八年级数学相似多边形的性质

合集下载

八年级数学 相似多边形的性质(一)

八年级数学 相似多边形的性质(一)

八年级数学相似多边形的性质(一)●教学目标(一)教学知识点相似三角形对应高的比,对应角平分线的比和对应中线的比与相似比的关系.(二)能力训练要求1.经历探索相似三角形中对应线段比值与相似比的关系的过程,理解相似多边形的性质.2.利用相似三角形的性质解决一些实际问题.(三)情感与价值观要求1.通过探索相似三角形中对应线段的比与相似比的关系,培养学生的探索精神和合作意识.2.通过运用相似三角形的性质,增强学生的应用意识.●教学重点1.相似三角形中对应线段比值的推导.2.运用相似三角形的性质解决实际问题.●教学难点相似三角形的性质的运用.●教学方法引导启发式●教具准备投影片两X第一X:(记作§4.8.1 A)第二X:(记作§4.8.1 B)●教学过程Ⅰ.创设问题情境,引入新课[师]在前面我们学习了相似多边形的性质,知道相似多边形的对应角相等,对应边成比例,相似三角形是相似多边形中的一种,因此三对对应角相等,三对对应边成比例.那么,在两个相似三角形中是否只有对应角相等、对应边成比例这个性质呢?本节课我们将进行研究相似三角形的其他性质.Ⅱ.新课讲解投影片(§4.8.1 A)(4)D C CD ''等于多少?你是怎么做的?与同伴交流.图4-38[生]解:(1)B A AB ''=C B BC ''=C A AC ''=43 (2)△ABC ∽△A ′B ′C ′ ∵B A AB ''=C B BC ''=C A AC '' ∴△ABC ∽△A ′B ′C ′,且相似比为3∶4.(3)△BCD ∽△B ′C ′D ′.(△ADC ∽△A ′D ′C ′)∵由△ABC ∽△A ′B ′C ′得∠B =∠B ′∵∠BCD =∠B ′C ′D ′∴△BCD ∽△B ′C ′D ′(同理△ADC ∽△A ′D ′C ′) (4)D C CD ''=43 ∵△BDC ∽△B ′D ′C ′∴D C CD ''=C B BC ''=43已知△ABC ∽△A ′B ′C ′,△ABC 与△A ′B ′C ′的相似比为k .(1)如果CD 和C ′D ′是它们的对应高,那么DC CD ''等于多少? (2)如果CD 和C ′D ′是它们的对应角平分线,那么D C CD ''等于多少?如果CD 和C ′D ′是它们的对应中线呢?[师]请大家互相交流后写出过程.[生甲]从刚才的做一做中可知,若△ABC ∽△A ′B ′C ′,CD 、C ′D ′是它们的对应高,那么D C ''=CB ''=k . [生乙]如4-39图,△ABC ∽△A ′B ′C ′,CD 、C ′D ′分别是它们的对应角平分线,那么D C CD ''=C A AC ''=k .图4-39∵△ABC ∽△A ′B ′C ′∴∠A =∠A ′,∠ACB =∠A ′C ′B ′∵CD 、C ′D ′分别是∠ACB 、∠A ′C ′B ′的角平分线.∴∠ACD =∠A ′C ′D ′∴△ACD ∽△A ′C ′D ′∴D C CD ''=CA AC ''=k . [生丙]如图4-40中,CD 、C ′D ′分别是它们的对应中线,则D C CD ''=C A AC ''=k .图4-40∵△ABC ∽△A ′B ′C ′∴∠A =∠A ′,C A AC ''=B A AB ''=k . ∵CD 、C ′D ′分别是中线 ∴D A AD ''=B A AB ''2121=B A AB ''=k . ∴△ACD ∽△A ′C ′D ′∴D C ''=CA ''=k . 由此可知相似三角形还有以下性质.相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比.投影片(§4.8.1 B )图4-41如图4-41所示,在等腰三角形ABC 中,底边BC =60 cm,高AD =40 cm ,四边形PQRS 是正方形.(1)△ASR 与△ABC 相似吗?为什么?(2)求正方形PQRS 的边长.解:(1)△ASR ∽△ABC ,理由是:四边形PQRS 是正方形SR ∥BC(2)由(1)可知△ASR ∽△AB C.根据相似三角形对应高的比等于相似比,可得BCSR AD AE = 设正方形PQRS 的边长为x cm ,则AE =(40-x )cm ,所以604040x x =- 解得:x =24所以,正方形PQRS 的边长为24 cm.Ⅲ.课堂练习如果两个相似三角形对应高的比为4∶5,那么这两个相似三角形的相似比是多少?对应中线的比,对应角平分线的比呢?(都是4∶5).Ⅳ.课时小结本节课主要根据相似三角形的性质和判定推导出了相似三角形的性质:相似三角形的对应高的比、对应角平分线的比和对应中线的比都等于相似比. Ⅴ.课后作业 习题4.10. 1.解:∵△ABC ∽△A ′B ′C ′,BD 和B ′D ′是它们的对应中线,且C A AC ''=23. ∴D B BD ''=C A AC ''=23 ∴234=BD ∴BD =6 2.解:∵△ABC ∽△A ′B ′C ′,AD 和A ′D ′是它们的对应角平分线,且AD =8 cm, A ′D ′=3 cm. ∴D A AD ''=B A AB '', 设△ABC 与△A ′B ′C ′对应高为h 1,h 2.∴B A AB ''=21h h ∴21h h =D B A ABD '''=38. Ⅵ.活动与探索图4-42如图4-42,AD ,A ′D ′分别是△ABC 和△A ′B ′C ′的角平分线,且B A AB ''=D B BD ''=D A AD '' 你认为△ABC ∽△A ′B ′C ′吗?解:△ABC ∽△A ′B ′C ′成立.∵B A AB ''=D B BD ''=D A AD '' ∴△ABD ∽△A ′B ′D ′∴∠B =∠B ′,∠BAD =∠B ′A ′D ′ ∵∠BAC =2∠BAD ,∠B ′A ′C ′=2∠B ′A ′D ′∴∠BAC =∠B ′A ′C ′∴△ABC ∽△A ′B ′C ′●板书设计§4.8.1 相似多边形的性质(一)二、课堂练习三、课时小节四、课后作业●备课资料如图4-43,CD 是Rt △ABC 的斜边AB 上的高.图4-43(1)则图中有几对相似三角形.(2)若AD =9 cm,CD =6 cm,求BD .(3)若AB =25 cm,BC =15 cm,求BD . 解:(1)∵CD ⊥AB∴∠ADC =∠BDC =∠ACB =90°在△ADC 和 △ACB 中∠ADC =∠ACB =90°∠A =∠A∴△ADC ∽△ACB同理可知,△CDB ∽△ACB∴△ADC ∽△CDB所以图中有三对相似三角形.(2)∵△ACD ∽△CBD∴BDCD CD AD即BD669= ∴BD =4 (cm )(3)∵△CBD ∽△ABC ∴BC BD BA BC =. ∴152515BD =∴BD =251515⨯=9 (cm ).。

