2020-2021新人教版七年级数学下册第二次月考测试卷

合集下载

2020-2021学年福建省龙岩市漳平市七年级(下)第二次月考数学试卷(附答案详解)

2020-2021学年福建省龙岩市漳平市七年级(下)第二次月考数学试卷(附答案详解)

2020-2021学年福建省龙岩市漳平市七年级(下)第二次月考数学试卷一、选择题(本大题共10小题,共40.0分)1. 下列方程组中,是二元一次方程组的是( )A. {x +4y =41x +2y =9B. {x +2y =5y +3z =7C. {x =1x −4y =6D. {x −y =4xyx −2y =1 2. 方程组{x +y =102x +y =16的解是( ) A. {x =6y =4 B. {x =5y =6 C. {x =3y =6 D. {x =2y =8 3. 利用加减消元法解方程组{2x +5y =−10 ①5x −3y =6 ②,下列做法正确的是( ) A. 要消去y ,可以将①×5+②×2B. 要消去x ,可以将①×3+②×(−5)C. 要消去y ,可以将①×5+②×3D. 要消去x ,可以将①×(−5)+②×24. 若方程mx +ny =6的两个解是{x =1y =1,{x =2y =−1,则m ,n 的值为( ) A. 4,2 B. 2,4 C. −4,−2 D. −2,−45. 若m >n ,则下列不等式正确的是( )A. m −2<n −2B. m 4>n 4C. 6m <6nD. −8m >−8n6. 若方程组{4x +3y =1ax +(a −1)y =3的解x 与y 相等,则a 的值等于( ) A. 4 B. 10 C. 11 D. 127. x 的2倍减去7的差不大于−1,可列关系式为( )A. 2x −7≤−1B. 2x −7<−1C. 2x −7=−1D. 2x −7≥−18. 购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支,作业本5本,圆珠笔2支共需( )A. 4.5元B. 5元C. 6元D. 6.5元9. 某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有( )A. 1种B. 2种C. 3种D. 4种10. 如图,在正方形ABCD 的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB 上的数是3,BC 上的数是7,CD 上的数是12,则AD 上的数是( )A. 2B. 7C. 8D. 15二、填空题(本大题共6小题,共24.0分)11. 已知{x +2y =2020y +2z =2021z +2x =2022,则x +y +z 的值______.12. 如果4x a+2b−5−2y 3a−b−3=8是二元一次方程,那么a −b =___.13. 已知关于x ,y 的二元一次方程组{2x +3y =k x +2y =−1的解互为相反数,则k 的值是______. 14. 若a −3b =2,3a −b =6,则b −a 的值为______.15. 已知a >b ,则−12a +c ______−12b +c(填>、<或=).16. 爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的______倍.三、解答题(本大题共9小题,共86.0分)17. 用不等式表示.(1)m 与3的和是负数;(2)x 减去8的差大于4;(3)a 的2倍大于或等于6;(4)x 与y 的和不大于−2.18. 解方程组{0.2x +0.6y =1.50.15x −0.3y =0.5.19. 已知y =ax 2+bx +c ,当x =1时,y =0;当x =2时,y =5;当x =−3时,y =0,求a ,b ,c 的值.20. 已知{x =3y =−2是方程组{ax +by =3bx +ay =−7的解,求代数式(a +b)(a −b)的值.21. 根据不等式的性质,把下列不等式化成x >a 或x <a 的形式.(1)x +7>9;(2)6x<5x−3;(3)15x<25;(4)−23x>−1.22.为了提高市民的环保意识,倡导“节能减排、绿色出行”,某市计划在城区投放一批“共享单车”.这批单车分为A、B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动,投放A、B两种款型的单车共100辆,总价值36800元,试问本次投放的A型车与B型车各多少辆?23.为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a−b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?24.小亮在匀速行驶的汽车里,注意到公路里程碑上的数如下表所示:那么小亮在12:00时看到的两位数是______,并写出解答过程.25.小明同学四次到某超市购买A,B两种商品,其中有两次是有折扣的,购买数量及消费金额如下表所示:解答下列问题:(1)第______次购买有折扣;(2)求A、B两种商品的原价;(3)若A、B两种商品折扣数不变,求A、B两种商品的折扣数各是多少.答案和解析1.【答案】C【解析】解:A 、1x 与2y 是分式,故该选项错误;B 、有三个未知数,故该选项错误;C 、符合二元一次方程组的定义;D 、第一个方程中的xy 是二次的,故该选项错误.故选:C .组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.本题考查了二元一次方程组的定义.一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”,细心观察排除,得出正确答案.2.【答案】A【解析】解:{x +y =10 ①2x +y =16 ②, ②−①得:x =6,把x =6代入①得:y =4,则方程组的解为{x =6y =4, 故选:A .方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.【答案】D【解析】【分析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.【解答】解:利用加减消元法解方程组{2x +5y =−10 ①5x −3y =6 ②, 要消去x ,可以将①×(−5)+②×2.故选:D .4.【答案】A【解析】【分析】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 将x 与y 的两对值代入方程计算即可求出m 与n 的值.【解答】解:将{x =1y =1,{x =2y =−1分别代入mx +ny =6中, 得:{m +n =6 ①2m −n =6 ②, ①+②得:3m =12,即m =4,将m =4代入①得:n =2,故选:A .5.【答案】B【解析】【分析】本题主要考查不等式的性质,解题的关键是掌握不等式的基本性质,尤其是性质:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不改变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.将原不等式两边分别都减2、都除以4、都乘以6、都乘以−8,根据不等式的基本性质逐一判断即可得.【解答】解:A 、将m >n 两边都减2得:m −2>n −2,此选项错误;B 、将m >n 两边都除以4得:m 4>n 4,此选项正确;C 、将m >n 两边都乘以6得:6m >6n ,此选项错误;D 、将m >n 两边都乘以−8,得:−8m <−8n ,此选项错误;故选:B .6.【答案】C【解析】解:根据题意得:{4x +3y =1(1)ax +(a −1)y =3(2)x =y(3),把(3)代入(1)解得:x =y =17,代入(2)得:17a +17(a −1)=3,解得:a =11.故选:C .理解清楚题意,运用三元一次方程组的知识,解出a 的数值.本题的实质是解三元一次方程组,用加减法或代入法来解答.7.【答案】A【解析】解:根据题意,得2x −7≤−1.故选:A .理解:不大于−1,即是小于或等于−1.本题考查把文字语言的不等关系转化为用数学符号表示的不等式.8.【答案】B【解析】解:设铅笔的单价是x 元,作业本的单价是y 元,圆珠笔的单价是z 元.购买铅笔11支,作业本5本,圆珠笔2支共需a 元.则由题意得{7x +3y +z =3 ①10x +4y +z =4 ②11x +5y +2z =a ③由②−①得3x +y =1 ④由②+①得17x +7y +2z =7 ⑤由⑤−④×2−③得0=5−a∴a =5故选:B .首先假设铅笔的单价是x 元,作业本的单价是y 元,圆珠笔的单价是z 元.购买铅笔11支,作业本5本,圆珠笔2支共需a 元.根据题目说明列出方程组{7x +3y +z =3 ①10x +4y +z =4 ②11x +5y +2z =a ③,解方程组求出a 的值,即为所求结果.解答此题的关键是列出方程组,用加减消元法求出方程组的解.9.【答案】B【解析】解:设安排女生x 人,安排男生y 人,依题意得:4x +5y =56,则x =56−5y 4.当y =4时,x =9.当y =8时,x =4.即安排女生9人,安排男生4人;安排女生4人,安排男生8人.共有2种方案.故选:B .设安排女生x 人,安排男生y 人,由“累计56个小时的工作时间”列出方程求得正整数解.考查了二元一次方程的应用.注意:根据未知数的实际意义求其整数解.10.【答案】C【解析】【分析】此题主要考查了方程组的应用,注意利用整体思想求出x +z 的值是解题关键.根据题意首先设A 点数为x ,B 点数为y ,则C 点数为7−y ,D 点数为z ,得出x +y =3①,z +7−y =12②,从而得出x +z 的值.【解答】解:设A 点数为x ,B 点数为y ,则C 点数为7−y ,D 点数为z ,根据题意可得:x +y =3①,C 点数为7−y ,故z +7−y =12②,故①+②得:x +y +z +7−y =12+3,故x +z =8,即AD 上的数是:8.故选C .11.【答案】2021【解析】解:{x +2y =2020①y +2z =2021②z +2x =2022③,①+②+③得:3x +3y +3z =6063,则x +y +z =2021.故答案为:2021.方程组三个方程相加求出所求即可.此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.【答案】0【解析】【分析】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.根据二元一次方程的定义即可得到x 、y 的次数都是1,则得到关于a ,b 的方程组求得a ,b 的值,则代数式的值即可求得.【解答】解:根据题意得:{a +2b −5=13a −b −3=1, 解得:{a =2b =2. 则a −b =0.故答案为:0.13.【答案】−1【解析】解:解方程组{2x +3y =k x +2y =−1得:{x =2k +3y =−2−k , 因为关于x ,y 的二元一次方程组{2x +3y =k x +2y =−1的解互为相反数, 可得:2k +3−2−k =0,解得:k =−1.故答案为:−1.将方程组用k 表示出x ,y ,根据方程组的解互为相反数,得到关于k 的方程,即可求出k 的值.此题考查方程组的解,关键是用k 表示出x ,y 的值.14.【答案】−2【解析】解:由题意知{a −3b =2①3a −b =6②, ①+②,得:4a −4b =8,则a −b =2,∴b −a =−2,故答案为:−2.本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用.将两方程相加可得4a −4b =8,再两边都除以4得出a −b 的值,继而由等式的性质和相反数定义即可得出答案.15.【答案】<【解析】解:∵a >b ,∴−12a <−12b ,∴−12a +c <−12b +c .不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变.主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.16.【答案】6【解析】解:设103路公交车行驶速度为x 米/分钟,爸爸行走速度为y 米/分钟,两辆103路公交车间的间距为s 米,根据题意得:{7x −7y =s 5x +5y =s解得:x =6y .故答案为:6.设103路公交车行驶速度为x 米/分钟,爸爸行走速度为y 米/分钟,两辆103路公交车间的间距为s 米,根据“每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车”,即可得出关于x 、y 的二元一次方程组,消去s 即可得出x =6y ,此题得解.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.【答案】解:(1)m +3<0;(2)x −8>4;(3)2a ≥6;(4)x +y ≤−2.【解析】直接利用负数的定义以及结合不等关系得出不等式即可.此题主要考查了由实际问题抽象出一元一次不等式,正确掌握相关定义是解题关键.18.【答案】解:{0.2x +0.6y =1.5①0.15x −0.3y =0.5②, ②×2+①,得0.5x =2.5,解得:x =5,把x =5代入①,得1+0.6y =1.5,解得:y =56,所以原方程组的解为{x =5y =56.【解析】②×2+①得出0.5x =2.5,求出x ,再把x =5代入①求出y 即可.此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.19.【答案】解:由题意,得{a +b +c =0①4a +2b +c =5②9a −3b +c =0③,②−①得:3a +b =5④,③−①得:8a −4b =0,即2a −b =0⑤,④+⑤得:5a =5,解得:a =1,把a =1代入④得:3+b =5,解得:b =2,把a =1,b =2代入①得:1+2+c =0,解得:c =−3,则方程组的解{a =1b =2c =−3.【解析】把x 与y 的值代入y =ax 2+bx +c 得到方程组,求出方程组的解即可.此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【答案】解:把{x =3y =−2代入方程组得:{3a −2b =3①3b −2a =−7②, ①+②得:a +b =−4,①−②得:5a −5b =10,即a −b =2,则(a +b)(a −b)=(−4)×2=−8.【解析】把x 与y 的值代入方程组求出a 与b 的值,把a +b =−4,a −b =2代入原式计算即可求出值.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.21.【答案】解:(1)∵x +7>9,∴x >2.(2)∵6x <5x −3,∴6x −5x <−3.∴x <−3.(3)∵15x <25, ∴15x ×5<25×5. ∴x <2.(4)∵−23x >−1,∴−2x >−3.∴x <32.【解析】(1)根据不等式的性质(不等式两边减去同一个数,不等号方向不变)解决此题.(2)根据不等式的性质(不等式两边加上同一个数,不等号方向不变;不等式两边同时除以一个不为0的数,不等号方向不变)解决此题.(3)根据不等式的性质(不等式两边同乘一个不为0的数,不等号方向不变)解决此题.(4)根据不等式的性质(不等式两边同时乘或除不为0的正数,不等号方向不变;不等式两边同乘或除不为0的负数,不等号方向不变)解决此题.本题主要考查不等式的非负性,熟练掌握绝对值的非负性是解决本题的关键.22.【答案】解:设本次投放的A 型车为x 辆,B 型车为y 辆,根据题意,得:{x +y =100400x +320y =36800, 解得:{x =60y =40, 答:本次投放A 型车60辆,B 型车40辆.【解析】设本次投放的A 型车为x 辆,B 型车为y 辆,由题意:A 型车单价400元,B 型车单价320元.投放A 、B 两种款型的单车共100辆,总价值36800元,列出二元一次方程组,解方程组即可.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.【答案】解:(1)由题意得:{2×2−3=A B =2×3C =3+5,解得:A =1,B =6,C =8,答:接收方收到的密码是1、6、8;(2)由题意得:{2a −b =22b =8b +c =11,解得:a =3,b =4,c =7,答:发送方发出的密码是3、4、7.【解析】(1)根据题意可得方程组,再解方程组即可.(2)根据题意可得方程组,再解方程组即可.此题主要考查了方程组的应用,关键是正确理解题意,根据密文与明文之间的关系列出方程组.24.【答案】27;解:设第一次他看到的两位数的个位数为x ,十位数为y ,汽车行驶速度为v ,根据题意得:{10x +y −(10y +x)=v 100y +x −(10y +x)=4v, 解得:x =72y ,∵x ,y 为1~9的自然数,∴x =7,y =2.答:小亮在12:00时看到的两位数是27.【解析】本题考查了三元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组.本题涉及一个常识问题:两位数=10×十位数字+个位数字,并且在求两位数或三位数时,一般是不能直接设这个两位数或三位数的,而是设它各个数位上的数字为未知数.设第一次他看到的两位数的个位数为x ,十位数为y ,汽车行驶速度为v ,第一次看到的两位数为10y +x ,行驶一小时后看到的两位数为10x +y ,第三次看到的三位数为100y +x ,由汽车均速行驶可得16时行驶的路程,即可列出两个方程求解得出x =72y ,再根据x 、y 都为1~9的自然数,即可判断出答案.25.【答案】三、四【解析】解:(1)由题意得:第三、四次购买有折扣,故答案为:三、四;(2)设A 商品的原价为x 元,B 商品的原价为y 元,根据题意,得:{4x +5y =3202x +6y =300, 解得:{x =30y =40, 答:A 商品的原价为30元,B 商品的原价为40元;(3)设A 商品折扣数为m 折,B 商品折扣数为n 折,根据题意,得:{5×30×m 10+7×40×n 10=2584×30×m 10+7×40×n 10=240, 解得:{m =6n =6, 答:A 商品折扣数为6折,B 商品折扣数为6折.(1)由表中数据即可得出结论;(2)设A 商品的原价为x 元,B 商品的原价为y 元,由表中数据列出二元一次方程组,解方程组即可;(3)设A 商品折扣数为m 折,B 商品折扣数为n 折,由(2)的结果结合表中数据列出二元一次方程组,解方程组即可.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.。

专题12 第八章 二元一次方程组2020-2021学年度人教版七年级数学下册(解析版)

专题12  第八章  二元一次方程组2020-2021学年度人教版七年级数学下册(解析版)

2020-2021学年度人教版七年级数学下册新考向多视角同步训练第八章 二元一次方程组[能力提优测评卷]时间:90分钟 满分:120分一、选择题(本大题共8小题,每小题3分,24分在每小题的4个选项中,只有一个选项是符合题目要求的)1.(2020广西钦州四中月考,2)下列方程组中,为二元一次方程组的是( )A.⎩⎨⎧3x+4y =65z -6y =4B. ⎩⎪⎨⎪⎧x+y =31x -1y=2C.⎩⎨⎧x+y =2x 2-y 2=8D.⎩⎨⎧x+y =2.5x -y =42.(2020北京海淀期末,4)若{x =是关于x 和y 的二元一次方程mx+ny =3的解,则2m -4n 的值等于( ) A.3B.6C.-1D.-23.(2020湖南长沙一中月考,4)如果方程组⎩⎨⎧2x+y =□x -2y =3的解为,那么“口”和“△”所表示的数分别是( )A.14,4B.11,1C.9,-1D.6,-44.(2020河南郑州八中期末,5)用加减消元法解方程组⎩⎨⎧3x -2y =10①4x -y =15②时,最简捷的方法是( )A.②×2+①,消去yB.②x 2-①,消去yC.①x 4-②×3,消去xD.①4+②×3,消去x5.(2020陕西延安实验中学月考,4)三元一次方程组⎩⎪⎨⎪⎧x+y =3y+z =5x+z =4 的解为( )A.⎩⎪⎨⎪⎧x =1y =3z =2 B.⎩⎪⎨⎪⎧x =2y =1z =3 C.⎩⎪⎨⎪⎧x =3y =2z =1 D.⎩⎪⎨⎪⎧x =1y =2z =3 6.(2020黑龙江牡丹江中考,8)若⎩⎨⎧a =2b =1是二元一次方程组⎩⎪⎨⎪⎧32 ax+by =5ax -by =2 的解,则x+2y 的算术平方根为( )A.3B.3,-3C. 3D. 3 ,- 37.(2019山东临沂一模,8)将两块完全相同的长方体木块先按图①的方式放置,再按图②的方式放置,测得的数据(单位:cm)如图所示,则桌子的高度为( )A. 30 cmB. 35 cmC.40 cmD. 45 cm8.(2019黑龙江齐齐哈尔中考,8)学校计划购买和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元学校准备将1500元全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( ) A.3种B.4种C.5种D.6种二、填空题(本大题共8小题,每小题4分,共32分)9.(2020黑龙江哈尔滨三中月考,10)若x|2m -3|+(m -2)y =6是关于x 、y 的二元一次方程,则m =________。

