JC系列齿轮齿条摆动油缸技术参数

JC系列齿轮齿条摆动油缸技术参数
JC系列齿轮齿条摆动油缸技术参数

JC(无锡劲驰液压,彭工:013063635950)系列齿轮齿条摆动液压缸的原理是将液压缸的往复运动通过齿条带动齿轮,转化为齿轮轴的正反向摆动旋转,同时将往复缸的推力转化成齿轮轴的输出扭矩。由于齿轮轴的摆动角度与齿条的长度成正比,因此齿轮轴的摆角可以任意选择,并能大于360°。

JC缸有法兰式和脚架式两种安装方式:有单齿条、双齿条两种结构型式。可组合成8个系列,每个系列由10种缸径组成10种型号。

JC缸由于具有特殊的结构形式;特种材质和先进的加工工艺;选用高性能进口密封,因此启动压力低,机械效率高,无内外泄漏和无故障周期特别长。

JC缸的额定压力:16Mpa,启动压力≤1.5Mpa,工作温度-50℃~+260℃。当工作温度高于100℃时,选型时应填写高温标识。

JC缸的输出扭矩与工作压力成正比。输出扭矩的计算见UB缸参数表。JC缸的轴与孔两种输出方式都采用双平键结构。样本视图上标识的双平键位置是在摆角的中间位置上,即在此位置的双平键(或孔)可左右转动二分之一摆角。在选用双齿条孔输出形式时,请注意校核您的配合轴的扭转强度。

JC缸适用于各种矿物油工作介质。如选用乳化液、水乙二醇、磷酸酯等非矿物油工作介质时,请注意标识,其它介质在订货时用文字说明。

JC缸一般无须维修。每使用一年可打开泄油堵,注入适量润滑脂。经长时期使用,打开泄油堵发现有工作介质流出时,可在泄油孔

接上回油管将泄漏引回油箱,继续使用,直至输出扭矩不能满足使用要求时再更换密封和维修。

当您的设备上只有一个JC缸需要动力时,您可选择使用带液压动力包的JC缸。液压包使用非常方便,只需按接线图接通电源,改变电机的相位,就可实现JC缸的摆动。极易实现远程控制和微机操作。由于液压包两腔路各有一个溢流阀,因此还可实现正反向旋转具有不同的输出扭矩。液压包的油箱是全封闭的,出厂时已注满工作介质。溢流阀已按需要在出厂时调整好,请不要随意调整,过高的工作压力会损坏油泵、电机和齿轮、齿条等!液压包不适用于环境温度高于80℃的场合。液压包一般无需维修。但是必须确保油箱内始终充满清洁的工作介质(一般为32~46#抗磨液压油)。当发现油箱内介质减少时,应及时检查泄漏点,并进行维修和补充介质。如果介质流失,造成油箱内介质减少时,应及时检查泄漏点,并进行维修和补充介质。如果介质流失,造成油泵吸空,将会很快造成油泵和缸密封的气蚀!液压包的工作介质每年须更换一次。更换介质时,必须排净JC缸和管路中的空气。

本公司还根据客户的需要设计制造了各种非标摆动缸。例如:带角位移传感器的高度重复定位精度和最低启动低启动压力<0.5Mpa 的伺服摆动缸;输出扭矩>100吨米的大型摆动缸和自重不足1Kg的微型摆动缸;两端轴输出、一端轴一端孔输出、花键孔和轴输出的摆动缸;以及双耳环、单边法兰等安装形式的摆动缸;带角度微调装置的摆动缸、单腔或双腔带液控单向阀的摆动缸和各种替代进口产品的

摆动缸等。

第四章 液压缸

第四章液压缸 4.1液压缸 液压缸是使负载作直线运动的执行元件。 1、液压缸分类 分为单作用式液压缸和双作用式液压缸两类。 单作用式液压缸又分为无弹簧式、附弹簧式、柱塞式三种,如图3-1所示。 双作用式液压缸又分为单杆形,双杆形两种,如图3-2所示。 2、液压缸结构:图3-3为液压缸结构图,选用液压缸时,首先考虑活塞杆长度(由行程决定),再根据回路的最高压力选出适合的液压缸。 <0.08um,以减少密封1)缸筒主要是由钢材制成,缸筒内要经过精细加工,表面粗糙度R a 件的摩擦。 2)盖板:通常由钢材制成,有前端盖和后端盖,安装在缸筒的前后两端,盖板和缸筒的连接方法有焊接、拉杆、法兰、罗纹连接等。 3)活塞的材料通常用钢或铸铁,也可采用铝合金。活塞和缸筒内壁间需要密封,采用的密封件有O形环、V形油封、U形油封、X形油封和活塞环等。而活塞应有一定的导向长度,一般取活塞长度为缸筒内径的(0.6~1.0)倍。 3.1液压缸 4)活塞杆:是由钢材做成实心杆或空心杆,表面经淬火再镀铬处理并抛光。 5)缓冲装置:为了防止活塞在行程的终点与前后端盖板发生碰撞,引起噪音,影响工件精度或使液压缸损坏,常在液压缸前后端盖上设有缓冲装置,以使活塞移到快接近行程终点时速度减慢下来终至停止。如图3-3b所示前后端盖上的缓冲阀附近有单向阀的结构。当活塞接近端盖时,缓冲环插入端盖板油出入口,强迫压油经缓冲阀的孔口流出,促使活塞的速度缓慢下来。相反,当活塞从行程的尽头将离去时,如压油只作用在缓冲环上,活塞要移动的那一瞬间将非常不稳定甚至无足够力量推动活塞,故必须使压油经缓冲阀内的止回阀作用在活塞上,如此才能使活塞平稳的前进。 6)放气装置:在安装过程中或停止工作的一段时间后,空气将渗入液压系统内,缸筒内如存留空气,将使液压缸在低速时产生爬行、颤抖现象,换向时易引起冲击,因此在液压缸结构上要能及时排除缸内留存的气体。一般双作用式液压缸不设专门的放气孔,而是将液压油出入口布置在前后盖板的最高处。大型双作用式液压缸则必须在前后端盖板设放气栓塞。对于单作用式液压缸液压油出入口一般设在缸筒底部,在最高处设放气栓塞。 7)密封装置:液压缸的密封装置用以防止油液的泄漏,液压缸的密封主要是指活塞、活塞杆处的动密封和缸盖等处的静密封。常采用O形密封圈和Y形密封圈。 3、液压缸的参数计算 图3-4所示,液压缸缸体固定,液压油从A口进入作用在活塞上,产生一推力F,通过活塞杆以克服负荷W,活塞以速度υ向前推进,同时将活塞杆侧内的油液通过B 口流回油箱。相反,如高压油从B口进入,则活塞后退。 3、液压缸的参数计算 1)速度和流量 若忽略泄漏,则速度和流量的关系如下: Q =Aυ(3-1) υ=Q/A (3-2)