相似多边形的性质的应用

相似多边形的性质的应用

相似多边形的性质的应用1、相似多边形的性质(1)相似多边形中,对应的三角形相似,其相似比等于原相似多边形的相似比.(2)相似多边形中,对应线段的比等于相似比.(3)相似多边形周长的比等于相似比;面积的比等于相似比的平方.2、重要方法相似多边形的周长比等于相似比,面积比等于相似比的平方,运用这两个性质解决实际问题时,一定要弄清他们的关系,并努力把实际问题与之联系,从而把实际问题简单化.相似三角形的性质(1)回答了相似三角形中所有对应线段都构成比例的问题,这个性质为我们今后证明线段的比例式提供了极大的方便.性质(2)、(3)揭示了相似三角形的周长、面积与相似比的关系,利用它可以解决相似三角形中有关周长和面积的问题,这里要注意这些性质的灵活运用.如:两个相似三角形的相似比,等于它的周长比;也等于它们的面积比的算术平方根.例1 一个多边形的边长分别为2,3,4,5,6,另一个多边形和这个多边形相似,其最短边长为6,则最长边长为()A.12 B.18 C.24 D.30思路与技巧由相似多边形对应边成比例,设最长边为x.∴,∴2x=36,x=18.答案 B点评本题根据相似多边形的对应边成比例的性质,第一个多边形的最短边与第二个多边形的最短边,第一个多边形的最长边与第二个多边形的最长边分别是对应边,切记不可将对应关系弄错.例2 如图在□ABCD中,AB=6,AD=4,EF∥AD,若□ABCD∽□EFDA,求AE的长.思路与技巧(1)图形中有几对相似的平行四边形?为什么?对应边分别是什么?(2)AE的对应边应是哪条线段?为什么?(3)试一试:求S□ABCD∶S□EFDA的值.解∵EF∥AD,四边形ABCD是平行四边形,AD=4 ∴EF=AD=4,∵□ABCD∽□EFDA,∴(相似多边形对应边成比例),又∵AB=6,∴∴.点评由相似的条件,可知AE的对应边是DA,一般的在条件中,若使用的是相似符号,则对应边则是确定的,因此书写相似多边形时,对应的字母要写在对应的位置上.例3 已知:如图,正方形ABCD中,E是AC上一点,EF⊥AB于F,EG⊥AD于G,AB=6,AE∶EC=2∶1,求S四边形AFEG.思路与技巧(1)四边形AFEG是什么图形?为什么?(2)AE∶EC的值与哪两条线段的比相等?为什么?如何求出AF的长?(3)任意的两个正方形都相似吗?为什么?所有的矩形都相似吗?所有的菱形都相似吗?解∵正方形ABCD,EF⊥AB,EG⊥AD∴EF∥CB,EG∥DC∵∠1=∠2=45° ∴EF=AF∵∠FAG=90°,∴AFEG是正方形,∴正方形ABCD∽正方形AFEG,∴S正ABCD∶S正AFEG=AB2∶AF2(相似多边形的面积比等于相似比的平方),在△ABC中,EF∥CB ∴AE∶EC=AF∶FB=2∶1,又A B=6 ∴AF=4 ∴S正ABCD∶S正AFEG=36∶16,∴.点评本题中的正方形是特殊的多边形,但在一般的多边形中,一定要注意对应关系.(1)相似多边形的对应边的比,等于相似比的平方;(2)所有的正方形都是相似的,此题中只须证出四边形AFEG是正方形,即可得到它与正方形ABCD相似例4 已知:如图所示,△ABC中,DE//FG//BC.(1)若AD=DF=FB,求S1:S2:S3;(2)若S1:S2:S3=1:8:27,求AD:DF:FB.思路与技巧注意在(2)中,不能由S1:S2=1:8,就得出AD:DF=1:,因为此处不能直接运用面积的比等于相似比的平方,S1,S2不是两个相似三角形的对应面积.解(1)令,则,(2)∴可设,则∴AD:AF:AB=1:3:6AD:DF:FB=1:2:3.点评根据相似形,实施比例转化,应用面积比等于相似比的平方.例5 如图所示,△ABC的面积为16,,D为AB上任一点,F为BD的中点,DE//BC,FG//BC,分别交AC于E、G,设AD=x.(1)把△ADE的面积S1,用含x的代数式表示;(2)把梯形DFGE的面积S2,用含x的代数式表示.思路与技巧转化为相似三角形,利用其性质解决.解(1),即(2)∵F为BD的中点,.例6 如图所示,已知O是四边形ABCD的一边AB上的任意一点,EH//AD,HG//DC,GF//BC.试说明四边形EFGH与四边形ABCD是否相似,并说明你的理由.思路与技巧证明两个四边形的对应边成比例,对应角相等.解四边形四边形.理由:因为,所以,所以,所以又因为,所以,所以,所以.而,所以.因为,所以,所以.而,所以.设,所以,所以,所以因此,所以四边形四边形.点评通过图形的分割,转化为三角形问题加以研究.例7 已知:ABCD是梯形,AB//DC,对角线AC,BD交于E,ΔDCE的面积与ΔCEB的面积比为1∶3.求:ΔDCE的面积与ΔABD的面积比.分析:题目中已知条件是面积比,要求的也是面积比,因此根据图形找到面积之间的关系是很重要的.ΔDCE与ΔCEB是等高三角形,因此面积比为底的比,而ΔDCE与ΔABE是相似三角形,面积的比等于相似比的平方,又可证出ΔADE与ΔBCE的面积相等,这样ΔDCE与ΔABD的面积比就可求了.解∵SΔ DCE∶SΔCEB=1∶3,而ΔDCE与ΔCEB是等高三角形,∴DE∶EB=1∶3,∵DC//AB,∴ΔDCE∽ΔBAE,∴SΔDCE∶SΔBAE=(DE∶EB)2=1∶9,∵ΔADC与ΔBDC为等底、等高三角形,∴SΔADC=SΔBDC,∴SΔADC-SΔDCE=SΔBDC-SΔDCE,∴SΔAED=SΔBEC设SΔDCE=k, 则SΔAED=SΔBEC=3k, SΔBAE=9k,∴SΔABD=SΔABE+SΔADE=12k,∴SΔDCE∶SΔABD=1∶12.点评相似三角形的面积比等于相似比的平方,计算时不要丢掉平方;若从面积比求相似三角形的相似比,则要注意开平方.例8 如图,有一边长为5cm的正方形ABCD和等腰△PQR,PQ=PR=5cm,QR=8cm,点B、C、Q、R在同一条直线l上,当C、Q两点重合时,等腰△PQR以1cm/秒的速度沿直线l按箭头所示方向开始匀速运动,t秒后正方形ABCD与等腰△PQR重合部分的面积为Scm2,解答下列问题:(1)当t=3秒时,求S的值;(2)当t=5秒时,求S的值;思路与技巧本题考点有等腰三角形;正方形;相似三角形.第一问,思路,作PEQR,E为垂足,运用相似三角形的性质,面积比第于相似比的平方,可求出面积.第二问方法与第一问类似,但是要注意图形的位置.解(1):作PE⊥QR,E为垂足∵PQ=PR,∴QE=RE=QR=4.∴PE==3.当t=3时,QC=3.设PQ与DC交于点G.∵PE∥DC,∴△QCG∽△QEP,∴=()2.∵S△QEP=×4×3=6,∴S=()2×6=(cm2).(2)当t=5时,QC=5,B、C两点重合,CR=3,设PR与DC交于G. 由△RCG∽△REP,可求出S△RCG=.S=12-=(cm2).点评本题是代数,几何综合问题,等腰三角形,正方形等多种知识,解答本题的基本思想是数形结合,构造函数,用运动观点考虑.每种情况画一图形,结合图形,认真分析,实现数形结合的思想.。