2020-2021七年级下学期月考数学试卷含答案解析

2020-2021七年级下学期月考数学试卷含答案解析

一、选择题(每题3分,共24分)1.(3分)下列图形中匕1和匕2是对顶角的是()2.(3分)实数-兀,-3.14,0,V2四个数中,最小的是()A.-JiB.■3.14C.扼D.03.(3分)如图,AB II CD,AE平分ZCAB交CD于点E,A.65°B115° C.125°D.130°4.(3分)如图,点E在BC的延长线上,下列条件中不能判定AB II CD的是()A.匕3=匕4B.z1=z2C.zB=zDCED.zD+z DAB=180°5.(3分)如图,若将木条a绕点0旋转后与木条b平行,则旋转的最小角度为()q°力150。

bA.65°B.85°C.95°D.115°6.(3分)估计M+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间7.(3分)如图,在6X6方格中有两个涂有阴影的图形M、N,①中的图形M平移后位置如②所示,以下对图形M的平移方法叙述正确的是()z1图①图②A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位8.(3分)如图,CD II AB,OE平分匕AOD,OF±OE, OG±CD,匕D=50°,则下列结论:®ZAOE=65°;②OF平分匕BOD;(3)zGOE=zDOF;④ZGOE=25°.其中正确的是()A.①②③B.①②④C.②③④D.①②③④二、填空题(每小题3分,共21分)9.(3分)9的算术平方根是;16的平方根是;64的立方根是.10.(3分)将命题“对顶角相等”改写成“如果…那么・•”的形式:,这个命题的逆命题是命题(填:真或假)11.(3分)如图,计划把河水引到水池A中,先作AB±CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.12.(3分)如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF.如果匕ABE=20°,那么ZEFB=度.13.(3分)如图,EF II AD,AD II BC,CE平分匕BCF, ZDAC=115°,ZACF=25°,贝l]zFEC=度.14.(3分)a、b、c是同一平面内不重合的三条直线,下列四个命题:①如果a II b,a±c,那么b±c;②如果b II a, c II a,那么b II c;③如果b±a,c±a,那么b±c;④如果b_La,c±a,那么b II c.其中真命题是(填写所有真命题的序号)15.(3分)观察下列各式的规律:三、解答题(共75分)16.(8分)计算:(1)I V3~2|-74+^27;(2)I-3|-屈+扼+(-2)2.17.(8分)求下列各式中的x.(1)4x2=81;(2)(x+1)3-27=0.18.(5分)AABC在网格中的位置如图所示,请根据下列要求作图:(1)过点C作AB的平行线;(2)过点A作BC的垂线段,垂足为D;(3)将6ABC先向下平移3格,再向右平移2格得到AEFG (点A的对应点为点E,点B的对应点为点F,点C的对应点为点G)19.(6分)如图,已矢口AB^BC,BC±CD,z1=z2.试判断BE与CF的关系,并说明你的理由.解:BE II CF.理由:•.•AB^BC,BC±CD(已知)==90°匕1=匕2•••zABC-z1=zBCD-z2,1H z EBC=z BCF20.(6分)已知2a+1的平方根为土3,a+3b-3的算术平方根为4.(1)求a,b的值;(2)求a+b的平方根.21.(6分)如图所示,点B,E分别在AC,DF±,BD, CE均与AF相交,匕1=匕2,zC=zD,求证:匕A=/F.22.(6分)请根据如图所示的对话内容回答下列问题.我有一ME方体的魔方,它的体积是216cm*123|我有体的纸盒,它的体积是600cmL纸盒Z a S|的宽与你的魔方的棱长该纸盒的长与高相等。

2020-2021学年新人教版七年级下期末数学试题(含答案解析)

2020-2021学年新人教版七年级下期末数学试题(含答案解析)

山东省临沂市兰陵县2020-2021学年七年级下学期期末考试数学试题一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中只有一项是符合题目要求的1.81的算术平方根为()A.9 B.±9 C.3 D.±3【分析】直接根据算术平方根的定义进行解答即可.【点评】本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1) B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)【专题】几何图形.【分析】让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:A.【点评】本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.3.已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b【专题】方程与不等式.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:a>b,A、a-7>b-7,故A选项正确;B、6+a>b+6,故B选项正确;D、-3a<-3b,故D选项错误.故选:D.【点评】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解不等式3-x≥2,得:x≤1,∴不等式组的解集为x<-2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.已知面积为8的正方形边长是x,则关于x的结论中,正确的是() A.x是有理数B.x不能在数轴上表示C.x是方程4x=8的解D.x是8的算术平方根【专题】实数.【分析】根据算术平方根的意义,无理数的意义,实数与数轴的关系,可得答案.【解答】解:由题意,得A、x是无理数,故A不符合题意;B、x能在数轴上表示处来,故B不符合题意;C、x是x2=8的解,故C不符合题意;D、x是8的算术平方根,故D符合题意;故选:D.【点评】本题考查了实数与数轴,利用算术平方根的意义,无理数的意义,实数与数轴的关系是解题关键.6.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【专题】常规题型.【分析】判断出P的横纵坐标的符号,进而判断出相应象限即可.【解答】解:当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选:D.【点评】此题主要考查了点的坐标,根据a的取值判断出相应的象限是解决本题的关键7.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40°B.45°C.50°D.60°【分析】根据两直线平行,同位角相等可得∠1=∠EGD=115°,再根据三角形内角与外角的性质可得∠C的度数.【解答】解:∵AB∥CD,∴∠1=∠EGD=115°,∵∠2=65°,∴∠C=115°-65°=50°,故选:C.【点评】此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,同位角相等.8.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°【专题】线段、角、相交线与平行线.【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE-∠CFE=121°-87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.9.如图,∠B=∠C,∠A=∠D,下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND,其中正确的结论有()A.①②④B.②③④C.③④D.①②③④【分析】由条件可先证明AB∥CD,再证明AE∥DF,结合平行线的性质及对顶角相等可得到∠AMC=∠BND,可得出答案.【解答】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC=∠FNM,又∵∠BND=∠FNM,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故选:A.【点评】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.10.甲、乙两人从A地出发,沿同一方向练习跑步,如果甲让乙先跑10米,则甲跑5秒就可追上乙,如果甲让乙先跑2秒,那么甲跑4秒就能追上乙,设甲、乙每秒钟分别跑x米和y米,则可列方程组为()A.B.C.D.【专题】方程与不等式.【分析】本题的等量关系:(1)乙先跑10米,甲跑5秒就追上乙;(2)如果让乙先跑2秒,那么甲跑4秒就追上乙,可以列出方程组.【解答】解:设甲、乙每秒分别跑x米,y米,由题意知:故选:D.【点评】本题考查了二元一次方程组的实际应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.11.如图,根据2021﹣2021年某市财政总收入(单位:亿元)统计图所提供的信息,下列判断正确的是()A.2021~2021年财政总收入呈逐年增长B.预计2021年的财政总收入约为253.43亿元C.2021~2021年与2021~2021年的财政总收入下降率相同D.2021~2021年的财政总收入增长率约为6.3%【专题】统计的应用.【分析】根据题意和折线统计图可以判断选项中的说法是否正确【解答】解:根据题意和折线统计图可知,从2020-2021财政收入增长了,2020-2021财政收入下降了,故选项A错误;由折线统计图无法估计2021年的财政收入,故选项B错误;∵2020-2021年的下降率是:(230.68-229.01)÷230.68≈0.72%,2020-2021年的下降率是:(243.12-238.86)÷243.12≈1.75%,故选项C错误;2020-2021年的财政总收入增长率是:(230.68-217)÷217≈6.3%,故选项D正确;故选:D.【点评】本题考查折线统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.12.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤5 5<x≤10 10<x≤15 15<x≤20频数(通话次数) 20 16 9 5则5月份通话次数中,通话时间不超过15分钟的所占百分比是()A.10% B.40% C.50% D.90%【专题】常规题型;统计的应用.【分析】根据表格可以得到总的频数和通话时间不超过15分钟的频数,从而可以求得通话时间不超过15分钟的百分比.【解答】故选:D.【点评】本题考查频数分布表,解题的关键是明确题意,找出所求问题需要的条件.13.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270 262 254 A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【分析】分析统计表,可得出各年级合格的人数,然后结合选项进行回答即可.【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选:D.【点评】本题主要考查的是统计表的认识,读懂统计表,能够从统计表中获取有效信息是解题的关键.14.若不等式组的解集为x<2m﹣2,则m的取值范围是() A.m≤2 B.m≥2 C.m>2 D.m<2【专题】计算题.【分析】根据不等式的性质求出不等式的解集,根据不等式和不等式组解集得出m≥2m-2,求出即可.【解答】由①得:x<2m-2,由②得:x<m,∵不等式组的解集为x<2m-2,∴m≥2m-2,∴m≤2.故选:A.【点评】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据题意得出m≥2m-2是解此题的关键.二、填空题(每小题4分,共202115.(4分)计算:|2﹣|的相反数是.【专题】计算题.16.(4分)若方程x﹣y=﹣1的一个解与方程组的解相同,则k的值为.【专题】计算题;一次方程(组)及应用.【分析】联立不含k的方程组成方程组,求出方程组的解得到x与y的值,即可确定出k的值.【解答】代入方程得:2-6=k,解得:k=-4,故答案为:-4【点评】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.17.(4分)为了解植物园内某种花卉的生长情况,在一片约有3000株此类花卉的园地内,随机抽测了2021的高度作为样本,统计结果整理后列表如下:(每组数据可包括最低值,不包括最高值)高度(cm) 40~45 45~50 50~55 55~60 60~65 65~70 频数33 42 22 24 43 36试估计该园地内此类花卉高度小于55厘米且不小于45厘米的约为株.【专题】常规题型;统计的应用.【分析】用总人数300乘以样本中高度小于55厘米且不小于45厘米的数量占被调查株数的比例.【解答】故答案为:960.【点评】本题考查了统计表以及用样本估计总体的思想,此题主要考查从统计表中获取信息的能力.统计表可以将大量数据的分类结果清晰、一目了然地表达出来.18.(4分)如图,将长方形ABCD折叠,折痕为EF,且∠1=70°,则∠AEF的度数是.【专题】几何图形.【分析】再根据AD∥BC,即可得到∠AEF=180°-∠BFE=125°.【解答】解:∵∠1=70°,∴∠BFB'=110°,又∵AD∥BC,∴∠AEF=180°-∠BFE=125°.故答案为:125°【点评】本题主要考查了折叠问题以及平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.19.(4分)在平面直角坐标系中,如果对任意一点(a,b),规定两种变换:f(a,b)=(﹣a,﹣b),g(a,b)=(b,﹣a),那么g[f(1,﹣2)]=.【专题】常规题型.【分析】首先根据变换方法可得f(1,-2)=(-1,2),再根据变换方法可得g(-1,2)=(2,1),从而可得答案.【解答】解:由题意得:f(1,-2)=(-1,2),g(-1,2)=(2,1),故答案为:(2,1).【点评】此题主要考查了点的坐标,关键是理解题意,掌握变换的方法.三、解答题(共58分)202110分)(1)计算:+﹣|﹣2|(2)解不等式组【专题】数与式;方程与不等式.【分析】(1)根据立方根、算术平方根、绝对值的性质化简计算即可;(2)先求出其中各不等式的解集,再求出这些解集的公共部分即可;【解答】(2)解:由①得,x≤3,由②得,x>0,不等式组的解集为0<x≤3.【点评】本题考查实数的运算、不等式组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,DE∥BF,∠1与∠2互补.(1)试说明:FG∥AB;(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.【专题】线段、角、相交线与平行线.【分析】(1)依据同角的补角相等,可得∠1=∠DBF,即可得到FG∥AB;(2)依据FG∥AB,∠CFG=60°可得∠A=∠CFG=60°,再根据∠2是△ADE的外角,可得∠2=∠A+∠AED,进而得出∠AED=150°-60°=90°,可得DE⊥AC.【解答】解:(1)∵DE∥BF∴∠2+∠DBF=180°∵∠1与∠2互补∴∠1+∠2=180°∴∠1=∠DBF∴FG∥AB(2)DE与AC垂直理由:∵FG∥AB,∠CFG=60°∴∠A=∠CFG=60°∵∠2是△ADE的外角∴∠2=∠A+∠AED∵∠2=150°∴∠AED=150°-60°=90°∴DE⊥AC【点评】本题主要考查了平行线的性质与判断,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.22.(8分)为了庆祝即将到来的“五四”青年节,某校举行了书法比赛,赛后随机抽查部分参赛同学的成绩,并制作成图表如下:分数段频数频率60≤x<70 30 0.1570≤x<80 m 0.4580≤x<90 60 n90≤x≤100 20 0.1请根据以上图表提供的信息,解答下列问题:(1)这次随机抽查了名学生;表中的数m=,n=;(2)请在图中补全频数分布直方图;(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是;(4)全校共有600名学生参加比赛,估计该校成绩80≤x<100范围内的学生有多少人?【专题】常规题型;统计的应用.【分析】(1)根据60≤x<70的频数及其频率求得总人数,进而计算可得m、n的值;(2)根据(1)的结果,可以补全直方图;(3)用360°乘以样本中分数段60≤x<70的频率即可得;(4)总人数乘以样本中成绩80≤x<100范围内的学生人数所占比例.【解答】解:(1)本次调查的总人数为30÷0.15=2021,则m=20210.45=90,n=60÷20210.3,故答案为:202190、0.3;(2)补全频数分布直方图如下:(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是360°×0.15=54°,故答案为:54°;答:估计该校成绩80≤x<100范围内的学生有240人.【点评】本题考查条形统计图、图表等知识.结合生活实际,绘制条形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.23.(8分)在△ABC中,点D在边BA或BA的延长线上,过点D作DE∥BC,交∠ABC 的角平分线于点E.(1)如图1,当点D在边BA上时,点E恰好在边AC上,求证:∠ADE=2∠DEB;(2)如图2,当点D在BA的延长线上时,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由.【专题】线段、角、相交线与平行线;三角形.【分析】(1)根据角平分线的定义可得出∠ABE=∠CBE,由平行线的性质可得出∠CBE=∠DEB、∠ADE=∠ABC,进而可得出∠ABE=∠DEB,再利用三角形外角的性质即可证出∠ADE=2∠DEB;(2)根据角平分线的定义可得出∠ABC=2∠CBE,利用平行线的性质可得出∠DEB=∠CBE,进而可得出∠ABC=2∠DEB,再利用“两直线平行,同旁内角互补”可证出∠ADE+2∠DEB=180°.【解答】证明:(1)∵BE平分∠ABC,∴∠ABE=∠CBE.∵DE∥BC,∴∠CBE=∠DEB,∠ADE=∠ABC,∴∠ABE=∠DEB,∴∠ADE=∠ABE+∠DEB=2∠DEB.(2)∠ADE+2∠DEB=180°.∵BE平分∠ABC,∴∠ABC=2∠CBE.∵DE∥BC,∴∠DEB=∠CBE,∠ADE+∠ABC=180°,∴∠ABC=2∠DEB,∴∠ADE+2∠DEB=180°.【点评】本题考查了三角形内角和定理、角平分线的定义、平行线的性质以及三角形的外角性质,解题的关键是:(1)利用角平分线的定义结合平行线的性质找出∠ABE=∠DEB;(2)利用角平分线的定义结合平行线的性质找出∠ADE+2∠DEB=180°.24.(12分)某校计划购买篮球、排球共2021购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【专题】销售问题.【分析】(1)设篮球每个x元,排球每个y元,根据题意列出二元一次方程组,解方程组即可;(2)根据购买篮球不少于8个,所需费用总额不超过800元列出不等式,解不等式即可.【解答】解:(1)设篮球每个x元,排球每个y元,依题意,得答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(2021)个,依题意,得50m+30(2021)≤800.解得m≤10,又∵m≥8,∴8≤m≤10.∵篮球的个数必须为整数,∴m只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个,以上三个方案中,方案①最省钱.【点评】本题考查的是二元一次方程组、一元一次不等式的应用,根据题意正确列出方程组、一元一次不等式是解题的关键.25.(12分)甲、乙两商场以同样价格出售同样的商品,并且各自又推出不同的优惠方案:在甲商场累计购物超过2021后,超出2021的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费.设小李在同一商场累计购物x元,其中x>2021(1)当x为何值时,小李在甲、乙两商场的实际花费相同?(2)根据小李购物花费的不同金额,请你确定在哪家商场购物更合算?【专题】方程与不等式.【分析】(1)根据已知得出甲商场2021(x-2021×90%以及乙商场100+(x-100)×95%,相等列等式,进而得出答案;(2)根据2021(x-2021×90%与100+(x-100)×95%大于、小于、等于,列三个式子,从而得出正确结论.【解答】解:(1)依题意,得2021(x-2021×90%=100+(x-100)×95%,…(2分)解得x=300.…(3分)即当x=300时,小李在甲、乙两商场的实际花费相同;…(4分)(2)①当2021(x-2021×90%>100+(x-100)×95%时,解得x<300.…(5分)②当2021(x-2021×90%<100+(x-100)×95%时,解得x>300.…(6分)③当2021(x-2021×90%=100+(x-100)×95%时,解得x=300.…(7分)答:当小李购物花费少于300元时,在乙商场购物合算;当小李购物花费多于300元时,在甲商场购物合算,当小李购物等于300元时,到两家商场花费一样多.…(8分)【点评】此题考查了一元一次不等式和一元一次方程的应用,关键是读懂题意,列出不等式,再根据实际情况进行讨论,不要漏项.。

2020—2021学年人教版七年级下册 数学试题:第5章 相交线与平行线 单元培优卷(二)

2020—2021学年人教版七年级下册 数学试题:第5章 相交线与平行线 单元培优卷(二)

