有气隙的变压器。优点是铁心不
易饱和,线性变换范围大。缺点是阻止直流、放大高频分量, 使二次侧电压波形发生严重畸变。 (2)电流变换器
电流变换器是一种铁心闭合无气隙的变压器。优点是当铁 心不饱和时,二次电流波形与一次侧相同。缺点是在电流非 周期分量作用下容易饱和,线性度差。微机保护中一般采用 电流变换器。
微机继电保护举例
华北电力大学
CPU板
华北电力大学 微机保护 的结构
华北电力大学
第一章 微机保护的硬件原理
North China Electric Power University
1-1 概述
华北电力大学
一、微机保护的硬件构成由三部分组成
1、模拟量输入系统(数据采集系统):电压形成、模拟 滤波、采样保持(S/H)、多路转换(MPX)以及模数转换(A/D), 完成将模拟输入量准确地转换为所需的数字量
±5V模拟电压信号,供模数转换芯片使用。 可以采用电流变换器或电抗变换器实现。
华北电力大学
(一)输入电压的电压形成回路 通过电压变换器实现,即一种变压器(但是,原边与付
边之间应当设置一个屏蔽层,提高抗共模干扰的能力)。
电压变换器(TV)
U1 :U2 n :1
共模干扰源
屏蔽层
W1
W2
(a)
共模干扰源
a)从应用上,向高可靠性、简便性、开放性、通用性、灵 活性和动作过程透明化方向发展。
b)从原理上,向智能化、模块化、网络化和综合化方向发 展。
二、微机继电保护装置的特点
华北电力大学
(1)维护调试方便
保护功能是由程序完成,只要程序和设计时一样,就必 然会达到设计时的要求,不用逐台检验每一种功能是否正确。 微机保护具有很强的自检功能,一旦发现硬件损坏就会发出 警报。
华北电力大学
(二)对采样保持电路的要求 a)截获时间(Tc)尽量短,以便采用很短采样脉冲。 b)保持时间长,在保持期间输出电压变化小。 c)模拟开关的动作延时、闭合电阻和开断时的漏电流要小。
采样保持电路的典型芯片
2
模拟量输入
usr
3 A1
逻辑输入
S/H
8
A3 7
1
LF398
+U
-U
R
R1 R2
AS
可避免地要舍去比最低位(LSB)更小的数,从而引入一定
误差。
对于一个n位的A/D转换器,其量化误差
q
1 2n1
U
max
其中,Umax 是A/D转换器最大允许输入的正电压。
2)转换时间,影响A/D的最高采样频率。
华北电力大学
五、VFC型数据采集系 统电压频率转换器VFC(Voltage Frequency Converter)是另一
输出模拟电压:usc
U R RF R
D
,正比于输入数字量D。
华北电力大学
(三)逐次逼近式模数转换器的工作原理 数模转换器的工作过程:通过并行接口向16位D/A转换器
试探性送数。每送一次数,微型机通过读取PA0端口的状态判 断试送的16位数相对于模拟输入量是偏大还是偏小。如果偏 大,则减小试送的16位数,直至找到最相近的二进制数,这 个16位二进制数就是A/D转换器的输出结果。试探送数采样逐 次逼近的二分搜索法。
该时刻瞬时电压值 u(kTs ) 1.2V 转变为数字量 u(k) 101101001(1 二进制) 2D3(十六进制)
华北电力大学
(二)数模转换器的一般原理 数模转换器(D/A转换器,或简称DAC)是把数字量D转
变成模拟电压或电流输出。 模数转换器中一般都要用到数模转换器。
输入数字量:D B1 21 B2 22 Bn 2n ,上图n=4。
华北电力大学
微机继电保护原理
主讲人:黄少锋
电气与电子工程学院四方研究所
North China Electric Power University
绪论
华北电力大学
一、计算机在继电保护领域中的应用和发展概况
(1)世界微机保护的发展历史
※ 20世纪60年代末期,开始倡议用计算机构成继电保护。 ※ 20世纪70年代,掀起了研究热潮。 ※ 20世纪70年代末期,开始进入实用化阶段。 ※ 1979年后,推出各种定型的商业性微机保护产品,并迅
(六)微机保护对A/D转换器的主要要求
华北电力大学
(1)转换位数(分辨率),通常用数字量的位数来表示。
(2)转换时间(转换频率),A/D转换器进行模数转换的
时间 tAD ,其转换频率为 f AD 1/ tAD 。
1)转换位数(分辨率) ,即数字量的位数。
当用有限位数的二进制数来表示连续的模拟量瞬时值,不
2n1 ~ (2n1 1)
模数转换的溢出
华北电力大学
模数转换器的溢出:输入模拟电压超过了模数转换器的最大允 许输入电压 Umax。
模数转换器的溢出可能有两种情况:
(1)平顶溢出,危害不大。
(2)清零溢出,危害很大。
华北电力大学 (四)A/D转换器举例
以模数转换器AD7665为例进行分析。 数模转换器AD7665是一种逐次逼近型的16位快数数模转 换器,转换速率是500kSPS(Samples Per Second),即 进行一次模数转换的时间为1/500K=2uS。
D
U U
sr R
,其中 U R 是模拟参考电压,一般 UR Usr
D是小于1的二进制数, D B1 21 B2 22 Bn 2n D是一个n位二进制数字。
Usr UR D U R (B1 21 B2 22 Bn 2n )
模数转换器的工作原理
华北电力大学
把连续的模拟信号转变为离散的数字信号。 以kTs时刻为例分析:
输出
A2 5
usc
1
usr
24
3
5
usc
6
6
7 8
Ch
Ch
4
“1”采样
“0”保持
(a)
(b)
(三)模拟低通滤波器
华北电力大学
电力系统故障初期,电流、电压中可能含有相当高的频率分 量(如2 kHZ以上)。而目前大多数微机保护原理都是反映 50HZ工频分量的。因此,在采样保持前用一个模拟低通滤波器 把高频分量过滤掉,防止高频分量混叠到工频来。