4.8相似多边形的性质课件

4.8相似多边形的性质课件
解:设正方形PQMN是符合要求的△ABC的高AD与
PN相交于点E。设正方形PQMN的边长为x毫米。
A
E
N 因为PN∥BC,所以△APN∽ △ABC AE PN 所以 = AD C BC B Q D M 80–x x = 因此 ,得 x=48(毫米)。答:边长为48毫米。 80 120 P
课堂小结
全等三角形与相似三角形性质比较
∠ABC=∠ECD=90°, 所以 △ABD∽△ECD,
AB BD 那么 EC DC
BD EC 120 50 解得AB 100(米) DC 60
答: 两岸间的大致距离为100米.
我们还可以在河对岸选定一目标点A,再在河的 一边选点D和 E,使DE⊥AD,然后,再选点B,作 BC∥DE,与视线EA相交于点C。此时,测得DE , BC, BD, 就可以求两岸间的大致距离AB了。
相似三角形的性质
相 对应高的比 似 三 对应中线的比 都等于相似比 角 对应角平分线的比 形
1.两个相似三角形的相似比为 2 , 则 1 1 对应高的比为_________, 则对应中线 2 2 的比为_________.
(口答下列各题) 1
2.相似三角形对应边的比为2∶3,那么对 应角的角平分线的比为______.3 2∶
2、如图,为了估算河的宽度,我们可以在河对岸选
定一个目标作为点A,再在河的这一边选点B和C,使 AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC 和AE的交点D. 此时如果测得BD=120米,DC=60米,EC=50 米,求两岸间的大致距离AB.
A
B
D
C E
解: 因为 ∠ADB=∠EDC,
∠ASR= ∠B ∠ARS= ∠C

4.8 相似多边形的性质 课件3(北师大版八年级下)

4.8 相似多边形的性质 课件3(北师大版八年级下)
听故事
想问题
很久以前,某地发生大旱, 地里的庄稼都干死了,于是大家 到庙里向神祈求下雨。神说,如 果你们做一个比现在的方桌大一 倍的方桌来祭我,我就给你们降 水。于是大家重新做了一个摆设 祭品的方桌。新方桌的边长是原 来的2倍。可是神愈发怒了。
边长扩大2倍, 面积 也扩大 2 倍吗?
相似多边形的性质
的周长比是多少?
C1 、A2C2 (2)连结相应的对角线 A1
B2 A2 C2
所得到的 ∧A1B1C1 与 ∧A2B2C2 相似吗?
∧A1C1D1 与 ∧A2C2D2 呢?为什么?
如果相似, 相似比是多少?
自学指导 (二)
(3) ∧A1B1C1 与 ∧A2B2C2
B1
的面积比,∧A1C1D1与
∧A2C2D2 的面积比分别各是 A1 C1 D1 ==
多少?
(4 )
四边形A1B1C1D1面积 四边形A2B2C2D2面积 A2

B2
你是如何得到的?(与同伴交流)
C2
尝试练习
1。课本P135 习题且使 其周长是原来的5倍,对应边应该怎样取? 要 1 使周长缩小到原来的 3 呢?要使面积扩大到 原来的16倍,对应边怎样取 ?
zxxkw
3。两相似多边形面积比为9:4,则它们的周长 比为( D )。 A9:4 B9:2 C3:4 D3:2
应用练习
1。课本P135 随堂练习 1题
2。课本P134
“做一做”
xkw
作业
必做题
课本 P135 习题4。11 3 题
选做题
易: 课本P135 难: 课本P136
2 题 4 题
(北师大版)
初二数学
学习目标
1.探索相似多边形的周长比、面积比 与相似比的关系 。

多边形的相似性质

多边形的相似性质

多边形的相似性质在几何学中,多边形是由连续的直线段组成的封闭图形,它是我们研究的重要对象之一。

在多边形的研究中,相似性质是一个关键概念,它描述了在一些特定条件下,两个多边形之间的形状和大小的关系。

本文将介绍多边形相似性质的定义、判定方法以及相关的应用。

一、多边形的相似性质定义在几何学中,两个多边形被认为是相似的,当且仅当它们每两个对应边的长度之比相等,并且对应的角度也相等。

简而言之,两个多边形相似意味着它们具有相似的形状,只是尺寸不同。

例如,在图形学中,我们常常遇到的问题是,如何判断两个多边形是否相似,并且根据相似性质进行进一步的推导和计算。

二、多边形的相似性质判定判断两个多边形是否相似的一种常用方法是通过比较它们的对应边的长度之比,并且对应的角度是否相等。

如果两个多边形的边长比和角度比都相等,那么它们就是相似的。

具体来说,可以通过以下步骤进行判定:1. 确定两个多边形的对应边;2. 计算对应边的长度之比;3. 计算对应角度之间的差值;4. 比较长度之比和角度差值是否满足相似性质。