七年级下册数学试题:第5章相交线与平行线单元培优卷(二)(时间:100分钟满分:100分)一.选择题(每题3分,共30分)1.在下列命题中,为真命题的是()A.相等的角是对顶角B.平行于同一条直线的两条直线互相平行C.同旁内角互补D.垂直于同一条直线的两条直线互相垂直2.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.3.如图所示,∠1和∠2不是同位角的是()A.①B.②C.③D.④4.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°5.如图,下面哪个条件能判断DE ∥BC 的是( )A .∠1=∠2B .∠4=∠C C .∠1+∠3=180°D .∠3+∠C =180°6.如图,把矩形ABCD 沿EF 对折后使两部分重合,若∠1=50°,则∠AEF =( )A .110°B .115°C .120°D .130°7.如果∠A 和∠B 的两边分别平行,那么∠A 和∠B 的关系是( )A .相等B .互余或互补C .互补D .相等或互补8.如图,将△ABC 沿BC 方向平移得到△DEF ,若△ABC 的周长为12cm ,四边形ABFD 的周长为18cm ,则平移的距离为( )A .2cmB .3cmC .4cmD .6cm9.如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB 互余的角有( )A .1 个B .2个C .3 个D .4个10.如图,直线l 1∥l 2,线段AB 交l 1,l 2于D ,B 两点,过点A 作AC ⊥AB ,交直线l 1于点C ,若∠1=15°,则∠2=( )A .95°B .105°C .115°D .125°二.填空题(每题4分,共20分)11.一副三角板按如图所示放置,AB∥DC,则∠CAE的度数为.12.如图,已知AB∥CD,∠1:∠2:∠3=1:2:3,则∠EBA的度数为.13.写出命题“直角三角形的两个锐角互余”的逆命题:.14.如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1=.15.如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=40°,则∠2等于.三.解答题(每题10分,共50分)16.填空:已知:如图,B、C、E三点在同一直线上,A、F、E三点在同一直线上,∠1=∠2=∠E,∠3=∠4.求证:AB∥CD.证明:∵∠2=∠E∴(内错角相等,两直线平行)∴∠3=(两直线平行,内错角相等)∵∠3=∠4∴∠4=∠DAC()∵∠1=∠2∴∠1+∠CAF=∠2+∠CAF,()即∠BAF=∴∠4=∠BAF∴AB∥CD(同位⻆相等,两直线平行)17.已知,AB∥CD,CF平分∠ECD.(1)如图1,若∠DCF=25°,∠E=20°,求∠ABE的度数.(2)如图2,若∠EBF=2∠ABF,∠CFB的2倍与∠CEB的补角的和为190°,求∠ABE 的度数.(3)如图3,在(2)的条件下,P为射线BE上一点,H为CD上一点,PK平分∠BPH,HN∥PK,HM平分∠DHP,∠DHQ=2∠DHN,求∠PHQ的度数.18.如图1,已知:AB∥CD,点E、F分别在AB、CD上,且OE⊥OF.(1)求∠1+∠2的度数;(2)如图2,分别在OE、CD上取点G、H,使FO平分∠CFG,OE平分∠AEH,试说明FG ∥EH.19.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数.20.如图1,AB∥CD,E是AB、CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.参考答案一.选择1.解:A、相等的角不一定是对顶角,故此选项错误;B、平行于同一条直线的两条直线互相平行,正确;C、两直线平行,同旁内角互补,故此选项错误;D、垂直于同一条直线的两条直线互相平行,故此选项错误.故选:B.2.解:A、能通过其中一个四边形平移得到,故本选项不符合题意;B、能通过其中一个四边形平移得到,故本选项不符合题意;C、能通过其中一个四边形平移得到,故本选项不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,故本选项符合题意.故选:D.3.解:如图①,∠1、∠2是直线m与直线n被直线p所截形成的同位角,故A不符合题意;如图②,∠1、∠2是直线p与直线q被直线r所截形成的同位角,故B不符合题意;如图③,∠1是直线d与直线e构成的夹角,∠2是直线g与直线f形成的夹角,∠1与∠2不是同位角,故C选项符合题意;如图④,∠1、∠2是直线a与直线b被直线c所截形成的同位角,故D选项不符合题意;故选:C.4.解:由翻折的性质可知:∠AEF=∠FEA′,∵AB∥CD,∴∠AEF=∠1,∵∠1=2∠2,设∠2=x,则∠AEF=∠1=∠FEA′=2x,∴5x=180°,∴x=36°,∴∠AEF=2x=72°,故选:C.5.解:当∠1=∠2时,EF∥AC;当∠4=∠C时,EF∥AC;当∠1+∠3=180°时,DE∥BC;当∠3+∠C=180°时,EF∥AC;故选:C.6.解:∵矩形ABCD沿EF对折后两部分重合,∠1=50°,∴∠3=∠2==65°,∵矩形对边AD∥BC,∴∠AEF=180°﹣∠3=180°﹣65°=115°.故选:B.7.解:如图知∠A和∠B的关系是相等或互补.故选:D.8.解:∵△ABC沿BC方向平移得到△DEF,∴AD=BE=CF,AC=DF,∵△ABC的周长为12cm,四边形ABFD的周长为18cm,∴AB+BC+AC=12,AB+BF+DF+AD=18,∴AB+BC+CF+AC+CF=18,即12+2CF=18,解得CF=3,∴平移的距离为3cm.故选:B.9.解:∵AB∥CD,∴∠ABC=∠BCD,∵AC⊥CB,∴∠ACB=90°,∴∠CAB+∠ABC=90°,∠CAB+∠BCD=90°,∴∠CAB的余角有两个,故选:B.10.解:∵AC⊥AB,∴∠A=90°,∵∠1=15°,∴∠ADC=180°﹣90°﹣15°=75°,∵l1∥l2,∴∠3=∠ADC=75°,∴∠2=180°﹣75°=105°,故选:B.二.填空题(共5小题)11.解:由图可知,∠1=45°,∠2=30°,∵AB∥DC,∴∠BAE=∠1=45°,∴∠CAE=∠BAE﹣∠2=45°﹣30°=15°,故答案为:15°.12.解:∵∠1:∠2:∠3=1:2:3,∴设∠1=x°,∠2=2x°,∠3=3x°,∵AB∥CD,∴∠2+∠3=180°,∴2x+3x=180,∴x=36,即∠1=36°,∠2=72°,∠3=108°,∴∠EBA=180°﹣∠1﹣∠2=180°﹣36°﹣72°=72°,故答案为:72°.13.解:命题“直角三角形的两个锐角互余”的逆命题为“两个锐角互余的三角形是直角三角形”.故答案为:两个锐角互余的三角形是直角三角形.14.解:∵OP∥QR∥ST,∠2=100°,∠3=120°,∴∠2+∠PRQ=180°,∠3=∠SRQ=120°,∴∠PRQ=180°﹣100°=80°,∴∠1=∠SRQ﹣∠PRQ=40°,故答案是40°.15.解:∵AB∥CD,∴∠BEG=∠1=40°,∵EF是∠GEB的平分线,∴∠BEF=∠BEG=×40°=20°,∵AB∥CD,∴∠2=180°﹣∠BEF=180°﹣20°=160°.故答案为:160°.三.解答题(共5小题)16.证明:∵∠2=∠E,∴AD∥BC(内错角相等,两直线平行),∴∠3=∠DAC(两直线平行,内错角相等),∵∠3=∠4,∴∠4=∠DAC(等量代换),∵∠1=∠2∴∠1+∠CAF=∠2+∠CAF(等式性质),即∠BAF=∠DAC,∴∠4=∠BAF,∴AB∥CD(同位⻆相等,两直线平行).故答案为:AD∥BC,∠DAC,等量代换,等式性质,∠DAC.17.解:(1)如图1,过点E作ER∥AB,∵AB∥CD,∴ER∥CD,∵∠DCF=25°,∠E=20°,∵CF平分∠ECD,∴∠DCF=∠FCE=25°,∴∠CER=∠DCE=2∠DCF=50°,∴∠BER=∠CER﹣∠CEB=30°,∴∠ABE=∠BER=30°答:∠ABE的度数为30°.(2)如图2,分别过点E、F作AB的平行线ET、FL,∵∠EBF=2∠ABF,∠CFB的2倍与∠CEB的补角的和为190°,设∠ABF=α,则∠EBF=2α,∴∠ABE=3α,∴∠BET=∠ABE=3α,设∠CEB=β,则∠DCE=∠CET=∠CEB+∠BET=3α+β,∵CF平分∠ECD,∴∠DCF=∠FCE=,∴∠CFL=,∠BFL=∠ABF=α,∴∠CFB=∠CFL﹣∠BFL=,∴2×+180﹣β=190,∴α=10,∴∠ABE=30°.答:∠ABE的度数为30°.(3)如图3,过点P作PJ∥AB,∵AB∥CD,∴PJ∥CD,∵PK平分∠BPH,∴∠KPH=∠KPB=x,∵HN∥PK,∴∠NHP=x,设∠MHN=y,∴∠MHP=x+y,∵HM平分∠DHP,∴∠DHM=∠MHP=x+y,∵∠DHQ=2∠DHN,∴∠DHQ=2(x+y+y)=2x+4y,∴∠PHQ=∠DHQ﹣∠DHP=(2x+4y)﹣(2x+2y)=2y,∴∠HPJ=∠DHP=2x+2y,∴∠BPJ=∠ABE=30°=2y,∴∠PHQ=30°答:∠PHQ的度数为30°.18.证明:(1)过点O作OM∥AB,则∠1=∠EOM,∵AB∥CD,∴OM∥CD,∴∠2=∠FOM,∵OE⊥OF,∴∠EOF=90°,即∠EOM+∠FOM=90°,∴∠1+∠2=90°;(2)∵AB∥CD∴∠AEH+∠CHE=180°,∵FO平分∠CFG,EO平分∠AEH∴∠CFG=2∠2,∠AEH=2∠1,∵∠1+∠2=90°∴∠CFG+∠AEH=2∠1+2∠2=180°,∴∠CFG=∠CHE,∴FG∥EH.19.解:(1)由平移得,∠ONM=30°∠DCN=45°在△CEN中,∠CEN=180°﹣∠ONM﹣∠DCN=180°﹣30°﹣45°=105°;(2)由旋转知,∠N=30°,∵∠BON=30°∴∠BON=∠N=30°,∴MN∥BC∴∠CEN=180°﹣∠DCO=180°﹣45°=135°.20.解:(1)∠BAE+∠CDE=∠AED.理由如下:作EF∥AB,如图1,∵AB∥CD,∴EF∥CD,∴∠1=∠BAE,∠2=∠CDE,∴∠BAE+∠CDE=∠AED;(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,∵∠BAE、∠CDE的两条平分线交于点F,∴∠BAF=∠BAE,∠CDF=∠CDE,∴∠AFD=(∠BAE+∠CDE),∵∠BAE+∠CDE=∠AED,∴∠AFD=∠AED;(3)由(1)的结论得∠AGD=∠BAF+∠CDG,而射线DC沿DE翻折交AF于点G,∴∠CDG=4∠CDF,∴∠AGD=∠BAF+4∠CDF=∠BAE+2∠CDE=∠BAE+2(∠AED﹣∠BAE)=2∠AED﹣∠BAE,∵90°﹣∠AGD=180°﹣2∠AED,∴90°﹣2∠AED+∠BAE=180°﹣2∠AED,∴∠BAE=60°.。