齿轮齿条传动设计计算

齿轮齿条传动设计计算 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

1. 选定齿轮类型、精度等级、材料级齿数 1) 选用直齿圆柱齿轮齿条传动。 2) 速度不高,故选用7级精度(GB10095-88)。 3) 材料选择。由表10-1选择小齿轮材料为40Cr(调质),硬度为280HBS , 齿条材料为45钢(调质)硬度为240HBS 。 4) 选小齿轮齿数Z 1=24,大齿轮齿数Z 2=∞。 2. 按齿面接触强度设计 由设计计算公式进行计算,即 d 1t ≥2.32√K t T 1φd ?u +1u (Z E [σH ])23 (1) 确定公式内的各计算数值 1) 试选载荷系数K t =。 2) 计算小齿轮传递的转矩。(预设齿轮模数m=8mm,直径d=160mm ) T 1=95.5×105P 1n 1=95.5×105×0.24247.96 =2.908×105N ?mm 3) 由表10-7选齿宽系数φd =0.5。 4)由表10-6查得材料的弹性影响系数Z E =189.8MPa 12 。 5)由图10-21d 按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa ;齿条的接触疲劳强度极限σHlim2=550MPa。 6)由式10-13计算应力循环次数。 N 1=60n 1jL h =60×7.96×1×(2×0.08×200×4)=6.113×104 7)由图10-19取接触疲劳寿命系数K HN1=1.7。 8)计算接触疲劳许用应力。 取失效概率为1%,安全系数S=1,由式(10-12)得 [σH ]1= K HN1σHlim1S =1.7×600MPa =1020MPa (2) 计算 1) 试算小齿轮分度圆直径d t1,代入[σH ]1。

连续转动到往复摆动的运动变换与实现机构

3连续转动到王复摆动的运动变换与实现机构 及其的工作机构部分是往复摆动的例子也是比较多的。实现连续转动到往复摆动的运动变换机构主要有曲柄摇杆机构、曲柄摇块机构、摆动从动件凸轮机构等。图2-27为简图,对其进行机构设计后,可得到多种执行机构。特别是图2-28所示鄂式破碎机是一个曲柄摇杆机构,运动由电动机传给带轮5,带动与带轮固联在一起的偏心轴2绕回转中心A旋转,偏心轴2带动鄂3运动。由于在鄂3与机架1之间装有肘板4,从而使动鄂作复杂的摆动,不断挫挤矿石,完成碎矿工作。 鄂式破碎机是一个由机架1、主动件偏心轴2、从动件鄂3和肘板4组成的曲柄摇杆机构,当曲柄2为主动件时,曲柄2转一周,可使摇杆3往复摇动1次,即将原动机输出的来连续转动变成了工作机的往复摆动。鄂式破碎机简图如2-29所示。 4连续转动到往复直线移动的运动变换与实现机构 有很多机器都是以电动机作动力源的,二电动机输出的运动形式是连续的转动,当执行机构要求作直线运动时,这就需要将转动变成直线运动。如图2-30所示,实现连续转动到往复直线移动的运动变换机构有曲柄滑块机构、正弦机构、凸轮机构、代或链传动机构、齿轮条传动机构、螺旋传动机构以及一些机构的组合。 (1)螺旋传动机构如图2-30g所示螺旋传动由螺杆和螺母组成,螺杆置于螺母中。当转动螺杆时,螺杆上的螺旋沿着螺母的螺旋槽运动,从而将旋转运动变换为直线运 动,同时传递运动及动力。螺旋传动按其用途可分为三类: 1)传力螺旋。传力螺旋以传递动力为主,通常的紧固螺钉、螺母属于这一种。它要求用较小的转矩螺旋(或螺母),从而使螺母(或螺旋)产生轴向运动和较大的轴向力,这个轴向力可以把两个物体牢固地连接在一起,也可以用来做各种施力的工作,如图2-31所示的千斤顶和压力机都是传力螺旋。 2)传导螺旋。传导螺旋以传递运动为主,要求具有较高的运动精度,如机床刀架或工作台的进给机构。 3)调整螺旋。调整螺旋用以调整移动构件和固定零部件间的相对位置,如车床尾座螺旋、螺旋测微器等。 (2)齿轮齿条传动机构齿轮齿条机构由齿轮与齿条组成,当齿轮为主动件时,它可以将旋转运动变为直线运动,如台式钻床钻头的轴向进给机构。 (3)凸轮机构凸轮机构由凸轮、从动件和支持整个机构的机架三个主要部分组成。一班凸轮作匀速回转运动,通过它特定的形状轮廓与从动件相接触,使从动件实现某 种预定规律的运动。图2-33所示为自动上料凸轮机构。当具有凹槽的凸轮1转动 时,通过槽中滚子3使从动件2往复运动,凸轮转一圈,从动件推动一个工件4 到工作位置。 (4)曲柄滑块机构曲柄滑块机构由曲柄、连杆、滑块以及机架组成。当曲柄为主动件作匀速运动时,可通过连杆,使滑块作往复的直线运动。由于曲柄滑块机构结构简 单、制造方便、滑块行程准确,因此,它在生产中得到广泛的应用。如图2-34所 示的搓丝机曲柄滑块机构就是这种机构应用的实例之一。 5.直线移动转换为直线移动的运动变换与实现机构 直线移动转换为直线移动的机构大多采用液压机构,用在送料、夹紧等装置中。 各类液压阀芯、电磁阀芯机构也采用了直线移动到直线移动的运动变换,斜面机 构、具有两个移动副的连杆机构、移动凸轮机构、直线电动机等有时也可以应用 于此。最常用的直线运动变换机构如图2-35所示。 6直线移动转换为定轴转动或往复摆动的运动变换与实现机构 直线移动转换为定轴转动的最典型机构就是内燃机中的曲柄滑块机构。而以齿条