三、多边形的相似性质应用多边形的相似性质在现实生活和各个学科中有广泛应用。

以下是一些具体的例子:1.建筑设计:在建筑设计中,多边形的相似性质可以应用于模型放大缩小、结构设计等方面,从而实现建筑设计的灵活性和优化效果;2.地图制作:在地图制作中,多边形的相似性质可以用于测量和推算地理距离、比例尺等,从而准确地绘制地理形状和位置;3.工程测量:在工程测量中,多边形的相似性质可以应用于实际测量,通过已知的尺寸计算未知的尺寸;4.数学推导:在数学推导中,多边形的相似性质可以用于证明几何定理和解决几何问题。

总结:多边形的相似性质是几何学中重要的概念,它描述了两个多边形之间的形状和大小的关系。

判断多边形的相似性质可以通过比较对应边的长度之比和对应角度之间的差值。

多边形的相似性质在实际应用中具有广泛的应用,涉及建筑设计、地图制作、工程测量等多个领域。

相似多边形的性质(1)说课稿 4

相似多边形的性质(1)说课稿 4

《相似多边形的性质(1)》的说课稿尊敬的各位评委,老师:大家好!我是来自永宁县回民中学的刘翠鸿。

今天我说课的内容是北师大版八年级下册第四章第八节《相似多边形的性质》第一课时,一、学习任务分析1、教材所处的地位和作用本节内容是在学习了相似三角形以及探索三角形相似判定条件的基础上,进一步探索相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。

从知识的前后联系来看,相似三角形比全等三角形更具有一般性,也是研究相似多边形性质的基础和圆中有关线段关系的有效方式。

因此本节课具有承上启下的作用。

2、学情分析在前面的学习中,学生已经具备了一些探索图形性质的经验,也具备了一定的合作交流能力。

因此通过类比、合作交流并结合已有的活动经验,对本节课结论的直观发现比较容易,但严格的逻辑推理能力和书写格式需进一步的强化。

二、教学目标分析根据课程标准的要求,并考虑到学生已有的认知结构和心理特征,制定如下教学目标:1、理解并掌握相似三角形对应高的比,对应角平分线的比、对应中线的比与相似比的关系,并运用这些性质来解决实际问题;2、经历探索相似三角形性质的过程,体会数学逻辑推理的合理性和严谨性,体验解决问题策略的多样性;3、通过主动探究,合作交流,感受探索的乐趣和成功的体验,使学生养成积极思考、合作交流的习惯。

三、教学重点、难点分析根据课程标准,在充分理解教材的基础上,我确立了如下的教学重点、难点教学重点探究验证相似三角形的性质并运用相似三角形的性质解决简单的实际问题。

教学难点:由于八年级学生逻辑推理能力、概括总结能力还较低,所以理解和运用三角形相似的性质解决简单的实际问题是本节课的难点。

四、教法分析和学法指导1、教法分析八年级学生已经养成了良好的数学学习习惯,具有一定的自主探索,合作交流的学习能力。

本节课以提出问题、解决问题为主线,以独立思考和小组合作交流的形式,在教师的指导下发现、探索相似三角形的性质。

2、学法指导学生在七年级下学期已经学习全等三角形的判定和性质,对全等三角形的对应边的比已有所了解。

4.8 相似多边形的性质 课件1(北师大版八年级下)

4.8 相似多边形的性质 课件1(北师大版八年级下)
B
又∵AM,DN分别是△ABC和△DEF的中线.
BM BC AB BM . .且∠B =∠E. EN EF DE EN AM AB E . DN DE (相似三角形对应边成比例).
M
C
D
∴△AMB∽△DNE.(两边对应成比 例且夹角相等的两个三角形相似).
N
F
即,相似三角形对应中线的比等于相似比.
做一做P132
好汉的歌
• 下图是阳泉市城区外环路示意图,比例尺为1∶100 000 • (1)设法求出图上外环路的长度,并由此求出外环路的实 际长度; • (2)估计外环路所围成的区域的面积.你是怎么做的?与同 伴交流. 平坦立交桥
• 点拨 • (1)用一根线绳沿图中 的外环路重叠放置,此 时线绳的长度就是外 环路的图上距离; • (2)把图上的外环路近 似地看作一个矩形.
E
A B
D
AB AC BC . DE DC CE
C
开启
智慧 内涵与外延
A
如图, 已知△ABC, DE ∥ BC, 交AB,AC 或其延长线于D,E,则有如下结论: D E 结论1:平行于三角形一边直线 B C 截其它两边(或其延长线),所截 A 得的三角形与原三角形相似; B C 如图:在△ABC中, 如果DE∥BC,那么△ADE∽△ABC. D E 结论2:平行于三角形一边直线截 E D 其它两边(或其延长线),所得的对 A 应线段成比例. 如图:在△ABC中,如果DE∥BC, B C AD AE AD AE DB EC DB EC 那么 ;或 ;或 ;或 . DB EC AB AC AD AE AB AC
大阳泉
义井桥
随 堂 阳泉是我家 练 人人热爱它 习 • 阳泉市城市广场,是一个因周边环境设计建造

相似多边形的性质

相似多边形的性质

相似多边形的性质相似多边形是指具有相同形状但尺寸不同的多边形。

在几何学中,相似多边形具有一些独特的性质和特征。

本文将探讨相似多边形的性质,并展示一些相关的数学应用和实际问题。

1. 相似多边形的定义相似多边形是指具有相同形状但尺寸不同的多边形。

两个多边形相似的条件是它们的对应角度相等,并且对应边的比例相等。

由此定义可知,如果两个多边形相似,它们的边长比例是相等的。

2. 相似多边形的比例关系对于相似多边形,存在着一种特殊的比例关系。

设两个相似多边形的对应边长分别为a和b,对应的面积分别为A和B。

根据相似多边形的性质,可以得出以下结论:- 边长比例:a:b = A:B- 面积比例:A:B = (a^2):(b^2)这些比例关系对于解决与相似多边形有关的数学问题非常重要。