最新人教版数学七年级下册《期末测试卷》含答案解析

最新人教版数学七年级下册《期末测试卷》含答案解析

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一.选择题(本大题共10个小题,每小题2分,共20分)下列各题给出的四个选项中,只有一个符合要求,请将正确答案的字母代号填入相应位置.1. 计算A 2•A 3的结果是( )A . 5AB . A 5C . A 6D . A 82. 已知∠A =30°,则∠A 的余角的度数为( )A . 60°B . 90°C . 150°D . 180°3. 下列图形是四个银行的标志,其中是轴对称图形的共有( )A . 1个B . 2个C . 3个D . 4个4. 下列每组数分别是三根小木棒的长度,用这三根小木棒能摆成三角形的是( )A . 3,3,5cm cm cmB . 1,2,3cm cm cmC . 2,3,5cm cm cmD . 3,5,9cm cm cm5. 下列事件中的必然事件是( )A . 车辆随机经过一个有交通信号灯的路口,遇到红灯B . 购买100张中奖率为1%的彩票一定中奖C . 400人中有两人的生日在同一天D . 掷一枚质地均匀的骰子,掷出的点数是质数6. 如图一个三角形有三条对称轴,那么这个三角形一定是( )A . 直角三角形B . 等腰直角三角形C . 钝角三角形D . 等边三角形7. 肥料的施用量与产量之间有一定的关系.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:氮肥施用量0 34 67 101 135 202 259 336 404 471/kg土豆产量/t 15.18 21.36 25.72 32.29 34.03 39.45 43.15 43.46 40.83 30.75根据表格可知,下列说法正确的是()A . 氮肥施用量越大,土豆产量越高B . 氮肥施用量是110kg时,土豆产量为34tC . 当氮肥施用量低于336kg时,土豆产量随施肥量的增加而增加D . 土豆产量为39.45t时,氮肥的施用量一定是202kg8. 用三角板作ABC的边B C 上的高,下列三角板的摆放位置正确的是()A .B .C .D .9. 如图,测量河两岸相对的两点A ,B 的距离时,先在A B 的垂线B F上取两点C ,D ,使C D =B C ,再过点D 画出B F的垂线D E,当点A ,C ,E在同一直线上时,可证明△ED C ≌△A B C ,从而得到ED =A B ,则测得ED 的长就是两点A ,B 的距离.判定△ED C ≌△A B C 的依据是()A . “边边边”B . “角边角”C . “全等三角形定义”D . “边角边”10. 如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是直角三角形顶点的概率为()A . 16B .17C .37D .1211. 如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在其他格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是等腰三角形顶点的概率为()A . 27B .13C .47D .23二.填空题(本大题含5个小题,每小题3分,共15分)把结果直接填在横线上.12. 两个锐角分别相等的直角三角形_____全等.(填”一定”或”不一定”或”一定不”)13. 今年在全世界爆发了新型冠状病毒肺炎,该病毒有包膜,颗粒呈圆形或椭圆形,常为多形性,该病毒的直径约为110nm(1nm=10﹣9m).110nm用科学记数法表示为______m.14. 从某玉米种子中抽取6批,同一条件下进行发芽试验,有关数据如下:种子粒数100 400 800 1000 2000 5000发芽种子粒数85 298 652 793 1604 4005 发芽频率0.850 0.745 0.815 0.793 0.802 0.801 根据以上数据可以估计,该玉米种子发芽的概率约为___(精确到0.1).15. 如图,在△A B C 中,∠A C B =90°,A D 平分∠B A C 交B C 于点D ,C D =3,D B =5,点E 在边A B 上运动,连接D E,则线段D E长度的最小值为_____.16. 已知,在△A B C 中,A B =A C ,A B 的垂直平分线交直线B C 于点D .当∠B A C =40°时,则∠CA D 的度数为_____.17. 已知,在△A B C 中,A B =A C ,A B 的垂直平分线交直线B C 于点D .当∠B A C =α(90°<α<180°)时,则∠C A D 的度数为_____.(用含α的代数式表示)三、简答题(本大题含8个小题,共65分)解答时应写出必要的文字说明、演算步骤或推理过程.18. 计算:(1)(x+2y)(x﹣2y)+y(x+y);(2)[(3A +B )2﹣B 2]÷3A ;(3)2÷(﹣2)﹣2+20.19. 如图,∠1=70°,∠2=70°,∠3=105°,求∠4的度数.20. 小明与小颖用一副去掉大王、小王的扑克牌作摸牌游戏:小明从中任意抽取一张牌(不放回),小颖从剩余的牌中任意抽取一张,谁摸到的牌面大,谁就获胜(规定牌面从小到大的顺序为:2,3,4,5,6,7,8,9,10,J,Q,K,A ).然后两人把摸到的牌都放回,重新开始游戏.(1)若小明已经摸到的牌面为4,然后小颖摸牌,那么小明获胜的概率是多少?小颖获胜的概率又是多少? (2)若小明已经摸到的牌面为2,直接写出小颖获胜的概率;若小明已经摸到的牌面为A ,两人获胜的概率又如何呢?21. 如图1,在边长为1的9×9正方形网格中,老师请同学们过点C 画线段A B 的垂线.如图2,小明在多媒体展台上展示了他画出的图形.请你利用所学知识判断并说明直线C D 是否为线段A B 的垂线.(点A ,B ,C ,D ,E,F都是小正方形的顶点)22. (1)某居民住房的结构如图所示,房子的主人打算把卧室以外的地面都铺上地砖,至少需要多少平方米的地砖?如果所用地砖的价格是B 元/m2,那么购买地砖至少需要多少元?(2)房屋的高度为hm,现需要在客厅和卧室的墙壁上贴壁纸,那么至少需要多少平方米的壁纸?如果所用壁纸的价格是A 元/m2,贴1m2壁纸的人工费用为5元,求贴完壁纸的总费用是多少元?(计算时不扣除门、窗所占面积)23. 如图,在△A B C 中,∠B =30°,∠C =40°.(1)尺规作图:①作边A B 的垂直平分线交B C 于点D ;②连接A D ,作∠C A D 的平分线交B C 于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠D A E的度数.24. 新能源纯电动汽车的不断普及让很多人感受到了它的好处,其中最重要的一点就是对环境的保护.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)与已行驶路程x (千米)之间关系的图象.(1)图中点A 表示的实际意义是什么?当0≤x ≤150时,行驶1千米的平均耗电量是多少;当150≤x ≤200时,行驶1千米的平均耗电量是多少?(2)当行驶了120千米时,求蓄电池的剩余电量;行驶多少千米时,剩余电量降至20千瓦.25. 综合与探究在数学综合实践课上,老师让同学用两张全等的等腰三角形纸片进行拼摆,并探究摆放后所构成的图形之间的关系.如图1,△A B C ≌△D EF ,A B =A C ,D E =D F .[探究一](1)勤奋小组的同学把这两张纸片按如图2的方式摆放,点A 与点D 重合,连接B E 和C F .他们发现B E 与C F 之间存在着一定的数量关系,这个关系是 . [探究二](2)创新小组同学在勤奋小组的启发下,把这两张纸片按如图3的方式摆放,点F ,A ,D ,C 在同一直线上,连接B F 和C E ,他们发现了B F 和C E 之间的数量和位置关系,请写出这些关系并说明理由; [探究三](3)从A ,B 两题中任选一题作答.解答时用尺规作△D EF ,不写作法,保留作图痕迹. A .如图4,利用△A B C 纸片拼摆出一种与图2和图3都不相同的图形,并根据图形写出一个数学结论. B .如图4,利用△A B C 纸片拼摆出一种与图2和图3都不相同的图形,并根据图形提出一个数学问题并解答.参考答案一.选择题(本大题共10个小题,每小题2分,共20分)下列各题给出的四个选项中,只有一个符合要求,请将正确答案的字母代号填入相应位置.1. 计算A 2•A 3的结果是()A . 5AB . A 5C . A 6D . A 8【答案】B【解析】【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即A m•A n=A m+n.【详解】解:A 2•A 3=A 5.故选:B .【点睛】本题考察的是底数幂的乘法运算,掌握同底数幂乘法法则是解题的关键.2. 已知∠A =30°,则∠A 的余角的度数为()A . 60°B . 90°C . 150°D . 180°【答案】A【解析】【分析】根据余角定义直接解答.【详解】解:∠A 的度数是90°﹣∠A =90°﹣30°=60°.故选:A .【点睛】本题比较容易,考查互余角的数量关系.互余的两个角的和等于90°.3. 下列图形是四个银行的标志,其中是轴对称图形的共有()A . 1个B . 2个C . 3个D . 4个【答案】C【解析】【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】第一个图形不是轴对称图形,第二个图形是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,所以,轴对称图形有3个.故选:C .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 4. 下列每组数分别是三根小木棒的长度,用这三根小木棒能摆成三角形的是( )A . 3,3,5cm cm cmB . 1,2,3cm cm cmC . 2,3,5cm cm cmD . 3,5,9cm cm cm【答案】A【解析】【分析】根据三角形的三边关系”任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A 、3+3=6>5,能摆成三角形;B 、1+2=3,不能摆成三角形;C 、2+3=5,不能摆成三角形;D 、3+5<9,不能摆成三角形.故选:A .【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.5. 下列事件中的必然事件是( )A . 车辆随机经过一个有交通信号灯的路口,遇到红灯B . 购买100张中奖率为1%的彩票一定中奖C . 400人中有两人的生日在同一天D . 掷一枚质地均匀的骰子,掷出的点数是质数【答案】C【解析】【分析】根据必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对每一项进行分析即可.【详解】A 、是随机事件,故此选项不符合题意;B 、是随机事件,故此选项不符合题意;C 、是必然事件,故此选项符合题意;D 、是随机事件,故此选项不符合题意,故选:C .【点睛】本题考查的是事件的分类,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.6. 如图一个三角形有三条对称轴,那么这个三角形一定是()A . 直角三角形B . 等腰直角三角形C . 钝角三角形D . 等边三角形【答案】D【解析】【分析】直接利用直角三角形、等腰直角三角形、钝角三角形、等边三角形的特点分析得出答案.【详解】解:A 、一般直角三角形,没有对称轴,不合题意;B 、等腰直角三角形,有1条对称轴,不合题意;C 、一般钝角三角形,没有对称轴,不合题意;D 、等边三角形,有3条对称轴,符合题意.故选:D .【点睛】本题考查了轴对称的性质,解题的关键是了解各类三角形的特征.7. 肥料的施用量与产量之间有一定的关系.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:根据表格可知,下列说法正确的是()A . 氮肥施用量越大,土豆产量越高B . 氮肥施用量是110kg时,土豆产量为34tC . 当氮肥施用量低于336kg时,土豆产量随施肥量的增加而增加D . 土豆产量为39.45t时,氮肥的施用量一定是202kg【答案】C【解析】【分析】A 、表格反映的是土豆的产量与氮肥的施用量的关系;B 、直接从表格中找出施用氮肥时对应的土豆产量;C 、根据表格中土豆产量的增长和减少数量来说明氮肥的施用量对土豆产量的影响;D 、从表格中找出土豆的产量为39.45t时,氮肥对应的施用量.【详解】解:A 、氮肥施用量大于336时,土豆产量逐渐减少,故选项不符合题意;B 、当氮肥的施用量是110kg时,土豆产量为32.29t~34.03t,故选项不符合题意;C 、当氮肥的施用量低于336kg时,土豆产量随施肥量的增加而增加,故选项符合题意;D 、土豆产量为39.45t时,氮肥的施用量可能是202kg,故选项不符合题意.故选:C .【点睛】本题考查函数的定义和结合实际土豆产量和施用氮肥量确定函数关系,解题的关键是掌握函数的定义.8. 用三角板作ABC的边B C 上的高,下列三角板的摆放位置正确的是()A .B .C .D .【答案】A【解析】【分析】根据高线的定义即可得出结论.的边BC上的高,【详解】B,C,D都不是ABC故选:A.【点睛】本题考查的是作图-基本作图,熟知三角形高线的定义是解答此题的关键.9. 如图,测量河两岸相对的两点A ,B 的距离时,先在A B 的垂线B F上取两点C ,D ,使C D =B C ,再过点D 画出B F的垂线D E,当点A ,C ,E在同一直线上时,可证明△ED C ≌△A B C ,从而得到ED=A B ,则测得ED 的长就是两点A ,B 的距离.判定△ED C ≌△A B C 的依据是()A . “边边边”B . “角边角”C . “全等三角形定义”D . “边角边”【答案】B【解析】【分析】由”A SA ”可证△ED C ≌△A B C .【详解】解:由题意可得∠A B C =∠C D E=90°,在△ED C 和△A B C 中ACB DCE CD BCABC CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ED C ≌△A B C (A SA ),故选:B .【点睛】本题考查三角形全等的判定,掌握判定方法正确推理论证是解题关键.10. 如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是直角三角形顶点的概率为()A . 16B .17C .37D .12【答案】C【解析】【分析】直接利用直角三角形的定义结合概率求法得出答案.【详解】解:如图所示:第三枚棋子所在格点恰好是直角三角形顶点有6个,故这三枚棋子所在格点恰好是直角三角形顶点的概率为:614=37.故选:C .【点睛】此题主要考查了概率公式以及直角三角形的定义,正确得出符合题意的点是解题关键.11. 如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在其他格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是等腰三角形顶点的概率为()A . 27B .13C .47D .23【答案】C【解析】【分析】利用概率公式求解可得.【详解】解:由图知第三枚棋子可摆放的位置共有14种,其中这三枚棋子所在格点恰好是等腰三角形顶点的有8种,∴这三枚棋子所在格点恰好是等腰三角形顶点的概率为814=47,故选:C .【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A 的概率P(A )=事件A 可能出现的结果数÷所有可能出现的结果数.二.填空题(本大题含5个小题,每小题3分,共15分)把结果直接填在横线上.12. 两个锐角分别相等的直角三角形_____全等.(填”一定”或”不一定”或”一定不”) 【答案】不一定 【解析】【分析】根据直角三角形全等的判定定理判断即可. 【详解】解:当还有一条边对应相等时,两直角三角形全等, 当三角形的边不相等时,两直角三角形不全等, 即两个锐角分别相等的直角三角形不一定全等, 故答案为:不一定.【点睛】本题考查全等三角形的判定定理,掌握全等三角形的判定定理是解题的关键.13. 今年在全世界爆发了新型冠状病毒肺炎,该病毒有包膜,颗粒呈圆形或椭圆形,常为多形性,该病毒的直径约为110nm (1nm =10﹣9m ).110nm 用科学记数法表示为______m .【答案】1.1×10﹣7 【解析】【分析】绝对值小于1正数也可以利用科学记数法表示,一般形式为A ×10-n ,与较大数的科学记数法不同的是其所使用的是负整指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:110nm=110×10-9m=1.1×10-7m , 故答案为:1.1×10-7. 【点睛】本题考查用科学记数法表示较小的数,一般形式为A ×10-n ,其中1≤|A |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14. 从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为___(精确到0.1). 【答案】0.8 【解析】【分析】6批次种子粒数从100粒增加到5000粒时,种子发芽的频率趋近于0.801,所以估计种子发芽的概率为0.801,再精确到0.1,即可得出答案.【详解】根据题干知:当种子粒数5000粒时,种子发芽的频率趋近于0.801,故可以估计种子发芽的概率为0.801,精确到0.1,即为0.8,故本题答案为:0.8.【点睛】本题比较容易,考查利用频率估计概率,大量反复试验下频率稳定值即概率.15. 如图,在△A B C 中,∠A C B =90°,A D 平分∠B A C 交B C 于点D ,C D =3,D B =5,点E 在边A B 上运动,连接D E,则线段D E长度的最小值为_____.【答案】3【解析】【分析】当D E⊥A B 时,线段D E的长度最小,根据角平分线的性质得出C D =D E,代入求出即可.【详解】解:当D E⊥A B 时,线段D E的长度最小(根据垂线段最短),∵A D 平分∠C A B ,∠C =90°,D E⊥A B ,∴D E=C D ,∵C D =3,∴D E=3,即线段D E的长度的最小值是3,故答案为:3.【点睛】本题考查了角平分线的性质和垂线段最短,能灵活运用性质进行推理是解此题的关键.16. 已知,在△A B C 中,A B =A C ,A B 的垂直平分线交直线B C 于点D .当∠B A C =40°时,则∠CA D 的度数为_____.【答案】30°【解析】【分析】根据已知可求得两底角的度数,再根据垂直平分线的性质求得∠B A D 的度数,再根据角的和差关系即可得到结论.【详解】解:∵A B =A C ,∠B A C =40°,∴∠B =12(180°﹣40°)=70°,∵A B 的垂直平分线交直线B C 于点D ,∴D B =A D ,∴∠B A D =∠B =70°,∴∠C A D =∠B A D ﹣∠B A C =70°﹣40°=30°.故答案为:30°.【点睛】本题主要考查等腰三角形的性质和垂直平分线的性质,解答本题的关键是会综合运用等腰三角形的性质和和垂直平分线的性质进行答题,此题难度一般.17. 已知,在△A B C 中,A B =A C ,A B 的垂直平分线交直线B C 于点D .当∠B A C =α(90°<α<180°)时,则∠C A D 的度数为_____.(用含α的代数式表示)【答案】32α﹣90°【解析】【分析】【详解】根据已知可求得两底角的度数,再根据垂直平分线的性质求得∠B A D 的度数,再根据角的和差关系即可得到结论.【解答】解:∵A B =A C ,∠B A C =α,∴∠B =12(180°﹣α)=90°﹣12α,∵A B 的垂直平分线交直线B C 于点D ,∴∠B A D =90°﹣12α,∴∠C A D =∠B A C ﹣∠B A D =α﹣(90°﹣12α)=32α﹣90°.故答案为:32α﹣90°.【点睛】本题考查了线段垂直平分线的性质和等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题.三、简答题(本大题含8个小题,共65分)解答时应写出必要的文字说明、演算步骤或推理过程.18. 计算:(1)(x+2y)(x﹣2y)+y(x+y);(2)[(3A +B )2﹣B 2]÷3A ;(3)2÷(﹣2)﹣2+20.【答案】(1)x2﹣3y2+xy;(2)3A +2B ;(3)9【解析】【分析】(1)根据平方差公式和单项式乘以多项式的运算法则展开括号,再合并即可求出答案.(2)原式先去小括号合并后再根据多项式除以单项式的运算法则进行计算即可求出答案.(3)原式先计算负整数指数幂和零次幂,然后再计算除法,最后计算加法即可得到答案.【详解】解:(1)(x+2y)(x﹣2y)+y(x+y)=x2﹣4y2+xy+y2=x2﹣3y2+xy;(2)[(3A +B )2﹣B 2]÷3A=(9A 2+6A B +B 2﹣B 2)÷3A=(9A 2+6A B )÷3A=3A +2B .(3)2÷(﹣2)﹣2+20=2÷14+1=24+1=8+1=9.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.19. 如图,∠1=70°,∠2=70°,∠3=105°,求∠4的度数.【答案】105°【解析】【分析】由同位角相等,两直线平行判定A ∥B ,然后根据两直线平行,同位角相等,对顶角相等的性质求解【详解】∵∠1=70°,∠2=70°,∴∠1=∠2,∴A ∥B ,∴∠3=∠5.又∠3=105°,∴∠5=105°,∴∠4=∠5=105°.【点睛】本题考查平行线的判定和性质以及对顶角相等,理解相关性质正确推理是解题关键.20. 小明与小颖用一副去掉大王、小王的扑克牌作摸牌游戏:小明从中任意抽取一张牌(不放回),小颖从剩余的牌中任意抽取一张,谁摸到的牌面大,谁就获胜(规定牌面从小到大的顺序为:2,3,4,5,6,7,8,9,10,J,Q,K,A ).然后两人把摸到的牌都放回,重新开始游戏.(1)若小明已经摸到的牌面为4,然后小颖摸牌,那么小明获胜的概率是多少?小颖获胜的概率又是多少? (2)若小明已经摸到的牌面为2,直接写出小颖获胜的概率;若小明已经摸到的牌面为A ,两人获胜的概率又如何呢?【答案】(1)小明获胜概率851,小颖获胜概率4051;(2)小颖获胜的概率是0,小明获胜的概率是1617【解析】【分析】(1)小明已经摸到的牌面为4,而小4的结果为4×2,大于4的结果数为4×10,然后根据概率公式求解;(2)小明已经摸到的牌面为2,而小于2的结果为0,大于2的结果数为4×12,然后根据概率公式求解;小明已经摸到的牌面为A ,而小于A 的结果为4×12,大于2的结果数为0,然后根据概率公式求解.【详解】解:(1)由题意知,去掉大王、小王的扑克牌共有52张,其中比4小的牌有2,3,所以,小明获胜的概率是2451=851;小明与小颖摸到的相同的牌面的概率为3 51,所以,小颖获胜的概率是1﹣851﹣351=4051;(2)若小明已经摸到的牌面为2,比2小的牌没有,所以小明获胜的概率是0,小颖获胜的概率是1﹣351=1617;若小明已经摸到的牌面为A ,没有比A 更大的牌,所以小颖获胜的概率是0,小明获胜的概率是1﹣351=1617.【点睛】本题考查了概率公式:某随机事件的概率=这个随机事件发生的情况数除以总情况数.21. 如图1,在边长为1的9×9正方形网格中,老师请同学们过点C 画线段A B 的垂线.如图2,小明在多媒体展台上展示了他画出的图形.请你利用所学知识判断并说明直线C D 是否为线段A B 的垂线.(点A ,B ,C ,D ,E,F都是小正方形的顶点)【答案】见解析【解析】【分析】根据全等三角形的判定和性质解答即可.【详解】证明:如图所示:通过图可知:D F=B E=2,C F=EA =5,∠D FC =∠B EA =90°,∴△D FC ≌△B EA (SA S),∴∠A =∠C ,∵∠A GH=∠C GP,∴∠A HG=∠A PC =90°,∴直线C D 为线段A B 的垂线.【点睛】本题考查全等三角形的判定与性质,解题的关键是掌握全等三角形的判定与性质.22. (1)某居民住房的结构如图所示,房子的主人打算把卧室以外的地面都铺上地砖,至少需要多少平方米的地砖?如果所用地砖的价格是B 元/m2,那么购买地砖至少需要多少元?(2)房屋的高度为hm,现需要在客厅和卧室的墙壁上贴壁纸,那么至少需要多少平方米的壁纸?如果所用壁纸的价格是A 元/m2,贴1m2壁纸的人工费用为5元,求贴完壁纸的总费用是多少元?(计算时不扣除门、窗所占面积)【答案】(1)至少需要11xy平方米的地砖,购买地砖至少需要11B xy元;(2)至少需要(12hx+8hy)平方米的壁纸,贴完壁纸的总费用是(12A hx+8A hy+60hx+40hy)元【解析】【分析】(1)求出卫生间,厨房及客厅的面积之和即可得到需要地砖的面积;用地砖的面积乘以地砖的价格即可得出需要的费用;(2)求出客厅与卧室的面积,乘以高hm,即可得到需要的壁纸数;用需要的壁纸数乘以壁纸的价格即可得出贴完壁纸的总费用.【详解】解:(1)由题意得:xy+y×2x+2y×4x=xy+2xy+8xy=11xy(m2).11xy•B =11B xy(元).答:至少需要11xy平方米的地砖,购买地砖至少需要11B xy元;(2)由题意得:2y•h×2+4x•h×2+2x•h×2+2y•h×2=4hy+8hx+4hx+4hy=(12hx+8hy)m2.(12hx+8hy)×A +(12hx+8hy)×5=(12A hx+8A hy+60hx+40hy)元;答:至少需要(12hx+8hy)平方米的壁纸,贴完壁纸的总费用是(12A hx+8A hy+60hx+40hy)元.【点睛】本题考查了整式的混合运算应用,根据图形列出代数式并熟练根据法则进行计算是解题的关键.23. 如图,在△A B C 中,∠B =30°,∠C =40°.(1)尺规作图:①作边A B 的垂直平分线交B C 于点D ;②连接A D ,作∠C A D 的平分线交B C 于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠D A E的度数.【答案】(1)①见解析;②见解析;(2)∠D A E12∠D A C =40°【解析】【分析】(1)根据垂直平分线与角平分线的尺规作图方法即可求解;(2)根据垂直平分线的性质得到D B =D A ,求出∠C A D =80°,再利用角平分线的性质即可求解.【详解】解:(1)如图,点D ,射线A E即为所求.(2)∵D F垂直平分线段A B ,∴D B =D A ,∴∠D A B =∠B =30°,∵∠C =40°,∴∠B A C =180°﹣30°﹣40°=110°,∴∠C A D =110°﹣30°=80°,∵A E平分∠D A C ,∴∠D A E12∠D A C =40°.【点睛】此题主要考查垂直平分线与角平分线,解题的关键是熟知尺规作图的方法.24. 新能源纯电动汽车的不断普及让很多人感受到了它的好处,其中最重要的一点就是对环境的保护.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)与已行驶路程x(千米)之间关系的图象.(1)图中点A 表示的实际意义是什么?当0≤x≤150时,行驶1千米的平均耗电量是多少;当150≤x≤200时,行驶1千米的平均耗电量是多少?(2)当行驶了120千米时,求蓄电池的剩余电量;行驶多少千米时,剩余电量降至20千瓦.【答案】(1)当0≤x≤150时,行驶1千米的平均耗电量是16千瓦时;当150≤x≤200时,行驶1千米的平均耗电量是12千瓦时;(2)当汽车已行驶120千米时,蓄电池的剩余电量为40千瓦时.汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.【解析】【分析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,进而解答即可;(2)把x=120代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.【详解】解:(1)由图象可知,A 点表示充满电后行驶150千米时,剩余电量为35千瓦时;当0≤x≤150时,行驶1千米的平均耗电量是1 (6035)1506-÷=千瓦时;当150≤x≤200时,行驶1千米的平均耗电量是1 (3510)(200150)2-÷-=千瓦时;(2)6011206-⨯=40(千瓦时),35203012-=(千米),150+30=180(千米)答:当汽车已行驶120千米时,蓄电池的剩余电量为40千瓦时.汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.【点睛】此题主要考查了函数的图象,利用图象得出正确信息是解题关键.25. 综合与探究在数学综合实践课上,老师让同学用两张全等的等腰三角形纸片进行拼摆,并探究摆放后所构成的图形之间的关系.如图1,△A B C ≌△D EF,A B =A C ,D E=D F.[探究一](1)勤奋小组的同学把这两张纸片按如图2的方式摆放,点A 与点D 重合,连接B E和C F.他们发现B E与C F之间存在着一定的数量关系,这个关系是.[探究二](2)创新小组的同学在勤奋小组的启发下,把这两张纸片按如图3的方式摆放,点F,A ,D ,C 在同一直线上,连接B F和C E,他们发现了B F和C E之间的数量和位置关系,请写出这些关系并说明理由;[探究三](3)从A ,B 两题中任选一题作答.解答时用尺规作△D EF,不写作法,保留作图痕迹.A .如图4,利用△ABC 纸片拼摆出一种与图2和图3都不相同的图形,并根据图形写出一个数学结论.B .如图4,利用△A BC 纸片拼摆出一种与图2和图3都不相同的图形,并根据图形提出一个数学问题并解答.。