usr 抗 AS
变换器ICh阻抗
usc



II
逻辑输入 TC TS
(a)
采 样 脉 冲
采 样 信 号
保 采持 样信 和号
usr
TC TS
usc
(b)
采样保持电路:
t
输入电压:usr
t
输出电压:usc
采用保持电路输 t 出了一个阶梯电压
波形。在保持阶段 无论何时进行模数 t 转换,都反映了采 样值。
) )
) )
微机保护的硬件构成


电压形成
LPF
S/H


入由
T
A 和
T
V


电压形成
LPF
S/H


数据采集系统
华北电力大学
总线 串行接口






A/D
M P X
MPU FLASH RAM 并行接口
采样脉冲
定时器 微型机系统
光电隔离
通信
人机对话
开关量输入

打印机
电 隔 离

口 电 路
开关量输出 (跳闸、信号)
KV
RR ERT0 Rsr
是常数。
VFC的工作原理
华北电力大学
电压频率转换器VFC输出脉冲方波的频率 f (t)和输入交流模
拟电压信号 usr (t) 的大小成正比,即:
速推广。
微机保护:
用微型计算机构成的继电保护。
电磁型继电保护:用电磁型继电器构成的继电保护。
(2)我国微机保护的发展历史
华北电力大学
※ 70年代后半期开始,对国外计算机继电保护的发展作了广 泛的介绍和综述分析。 ※ 70年代末至80年代初广泛地开展各种算法以至样机的研制。 ※ 1984年,华北电力学院杨奇逊教授主持研制的第一套微机 距离保护样机在河北马头电厂投入试运行。 ※ 1986年,全国第一台微机高压线路保护装置投入试运行。 ※ 1987年9月26日,微机距离保护经受人工短路考验。 ※ 目前,高中压等级继电保护设备几乎均为微机保护产品。 ※ 在微机保护和网络通信等技术结合后,变电站自动化、配电 网自动化系统也已在全国系统中广泛应用。 ※ 未来几年内,微机保护发展趋势:
相关文档
最新文档