3. 相似多边形的角度关系对于相似多边形,其对应角度是相等的。

这意味着,如果我们知道一个相似多边形的对应角度,就可以确定其他相似多边形的对应角度。

这对于计算多边形的角度和解决三角学问题非常有用。

4. 相似多边形的周长和面积由于相似多边形的边长比例相等,所以它们的周长比例也相等。

假设两个相似多边形的边长比例为m:n,那么它们的周长比例也为m:n。

同样地,由于相似多边形的面积比例为(a^2):(b^2),所以它们的面积比例也为(a^2):(b^2)。

5. 相似三角形的应用相似多边形的性质在实际问题中有着广泛的应用。

其中最常见的应用是解决相似三角形问题。

通过利用相似三角形的角度和边长关系,我们可以确定无法直接测量的距离和高度。

例如,在地理测量中,我们可以利用相似三角形的性质来测算高山的高度或者海洋的深度。

6. 相似多边形与比例的关系相似多边形的性质与比例密切相关。

相似多边形利用比例关系来描述形状的相似性,从而在数学和实际问题中提供了有用的工具和方法。

比例的概念在解决与相似多边形有关的计算问题中起着关键作用。

综上所述,相似多边形具有一些独特的性质和特征。

相似多边形的性质与应用

相似多边形的性质与应用

相似多边形的性质与应用相似多边形是指具有相同对应角度的多边形,并且对应边的比例相等的多边形。

相似多边形在几何学中具有重要的性质和广泛的应用。

本文将探讨相似多边形的性质及其在实际问题中的应用。

一、相似多边形的性质1. 边比例性质在相似多边形中,对应边的比例是相等的。

设两个相似多边形分别为多边形ABCDEF和多边形A'B'C'D'E'F',则有:AC / A'C' = BC / B'C' = CD / C'D' = DE / D'E' = EF / E'F'2. 角度相等性质在相似多边形中,对应角度是相等的。

对于相似多边形ABCDEF 和多边形A'B'C'D'E'F',有:∠A = ∠A', ∠B = ∠B', ∠C = ∠C', ∠D = ∠D', ∠E = ∠E', ∠F = ∠F'3. 周长比例性质在相似多边形中,每条边的比例相等,则两个多边形的周长比例也相等。

设多边形ABCDEF和多边形A'B'C'D'E'F'相似,则有:周长(ABCDEF) / 周长(A'B'C'D'E'F') = AB / A'B' = BC / B'C' = CD / C'D' = DE / D'E' = EF / E'F'4. 面积比例性质在相似多边形中,对应边的比例的平方等于面积的比例。

设多边形ABCDEF和多边形A'B'C'D'E'F'相似,则有:面积(ABCDEF) / 面积(A'B'C'D'E'F') = (AB / A'B')^2 = (BC / B'C')^2 = (CD / C'D')^2 = (DE / D'E')^2 = (EF / E'F')^2二、相似多边形的应用1. 测量距离与高度通过相似多边形的性质,我们可以使用三角形的相似性来测量无法直接测量的距离或高度。

教案指导记录初中数学

教案指导记录初中数学

教案指导记录初中数学教案名称:初中数学《相似多边形的性质》年级:八年级学科:数学课时:2课时教材版本:人教版教学目标:1. 让学生理解相似多边形的概念,掌握相似多边形的性质。

2. 培养学生观察、分析、归纳的能力,提高学生的数学思维能力。

3. 培养学生合作学习、交流表达的能力,提高学生的团队协作能力。

教学内容:1. 相似多边形的定义及性质2. 相似多边形的判定3. 相似多边形的应用教学过程:第一课时:一、导入新课1. 利用多媒体展示一些生活中的相似图形,引导学生观察、思考。

2. 学生汇报观察结果,教师总结相似图形的特征。

二、探究相似多边形的性质1. 学生分组讨论,总结相似多边形的性质。

2. 各组汇报讨论结果,教师点评并总结。

三、例题讲解1. 教师讲解例题,引导学生掌握解题方法。

2. 学生独立完成练习题,教师批改并讲解错误。

四、课堂小结1. 教师引导学生总结本节课所学内容。

2. 学生分享学习收获,教师给予鼓励。

第二课时:一、复习导入1. 教师提问,检查学生对相似多边形性质的掌握情况。

2. 学生回答问题,教师点评并引导。

二、探究相似多边形的判定1. 学生分组讨论,总结相似多边形的判定方法。

2. 各组汇报讨论结果,教师点评并总结。

三、例题讲解1. 教师讲解例题,引导学生掌握解题方法。

2. 学生独立完成练习题,教师批改并讲解错误。

四、课堂小结1. 教师引导学生总结本节课所学内容。

2. 学生分享学习收获,教师给予鼓励。

五、课后作业1. 教师布置作业,巩固所学知识。

2. 学生认真完成作业,教师批改并反馈。

教学评价:1. 学生对相似多边形的概念、性质、判定方法的掌握程度。

2. 学生在解决问题时的思维能力、创新能力。

3. 学生在课堂上的参与度、合作意识、交流表达能力。

教学反思:本节课通过引导学生观察生活中的相似图形,激发学生的学习兴趣。

在探究相似多边形的性质和判定过程中,充分发挥学生的主动性,培养学生的观察、分析、归纳能力。

初中数学相似图形多边形概念性质定理及练习题知识点总结归纳

初中数学相似图形多边形概念性质定理及练习题知识点总结归纳

相似图形知识点总结:
五. 相似三角形
1. 在相似多边形中,最为简单的就是相似三角形.
2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.
3. 全等三角形是相似三角形的特例,这时相似比等于 1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.
4. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.
5. 相似三角形周长的比等于相似比.
6. 相似三角形面积的比等于相似比的平方.
六.探索三角形相似的条件
3. 平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.
八. 相似的多边形的性质
相似多边形的周长等于相似比;面积比等于相似比的平方.
九. 图形的放大与缩小
如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形; 这个点叫做位似中心; 这时的相似比又称为位似比.
2. 位似图形上任意一对对应点到位似中心的距离之比等于位似比.
3. 位似变换: ①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心. ②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形. ③利用位似的方法,可以把一个图形放大或缩小.
巩固练习:。

八年级数学相似多边形的性质(2019年10月整理)

八年级数学相似多边形的性质(2019年10月整理)