2020-2021学年七年级数学人教版下二元一次方程组实际运用专练2套含答案

2020-2021学年七年级数学人教版下二元一次方程组实际运用专练2套含答案

七年级数学下册第八章二元一次方程组实际运用专练(一)1.维生素又名维他命,通俗来讲,即维持生命的物质,是保持人体健康的重要活性物质,一般由食物中取得.现阶段发现的维生素有几十种,如维生素A、维生素B、维生素C等.食品加工是一种专业技术,就是把原料经过人为处理形成一种新形式的可直接食用的产品,这个过程就是食品加工.比如用小麦经过碾磨,筛选,加料搅拌,成型烘干,成为饼干,就是属于食品加工的过程.如表给出了甲、乙两种原料每千克的维生素A,B的含量.原料甲原料乙维生素A400单位300单位维生素B600单位200单位将甲、乙两种原料混合制成一种新食品,若这种新食品中,若这种新食品中,维生素A 的含量为3600单位,维生素B的含量为4400单位,请问原料甲和原料乙各需多少千克?2.某校开展“重走长征路”毅行活动,在活动中,学校挑一部分学生组成红、蓝两队进行比赛.已知红队比蓝队少8人,红队每组6人,蓝队每组10人,红队比蓝队多n组.(1)若n=2时,求红队和蓝队各多少人;(2)李明认为当n=1时也可以求出红队和蓝队的人数,李明的观点正确吗?请说明理由.3.由于最近受季节的影响,产品A的价格有所下降,由原来的每千克20元下降了10%;产品B的价格有所上升,由原来的每千克46元上调至50元.某饭店到市场分别购进产品A 和产品B共180千克,发现产品调价前后的总价格不变,问饭店购进这两种产品各多少千克?4.化工厂用甲、乙两种原料生产A,B两种产品,第一次购进甲原料12吨,乙原料20吨,花去76万元;第二次购进甲原料5吨、乙原料6吨,花去27万元.生产1吨A产品,1吨B产品所需要甲、乙两种原料及销售价格如表所示.甲原料(吨)乙原料(吨)销售价格(万元/吨)A产品 3 2 20B产品 1 3 15 (1)甲、乙两种原料的价格分别为每吨多少万元?(2)如果毛利润=销售收入﹣原料成本.①每生产1吨产品,生产哪种产品毛利润更高?请通过计算说明;②如果投入总成本为180万元且用完,获得的毛利润不少于100万元,这可能吗?如果不可能,请说明理由;如果可能,请说出生产A、B两种产品的数量的取值范围.5.某景点门票价格如表:购票人数(人)1人﹣50人51人﹣100人101人及以上每人票价(元)12 10 8某校八年级甲、乙班共104人去游览该景点(其中甲班人数少于乙班人数,且甲班人数不足50人),如果两班分别以各自班级为单位购票,则两个班一共应付门票1138元.如果两个班联合起来作为一个团体购票,则可以省不少钱.(1)请问甲乙班各有多少学生?(2)两个班联合起来作为一个团体购票,一共能省多少钱?6.上海某公园门票销售规定:(1)购票张数1~40张,每张票的价格60元;(2)购票张数41~80张,每张票的价格55元:(3)购票张数80张以上,每张票的价格50元.某校六年级甲、乙两个班共82人去公园春游,其中甲班比乙班人多,且甲班不到80人,如果两班单独给每位同学购买一张门票,那么一共应付4700元,问:(1)若甲、乙两班联合起来购票,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?(3)如果甲班有8人因事不能参加春游,请你通过计算为两班设计一个最省钱的购票方案.7.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;3 4﹣2 22(y﹣x)(2)在备用图中完成此方阵图.3 4﹣2 28.某中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜,若购买8个A型放大镜和5个B型放大镜需用440元;若购买4个A型放大镜和6个B 型放大镜需用304元.(1)求每个A型放大镜和每个B型放大镜各多少元?(2)该中学决定购买A型和B型放大镜共75个,总费用不超过2360元,则最多可以购买多少个A型放大镜?9.某储运公司现有货物35吨,要全部运往灾区支援灾区重建工作.计划要同时租用A、B 两种型号的货车,一次运送完全部货物,且每辆车均为满载.已知在货车满载的情况下,2辆A型货车和3辆B型货车一次共运货18吨;3辆A型货车和2辆B型货车一次共运货17吨.根据以下信息回答下列问题:(1)一辆A型车和一辆B型车各能满载货物多少吨?(2)按计划完成本次货物运送,储运公司要同时租用A、B两种型号的货车各几辆?请求出所有的租车方案.10.踏春时节,某班学生集体组织亲子游,沿着瓯江口樱花步道骑自行车,该班学生花了950元租了若干辆自行车,已知自行车的类型和租车价格如表:自行车类型A型车B型车C型车座位数(个) 2 3 4 租车价格(元/辆)30 45 55(1)若同时租用B、C两种类型的车,且共有65个座位,则应租B、C类型车各多少辆?(2)若B型车租4辆,余下的租用A型和C型,要求每种车至少租用1辆,请你帮他们设计A型车和C型车的租车方案.(3)若同时租用这三类车,且每种车至少租用1辆,则最多能租到个座位(直接写出答案).11.位于红星路济宁师专旧址的济宁学院附中红星校区将于近期开始动工,原计划在年内拆除旧校舍与建造新校舍共12万平方米,为建设一座园林式的校园,在实施中调整拆建计划,新建面积减少10%,拆除面积增加10%,结果拆除和新建总面积不变.根据协议,施工方免费拆除旧校舍,但建造新校舍每平米需要1500元,校园环境建设每平方米需要600元.(1)求原计划拆、建的面积各多少平方米?(2)若把实际的拆、建工程中节余的资金的30%用来增加校园环境建设,可建设多少平方米?12.某旅馆的客房有三人间和双人间两种,三人间每人每天50元,双人间每人每天70元.一个40人的旅游团到该旅馆住宿,租住了若干间客房,且每个客房正好住满,一天共花去住宿费2440元;求两种客房各租住了多少间?13.某城市规定:出租车起步价所包含的路程为0~5km,超过5km的部分按每千米另收费.甲说:“我乘这种出租车走了11km,付了17元.”乙说:“我乘这种出租车走了23km,付了35元.”(1)出租车的起步价是多少元?超过5km后每千米的收费多少元?(2)小李从学校乘这种出租车回到家付费14元,学校到小李家的路程是多少千米?14.一条河流上下游分别坐落A、B两个港口,一艘游轮从A港用了3小时到达B港,然后按原路返回至A港用了4小时,已知游轮在静水中的航速为28千米/小时,求水流速度和A、B两个港口的距离.15.某天,汇丰超市对当天苹果和香蕉的销售情况进行了盘点,盘点情况如下表所示:品名进货价(元/kg)零售价(元/kg)数量(kg)销售款(元)苹果 4 6香蕉 2.4 4合计120 615 请你帮汇丰超市算一下,当天超市卖苹果和香蕉一共能赚多少钱?参考答案1.解:设需要原料甲x千克,原料乙y千克,根据题意得:,解得答:需要原料甲6 千克,原料乙4千克.2.解:(1)设红队有x人,蓝队有y人,由题意得,,解得,答:n=2时,红队有42人,蓝队有50人;(2)设红队有x人,蓝队有y人,由题意得,,解得,∵和不是整数,∴李明的观点不正确.3.解:设饭店购进x千克产品A,y千克产品B,依题意,得:,解得:.答:饭店购进120千克产品A,60千克产品B.4.解:(1)设甲种原料的价格为每吨x万元,乙种原料的价格为每吨y万元,依题意有,解得.故甲种原料的价格为每吨3万元,乙种原料的价格为每吨2万元;(2)①A产品:20﹣3×3﹣2×2=7(万元);B产品:15﹣3﹣3×2=6(万元).故每生产1吨产品,生产A产品毛利润更高;②设生产A种产品m吨,则需要的成本为3×3m+2×2m=13m(万元),则生产A种产品m吨的利润为7m万元,设生产B种产品n吨,则需要的成本为3×n+2×3n=9n(万元),则生产B种产品n吨的利润为6n万元,依题意有13m+9n=180,则n=20﹣m,m=,故生产B种产品n吨的利润为6n=6(20﹣m)=(120﹣m)万元.∵获得的毛利润不少于100万元,∴7m+120﹣m≥100,解得m≤12,∴≤12,解得n≥.∴生产A种产品的数量不大于12吨,生产B种产品的数量不小于吨.5.解:(1)设甲班有x名学生,乙班有y名学生,依题意,得:,解得:.答:甲班有49名学生,乙班有55名学生.(2)1138﹣8×104=306(元).答:两个班共能节省306元钱.6.解:(1)由题意,得:4700﹣82×50=600(元).即若联合起来购票,比单独购买可以节省600元.(2)设甲班有x人、乙班有y人,由题意,得:,解得:.答:甲班有44人,乙班有38人.(3)现在甲班:36人,乙班:38人,单独购票:(36+38)×60=4440元,联合购票:74×55=4070元,团体票:81×50=4050元,∵4440>4070>4050,∴选择购买81张的团体票最省钱.7.解:(1)由题意得,解得,如图所示:3 4﹣2 2 62(y﹣x)0 1(2)如图所示:3 4 ﹣1﹣2 2 65 0 1故答案为:6,0,1;﹣1,6,5,0,1.8.解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得,解得,答:每个A型放大镜和每个B型放大镜分别为40元,24元;(2)设购买A型放大镜a个,根据题意可得:40a+24×(75﹣a)≤2360,解得:a≤35.答:最多可以买35个A型放大镜.9.解:(1)设一辆A型车和一辆B型车分别能满载货物x吨、y吨.根据题意,得,解得,经检验,方程组的解符合题意.答:一辆A型车能满载货物3吨,一辆B型车能满载货物4吨.(2)设储运公司要同时租用A、B两种型号的货车分别为m辆和n辆.根据题意,得3m+4n=35,∵m、n均为正整数,∴正整数解为,,,租车方案1:1辆A型车和8辆B型车;方案2:5辆A型车和5辆B型车;方案3:9辆A型车和2辆B型车.10.解:(1)设应租B型车x辆,C型车y辆,依题意,得:,解得:.答:应租B型车15辆,C型车5辆.(2)设租A型车a辆,C型车b辆,依题意,得:30a+45×4+55b=950,∴b=14﹣a.∵a,b均为正整数,∴a为11的倍数,∴,,∴共有2种租车方案,方案1:租11辆A型车,8辆C型车;方案2:租22辆A型车,2辆C型车.(3)30÷2=15(元),45÷3=15(元),55÷4=(元).设租的A和B两种类型的车共m个座位,C型车共n个座位,依题意,得:15m+n=950.∵m,n均为正整数,∴n为4的倍数,∴,,,,,.又∵m≥2+3=5,∴不合适,舍去,∴(m+n)的最大值为68.故答案为:68.11.解:(1)设原计划拆的面积是x平方米,建的面积是y平方米,依题意有,解得.故原计划拆的面积是60000平方米,建的面积是60000平方米;(2)设在实际的拆、建工程中节余的资金的30%用来建设m平方米,依题意有600m=1500×60000×10%×30%,解得m=4500.故可建设4500平方米.12.解:设租住了x间双人间,y间三人间,依题意,得:,解得:.答:租住了11间双人间,6间三人间.13.解:(1)设出租车的起步价是x元,超过5km后每千米的收费为y元,,解得,,答:出租车的起步价是8元,超过5km后每千米的收费为1.5元;(2)设学校到小李家的路程是m千米,8+(m﹣5)×1.5=14,解得,m=9,答:学校到小李家的路程是9千米.14.解:设水流速度为x千米/小时,A、B两个港口的距离为y千米,根据题意,得解得答:水流速度4千米/小时,A、B两个港口的距离为96千米.15.解:设苹果和香蕉的销售量分别为xkg、ykg,根据题意,得解得67.5(6﹣4)+52.5(4﹣2.4)=219答:当天超市卖苹果和香蕉一共能赚219元钱.七年级数学下册二元一次方程组实际运用专练(二)1.2月8日,新世纪超市举办大型年货节.此次年货节活动特别准备了A、B两种商品进行特价促销,已知购进了A、B两种商品,其中A种商品每件的进价比B种商品每件的进价多40元.购进A种商品2件与购进B种商品3件的进价相同.(1)求A、B两种商品每件的进价分别是多少元?(2)该超市从厂家购进了A、B两种商品共60件,所用资金为5800元.出售时,A种商品在进价的基础上加价30%进行标价;B商品按标价出售每件可获利20元.若按标价出售A、B两种商品,则全部售完共可获利多少元?(3)在(2)的条件下,年货节期间,A商品按标价出售,B商品按标价先销售一部分商品后,余下的再按标价降价6元出售,A、B两种商品全部售出,总获利比全部按标价售出获利少了120元,则B商品按标价售出多少件?2.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了43.8元,而两个月前买同重量的这两样菜只要37元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,求:两个月前买的萝卜和排骨的单价分别为多少元?3.为了做好学校防疫工作,某高中开学前备足防疫物资,准备购买N95口罩(单位:只)和医用外科口罩(单位:包,一包=10只)若干,经市场调查:购买10只N95口罩、9包医用外科口罩共需236元;购买一只N95口罩的费用是购买一包医用外科口罩费用的5倍.(1)购买一只N95口罩,一包医用外科口罩各需多少元?(2)市场上现有甲、乙两所医疗机构:甲医疗机构销售方案为:购买一只N95口罩送一包医用外科口罩,乙医疗机构销售方案为:购买口罩全部打九折.若某高中准备购买1000只N95口罩,购买医用外科口罩m万包(m≥1),请你帮助设计最佳购买方案,最佳购买口罩总费用为多少元?4.用如图一中的长方形和正方形纸板作侧面和底面,做成如图二的竖式和横式两种无盖纸盒,现在仓库里有1000张正方形纸板和2000张长方形纸板.(1)根据题意完成下表格.x只竖式纸盒中y只横式纸盒中合计正方形纸板的张数1000长方形纸板的张数2000(2)问两种纸盒各做多少个,恰好将库存的纸板用完?5.某水果店有甲,乙两种水果,它们的单价分别为a元/千克,b元/千克.若购买甲种水果5千克,乙种水果2千克,共花费25元,购买甲种水果3千克,乙种水果4千克,共花费29元.(1)求a和b的值;(2)甲种水果涨价m元/千克(0<m<2),乙种水果单价不变,小明花了45元购买了两种水果10千克,那么购买甲种水果多少千克?(用含m的代数式表示).6.列二元一次方程组解决问题:随着地铁2号线一期的开通,太原正式进入地铁时代.已知2号线一期采用按里程分段计价的票制,其中全程最高票价为6元,学生可享受半价.周日,八年级某班师生共36人从始发站“西桥”乘地铁至终点站“尖草坪”,感受“地铁速度”,其中学生均购半价票,单程共付车票费用126元.求他们购买全价票与半价票各多少张?7.某景点的门票价格如下表:购票人数/人1﹣50 51﹣100 100以上每人门票价/元20 16 10某校八年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1828元,如果两班联合起来作为一个团体购票,则只需花费1020元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?8.小赵为班级购买笔记本作为晚会上的奖品,回来时向生活委员交账说“一共买了36本,有两种规格,单价分别为1.8元和2.6元,去时我领了100元,现在找回27.6元.”生活委员算了一下,认为小赵稿错了.(1)请你用方程的知识说明小赵为什么搞错了.(2)小赵一想,发觉的确不对,因为他把自己口袋里的零用钱一起当做找回的钱给了生活委员,如果设购买单价为1.8元的笔记本a本,并且小赵的零用钱数目是整数,且少于3元,试求出小赵零用钱的数目.9.如图,用8块相同的小长方形拼成一个宽为8cm的大长方形,求大长方形的面积.10.某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存放原料的60%,运出乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨,求甲、乙两仓库各存放原料多少吨?11.两块试验田去年共产花生470千克,改用良种后,今年共产花生523千克,已知第一块田的产量比去年增产16%,第二块田的产量比去年增产10%.求改用良种后每块田的产量.12.如图,某工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批原料运回工厂,制成新产品再运到B地,公路运价为1.5元/(吨•千米),铁路运价为1元/(吨•千米).(1)若这两次运输共支出公路运费13200元,铁路运费49200元.问从A地购买多少吨原料,用购买的这些原料能制成多少吨新产品?(2)在(1)的条件下,原料费为每吨1000元,新产品售价每吨2000元,则该工厂这批产品全部售出后获得利润多少元?(利润=销售额﹣原料费﹣运输费)13.用8块相同的小长方形拼成一个大长方形,则大长方形面积是多少?14.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人,请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?15.甲、乙两人在400米的环形跑道上练习赛跑,如果两人同时同地反向跑,经过25秒第一次相遇;如果两人同时同地同向跑,经过200秒甲第一次追上乙.求甲、乙两人的平均速度.参考答案1.解:(1)A种每件的进价是120元,B种每件的进价是80元;(2)1600元;(3)设销售B商品按标价售出m件,由题意得:120×30%×25+20m+(20﹣6)(35﹣m)=1600﹣120,解得m=15.答:销售B商品按标价售出15件.2.解:设两个月前买的萝卜的单价为x元,排骨的单价为y元,依题意得:,解得:.答:两个月前买的萝卜的单价为1元,排骨的单价为35元.3.解:(1)设一只N95口罩x元,一包医用外科口罩y元,根据题意得,,解得,答:一只N95口罩20元,一包医用外科口罩4元;(2)方案一:单独去甲医疗机构买总费用为:20×1000+4(10000m﹣1000)=40000m+16000(元);方案二:单独去乙医疗机构买总费用为:(20×1000+40000m)×0.9=36000m+18000(元);方案三:线去甲医疗机构购买一只N95口罩送一包医用外科口罩,剩下的去乙医疗机构买,总费用为:20×1000+4(10000m﹣1000)×0.9=36000m+16400(元).∵m≥1,∴方案三最佳,总费用为(36000m+16400)元.4.解:(1)x只竖式纸盒中,正方形纸板的张数为x,长方形纸板的张数为4x,y只横式纸盒中,正方形纸板的张数为2y,长方形纸板的张数为3y,故答案为:x,4x,2y,3y;(2)根据题意得,,解得:答:第一种纸盒200个,第二种纸盒400个.5.解:(1)由题意可得:,解得:,∴a=3,b=5;(2)设购买甲种糖果x千克,则购买乙种糖果(10﹣x)千克,由题意可得:(3+m)x+5(10﹣x)=45,解得x=.答:购买甲种糖果千克.6.解:设他们购买全价票x张,半价票y张,依题意得:,解得:.答:他们购买全价票6张,半价票30张.7.解:(1)∵1020÷16=63,63不为整数,∴(1)(2)两班的人数之和超过100人.设(1)班有x名学生,(2)班有y名学生,依题意得:,解得:.答:(1)班有49名学生,(2)班有53名学生.(2)(1)班节约的钱数为(20﹣10)×49=490(元),(2)班节约的钱数为(16﹣10)×53=318(元).答:团体购票与单独购票相比较,(1)班节约了490元,(2)班节约了318元.8.解:(1)设小赵购买单价为1.8元的笔记本x本,购买单价为2.6元的笔记本y本,依题意,得:,解得:.又∵x,y均为正整数,∴小赵搞错了.(2)∵小赵的零用钱数目是整数,且少于3元,∴小赵的零用钱为1元或者2元.依题意,得:1.8a+2.6(36﹣a)=100﹣27.6+1或1.8a+2.6(36﹣a)=100﹣27.6+2,解得:a=25(不合题意,舍去)或者a=24,∴小赵的零用钱为2元.9.解:设小长方形的长为xcm,宽为ycm,依题意,得:,解得:,∴8(3x)=8×(3×5)=120.答:大长方形的面积为120cm2.10.解:设甲仓库存放原料x吨,乙仓库存放原料y吨,由题意,得,解得,答:甲仓库存放原料240吨,乙仓库存放原料210吨.11.解:设去年第一块田的产量是x千克,第二块田的产量是y千克,依题意,得:,解得:,∴(1+16%)x=(1+16%)×100=116,(1+10%)y=(1+10%)×370=407.答:改用良种后第一块田的产量是116千克,第二块田的产量是407千克.12.解:(1)设该工厂从A地购买了x吨原料,运往B地的产品为y吨.根据题意,得由题意得,,解得:.答:该工厂购买的原料重量为200吨,制成的产品重量为160吨;(2)利润=2000×160﹣1000×200﹣13200﹣49200=57600(元).答:该工厂此次经营的利润为57600元.13.解:设小长方形的长为xcm,宽为ycm,依题意得:,解得:,则x+3y=60,60×40=2400(cm2).故大长方形面积是2400cm2.14.解:设1辆甲种客车的载客量为x人,1辆乙种客车的载客量为y人,依题意,得:,解得:.答:1辆甲种客车的载客量为45人,1辆乙种客车的载客量为30人.15.解:设甲的速度为x米/秒,乙的速度为y米/秒,依题意,得:,解得:.答:甲的速度为9米/秒,乙的速度为7米/秒.。