汽车齿轮齿条式转向器设计分解

汽车齿轮齿条式转向器 设计分解 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

汽车设计课程设计说明书题目:汽车齿轮齿条式转向器设计(3) 系别:机电工程系 专业:车辆工程 班级: 姓名: 学号: 指导教师: 日期: 2012年7月 汽车齿轮齿条式转向器设计

摘要 根据对齿轮齿条式转向器的研究以及资料的查阅,着重阐述了齿轮齿条式转向器类型选择,不同类型齿轮齿条式转向器的优缺点,和各种类型齿轮齿条式转向器应用状况。根据原有数据首先分析转向器的特点,确定总体的结构方案,并确定转向器的计算载荷以及转向器的主要参数,然后确定齿轮齿条的形式,接着对齿轮模数的选择确定,主动小齿轮齿数的确定、压力角的确定、齿轮螺旋角的确定,通过确定转向器的线传动比计算其力传动比以及齿轮齿条的结构参数,在以上的基础上选择主动齿轮、齿条的材料,受力分析,及对齿轮齿条的疲劳强度校核、齿根弯曲疲劳强度校核。修正齿轮齿条式转向器中不合理的数据。通过对齿轮齿条式转向器的设计,选取出相关的零件如:螺钉、轴承等,并在说明书中画出相关零件的零件图。通过说明书并画出齿轮齿条式转向器的零件图2张、装配图1张。 关键词:齿轮齿条,转向器,设计计算 目录

序言........................................................................................错误!未定义书签。 1.汽车转向装置的发展趋势 .....................................................错误!未定义书签。 2.课程设计目的........................................................................错误!未定义书签。 3.转向系统的设计要求 ............................................................错误!未定义书签。 4.齿轮齿条式转向器方案分析 .................................................错误!未定义书签。 5.确定齿轮齿条转向器的形式 .................................................错误!未定义书签。 6.齿轮齿条式转向器的设计步骤..............................................错误!未定义书签。 已知设计参数........................................................................ 错误!未定义书签。 齿轮模数的确定、主动小齿轮齿数的确定、压力角的确定、齿轮螺旋角的确定........................................................................................ 错误!未定义书签。 确定线传动比、转向器的转向比........................................ 错误!未定义书签。 小齿轮的设计........................................................................ 错误!未定义书签。 小齿轮的强度校核................................................................ 错误!未定义书签。 齿条的设计............................................................................ 错误!未定义书签。 齿条的强度计算.................................................................... 错误!未定义书签。 主动齿轮、齿条的材料选择................................................ 错误!未定义书签。 7.总结 ......................................................................................错误!未定义书签。参考文献..................................................................................错误!未定义书签。致谢........................................................................................错误!未定义书签。

机械设计基础课程习题.doc

《机械设计基础课程》习题 第1章机械设计基础概论 1-1 试举例说明机器、机构和机械有何不同? 1-2 试举例说明何谓零件、部件及标准件? 1-3 机械设计过程通常分为几个阶段?各阶段的主要内容是什么? 1-4 常见的零件失效形式有哪些? 1-5 什么是疲劳点蚀?影响疲劳强度的主要因素有哪些? 1-6 什么是磨损?分为哪些类型? 1-7 什么是零件的工作能力?零件的计算准则是如何得出的? 1-8 选择零件材料时,应考虑那些原则? 1-9 指出下列材料牌号的含义及主要用途:Q275 、40Mn 、40Cr 、45 、ZG310-570 、QT600-3。 第2章现代设计方法简介 2-1 简述三维CAD系统的特点。 2-2 试写出优化设计数学模型的一般表达式并说明其含义。 2-3 简述求解优化问题的数值迭代法的基本思想。 2-4 优化设计的一般过程是什么? 2-5 机械设计中常用的优化方法有哪些? 2-6 常规设计方法与可靠性设计方法有何不同? 2-7 常用的可靠性尺度有那些? 2-8 简述有限元法的基本原理。 2-9 机械创新设计的特点是什么? 2-10 简述机械创新设计与常规设计的关系。 第3章平面机构的组成和运动简图 3-1 举实例说明零件与构件之间的区别和联系。 3-2 平面机构具有确定运动的条件是什么? 3-3 运动副分为哪几类?它在机构中起何作用? 3-4 计算自由度时需注意那些事项? 3-5 机构运动简图有何用途?怎样绘制机构运动简图? 3-6 绘制图示提升式水泵机构的运动简图,并计算机构的自 由度。 3-7 试绘制图示缝纫机引线机构的运动简图,并计算机构的 自由度。 3-8 试绘制图示冲床刀架机构的运动简图,并计算机构的自 由度。 3-9 试判断图a、b、c所示各构件系统是否为机构。若是,