主动探索
钳工小王准备按照比例尺为3:4的图纸制作三角形零件.如下图,图纸上
的△ABC表示该零件的横断面 ABC , CD和CD 分别是它的高.
B
D
A
B′
D′
A′
C
通过上述的条件,你能否提出一个问题?试一试.
C′
(1)AB , BC , AC 各等于多少? AB BC AC
(2)ABC与ABC相似吗?如果相似, 请说明理由,并指出它们的相似比. (3)请你在图中再找出一对相似三角形.
(4)CD 等于多少?你是怎么做的?与同伴交流. CD
通过上面的交流,你发现相似 三角形对应高的比与相似比之 间的关系了吗?
现在把高CD改为角平分线,会 有什么结论,你能说明理由吗?
你还能把高改为什么线?改后 结论是否成立?
结论:
相似三角形对应高的比、对应角平分线的比和对应中线的比
都等于相似比
A
SE R
B PD Q
C
; 木瓜电影网 蜜瓜电影网 木瓜在线免费影视影院 / 木瓜电影网 蜜瓜电影网 木瓜在线免费影视影院

仍自故郡城移岚州于废东会州 隋河池郡 深州 州废来属 隋为襄阳郡 仍为邺县 复置都督府 博野 十二年 右者在外 汉临沮县地 八年 户二万一千六百一十七 或云专典机密 不要充数 六年 陈改为宜都 郎中 取汉县名 仆射常带此称 领县六 二曰屯田 壁四州 家专其业 从五品下 十年 岳 后契丹陷营州乃南迁 (天宝已后 三曰礼部 隶秘书监 分霍邑县置 隋末 武德 书令史九人 改为钜鹿郡 阳曲 省武陵县 草木薪炭 割林虑置岩州 东渭桥也 割洺州之临洺 其时以他官预议国政者 (皆渭川 领沁源 大陈设如元正之仪 ) 改为尧山 改为都督府 河北道 隋分晋阳县置 仍割汾州 之文水来属 废岩州 棣 以太谷 以

相似多边形的性质2上课课件

相似多边形的性质2上课课件


S A1C1D1 S A2C2 D2
k 2, S四边形A1 B1C1 D1 k ,即 k 2. S四边形A2 B2C2 D2
2
S A1B1C1 S A1C1D1 S A2 B2C2 S A2C2 D2
合作、交流、探究
如图,四边形 A1B1C1D1∽四边形A2 B2C2 D2,相似比为 k.
合作、交流、探究
在上图中,ABC ∽ ABC,相似比为k, 那么ABC与ABC的周长比和面积比分别 是多少?
AB BC AC k AB BC AC
S ABC 2 (k) . S ABC
相似三角形的周长比等于相似比,面积比等于相似比的平方.
合作、交流、探究
如图,四边形 A1B1C1D1∽四边形A2 B2C2 D2,相似比为 k.
(1)四边形A1B1C1D1与四边形A2 B2C2 D2的周长比是多少?
应用等比性质,可得它们的周长比为: A1 B1 B1C1 A1C1 C1 D1 k A2 B2 B2C2 A2C2 C2 D2
AB BC AC CD AD BD 3 (1) AB BC AC C D AD BD 4
合作、交流、探究
3 在上图中,ABC ∽ A B C ,相似比为 , 4 (1)请你写出图中所有成 比例的线段. (2)ABC与ABC 的周长比是多少?你是 怎么做的? (3)ABC的面积如何表示? ABC 的面积呢? ABC与ABC 的面积比是多少?与同 伴交流.
第四章 相似图形
相似多边形的性质 (二)
合作、交流、探究
3 在上图中,ABC ∽ A B C ,相似比为 , 4 (1)请你写出图中所有成 比例的线段. (2)ABC与ABC 的周长比是多少?你是 怎么做的? (3)ABC的面积如何表示? ABC 的面积呢? ABC与ABC 的面积比是多少?与同 伴交流.

相似多边形的性质与判定

相似多边形的性质与判定

相似多边形的性质与判定相似多边形是指具有相同形状但可能不同大小的多边形。

在几何学中,相似多边形具有一些独特的性质和判定条件。

本文将探讨相似多边形的性质与判定方法。

一、相似多边形的性质1. 对应角相等:如果两个多边形的对应角相等,则这两个多边形是相似的。

对应角是指两个多边形中,对应边之间的角度大小。

2. 对应边成比例:相似多边形的对应边的长度成比例。

具体而言,如果两个多边形的对应边长之比恒定,则这两个多边形是相似的。

3. 相似比例:两个相似多边形的边长比例被称为相似比例。

如果两个多边形的对应边长度比恒定,那么这个比例称为相似比例。

4. 面积比例:两个相似多边形的面积比等于它们对应边长度比的平方。

具体而言,如果两个多边形的长度比为k,面积比为k²。

二、相似多边形的判定方法1. 角-边-角判定法:如果两个多边形的两组对应角相等,并且两个多边形的一对对应边成比例,则这两个多边形是相似的。

2. 边-边-边判定法:如果两个多边形的三对对应边成比例,则这两个多边形是相似的。

3. SSS判定法:如果两个多边形的三对对应边长度比恒定,则这两个多边形是相似的。

4. AA判定法:如果两个多边形的两组对应角相等,则这两个多边形是相似的。

5. SAS判定法:如果两个多边形的一对对应边成比例,并且对应边间的夹角相等,则这两个多边形是相似的。

三、例题解析假设有一个三角形ABC,边长分别为AB=6cm,BC=9cm,AC=12cm。

现在构造一个相似三角形DEF,要求DEF的周长是ABC的周长的一半。

解题步骤如下:1. 首先,根据周长的要求,DEF的周长应为ABC的一半,即(AB+BC+AC)/2 = (DE+EF+FD)/2。

代入AB=6cm,BC=9cm,AC=12cm,得到6+9+12 = DE+EF+FD。

2. 其次,根据相似多边形的性质,我们需要找到相似比例。

由于DEF与ABC相似,我们可以设DE与AB的长度比为k,EF与BC的长度比为k,FD与AC的长度比为k。

八年级数学下册 第四章 4.8相似多边形的性质学案(2)(无答案) 北师大版

八年级数学下册 第四章 4.8相似多边形的性质学案(2)(无答案) 北师大版

课题:§ 4.8相似多边形的性质(2)【学习目标】掌握相似多边形的周长比,面积比与相似比的关系;相似多边形的周长比,面积比在实际中的应用. 【学习重点】运用相似多边形的比例关系解决实际问题 【学前准备】1、相似三角形的性质: 。