2020-2021学年人教版数学七年级下学期《第7章平面直角坐标系》测试卷及答案解析

2020-2021学年人教版数学七年级下学期《第7章平面直角坐标系》测试卷及答案解析

2020-2021学年人教版数学七年级下学期《第7章平面直角坐标系》测试卷一.选择题(共8小题)1.在平面直角坐标系中,对于点P(x,y),我们把点P'(﹣y+1,x+1)叫做点P伴随点已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2A3,…,A n,…若点A1的坐标为(2,4),点A2019的坐标为()A.(﹣3,3)B.(﹣2,﹣2)C.(3,﹣1)D.(2,4)2.已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是()A.(2,1)B.(2,3)C.(2,2)D.(1,2)3.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A(x1,y1),B(x2,y2),设点M为线段AB的中点,则点M的坐标为()应用:设线段CD的中点为点N,其坐标为(3,2),若端点C的坐标为(7,3),则端点D的坐标为()A.(﹣1,1)B.(﹣2,4)C.(﹣2,1)D.(﹣1,4)4.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为()A.(1,﹣2)B.(2,﹣1)C.(,﹣1)D.(3.0)5.如图,在平面直角坐标系中,A(﹣3,0),B(3,0),C(3,4),点P为任意一点,已知P A⊥PB,则线段PC的最大值为()A.3B.5C.8D.106.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的纵坐标为()A.5B.6C.7D.87.如图,在平面直角坐标系中,将正整数按箭头所指的顺序排列,则正整数2019所在的点的坐标是()A.(45,7)B.(45,39)C.(44,6)D.(44,39)8.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点C对应的点C1的坐标是()A.C1(3,2)B.C1(2,1)C.C1(2,3)D.C1(2,2)二.填空题(共33小题)9.如图,在平面直角坐标系中,已知四个定点A(﹣3,0)、B(1,﹣1)、C(0,3)、D(﹣1,3),点P在四边形ABCD内,则到四边形四个顶点的距离的和P A+PB+PC+PD最小时的点P的坐标为.10.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2019的横坐标为.11.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2019的坐标为.12.如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA,OC分别在x轴,y 轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2019的坐标为.13.如图,等边三角形ABC的边长为1,顶点B与原点O重合,点C在x轴的正半轴上,过点B作BA1⊥AC于点A1,过点作A1B1∥OA,交OC于点B1;过点B1作B1A2⊥AC于点A2,过点A2作A2B2∥OA,交OC于点B2;…,按着这个规律进行下去,点A n的坐标是.14.如图,直线l1经过点A(3,),过点A且垂直于l1的直线与x轴交于点B,与直线l2交于点C,且∠BOC=30°,则BC的长等于.15.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2019的坐标是.16.如图,在平面直角坐标系中,点M、A、B、N依次在x轴上,点M、A的坐标分别是(1,0)、(2,0).以点A为圆心,AM长为半径画弧,再以点B为圆心,BN长为半径画弧,两弧交于点C,测得∠MAC=120°,∠CBN=150°.则点N的坐标是.17.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是.18.如图,点P是第一象限内一点,OP=4,经过点P的直线l分别与x轴、y轴的正半轴交于点A、点B,若OP平分∠AOB,则=.19.在平面直角坐标系xOy中,点A的坐标为(1,0),P是第一象限内任意一点,连接PO,P A,若∠POA=m°,∠P AO=n°,则我们把(m°,n°)叫做点P的“双角坐标”.例如,点(1,1)的“双角坐标”为(45°,90°).(1)点(,)的“双角坐标”为;(2)若点P到x轴的距离为,则m+n的最小值为.20.如图,点A(0,1),点B(﹣,0),作OA1⊥AB,垂足为A1,以OA1为边作Rt△A1OB1,使∠A1OB1=90°,使∠B1=30°;作OA2⊥A1B1,垂足为A2,再以OA2为边作Rt△A2OB2,使∠A2OB2=90°,∠B2=30°,……,以同样的作法可得到Rt△A n OB n,则当n=2018时,点B2018的纵坐标为.21.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推……则正方形OB2017B2018C2018的顶点B2018的坐标是.22.如图,已知正方形A1A2A3A4,A5A6A7A8,A9A10A11A12…(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A2018的坐标为.23.如图,点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后动点P的坐标是.24.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2018次,点P依次落在点P1,P2,P3,P4,…P2018的位置,则P2018的横坐标x2018=.25.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2018个点的坐标为.26.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q 的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M(6,m)表示单车停放点,且满足M到A,B的“实际距离”相等,则m=.若点N表示单车停放点,且满足N到A,B,C的“实际距离”相等,则点N的坐标为.27.如图,动点P从(0,3)出发,沿所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,第一次碰到长方形的边时的位置为P1(3,0),当点P第2018次碰到长方形的边时,点P的坐标为.28.在平面直角坐标系中,将点(﹣b,﹣a)称为点(a,b)的“关联点”(例如点(﹣2,﹣1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第象限.29.如图,在△ABO中,A(﹣4,0),B(0,3),OC为AB边的中线,以O为圆心,线段OC长为半径画弧,交x轴正半轴于点D,则点D的坐标为.30.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时,记为点P1,第2次碰到矩形的边时,记为点P2,…第n次碰到矩形的边时,记为点P n,则点P4的坐标是;点P125的坐标是.31.在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M的“影子点”为M(,﹣),点P(a,b)的“影子点”是点P’,则点P’的“影子点”P''的坐标为.32.已知直角平面坐标系内有两点,点P(4,2)与点Q(a,a+2),则PQ的最小值为.33.已知平面直角坐标系xOy中,点A(8,0)及在第一象限的动点P(x,),设△OP A 的面积为S.则S随x的增大而.(填“增大”,“不变”或“减小”)34.如图,在平面直角坐标系中,B,C两点的坐标分别为(﹣3,0)和(7,0),AB=AC =13,则点A的坐标为.35.无论m为何值,点A(m﹣1,m+1)不可能在第象限.36.对于任意实数x,点P(x,x2﹣4x)一定不在第象限.37.已知点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,则点P坐标为.38.在直角坐标系xOy中,对于点P(x,y),我们把点P′(y+1,﹣x+1)叫做点P的影子点.已知点A1的影子点为A2,点A2的影子点为A3,点A3的影子点为A4,…,这样依次得到点A1,A2,A3,…,A n,…若点A1的坐标为(a,b),对于任意的正整数n,点A n均在y轴的右侧,则a,b应满足的条件是.39.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,若△AOB内部(不包括边)的整点个数为3,则点B的横坐标的所有可能值是.40.平面直角坐标系中,点P(x,y)位于第二象限,并且y≤2x+6,x、y为整数,则点P 的坐标是(任意写一个,正确即可).41.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k 为常数,且k≠0),则称点P′为点P的“k属派生点”,例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).若点P在x轴的正半轴上,点P的“k 属派生点”为P′点.且线段PP'的长度为线段OP长度的3倍,则k的值.三.解答题(共9小题)42.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.根据所给定义解决下列问题:(1)若已知点D(1,2)、E(﹣2,1)、F(0,6),则这3点的“矩面积”=.(2)若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为18,求点F的坐标.43.若点P(2a﹣4,a+2)是第二象限内的整点(横纵坐标都是整数),求满足条件的所有P点坐标.44.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a=,b=,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.45.(1)在数轴上,点A表示数3,点B表示数﹣2,我们称A的坐标为3,B的坐标为﹣2;那么A、B的距离AB=;一般地,在数轴上,点A的坐标为x1,点B的坐标为x2,则A、B的距离AB=;(2)如图,在直角坐标系中点P1(x1,y1),点P2(x2,y2),求P1、P2的距离P1P2;(3)如图,△ABC中,AO是BC边上的中线,利用(2)的结论证明:AB2+AC2=2(AO2+OC2).46.在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1),①在点E(0,3),F(3,﹣3),G(2,﹣5)中,为点A的“等距点”的是;②若点B的坐标为B(m,m+6),且A,B两点为“等距点”,则点B的坐标为;(2)若T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,求k的值.47.已知A(0,a),B(﹣b,﹣1),C(b,0)且满足﹣|b+2|+=0.(1)求A、B、C三点的坐标;(2)如图1所示,CD∥AB,∠DCO的角平分线与∠BAO的补角的角平分线交于点E,求出∠E的度数;(3)如图2,把直线AB以每秒1个单位的速度向左平移,问经过多少秒后,该直线与y 轴交于点(0,﹣5).48.已知点A(a,0)和B(0,b)满足(a﹣4)2+|b﹣6|=0,分别过点A、B作x轴、y 轴的垂线交于点C,如图所示,点P从原点出发,以每秒1个单位长度的速度沿着O﹣B﹣C﹣A﹣O的路线移动.(1)写出A、B、C三点的坐标;A,B,C;(2)点P在运动过程中,当△OAP的面积为6时,求点P的坐标;(3)当P运动14秒时,连结O、P两点,将线段OP向上平移h个单位(h>0),得到O'P',若O'P'将四边形OACB的面积分成相等的两部分,求h的值.49.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是,B4的坐标是.(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是,B n的坐标是.(3)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,则△OA n B n的面积S为50.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k 为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(1)点P(﹣1,6)的“2属派生点”P′的坐标为;(2)若点P的“3属派生点”P′的坐标为(6,2),则点P的坐标;(3)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值.2020-2021学年人教版数学七年级下学期《第7章平面直角坐标系》测试卷参考答案与试题解析一.选择题(共8小题)1.在平面直角坐标系中,对于点P(x,y),我们把点P'(﹣y+1,x+1)叫做点P伴随点已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2A3,…,A n,…若点A1的坐标为(2,4),点A2019的坐标为()A.(﹣3,3)B.(﹣2,﹣2)C.(3,﹣1)D.(2,4)【分析】据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A2019的坐标即可.【解答】解:观察发现:A1(2,4),A2(﹣3,3),A3(﹣2,﹣2),A4(3,﹣1),A5(2,4),A6(﹣3,3)…∴依此类推,每4个点为一个循环组依次循环,∵2019÷4=504余3,∴点A2019的坐标与A3的坐标相同,为(﹣2,﹣2),故选:B.【点评】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点.2.已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是()A.(2,1)B.(2,3)C.(2,2)D.(1,2)【分析】根据点A、A′的坐标确定出平移规律,然后根据规律求解点B′的坐标即可.【解答】解:∵A(1,0)的对应点A′的坐标为(2,﹣1),∴平移规律为横坐标加1,纵坐标减1,∵点B(0,3)的对应点为B′,∴B′的坐标为(1,2).故选:D.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.3.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A(x1,y1),B(x2,y2),设点M为线段AB的中点,则点M的坐标为()应用:设线段CD的中点为点N,其坐标为(3,2),若端点C的坐标为(7,3),则端点D的坐标为()A.(﹣1,1)B.(﹣2,4)C.(﹣2,1)D.(﹣1,4)【分析】根据线段的中点坐标公式即可得到结论.【解答】解:设D(x,y),由中点坐标公式得:=3,=2,∴x=﹣1,y=1,∴D(﹣1,1),故选:A.【点评】此题考查坐标与图形性质,关键是根据线段的中点坐标公式解答.4.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为()A.(1,﹣2)B.(2,﹣1)C.(,﹣1)D.(3.0)【分析】若设M(x,y),构建方程组即可解决问题.【解答】解:设M(x,y),由“实际距离”的定义可知:点M只能在ECFG区域内,﹣1<x<5,﹣5<y<1,又∵M到A,B,C距离相等,∴|x﹣3|+|y﹣1|=|x﹣5|+|y+3|=|x+1|+|y+5|,①∴|x﹣3|+1﹣y=5﹣x+|y+3|=x+1+y+5,②要将|x﹣3|与|y+3|中绝对值去掉,需要判断x在3的左侧和右侧,以及y在﹣3的上侧还是下侧,将矩形ECFG分割为4部分,若要使M到A,B,C的距离相等,由图可知M只能在矩形AENK中,故x<3,y>﹣3,则方程可变为:3﹣x+1﹣y=y+5+x+1=5﹣x+3+y,解得,x=1,y=﹣2,则M(1,﹣2)故选:A.【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.5.如图,在平面直角坐标系中,A(﹣3,0),B(3,0),C(3,4),点P为任意一点,已知P A⊥PB,则线段PC的最大值为()A.3B.5C.8D.10【分析】根据直角三角形斜边上中线的性质,即可得到OP=AB=3,依据OC﹣OP≤CP≤OP+OC,即可得出当点P,O,C在同一直线上,且点P在CO延长线上时,CP的最大值为OP+OC的长.【解答】解:如图所示,连接OC,OP,PC,∵P A⊥PB,∴∠APB=90°,又∵AO=BO=3,∴Rt△ABP中,OP=AB=3,∵OC﹣OP≤CP≤OP+OC,∴当点P,O,C在同一直线上,且点P在CO延长线上时,CP的最大值为OP+OC的长,∴线段PC的最大值为OP+OC=3+5=8,故选:C.【点评】本题主要考查了坐标与图形性质,判断点P在以O为圆心,AB长为直径的圆上是解决问题的关键.6.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的纵坐标为()A.5B.6C.7D.8【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的纵坐标为6.故选:B.【点评】本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.7.如图,在平面直角坐标系中,将正整数按箭头所指的顺序排列,则正整数2019所在的点的坐标是()A.(45,7)B.(45,39)C.(44,6)D.(44,39)【分析】观察图的结构,发现所有奇数的平方数都在第1象限的y=1直线上.依此先确定2025的坐标为(45,1),再根据图的结构求得2019的坐标.【解答】解:观察图的结构,发现所有奇数的平方数都在第1象限的y=1直线上.12=1的坐标为(1,1),32=9的坐标为(3,1),52=25的坐标为(5,1),…452=2025的坐标为(45,1),图中横坐标为45的数共有45个数,∵2025﹣2019=6,∴2019的坐标为(45,7).故选:A.【点评】本题考查了点的坐标,找到所有奇数的平方数所在位置是解题的关键.8.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点C对应的点C1的坐标是()A.C1(3,2)B.C1(2,1)C.C1(2,3)D.C1(2,2)【分析】根据点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,据此根据平移的定义和性质解答可得.【解答】解:由点B(﹣4,1)的对应点B1坐标为(﹣4+5,1+1),即(1,2),∴点C(﹣2,1)对应的点C1的坐标为(﹣2+5,1+1),即(3,2),故选:A.【点评】本题主要考查坐标与图形的变化﹣平移,解题的关键是根据对应点的坐标得出平移的方向和距离及平移的定义和性质.二.填空题(共33小题)9.如图,在平面直角坐标系中,已知四个定点A(﹣3,0)、B(1,﹣1)、C(0,3)、D(﹣1,3),点P在四边形ABCD内,则到四边形四个顶点的距离的和P A+PB+PC+PD最小时的点P的坐标为(﹣,).【分析】设AC与BD交于F点,则由不等式的性质可得,|P A|+|PC|≥|AC|=|F A|+|FC|,|PB|+|PD|≥|BD|=|FB|+|FD|,可求最小值.【解答】解:如图,设AC与BD交于F点,则|P A|+|PC|≥|AC|=|F A|+|FC|,|PB|+|PD|≥|BD|=|FB|+|FD|,因此,当动点P与F点重合时,|P A|+|PB|+|PC|+|PD|≥|AC|+|BD|=,此时P的坐标为:(﹣,)故答案为:(﹣,)【点评】本题主要考查了轴对称问题,关键是根据不等式的性质在求解最值中的应用解答.10.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2019的横坐标为﹣()2018.【分析】先求出A1、A2、A3、A4、A5坐标,探究规律,序号除以4被整除的在y轴的负半轴上,余数是1在x轴的正半轴上,余数是2在y轴的正半轴上,余数是3在x轴的负半轴上,即可得出结果.【解答】解:∵A1(1,0),A2[0,()1],A3[﹣()2,0].A4[0,﹣()3],A5[()4,0]…,∴序号除以4被整除的在y轴的负半轴上,余数是1在x轴的正半轴上,余数是2在y 轴的正半轴上,余数是3在x轴的负半轴上,∵2019÷4=504…余数是3,∴A2019在x轴的负半轴上,横坐标为﹣()2018,故答案为:﹣()2018.【点评】本题考查了图形与坐标、规律型等知识,找出序号除以4被整除的在y轴的负半轴上,余数是1在x轴的正半轴上,余数是2在y轴的正半轴上,余数是3在x轴的负半轴上的规律是解题的关键.11.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2019的坐标为(﹣1008,0).【分析】根据图形得到规律:当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.然后确定出第2019个点的坐标即可.【解答】解:∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,A1(2,0),A2(1,﹣1),A3(0,0),A4(2,2),A5(4,0),A6(1,﹣3),A7(﹣2,0),A8(2,4),A9(6,﹣1),A10(1,﹣5),A11(﹣4,0),A12(2,6),…,由上可知,当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.∵2019÷4=504……3,∴点A2019在x轴负半轴上,横坐标是﹣(2019﹣3)÷2=﹣1008,纵坐标是0,∴A2019的坐标为(﹣1008,0).故答案为:(﹣1008,0).【点评】本题是对点的坐标变化规律的考查,找出“当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.”这一变化规律是解题的关键.12.如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA,OC分别在x轴,y 轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2019的坐标为(0,﹣21010).【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2019的坐标.【解答】解:∵正方形OABC边长为1,∴OB=,∵正方形OBB1C1是正方形OABC的对角线OB为边,∴OB1=2,∴B1点坐标为(2,0),同理可知OB2=2,B2点坐标为(2,﹣2),同理可知OB3=4,B3点坐标为(0,﹣4),B4点坐标为(﹣4,﹣4),B5点坐标为(﹣8,0),B6(﹣8,8),B7(0,16)B8(16,16),B9(32,0),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2019÷8=252…3,∴B2019的横坐标,与点B3的相同为0,横纵坐标都是负值,∴B2013的坐标为(0,﹣21010).故答案为:(0,﹣21010).【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,此题难度较大.13.如图,等边三角形ABC的边长为1,顶点B与原点O重合,点C在x轴的正半轴上,过点B作BA1⊥AC于点A1,过点作A1B1∥OA,交OC于点B1;过点B1作B1A2⊥AC于点A2,过点A2作A2B2∥OA,交OC于点B2;…,按着这个规律进行下去,点A n的坐标是(,).【分析】根据△ABC是等边三角形,得到AB=AC=BC=1,∠ABC=∠A=∠ACB=60°,解直角三角形得到A(,),C(1,0),根据等腰三角形的性质得到AA1=A1C,根据中点坐标公式得到A1(,),推出△A1B1C是等边三角形,得到A2是A1C的中点,求得A2(,),推出A n(,),即可得到结论.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC=1,∠ABC=∠A=∠ACB=60°,∴A(,),C(1,0),∵BA1⊥AC,∴AA1=A1C,∴A1(,),∵A1B1∥OA,∴∠A1B1C=∠ABC=60°,∴△A1B1C是等边三角形,∴A2是A1C的中点,∴A2(,),同理A3(,),…∴A n(,),故答案为:(,).【点评】本题考查了点的坐标,等边三角形的性质,关键是能根据求出的数据得出规律,题目比较好,但是有一定的难度.14.如图,直线l1经过点A(3,),过点A且垂直于l1的直线与x轴交于点B,与直线l2交于点C,且∠BOC=30°,则BC的长等于4.【分析】根据点A的坐标可以求得∠AOB和OA的长度,再根据锐角三角函数可以求得AC和AB的长,从而可以求得BC的长.【解答】解:∵点A(3,),∴tan∠AOB=,OA=,∴∠AOB=30°,∵AC⊥OA于点A,∠BOC=30°,∴∠OAC=90°,∠AOC=60°,∴tan∠AOB=,tan∠AOC=,即tan30°=,tan60°=,解得,AB=2,AC=6,∴BC=AC﹣AB=4,故答案为:4.【点评】本题考查坐标与图形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2019的坐标是(﹣21009,21009).【分析】利用等腰直角三角形的性质可得出部分点A n的坐标,根据点的坐标的变化可得出变化规律“点A8n+3的坐标为(﹣24n+1,24n+1)(n为自然数)”,结合2019=252×8+3即可得出点A2019的坐标.【解答】解:由等腰直角三角形的性质,可知:A1(1,1),A2(0,2),A3(﹣2,2),A4(0,﹣4),A5(﹣4,﹣4),A6(0,﹣8),A7(8,﹣8),A8(16,0),A9(16,16),A10(0,32),A11(﹣32,32),…,∴点A8n+3的坐标为(﹣24n+1,24n+1)(n为自然数).∵2019=252×8+3,∴点A2019的坐标为(﹣24×252+1,24×252+1),即(﹣21009,21009),故答案为:(﹣21009,21009).【点评】本题考查了等腰直角三角形以及规律型:点的坐标,根据点的坐标的变化找出变化规律“点A8n+3的坐标为(﹣24n+1,24n+1)(n为自然数)”是解题的关键.16.如图,在平面直角坐标系中,点M、A、B、N依次在x轴上,点M、A的坐标分别是(1,0)、(2,0).以点A为圆心,AM长为半径画弧,再以点B为圆心,BN长为半径画弧,两弧交于点C,测得∠MAC=120°,∠CBN=150°.则点N的坐标是(4+,0).【分析】根据含30°的直角三角形的性质和坐标特点解答即可.【解答】解:∵MAC=120°,∴∠CAB=60°,∵∠CBN=150°,∴∠ABC=30°,∴∠C=90°,∵MA=AC=2﹣1=1,∴AB=2AC=2,∴BC=,∴ON=1+1+2+=4+,∴点N的坐标为(4+,0),故答案为:(4+,0),【点评】此题考查坐标与图形,关键是根据含30°的直角三角形的性质和坐标特点解答.17.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是(673,0).【分析】由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,据此可解.【解答】解:由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,∵2019÷3=673,∴P2019 (673,0)则点P2019的坐标是(673,0).故答案为(673,0).【点评】本题属于平面直角坐标系中找点的规律问题,找到某种循环规律之后,可以得解.本题难度中等偏上.18.如图,点P是第一象限内一点,OP=4,经过点P的直线l分别与x轴、y轴的正半轴交于点A、点B,若OP平分∠AOB,则=.【分析】过点P作PD⊥向x轴于D,PE⊥y轴于E,根据角平分线的性质,角平分线上的点到这个角两边的距离相等,求出PD和PE,再根据三角形OAB的面积=三角形OAP 的面积+三角形OPB的面积,此题便可求解【解答】解:如图,过点P作PD⊥向x轴于D,PE⊥y轴于E,则∠PEO=∠PDO=90°∵若OP平分∠AOB∴PD=PE,∵∠AOB=90°,∴∠PEO=∠PDO=∠AOB=90°,∴四边形EPDO是矩形,又PD=PE∴矩形EPDO为正方形,∵OP=4,∴PD=PE=,∵三角形OAB的面积=三角形OAP的面积+三角形OPB的面积,∴,∴,。