汽车转向系设计说明书

汽车设计课程设计说明书 题目:重型载货汽车转向器设计 姓名:席昌钱 学号:5 同组者:严炳炎、孔祥生、余鹏、李朋超、郑大伟专业班级:09车辆工程2班 指导教师:王丰元、邹旭东

设计任务书 目录 1.转向系分析 (4) 2.机械式转向器方案分析 (8) 3.转向系主要性能参数 (9) 4.转向器设计计算 (14) 5.动力转向机构设计 (16) 6.转向梯形优化设计 (22) 7.结论 (24) 8.参考文献 (25)

1转向系设计 基本要求 1.汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转。 2.操纵轻便,作用于转向盘上的转向力小于200N。 3.转向系的角传动比在23~32之间,正效率在60%以上,逆效率在50%以上。 4.转向灵敏。 5.转向器和转向传动机构中应有间隙调整机构。 6.转向系应有能使驾驶员免遭或减轻伤害的防伤装置。 基本参数 1.整车尺寸: 11976mm*2395mm*3750mm。 2.轴数/轴距 4/(1950+4550+1350)mm 3.整备质量 12000kg 4.轮胎气压 2.转向系分析 对转向系的要求[3] (1) 保证汽车有较高的机动性,在有限的场地面积内,具有迅速和小半径转弯的能力,同时操作轻便; (2) 汽车转向时,全部车轮应绕一个瞬时转向中心旋转,不应有侧滑; (3) 传给转向盘的反冲要尽可能的小; (4) 转向后,转向盘应自动回正,并应使汽车保持在稳定的直线行驶状态; (5) 发生车祸时,当转向盘和转向轴由于车架和车身变形一起后移时,转向系统最好有保护机构防止伤及乘员. 转向操纵机构 转向操纵机构包括转向盘,转向轴,转向管柱。有时为了布置方便,减小由于装置位置误差及部件相对运动所引起的附加载荷,提高汽车正面碰撞的安全性以及便于拆装,在转向轴与转向器的输入端之间安装转向万向节,如图2-1。采用柔性万向节可减少传至转向轴上的振动,但柔性万向节如果过软,则会影响转向系的刚度。采用动力转向时,还应有转向动力系统。但对于中级以下的轿车和前轴负荷不超过3t的载货汽车,则多数仅在用机械转向系统而无动力转向装置。

齿轮齿条设计

第四章 齿轮设计 4.1 齿轮参数的选择[8] 齿轮模数值取值为m=10,主动齿轮齿数为z=6,压力角取α=20°,齿轮螺旋角为β=12°,齿条齿数应根据转向轮达到的值来确定。齿轮的转速为n=10r/min ,齿轮传动力矩2221Nm ?,转向器每天工作8小时,使用期限不低于5年. 主动小齿轮选用20MnCr5材料制造并经渗碳淬火,而齿条常采用45号钢或41Cr4制造并经高频淬火,表面硬度均应在56HRC 以上。为减轻质量,壳体用铝合金压铸。 4.2 齿轮几何尺寸确定[2] 齿顶高 ha = () ()mm h m n an n 25.47.015.2=+?=+* χ,ha=17 齿根高 hf () ()mm c h m n n an n 375.17.025.015.2=-+?=-+=* *χ ,hf 齿高 h = ha+ hf =17+5.5=22.5 分度圆直径 d =mz/cos β=mm 337.1512cos 6 5.2=? d=61.348 齿顶圆直径 da =d+2ha =61.348+2×17=95.348 齿根圆直径 df =d-2hf =61.348-2×11 基圆直径 mm d d b 412.1420cos 337.15cos =?== α db=57.648 法向齿厚为 5 .2364.07.022tan 22???? ????+=??? ??+=παχπn n n n m s mm 593.4=×4=18.372 端面齿厚为 5253.2367.0cos 7.022tan 222????? ????+=??? ??+=βπαχπt t t t m s mm 275.5=×4=21.1 分度圆直径与齿条运动速度的关系 d=60000v/πn1=?v 0.001m/s 齿距 p=πm=3.14×10=31.4 齿轮中心到齿条基准线距离 H=d/2+xm=37.674(7.0) 4.3 齿根弯曲疲劳强度计算[11] 4.3.1齿轮精度等级、材料及参数的选择 (1) 由于转向器齿轮转速低,是一般的机械,故选择8级精度。 (2) 齿轮模数值取值为m=10,主动齿轮齿数为z=6,压力角取α=20°. (3) 主动小齿轮选用20MnCr5或15CrNi6材料制造并经渗碳淬火,硬度在56-62HRC 之间,取值60HRC. (4) 齿轮螺旋角初选为β=12° ,变位系数x=0.7

各种液压缸工作原理及结构分析(动画演示)