2.△ABC 与△A'B'C'的相似比为3:4,若BC 边上的高AD =12cm ,则B'C'边上的高A'D'=_____ 。

【师生探究,合作交流】 1、例1:已知:△ABC ∽△A ′B ′C ′,相似比为43. (1)请你写出图中所有成比例的线段.(2)△ABC 与△A ′B ′C ′的周长比是多少?你是怎么做的?(3)△ABC 的面积如何表示?△A ′B ′C ′的面积呢?△ABC 与△A ′B ′C ′的面积比是多少?2.想一想如果△ABC ∽△A ′B ′C ′,相似比为k ,那么△ABC 与△A ′B ′C ′的周长比和面积比分别是多少?3、议一议如图,四边形A 1B 1C 1D 1∽四边形A 2B 2C 2D 2.相似比为k .(1)四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2.的周长比是 ;(2)连接相应的对角线A 1C 1,A 2C 2,所得的△A 1B 1C 1与△A 2B 2C 2相似吗?为什么?△A 1C 1D 1与△A 2C 2D 2呢?如果相似,它们的相似各是多少?为什么?(3)设△A 1B 1C 1,△A 1C 1D 1,△A 2B 2C 2,△A 2C 2D 2的面积分别是,111C B A S ∆222222111,,D C A C B A D C A S S S ∆∆∆,那么222111222111,D C A D C A C B A C B A SS SS ∆∆∆∆各是多少?(4)四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2的面积比是多少? 如果把四边形换成五边形呢?那么结论又如何呢?由此可知相似多边形有以下性质:.相似多边形的 。

相似多边形的性质 (3)

相似多边形的性质 (3)

教学设计《相似多边形的性质》九年级上册第5章第3节第一课时一、教材分析:(1)主要内容“相似多边形的性质”是义务教育课程标准实验教科书北师大版八年级(下)第四章“相似图形”第八节的内容,本节内容教材安排了两个课时完成。

第一课时主要探究相似三角形中对应高的比、对应角平分线的比、对应中线的比与相似比的关系,第二课时探索相似多边形的周长比、面积比与相似比的关系。

(2)教材地位和作用相似多边形的性质中,相似三角形的对应高之比等于相似比的应用最为广泛,很多涉及到相似三角形的实际问题,常常需要借助对应高之比等于相似比来建立等量关系求解。

二、目标分析:(1)教学目标●知识与技能:理解并掌握相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比。

●过程与方法:通过独立探究及小组合作,经历探究相似三角形性质的过程;经历应用相似三角形中对应高之比等于相似比探究生活中实际问题的过程;经历从特殊到一般再到特殊的探究过程。

●情感与态度:体会数学的实用价值,让学生意识到很多问题来源于生活,通过数学的方法加以解决并回归到生活为生活服务,并体会数学内在的美。

三、教学重点:理解和掌握相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比,并强化对应高之比等于相似比在实际问题中的应用。

四、教学难点:利用相似三角形对应高之比等于相似比的应用构建数学模型。

建立依据:相似三角形对应高之比等于相似比的应用很广泛,很多实际问题的解决都需要借助对应高之比等于相似比来建立等量关系求解。

涉及到实际应用的数学问题本来对学生来说就是一个难点,尤其又是涉及到三角形相似的性质的实际应用,对学生的能力提出了更高的要求。

突出重点、难点的策略:从漫画入手引入课题,充分调动学生学习的积极性;通过图形的叠加和拆分引导学生利用对应高之比等于相似比建立等量关系;最后通过层层深入的探究巩固方法的同时挖掘一般规律。

五、教学媒体:多媒体、powerpoint课件六、设计思路:(1)教法:在教学中采用了探究式教学法,引导学生进行独立探究及小组合作探究。

相似多边形的性质

相似多边形的性质

24.4 相似多边形的性质学习目标要求1、掌握相似多边形的性质。

2、会利用相似多边形的性质解决问题。

教材内容点拨知识点1:相似多边形边、角的性质: 根据相似多边形的定义,可知当两个多边形相似时,它们的对应角相等,对应边对应成比例,其比叫做相似多边形的相似比。

知识点2:相似多边形的周长、面积的性质:相似多边形的周长比等于相似比,面积比等于相似比的平方。

由于从多边形的一个顶点出发,可引出(n -3)条对角线,这(n -3)条对角线将多边形分成了(n -2)个三角形,所以相似多边形具有与相似三角形相类似的性质,诸如相似多边形的周长比等于相似比,面积比等于相似比的平方。

典型例题点拨例1、已知图中的两个四边形相似,找出图中的成比例线段,并用比例式表示。

点拨:根据条件:“图中的两个四边形相似”,利用相似多边形的定义求解。

解答:∵四边形ABCD ∽四边形EFGH ,且∠A =∠E 、∠B =∠F ,∴A BB CC D D E E F F G G HH E===。

例2中,延长AB 到E ,使12B E A B =,延长CD 到F ,使,DF DC EF =交BC 于G ,交AD 于H ,则B E G ∆的周长与C F G ∆的周长的比为_________。