专题10 实数的运算-2020-2021学年七年级数学下册常考题专练(人教版)(原卷版)

专题10 实数的运算-2020-2021学年七年级数学下册常考题专练(人教版)(原卷版)

专题10 实数的运算★ 知识归纳1.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。

我们已经学习过的非负数有如下三种形式:(1)任何一个实数的绝对值是非负数,即||≥0;(2)任何一个实数的平方是非负数,即≥0;(3().非负数具有以下性质:(1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.2.实数的运算:数的相反数是-;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0. 有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.3.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数 大; 法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.★ 实操夯实一.选择题(共12小题)a a a 2a 0≥0a ≥a a1.在3,0,﹣2,﹣四个数中,最小的数是()A.3B.0C.﹣2D.﹣2.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.2与(﹣)2D.|﹣|与3.定义一个新运算,若i1=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,i8=1,…,则i2020=()A.﹣i B.i C.﹣1D.14.在实数、3.1415、π、、、2.123122312223……(1和3之间的2逐次加1个)中,无理数的个数为()A.2个B.3个C.4个D.5个5.已知下列结论:①在数轴上能表示无理数,但不能表示无理数π;②两个无理数的和还是无理数;③实数与数轴上的点一一对应;④无理数是无限小数,其中正确的结论是()A.①②B.②③C.③④D.①③④6.下列说法中,正确的是()A.立方根等于本身的数只有0和1B.1的平方根等于1的立方根C.3<<4D.面积为6的正方形的边长是7.设n为正整数,且n<<n+1,则n的值为()A.7B.8C.9D.108.对于任意的实数m,n,定义运算“⊗”,规定m⊗n=,例如:3⊗2=32+2=11,2⊗3=22﹣3=1,计算(1⊗2)⊗(2⊗1)的结果为()A.﹣4B.0C.6D.129.如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC的中点,则点C所表示的数为()A.B.1﹣C.D.2﹣10.有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示.其中正确的说法的个数是()A.1B.2C.3D.411.估计2+的值在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间12.已知a,b为两个连续的整数,且a<<b,则a+b的值等于()A.7B.9C.11D.19二.填空题(共5小题)13.实数a、b在数轴上所对应的点如图所示,则|﹣b|+|a+|+的值.14.对于实数a、b,定义新运算“⊗”:a⊗b=a2﹣ab,如4⊗2=42﹣4×2=8.若x⊗4=﹣4,则实数x的值是.15.若[x]表示实数x的整数部分,例如:[3.5]=3,则[]=.16.下列说法:①无理数就是开方开不尽的数;②满足﹣<x<的x的整数有4个;③﹣3是的一个平方根;④不带根号的数都是有理数;⑤不是有限小数的不是有理数;⑥对于任意实数a,都有=a.其中正确的序号是.17.对于两个不相等的实数a,b,我们规定符号Min{a,b}表示a,b中的较小的值,如Min{2,4}=2,按照这个规定,方程Min(其中x≠0)的解为.三.解答题(共11小题)18.计算:(1)+|1﹣|;(2).19.(1);(2)计算.20.计算:(1)﹣12+﹣(﹣2)×(2)(+1)+|﹣2|21.观察图,每个小正方形的边均为1,可以得到每个小正方形的面积为1.(1)图中阴影部分的面积是;阴影部分正方形的边长是.(2)估计边长的值在整数和之间.(3)在数轴上作出阴影部分正方形边长的对应点(要求保留作图痕迹).22.计算下列各题:(1)(﹣)2×+×﹣(﹣5)3×;(2)(+3﹣)(﹣3﹣).23.已知x=,y=.(1)求x2+xy+y2.(2)若x的小数部分为a,y的整数部分为b,求ax+by的平方根.24.已知5a+b的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分.(1)求3a﹣b+c的平方根;(2)求关于x,y的方程ax+by+c=23所有非负整数解.25.阅读下面的文字,解答问题,例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)的整数部分是,小数部分是.(2)已知:9﹣小数部分是m,9+小数部分是n,且(x+1)2=m+n,请求出满足条件的x的值26.将下列各数填入相应的集合内.﹣7,0.32,,0,,,,π,0.1010010001…①有理数集合{ …}②无理数集合{ …}③负实数集合{ …}.27.如图,长方形ABCD的面积为300cm2,长和宽的比为3:2.在此长方形内沿着边的方向能否并排裁出两个面积均为147cm2的圆(π取3),请通过计算说明理由.28.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)的整数部分是,小数部分是.(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值;(3)已知:10+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.。

专题20 第二阶段检测卷(第八~十章)-2020-2021学年度人教版七年级数学下册(解析版)

专题20  第二阶段检测卷(第八~十章)-2020-2021学年度人教版七年级数学下册(解析版)

2020-2021学年度人教版七年级数学下册新考向多视角同步训练第二阶段检测卷(第八~十章)[时间:90分钟 满分:120分]一、选择题(本大题共8小题,每小题3分,24分在每小题的4个选项中,只有一个选项是符合题目要求的)1.(2020江苏连云港二中月考,1,★☆☆)若方程mx -2y =3x+4是关于x 、y 的二元一次方程,则m 的取值范围是( ) A.m≠0B.m≠3C.m≠-3D.m≠22.(2020河北邢台一中月考,1,★☆☆)下列调查中,适合采用全面调查方式的是( ) A.了解一批同种型号电池的使用寿命 B.电视台为了解某栏目的收视率C.了解某水库的水质是否达标D.了解某班40名学生“100米跑”的成绩3.(2020四川雅安中考,2,★☆☆)不等式组⎩⎨⎧x ≥-2x<1的解集在数轴上表示正确的是( )( )4.(2020河北唐山实验中学月考,3,★☆☆)方程组⎩⎨⎧x+y =5x -y =1 的解是( )A. ⎩⎨⎧x =4y =1B.⎩⎨⎧x =1y =4C.⎩⎨⎧x =3y =2D.⎩⎨⎧x =2y =35.(2020湖南湘潭中考改编,7,★☆☆)为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业从选出的以下五个内容中任选部分内容进行手抄报的制作: A.“北斗卫星”;B.“5G 时代”;C.“智轨快运系统”;D.“东风快递”;E.“高铁”统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G 时代”的频率是( ) A.0.25B.0.3C.25D.306.(2020四川宜宾期末,5,★☆☆)甲、乙两位同学在解关于x 、y 的方程组⎩⎨⎧bx -y =22x+ay =1 时,甲同学看错a 得到方程组的解为⎩⎨⎧x =3y =4 ,乙同学看错b 得到方程组的解为⎩⎨⎧x =2y =-3,则x+y 的值为 ( )A.0B.14 C.34 D.547.(2020江苏扬州仪征模拟,6,★★☆)关于x 的不等式组⎩⎨⎧x -m>07-2x>1的整数解只有4个,则m 的取值范围是( )A.-2<m≤-1B.-2≤m≤-1C.-2≤m<-1D.-3<m≤-28.(2020广东梅州三中月考,6,★★☆)某种出租车的收费标准:起步价8元(距离不超过3km,都付8元车费),超过3km 以后,每增加1km,加收1.2元(不足1km 按1km 计).若某人乘这种出租车从甲地到乙地经过的路程是x km, 共付车费14元,那么x 的最大值是( ) A.6B.7C.8D.9二、填空题(本大题共8小题,每小题3分,共24分)9.(2020湖北黄冈东坡中学月考,10,★☆☆)将二元一次方程-2x+y =3改写成用含x 的代数式表示y 的形式为________________。

2020-2021学年度第二学期七年级第二次月考数学试卷及答案

2020-2021学年度第二学期七年级第二次月考数学试卷及答案

2020-2021年七年级第二次质量检测数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.下列方程中,是二元一次方程的是(▲)A.B.C.D.2.下列长度的三条线段,不能首尾依次相接构成三角形的是(▲)A.1cm,2cm,3cm B.2cm,3cm,4cm C.3cm,4cm,5cm D.4cm,5cm,6cm3.下列计算正确的是(▲)A.B.C.D.4.下列等式从左到右的变形属于因式分解的是(▲)A.B.C.D.5.下列各图中,正确画出△ABC中AC边上的高的是(▲)A.B.C.D.6.如图,由下列已知条件推出的结论中,正确的是(▲)A.由∠1=∠5,可以推出AD∥BC.B.由∠2=∠6,可以推出AD∥BC.C.由∠1+∠4=90°,可以推出AB∥CD.D.由∠ABC+∠BCD=180°,可以推出AD∥BC.7.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两。

问马、牛各价几何?”设马每匹两,牛每头两,根据题意可列方程组为(▲)A.B.C.D.8.计算结果的个位数字是(▲)A.2B.4C.8D.6二、填空题(本大题共10小题,每小题3分,共30分)9.计算:▲.10.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它的平均直径为0.00000008,其中,0.00000008用科学记数法可以表示为▲.11.分解因式:▲.12.若,,则▲.13.若代数式是一个完全平方式,则的值为▲.14.在△ABC中,∠A=2∠B=3∠C,则△ABC为▲(填“锐角”、“直角”或“钝角”)三角形.15.已知的展开式中不含项和项,则▲.16.学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1800元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有▲种.17.若,则的值为▲.18.如图,在△ABC中,∠A=30°,点E为AC边上一点。