各种液压缸工作原理及结构分析(动画演示) 什么是液压缸液压缸是将液压能转变为机械 能的、做直线往复运动(或摆动运动)的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸的结构液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。缸体组件缸体组件与活塞组件形成的密封容腔承受油压作用,因此,缸体组件要有足够的强度,较高的表面精度可靠的密封性。(1)法兰式连接,结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用的一种连接形式。(2)半环式连接,分为外半环连接和内半环连接两种连接形式,半环连接工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。(3)螺纹式连接,有

外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。(4)拉杆式连接,结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的中、低压液压缸。(5)焊接式连接,强度高,制造简单,但焊接时易引起缸筒变形。液压缸的基本作用形式:标准双作用:动力行程在两个方向并且用于大多数应用场合: 单作用缸:当仅在一个方向需要推力时,可以采用一个单作用缸;双杆缸:当在活塞两侧需要相等的排量时,或者当把一个负载连接于每端在机械有利时采用,附加端可以用来安装操作行程开关等的凸轮.弹簧回程单作用缸:通常限于用来保持和夹紧的很小的短行程缸。容纳回程弹簧所需要的长度使得它们在需要长行程时很讨厌;柱塞式单作用缸:仅有一个流体腔,这种类型的缸通常竖直安装,负载重置使缸内缩,他们又是被成为“排量缸”,并且对长行程是实用的;多级伸缩缸:最多可带4个套简,收拢长度比标准缸短.有单作用或双作用,它们与标准缸相比是比较贵的,通常用于安装空间较小但需要较大行程的场合, 串联缸:一个串联缸足由两个同轴安装的缸组成的,两个缸的活塞由一个公共活塞杆链接,在两缸之前设置杆密封件以便使每个缸都能双作用,当安装宽度或高度受限制时.串联

汽车齿轮齿条式转向器设计分解

" 汽车设计课程设计说明书 题目:汽车齿轮齿条式转向器设计(3) - 系别:机电工程系 专业:车辆工程 班级: 姓名: 学号: 指导教师: 、 日期: 2012年7月

汽车齿轮齿条式转向器设计 摘要 根据对齿轮齿条式转向器的研究以及资料的查阅,着重阐述了齿轮齿条式转向器类型选择,不同类型齿轮齿条式转向器的优缺点,和各种类型齿轮齿条式转向器应用状况。根据原有数据首先分析转向器的特点,确定总体的结构方案,并确定转向器的计算载荷以及转向器的主要参数,然后确定齿轮齿条的形式,接着对齿轮模数的选择确定,主动小齿轮齿数的确定、压力角的确定、齿轮螺旋角的确定,通过确定转向器的线传动比计算其力传动比以及齿轮齿条的结构参数,在以上的基础上选择主动齿轮、齿条的材料,受力分析,及对齿轮齿条的疲劳强度校核、齿根弯曲疲劳强度校核。修正齿轮齿条式转向器中不合理的数据。通过对齿轮齿条式转向器的设计,选取出相关的零件如:螺钉、轴承等,并在说明书中画出相关零件的零件图。通过说明书并画出齿轮齿条式转向器的零件图2张、装配图1张。 关键词:齿轮齿条,转向器,设计计算 ^ 。

` 目录 序言............................................. 错误!未定义书签。 1.汽车转向装置的发展趋势........................... 错误!未定义书签。 2.课程设计目的..................................... 错误!未定义书签。 3.转向系统的设计要求............................... 错误!未定义书签。 4.齿轮齿条式转向器方案分析......................... 错误!未定义书签。… 5.确定齿轮齿条转向器的形式......................... 错误!未定义书签。 6.齿轮齿条式转向器的设计步骤....................... 错误!未定义书签。 已知设计参数.................................... 错误!未定义书签。 齿轮模数的确定、主动小齿轮齿数的确定、压力角的确定、齿轮螺旋角的确定.............................................. 错误!未定义书签。 确定线传动比、转向器的转向比.................... 错误!未定义书签。 小齿轮的设计.................................... 错误!未定义书签。 小齿轮的强度校核................................ 错误!未定义书签。 齿条的设计...................................... 错误!未定义书签。 ~ 齿条的强度计算.................................. 错误!未定义书签。 主动齿轮、齿条的材料选择........................ 错误!未定义书签。 7.总结............................................. 错误!未定义书签。参考文献........................................... 错误!未定义书签。致谢............................................. 错误!未定义书签。 $

对于液压油缸的基本认识解读

对于液压油缸的基本认识 液压油缸是将液压能转变为机械能的、做直线往复运动(摆动缸做摆动运动的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。 1、液压缸的工作原理 液压缸一般有两个油腔,每个油腔中都通有液压油,液压缸工作依靠帕斯卡原理(静压传递原理:在密闭容器内,施加于静止液体上的压力将以等值同时传递到液体各点)。当液压缸两腔通有不同压力的液压油时,其活塞两个受压面承受的液体压力总和(矢量和)输出一个力,这个力克服负载力使液压缸活塞杆伸出或缩回。 图一液压缸工作原理 以图一为例,当液压缸左腔通高压油时,活塞左侧受压力,油腔油液通油箱,活塞右侧不受压力,则此时活塞左侧所受压力与负载相等(油压由液体压缩提供,即负载力提供压力)。用公式表达如下 式中————液压缸左腔油压; ————液压缸活塞左侧受压面积; ————液压缸油腔油压;

————液压缸活塞右侧受压面积; F————负载力 2、液压缸的常见结构 液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 图二液压缸结构图 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11和防尘圈12。 3、液压缸的分类