点拨:在中,AB ∥CD ,所以△CBE 与△CFG 相似,要求B E G ∆的周长与C F G ∆的周长的比,即是求这两个三角形的相似比。

解答:1:4。

例3、如图,将ABC ∆的高AD 三等分,这样把三角形分成三部分,设三部分的面积为321,,S S S ,则____::321=S S S 。

点拨:利用相似三角形的面积比等于相似比的性质,先求出△ADE 、△AFG 、△ABC 这三个三角形面积之间的关系,进而求出321,,S S S 之间的关系。

解答:∵平行线段DEFGBC 将三角形的高三等分,∴1149A D E A F G ABC S S S ∆∆∆==,∴123::1:3:5S S S =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海博论坛
[单选]按1980年的美元记价,设GD表示GDP平减指数。则1990年的实际GDP等于1990年名义GDP()。A.乘以(GD80/GD90);B.乘以(GD90/GD80);C.除以1980年的GD;D.除以1990年GD和1980年GD的差额。 [单选]下列哪一项符合高血压的治疗原则().A.联合用药,达到降压目标后停药B.症状不重者不宜使用降压药C.联合用药,达到降压目标后短期服用维持量D.联合用药,达到降压目标后长期服用维持量E.间断用药,避免产生抗药性 [单选]海拔1000m以下地区,在500kV交流输电线路上带电更换绝缘子时,应保证作业中良好绝缘子片数不少于()片。A.16B.20C.23D.25 [单选]既可用作保护油路安全,又可用作稳定系统油压的液压阀是:A.单向节流阀B.溢流阀C.单向阀D.截止阀 [单选,A2型题,A1/A2型题]自发性蛛网膜下腔出血最常见的原因()。A.脑动静脉畸形B.动脉硬化C.烟雾病D.颅内肿瘤卒中E.脑动脉瘤 [单选]下列不属于文字检核要求的是()。A.稿面字迹清晰可辨,修改勾画明晰不误,专用符号符合规范B.标题字体字号符合该书刊的具体要求C.图表位置、图注文字指示明确D.应该检核图稿的印刷适性和表观质量 [单选]芒硝入煎剂的用法是()A.包煎B.先煎C.冲服D.后下E.煎汤代水 [问答题]一架装载如下的飞机的地板的最小承载限制是多少?货盘尺寸-长39宽37货盘重量-37磅系留装置-54磅货物重量-1,094.3磅 [单选,A2型题,A1/A2型题]抗着丝点抗体对何种自身免疫病的诊断具有很高的敏感性和特异性()。A.CREST综合征B.进行性系统性硬化症C.硬皮症D.混合性结缔组织病E.干燥综合征 [填空题]苗木贮藏的方法有()和()。 [填空题]基床系数即地基在任一点发生()时,在该处单位面积上所需施加()。 [单选]以下关于索赔的说法中,不正确的是()。A.索赔具有双向性B.索赔只能由承包商向业主提出C.索赔以实际发生了经济损失或权利损害为前提D.索赔可分为工期索赔和费用索赔 [单选]先天性肌性斜颈的最佳手术时间是()A.出生后3个月以内B.出生后6个月以选]中性粒细胞吞噬时外环境中可不需哪种物质()A.Ca2+离子B.k+离子C.Mg2+离子D.ATPE.Na+离子 [名词解释]商业备用信用证 [单选,A1型题]关于葛根主要药理作用叙述错误的是()A.抗心肌缺血B.抗心律失常C.扩血管,降血压D.解热E.保肝利胆 [填空题]影响消费者期望的形成和强化的主要因素有:()、目标价值、()和可行性四个方面。 [问答题,简答题]装置进退油流程改通? [单选]细胞间的识别依赖于()A、胞间连接B、粘连分子C、分泌型信号分子D、膜上受体 [单选,A2型题,A1/A2型题]以下组合错误的是()A.听眶线--ABLB.听眦线--OMBLC.听眉线--SNLD.眶下线--IOLE.人类生物学基线--ABL [单选,A1型题]小儿化脓性脑炎的脑脊液变化为()A.细胞数增高,蛋白正常,糖降低B.细胞数增高,蛋白增高,糖降低C.细胞数正常,蛋白正常,糖降低D.细胞数增高,蛋白升高,糖升高E.细胞数升高,蛋白正常,糖正常 [单选]维生素的生理功能不包括()A.保护视力B.影响生殖功能C.提供热能D.参与骨代谢E.维持正常免疫功能 [单选]依据糖尿病诊断标准,确诊糖尿病选用()A.全血血糖B.血浆血糖C.糖化血红蛋白D.尿糖定性E.24小时尿糖定量 [单选,A2型题,A1/A2型题]关于退行性主动脉瓣病变下列描述不正确的是()A.病理改变可为钙化、黏液样变B.多为轻度狭窄C.一般左冠瓣重于右冠瓣和无冠瓣D.可累及心脏传导系统E.与性别有关,一般男性多于女性 [单选]女,43岁,反复头痛10个月,CT检查如图,最可能的诊断是()A.颅咽管瘤B.垂体瘤C.颈内动脉瘤D.脑膜瘤E.胶质瘤 [单选]保证合同的签订人为()。A.债权人与债务人B.债权人与保证人C.债务人与保证人D.保证人与被保证人 [单选,A2型题,A1/A2型题]升药的功效是()A.清热解毒B.杀虫止痒C.拔毒去腐D.敛疮生肌E.消肿散结 [单选]下列分析中,()应考虑关联效果,对项目涉及的所有社会成员的有关效益和费用进行全面识别。A.社会分析B.风险分析C.经济分析D.经济影响分析 [问答题]北京某工程据统计混凝土实物工作量约为23000m3,混凝土为(商混)不考虑现场搅拌,混凝土养护用水定额取700L/m3;拟定结构及前期阶段施工工期为300d;每天按照1.5个工作班计算。其中:K1=1.1,Q1=23000m3,N1=7501/m3,T1=120d,t=1.5班,K2=1.5。生活区高峰人数为500人, [填空题]当高层建筑与相连的裙房之间不设置沉降缝和后浇带时,应进行()验算。 [单选]关于非孕期成人正常子宫,下列说法错误的是()。A.子宫长7~8cmB.子宫容积约50mLC.子宫体位于骨盆腔中央D.子宫颈与子宫体相连处称为峡部,长约1cmE.正常子宫呈前倾前屈位 [单选]诊断原发性肝癌最有价值的定性检查是()A.甲胎蛋白测定B.岩藻糖苷酶C.碱性磷酸酶测定D.γ-谷氨酰转肽酶测定E.γ-谷氨酰转酞酶同工酶Ⅱ [单选]()构成了确认收入和费用的基础,也进一步构成了资产和负债的确认基础。A.会计凭证B.会计确认C.权责发生制D.会计计量 [单选,A2型题,A1/A2型题]腺垂体分泌的激素作用不包括()A.促卵泡发育B.促排卵C.促黄体生成D.促泌乳E.促孕卵输送 [单选]了解某市国有工业企业生产设备情况,则统计总体是()。A.该市国有的全部工业企业B.该市国有的每一个工业企业C.该市国有的某一台设备D.该市国有工业企业的全部生产设备 [单选]下列的会计恒等式,不正确的是()。A.资产=权益=债权人权益+所有者权益B.资产=负债+所有者权益C.所有者权益=资产+负债D.收入一费用=利润 [单选,A2型题,A1/A2型题]根据国内标准,红细胞比容低于正常,符合贫血标准是()A.成年男性低于0.5,成年女性低于0.4B.成年男性低于0.48,成年女性低于0.4C.成年男性低于0.5,成年女性低于0.37D.成年男性低于0.46,成年女性低于0.4E.成年男性低于0.42,成年女性低于0.37 [单选]下列哪些波长的激光作用到组织后,一般不产生热量()A.红色激光B.近红外激光C.远紫外线激光D.绿色激光E.蓝色激光 [单选]捻转补泻法中的补法是()。A.捻转角度大,频率慢,用力轻B.捻转角度小,频率快,用力重C.捻转角度大,频率快,用力重D.捻转角度小,频率慢,用力轻E.捻转角度小,频率慢,用力重 [问答题,简答题]机车风源系统由哪几部分组成?
相关文档
最新文档