齿轮齿条传动机构设计说明

齿轮齿条传动机构的设计和计算 1. 齿轮1,齿轮2与齿轮3基本参数的确定 由齿条的传动速度为500mm/s,可以得到齿轮3的速度为500m/s,即 ,/5003s mm V =又()160 d 3 33n V π= ,取,25,25.3202131mm B B mm m Z Z =====,由此可 得()265d 31mm mZ d ===,由(1)与(2)联立解得min /r 147n 32==n ,取4i 12=则由4i 2 1 1212=== n n z z 得80min,/58821==z r n 2. 齿轮1齿轮2与齿轮3几何尺寸确定 齿顶高 ()()mm x h m h h h n an a a a 525.57.0125.3321=+?=+===* 齿根高 ()()mm x c h m h h n n an f f f 79.17.025.0125.3h 321=-+?=-+===** 齿高 mm h h h h f a 315.7h 321=+=== 分度圆直径 mm mz d mm mz d 84.26512cos /8025.3cos /,46.6612cos /2025.3cos /d 0220131=?===?===ββ 齿顶圆直径 mm h d d mm h d d a a a a a 34.2772,51.772d 2221131=+==+== 齿根圆直径 mm h d d mm h d d f f f f f 26.2622,88.622d 2221131=-==-== 基圆直径 mm d d mm d d b b b 8.249cos ,45.6220cos 46.66cos d 220131===?===αα 法向齿厚为 mm m x s s n n n n n n 759.625.3364.07.022tan 22s 1321=??? ? ????+=??? ??+===παπ

转向器的结构型式选择及其设计计算

5.2转向器的结构型式选择及其设计计算 根据所采用的转向传动副的不同,转向器的结构型式有多种。常见的有齿轮齿条式、循环球式、球面蜗杆滚轮式、蜗杆指销式等。 对转向其结构形式的选择,主要是根据汽车的类型、前轴负荷、使用条件等来决定,并要考虑其效率特性、角传动比变化特性等对使用条件的适应性以及转向器的其他性能、寿命、制造工艺等。中、小型轿车以及前轴负荷小于1.2t 的客车、货车,多采用齿轮齿条式转向器。球面蜗杆滚轮式转向器曾广泛用在轻型和中型汽车上,例如:当前轴轴荷不大于2.5t 且无动力转向和不大于4t 带动力转向的汽车均可选用这种结构型式。循环球式转向器则是当前广泛使用的一种结构,高级轿车和轻型及以上的客车、货车均多采用。轿车、客车多行驶于好路面上,可以选用正效率高、可逆程度大些的转向器。矿山、工地用汽车和越野汽车,经常在坏路或在无路地带行驶,推荐选用极限可逆式转向器,但当系统中装有液力式动力转向或在转向横拉杆上装有减振器时,则可采用正、逆效率均高的转向器,因为路面的冲击可由液体或减振器吸收,转向盘不会产生“打手”现象。 关于转向器角传动比对使用条件的适应性问题,也是选择转向器时应考虑的一个方面。对于前轴负荷不大的或装有动力转向的汽车来说,转向的轻便性不成问题,而主要应考虑汽车高速直线行驶的稳定性和减小转向盘的总圈数以提高汽车的转向灵敏性。因为高速行驶时,很小的前轮转角也会导致产生较大的横向加速度使轮胎发生侧滑。这时应选用转向盘处于中间位置时角传动比较大而左、右两端角传动比较小的转向器。对于前轴负荷较大且未装动力转向的汽车来说,为了避免“转向沉重”,则应选择具有两端的角传动比较大、中间较小的角传动比变化特性的转向器。 下面分别介绍几种常见的转向器。 5.2.1循环球式转向器 循环球式转向器又有两种结构型式,即常见的循环球-齿条齿扇式和另一种即循环球-曲柄销式。它们各有两个传动副,前者为:螺杆、钢球和螺母传动副以及落幕上的齿条和摇臂轴上的齿扇传动副;后者为螺杆、钢球和螺母传动副以及螺母上的销座与摇臂轴的锥销或球销传动副。两种结构的调整间隙方法均是利用调整螺栓移动摇臂轴来进行调整。 循环球式转向器的传动效率高、工作平稳、可靠,螺杆及螺母上的螺旋槽经渗碳、淬火及磨削加工,耐磨性好、寿命长。齿扇与齿条啮合间隙的调整方便易行,这种结构与液力式动力转向液压装置的匹配布置也极为方便。 5.2.1.1循环球式转向器的角传动比w i 由循环球式转向器的结构关系可知:当转向盘转动?角时,转向螺母及其齿条的移动量应为 t s )360/(?= (5-21) 式中t ——螺杆或螺母的螺距。 这时,齿扇转过β角。设齿扇的啮合半径w r ,则β角所对应的啮合圆弧长应等于s ,即 s r w =?πβ2)360/( (5-22) 由以上两式可求得循环球式转向器的角传动比w i 为

轮系传动比计算(机械基础)教案

轮系传动比计算(机械基础)教案

教案首页

科目:机械基础(第四版)授课班级:08级模具(1)班 授课地点:多媒体教室(一)室课时:2课时

课题:§6—2 定轴轮系的传动比 授课方式:讲授 教学内容:定轴轮系的传动比及其计算举例 教学目标:能熟练进行定轴轮系传动比的计算方法及各轮回转方向的判定 选用教具:三角板、圆规、平行轴定轴轮系模型、非平行轴定轴轮系模型 教学方法:演示法、循序渐进教学法、典型例题法 第一部分:教学过程 一、复习导入新课(约7分钟) (一)组织教学(2分钟) 学生点名考勤,课前6S检查,总结表扬上次优秀作业学生,调节课堂气氛,调动学生主动性。 (二)教学回顾(2分钟) 1、什么是轮系? 2、轮系有什么应用特点? 3、轮系的分类依据是什么?可分为哪几类? 4、什么是定轴轮系?(让学生回顾上次课的内容) (三)复习,新课导入(2分钟) 演示减速器、车床主轴箱、钟表机构等,我们看到的这些都是定轴轮系的应用,请问:我们生活中常见钟表里的时针走一圈,分针走了12圈,秒针走了720圈,那么由时针到秒针是如何实现传动的?时针把运动传到秒针时,其转速大小有何变化?具体比值如何确定? (四)教学内容介绍(1分钟) 重点:定轴轮系的传动路线的分析、传动比的计算及各轮回转方向的判定。 难点:非平行轴定轴轮系传动比公式推导及各轮回转方向的判定。 二、新课讲解(约32分钟) (一)定轴轮系的传动比概念(2分钟) 教师先展示定轴轮系模型,引导学生参与到演示教学中来,通过一对齿轮的传动比概念,教师提出问题:定轴轮系的传动比是否就是输入轴的转速与输出轴的转速之比?引发学生思考。演示得出定轴轮系的概念:定轴轮系的传动比是指首末两轮的转速之比。 (二)知识分解(12分钟)

汽车设计转向系统

第一节概述 转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。 机械转向系依靠驾驶员的手力转动转向盘,经转向器和转向传动机构使转向轮偏转。有些汽车还装有防伤机构和转向减振器。采用动力转向的汽车还装有动力系统,并借助此系统来减轻驾驶员的手力。 对转向系提出的要求有: 1)汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转,任何车轮不应有侧滑。不满足这项要求会加速轮胎磨损,并降低汽车的行驶稳定性。 2)汽车转向行驶后,在驾驶员松开转向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。 3)汽车在任何行驶状态下,转向轮不得产生自振,转向盘没有摆动。 4)转向传动机构和悬架导向装置共同工作时,由于运动不协调使车轮产生的摆动应最小。 5)保证汽车有较高的机动性,具有迅速和小转弯行驶能力。 6)操纵轻便。 7)转向轮碰撞到障碍物以后,传给转向盘的反冲力要尽可能小。 8)转向器和转向传动机构的球头处,有消除因磨损而产生间隙的调整机构。 9)在车祸中,当转向轴和转向盘由于车架或车身变形而共同后移时,转向系应有能使驾驶员免遭或减轻伤害的防伤装置。 10)进行运动校核,保证转向盘与转向轮转动方向一致。 正确设计转向梯形机构,可以使第一项要求得到保证。转向系中设置有转向减振器时,能够防止转向轮产生自振,同时又能使传到转向盘上的反冲力明显降低。为了使汽车具有良好的机动性能,必须使转向轮有尽可能大的转角,并要达到按前外轮车轮轨迹计算,其最小转弯半径能达到汽车轴距的2~2.5倍。通常用转向时驾驶员作用·在转向盘上的切向力大小和转向盘转动圈数多少两项指标来评价操纵轻便性。没有装置动力转向的轿车,在行驶中转向,此力应为50—100N;有动力转向时,此力在20—50N。当货车从直线行驶状态,以10km /h速度在柏油或水泥的水平路段上转入沿半径为12m的圆周行驶,且路面干燥,若转向系内没有装动力转向器,上述切向力不得超过250N;有动力转向器时,不得超过120N。轿车转向盘从中间位置转到每一端的圈数不得超过2.0圈,货车则要求不超过3.0圈。·近年来,电动、电控动力转向器已得到较快发展,不久的将来可以转入商品装车使用。电控动力转向可以实现在各种行驶条件下转动转向盘的力都轻便。

齿轮齿条传动设计计算39229

7)由图10-19取接触疲劳寿命系数 HN1 1.7。 材料选择。由表10-1选择小齿轮材料为40Cr (调质),硬度为280HBS 齿条 材料为45钢(调质)硬度为240HBS 6)由式10-13计算应力循环次数。 N 1 60n 1 jL h 60 7.96 1 2 0.08 200 4 6.113 10 4 1. 选定齿轮类型、精度等级、材料级齿数 1) 选用直齿圆柱齿轮齿条传 动。 2 ) 速度不高,故选用7级精度(GB10095-88。 3) 4) 选小齿轮齿数1=24,大齿轮齿数 2=x 。 2. 按齿面接触强度设计 由设计计算公式进行计算,即 d it I 2 ccc (K" u 1 Z E 2.323 |— ----------------------- --- V u (1) 确定公式内的各计算数值 1) 试选载荷系数t 2) 计算小齿轮传递的转矩。 (预设齿轮模数 m=2mn 直径d=65mm T 1 95.5 1O 5 R n 1 95.5 105 O. 2424 2.908 105N mm 7.96 3) 由表10-7选齿宽系数d =。 4) 由表10-6查得材料的弹性影响系数 1 E 189.8 MPa 2 5) 由图10-21d 按齿面硬度查得小齿轮的接触疲劳强度极限 Hlim1 600M Pa ;齿 条的接触疲劳强度极限 Hlim 2 500 Mpa 。

8)计算接触疲劳许用应 力。 取失效概率为1%安全系数S=1,由式(10-12)得 K HN 1 Hlim1 S 1.7 600M Pa 1020MPa 计算 1 ) 试算小齿轮分度圆直径d ti,代入 2)d1t 2.323{K.T1 u 1 68.89mm 计算圆周速度V。 Z E 60 1000 3)计算齿宽b o d d1t 0.5 4)计算齿宽与齿高之 比。 模数 m t d1t 68.89 Z1 24 齿高 2.25m t 2.25 卜 3 2.908 105 1 189.8 2 0.5 1020 68^1^ 0.026m/s 60 1000 68.89 34.445mm 2.87 2.27 6.46 34.445 6.46 5.33

山东建筑大学液压与气压传动复习重点.doc

山东建筑大学液压与气压传动复习重点 lo液压油泵要实现吸油、压油的工作过程的条件 (1)应具备密封容积。 (2)密封容积的大小能交替变化。 液压油泵的输油量与密封容积变化的大小及单位时间内变化的次数(变化频率)成正比。 (3 )应有配流装置。它的作用是:在吸油过程中,密封容积与油箱相通,同时关闭供油管路;在压油过程中,密封容积与供油管路相通,同时切断与油箱的连接C配流装置的形式随液压油泵结构不同而异。 (4 )吸油过程中,油箱必须和大气相通。这是实现吸油的必要条件。 2o说明径向柱塞泵的工作原理 转子在原动机的带动下高速回转,柱塞在离心力(或经机械作用)作用下顶在定子的内表面上。由于转子和定子之间存在偏心,在回转过程中,当各柱塞处于水平轴线的上边时,由柱塞和转子之间形成的容腔增大,通过配油轴吸油;当柱塞处于轴线下方时,由柱塞和转子之间形成的容腔减小,通过配油轴实现压油。 3.说明轴向柱塞泵工作原理 当原动机带动缸体3高速回转时,由于斜盘的约束作用,柱塞在缸体内作往复运动,当柱塞伸出时,柱塞和缸体间形成的密闭容积增大,通过配油盘实现吸油,当柱塞缩回时,容积减小实现压油。改变斜盘的角度可改变排油的流量及流动方向。 4.双作用叶片泵工作原理 定子曲线由两段大圆弧、两段小圆弧及四段过渡曲线组成。叶片将由定子、转子和叶片分隔成的空间分为若干个小的容腔,当容腔扩大时,通过配油盘吸油,当容腔减小时通过配油盘压油,每转一周实现两次吸油及压油,因此称为双作用叶压泵。 5.单作用叶片泵工作原理 转子和定子偏心,定子曲线为圆。 叶片在转子上的槽内可灵活滑动。 叶片根部均通油液,在高压区通压 力油,吸油区通无压油。 6 O 齿轮泵的工作原理 齿轮泵的主要特征是以一对相互 啮合的齿轮和配油装置结合实现吸油及 压油。主要有外啮合、内啮合齿轮泵。 外啮合齿轮泵工作原理是齿轮、泵体和 齿轮端盖形成了密闭油腔,齿轮的啮合 点将密封腔分成了吸油腔和压油腔。齿 轮在旋转过程中,脱离啮合一侧容积增 大,为吸油区,进入啮合的一侧容积减 小为压油区。内啮合齿轮泵的工作原 理。相互啮合的小齿轮和大齿轮与侧板 所围成的密闭容积被啮合线和月牙板分 隔成两部分,当主动轴带动小齿轮按图 示方向旋转时,大齿轮同向旋转,轮齿 脱离啮合处容积增大实现吸油,进入啮 合处容积减小实现压油。 7 名词解释 额定压力:在正常工作条件下,按试验 标准油泉能连续运转的最高压力。额定 流量:液压泵在额定转速、额定压力下 连续工作时的排量。 容积效率nv:液压泵的实际流量与理 论流量的比值。 8.说明液压系统压力的形成原理。油 液受压而产生压力,压力的大小取决于 负载 9.说明液压系统的组成。 动力元件(液压泵):为液压系统提供 压力油 执行元件(油缸、液压马达):在压力 油的驱动下对外作功 控制元件(各种阀):控制系统压力、 流量以及油液的流动方向的元件辅助元 件:用于保证系统正常工作的上述三种 之外的装置,如:油箱、油管、管接头 等 10.说明液压系统图形符号的意义。 1.表示元件的功能、不表示具体 结构和参数 2.表示在油路中的相互关系不表 示具体的空间安装位置 3.表示静止或初始位置状态不表 示过渡过程 11.名词解释: 恩氏粘度:相对粘度又称为条件粘度, 它是采用特定粘度计在规定的条件下测 出来的粘度值。我国采用恩氏粘度OEo 恩氏粘度的测量:将200cm3 的 被测液体装入底部有02. 8mm小孔的 恩氏粘度计的容器中,在某一特定温度 t°C时测定液体在自重作用下流过小 孔所需的时间tl,和同体积蒸馅水在 20笆时流过同一小孔所需的时间t2之 比值,便称为该液体在该温度时的恩氏 粘度0E=tl/t2 运动粘度;动力粘度P和该液体密度P 之比值v称为运动粘度。 v = u / p (m2/s,米2/秒)动力粘 度;F=,U A坐 J dy Ff为液体流动时相邻液层间的内摩擦 力,与液层的面积、液层间的速度梯度 成正比,U为比例系数,又称为粘度系 数或动力粘度。表征液体粘性的内摩擦 系数,物理意义:当速度梯度为1时, 接触液层间单位面积上的内摩擦力『, 即为动力粘度乂称为绝对粘度 液压冲击;在液压系统中,因某些原因 液体压力在一瞬间会突然升高,产生很 高的压力峰值,这种现象称为液压冲 击,在流体力学中称为水锤现象。 空穴现象:在液压系统中,如果某点处 的压力低于液压油所在温度下的空气分 离压时,原先溶于液体中的空气就会分 离出来,使液体中迅速产生大量的气 泡,这种现象称为气穴现象。

相关文档
最新文档