第八章 二元一次方程组实际应用 提优专练(二)2020-2021学年 人教版七年级数学下册

第八章 二元一次方程组实际应用 提优专练(二)2020-2021学年 人教版七年级数学下册

七年级数学下册第8章二元一次方程组实际应用提优专练(二)1.一种皮蛋有大小筐两种包装,3大筐、4小筐共装130个,2大筐、3小筐共装92个,大筐与小筐每筐各装多少个?2.中秋节来临之际,香港美心月饼公司推出了“美心七星伴月月饼”礼盒,由一个三黄白莲蓉的明月月饼和七个明星小月饼组成,明月月饼口味不可选择,但明星小月饼的口味可以自由搭配.(1)现有A、B两种礼盒的“美心七星伴月月饼”,八月份月饼上市,经经销商初步定价,买7个A礼盒的钱刚好可以购买6个B礼盒;购买3个A礼盒的花费比购买2个B礼盒多200元.求A、B两种礼盒的售价.(2)在第一问的基础上,九月份,该经销商将两种礼盒的月饼进行促销:A礼盒每盒售价打八折销售,B礼盒每盒售价直接降价m元,结果九月份售卖结束,A礼盒还剩余了,B礼盒全部售卖完,但卖出去的B礼盒的数量为A礼盒总数量的,经销商决定将剩余的A礼盒赠送给自己的员工作为福利;已知每盒A礼盒成本价为200元,每盒B礼盒的成本价为240,九月份销售结束,该经销商的利润率为20%,求m的值.3.某旅馆的客房有三人间和两人间两种.三人间每人每天80元,两人间每人每天100元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个房间正好住满,一天共花去住宿费4520元,两种客房各租住了多少间?4.巴川中学校初2023级开展校园艺术节系列活动,校学生会代表小亮到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小亮的对话图片,解决下面两个问题:(1)求小亮原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,钢笔和签字笔合计288元.问小亮购买了钢笔和签字笔各多少支?5.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”.如图1的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.(1)图2是显示部分代数式的“等和格”,可得a=.(用含b的代数式表示);(2)图3是显示部分代数式的“等和格”,可得a=.b=.6.为了防治“新型冠状病毒”,我市某小区准备用5400元购买医用口罩和洗手液发放给本小区住户.若医用口罩买800个,洗手液买120瓶,则钱还缺200元;若医用口罩买1200个,洗手液买80瓶,则钱恰好用完.(1)求医用口罩和洗手液的单价;(2)由于实际需要,除购买医用口罩和洗手液外,还需增加购买单价为6元的N95口罩.若需购买医用口罩,N95口罩共1200个,其中N95口罩不超过200个,钱恰好全部用完,则有几种购买方案,请列方程计算.7.我国古代数学著作《九章算术》中有“盈不足”问题:“今有人共买鸡,人出九,盈十一;人出六,不足十六,问人数几何?”其大意是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”请解决该问题.8.我国古代数学著作《九章算术》记载:“今有善田一亩,价三百;恶田一亩,价五十.今并买顷,价钱一万,问善田恶田各几何?”其译文是“好田300钱一亩,坏田50钱一亩,合买好田、坏田100亩,共需10000钱,问好田、坏田各买了多少亩?9.李三水果店在批发市场用2220元购进甲、乙两种水果共100千克进行零售.已知甲种水果购进价为15元/千克,零售价为20元/千克,乙种水果购进价为24元/千克,零售价为33元/千克.请问该水果店销售这两种水果获得的毛利润是多少元?(毛利润=销售金额﹣进货金额)10.在某工程建设中,有甲、乙两种卡车参加运土,3辆甲种卡车与2辆乙种卡车一次共可运土48立方米,2辆甲种卡车与3辆乙种卡车一次共可运土52立方米,4辆甲种卡车与1辆乙种卡车一次共可运土多少立方米?11.被誉为“神秘的东方女儿国”“人类母系氏族领地的活化石”的国家级风景名胜区泸沽湖,其湖光山色如诗如画、如梦如幻、旖旎静谧.实验中学组织八年级部分学生乘车参观,若用1辆小客车和2辆大客车,则每次可运送学生115人;若用3辆小客车和1辆大客车,则每次可运送学生120人(注意:每辆小客车和大客车都坐满).问每辆小客车和大客车各能运送学生多少人?12.某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,结账时老板对小明说:“如果你再多买一个,就可以全部打八五折,花费比现在还省14元”,于是小明决定再多买一个.(1)求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予七五折优惠,合计255元.问小明购买了钢笔和签字笔各多少支?13.某制纸厂生产A型、B型两种不同规格的纸,需用甲、乙两种不同的原料.若甲原料成本为0.5元/m3,乙原料成本为1元/kg,其它相关数据如下表所示:甲原料/m3乙原料/kg售价/元每百张A型纸 1 2 4每百张B型纸 1.2 3 5(1)若生产这两种纸需用甲原料108m3、乙原料240kg,则这两种规格的纸各多少百张?(2)若该厂生产A型纸a百张,则生产这种A型纸的利润是多少元(用含a的代数式表示)?(利润=售价﹣成本)(3)该厂发现,当制纸总量超过10000百张时,需额外支出8800元的设备维护费,现该厂接到一笔订单,要求生产A型纸的数量是B型纸数量的2倍,若该厂希望获得13200元的利润,则有哪几种生产方案?14.某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)15.在2月份“抗疫”期间,某药店销售A、B两种型号的口罩,已知销售800只A型和450只B型的利润为210元,销售400只A型和600只B型的利润为180元.求每只A型口罩和B型口罩的销售利润.参考答案1.解:设大筐每筐装x个,小筐每筐装y个,依题意得:,解得:.答:大筐每筐装22个,小筐每筐装16个.2.解:(1)设A礼盒的售价为x元,B礼盒的售价为y元,依题意得:,解得:.答:A礼盒的售价为300元,B礼盒的售价为350元.(2)设共卖出a个B礼盒,则共有a个A礼盒,依题意得:300×0.8×a(1﹣)+(350﹣m)a﹣200×a﹣240a=(200×a﹣240a)×20%,整理得:480+350﹣m=512+288,解得:m=30.答:m的值为30.3.解:设三人间租住了x间,两人间租住了y间,依题意,得:,解得:.答:三人间租住了8间,两人间租住了13间.4.解:(1)设小亮原计划购买文具袋x个,依题意,得:10x﹣10×0.85(x+1)=11,解得:x=13.答:小亮原计划购买文具袋13个.(2)设小亮购买了钢笔m支,签字笔n支,依题意,得:,解得:.答:小亮购买了钢笔30支,签字笔20支.5.解:(1)由题意得:﹣2a+3a=﹣2b+2a,则﹣a=﹣2b,故a=2b.故答案为:a=2b;(2)由题意得:﹣2a+2a=b﹣1+(﹣2b),解得b=﹣1,由(1)得a=2b,则a=﹣2.故答案为:﹣2,﹣1.6.解:(1)设医用口罩的单价为x元/个,洗手液的单价为y元/瓶,根据题意得:,解得:,答:医用口罩的单价为2.5 元/个,洗手液的单价为30元/瓶;(2)设增加购买N95口罩a个,洗手液b瓶,则医用口罩(1200﹣a)个,根据题意得:6a+2.5(1200﹣a)+30b=5400,化简,得:7a+60b=4800,∴b=80﹣,∵a,b都为正整数,∴a为60的倍数,且a≤200,∴,,,∴有三种购买方案.7.解:设共有x个人,鸡值y钱,依题意,得:,解得:.答:共有9人.8.解:设好田买了x亩,坏田买了y亩,依题意,得:,解得:.答:好田买了20亩,坏田买了80亩.9.解:设该水果店购进x千克甲种水果,y千克乙种水果,依题意,得:,解得:,∴20x+33y﹣2220=20×20+33×80﹣2220=820.答:该水果店销售这两种水果获得的毛利润是820元.10.解:设1辆甲种卡车一次可运土x立方米,1辆乙种卡车一次可运土y立方米,依题意,得:,解得:,∴4x+y=4×8+12=44.答:4辆甲种卡车与1辆乙种卡车一次共可运土44立方米.11.解:设每辆小客车能运送学生x人,每辆大客车能运送学生y人,依题意,得:,解得:.答:每辆小客车能运送学生25人,每辆大客车能运送学生45人.12.解:(1)设小明原计划购买文具袋x个,依题意,得:10x﹣85%×10(x+1)=14,解得:x=15.答:小明原计划购买文具袋15个.(2)设小明购买了钢笔m支,签字笔n支,依题意,得:,解得:.答:小明购买了钢笔20支,签字笔30支.13.解:(1)设生产A型纸x百张,B型纸y百张,由题意得,,解得,,答:生产A型纸60百张,B型纸40百张;(2)4a﹣(0.5×a×1+1×a×2)=1.5a,答:生产这种A型纸的利润是1.5a元;(3)设生产B型纸m百张,则生产A型纸2m百张,由题意得,每百张A型纸的利润为4×2m﹣(0.5×2m×1+1×2m×2)=3m,每百张B型纸的利润为5m﹣(1.2×m×0.5+3×m×1)=1.4m,①当m+2m≤10000时,有3m+1.4m=13200,解得m=3000,则2m=6000,即生产A型纸6000百张,则生产B型纸3000百张;②当m+2m>10000时,有3m+1.4m=13200+8800,解得m=5000,则2m=10000,即生产A型纸10000百张,则生产B型纸5000百张;因此有两种生产方案,A型纸6000百张,B型纸3000百张或A型纸10000百张,B 型纸5000百张.14.解:(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,依题意,得:,解得:.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)单独请甲组需要的费用为300×12=3600(元);单独请乙组需要的费用为140×24=3360(元).∵3600>3360,∴单独请乙组,商店所付费用较少.(3)单独请甲组施工,需费用3600元,少盈利200×12=2400(元),相当于损失6000元;单独请乙组施工,需费用3360元,少盈利200×24=4800(元),相当于损失8160元;请甲、乙两组合做施工,需费用3520元,少盈利200×8=1600(元),相当于损失5120元.∵5120<6000<8160,∴甲、乙合做损失费用最少.答:安排甲、乙两个装修组同时施工更有利于商店.15.解:设每只A型口罩销售利润为a元,每只B型口罩销售利润为b元,根据题意得:,解得,答:每只A型口罩销售利润为0.15元,每只B型口罩销售利润为0.2元.。

名师学案七年级下册数学电子版2021

名师学案七年级下册数学电子版2021

名师学案七年级下册数学电子版20215.1 相交线5.1.1 相交线5.1.2 垂线5.1.2 垂线-2020-2021学年七年级下册初一数学【名师学案】5.1.3 同位角、内错角、同旁内角5.1.3 同位角、内错角、同旁内角-2020-2021学年七年级下册初一数学【名师学案】5.2 平行线及其判定5.2.1 平行线5.2.1 平行线-2020-2021学年七年级下册初一数学【名师学案】人教版5.2.2 平行线的判定5.2.2 平行线的判定-2020-2021学年七年级下册初一数学【名师学案】人教版5.3 平行线的性质5.3.1 平行线的性质5.3.1 平行线的性质-2020-2021学年七年级下册初一数学【名师学案】人教版5.3.2 命题、定理、证明5.3.2 命题、定理、证明-2020-2021学年七年级下册初一数学【名师学案】人教版5.4 平移5.4 平移-2020-2021学年七年级下册初一数学【名师学案】人教版本章复习与测试进阶测评(一) [5. 1~5.2]-2020-2021学年七年级下册初一数学【名师学案】人教版进阶测评(二) [5. 3~5.4]-2020-2021学年七年级下册初一数学【名师学案】人教版第六章实数6.1 平方根6.1.1 算术平方根-2020-2021学年七年级下册初一数学【名师学案】人教版6.1.2 平方根-2020-2021学年七年级下册初一数学【名师学案】人教版进阶测评(三) [6. 1~6.2]-2020-2021学年七年级下册初一数学【名师学案】人教版6.2 立方根6.2 立方根-2020-2021学年七年级下册初一数学【名师学案】人教版6.3 实数6.3.1 实数的概念-2020-2021学年七年级下册初一数学【名师学案】人教版6.3.2 实数的运算-2020-2021学年七年级下册初一数学【名师学案】人教版本章复习与测试第6章学业水平测评卷-2020-2021学年七年级下册初一数学【名师学案】人教版期末复习(2)实数-2020-2021学年七年级下册初一数学【名师学案】人教版备考集训(二) 实数-2020-2021学年七年级下册初一数学【名师学案】人教版第6章变式专题算术平方根与面积问题-2020-2021学年七年级下册初一数学【名师学案】人教版第6章易错(混)专題开方运算及无理数判断中的易错题-2020-2021学年七年级下册初一数学【名师学案】人教版第6章核心素养整合与提升-2020-2021学年七年级下册初一数学【名师学案】人教版第七章平面直角坐标系7.1 平面直角坐标系7.1.1 有序数对7.1.1 有序数对-2020-2021学年七年级下册初一数学【名师学案】人教版7.1.2 平面直角坐标系7.1.2 平面直角坐标系-2020-2021学年七年级下册初一数学【名师学案】人教版7.2 坐标方法的简单应用7.2.1 用坐标表示地理位置7.2.1 用坐标表示地理位置-2020-2021学年七年级下册初一数学【名师学案】人教版7.2.2 用坐标表示平移7.2.2 用坐标表示平移-2020-2021学年七年级下册初一数学【名师学案】人教版本章复习与测试第7章学业水平测评卷-2020-2021学年七年级下册初一数学【名师学案】人教版期末复习(3)平面直角坐标系-2020-2021学年七年级下册初一数学【名师学案】人教版备考集训(三) 平面直角坐标系-2020-2021学年七年级下册初一数学【名师学案】人教版第7章方法专题平面直角坐标系中与几何圜形的面积有关的计算-2020-2021学年七年级下册初一数学【名师学案】人教版第7章拓展专题平面直角坐标系中点的坐标规律探究-2020-2021学年七年级下册初一数学【名师学案】人教版第7章核心素养整合与提升-2020-2021学年七年级下册初一数学【名师学案】人教版期末专题复习(4)与平面直角坐标系有关的问题-2020-2021学年七年级下册初一数学【名师学案】人教版第八章二元一次方程组8.1 二元一次方程组8.1 二元一次方程组-2020-2021学年七年级下册初一数学【名师学案】人教版进阶测评(四) [8. 1~8.3]-2020-2021学年七年级下册初一数学【名师学案】人教版8.2 消元——解二元一次方程组8.2.1 用代入消元法解二元一次方程组-2020-2021学年七年级下册初一数学【名师学案】人教版8.2.2 用加减消元法解二元一次方程组-2020-2021学年七年级下册初一数学【名师学案】人教版8.3 实际问题与二元一次方程组8.3.1 实际问题与二元一次方程组(一)-2020-2021学年七年级下册初一数学【名师学案】人教版8.3.2 实际问题与二元一次方程组(二)-2020-2021学年七年级下册初一数学【名师学案】人教版*8.4 三元一次方程组的解法8.4 三元一次方程组的解法-2020-2021学年七年级下册初一数学【名师学案】人教版本章复习与测试期末复习(4)二元一次方程组-2020-2021学年七年级下册初一数学【名师学案】人教版第8章学业水平测评卷-2020-2021学年七年级下册初一数学【名师学案】人教版【免费】第8章变式专题行程问题-2020-2021学年七年级下册初一数学【名师学案】人教版第8章方法专题解含参数的二元一次方程组-2020-2021学年七年级下册初一数学【名师学案】人教版第8章基础专题二元一次方程组的解法-2020-2021学年七年级下册初一数学【名师学案】人教版第8章突破专题二元一次方程组的运用-2020-2021学年七年级下册初一数学【名师学案】人教版第8章核心素养整合与提升-2020-2021学年七年级下册初一数学【名师学案】人教版备考集训(四) 二元一次方程组-2020-2021学年七年级下册初一数学【名师学案】人教版第九章不等式与不等式组9.1 不等式9.1.1 不等式及其解集9.1.1 不等式及其解集-2020-2021学年七年级下册初一数学【名师学案】人教版9.1.2 等式的性质9.1.2 不等式的性质-2020-2021学年七年级下册初一数学【名师学案】人教版9.2 一元一次不等式9.2.1 一元一次不等式的解法-2020-2021学年七年级下册初一数学【名师学案】人教版9.2.2 一元一次不等式的应用-2020-2021学年七年级下册初一数学【名师学案】人教版9.3 一元一次不等式组9.3 一元一次不等式组-2020-2021学年七年级下册初一数学【名师学案】人教版本章复习与测试第9章方法专题不等式(组)与参数-2020-2021学年七年级下册初一数学【名师学案】人教版期末复习(5)不等式与不等式组-2020-2021学年七年级下册初一数学【名师学案】人教版第9章学业水平测评卷-2020-2021学年七年级下册初一数学【名师学案】人教版第9章核心素养整合与提升-2020-2021学年七年级下册初一数学【名师学案】人教版第9章基础专题一元一次不等式(组)的解法-2020-2021学年七年级下册初一数学【名师学案】人教版备考集训(五) 不等式与不等式组-2020-2021学年七年级下册初一数学【名师学案】人教版第十章数据的收集、整理与描述10.1 统计调查10.1.1 全面调查-2020-2021学年七年级下册初一数学【名师学案】人教版10.1.2 抽样调查-2020-2021学年七年级下册初一数学【名师学案】人教版10.2 直方图10.2 直方图-2020-2021学年七年级下册初一数学【名师学案】人教版103 课题学习从数据谈节水10.3 课题学习从数据谈节水-2020-2021学年七年级下册初一数学【名师学案】人教版本章复习与测试备考集训(六) 数据的收集、整理与描述-2020-2021学年七年级下册初一数学【名师学案】人教版第10章基础专题从图表中获取信息-2020-2021学年七年级下册初一数学【名师学案】人教版期末复习(6)数据的收集、整理与描述-2020-2021学年七年级下册初一数学【名师学案】人教版第10章核心素养整合与提升-2020-2021学年七年级下册初一数学【名师学案】人教版第10章学业水平测评卷-2020-2021学年七年级下册初一数学【名师学案】人教版综合复习与测试七年级第一次月考试题-2020-2021学年七年级下册初一数学【名师学案】人教版七年级第二次月考试题-2020-2021学年七年级下册初一数学【名师学案】人教版期末专题复习(1)平行线的性质与判定的应用-2020-2021学年七年级下册初一数学【名师学案】人教版期中学业水平测评卷-2020-2021学年七年级下册初一数学【名师学案】人教版期末专题复习(2)拐点问题-2020-2021学年七年级下册初一数学【名师学案】人教版期末专题复习(3)方程组与不等式(组)的应用-2020-2021学年七年级下册初一数学【名师学案】人教版。

2020-2021学年江苏省广陵区七年级(下)第二次段考数学试卷

2020-2021学年江苏省广陵区七年级(下)第二次段考数学试卷

2020-2021学年江苏省广陵区七年级(下)第二次段考数学试卷一.单选题(共8题,每题3分,共24分)1.计算:2a(5a﹣3b)=()A.10a﹣6ab B.10a2﹣6ab C.10a2﹣5ab D.7a2﹣6ab2.下列方程是二元一次方程的是()A.x+y=2B.xy=3C.x2﹣2x=1D.3.如果一个正多边形的一个内角与一个外角的度数之比是7:2,那么这个正多边形的边数是()A.11B.10C.9D.84.若三角形两边长分别是4、5,则第三边c的范围是()A.1<c<9B.9<c<14C.10<c<18D.无法确定5.在下列多项式的乘法中,可以用平方差公式计算的是()A.(2x+y)(2y﹣x)B.(x+1)(﹣x﹣1)C.(3x﹣y)(3x+y)D.(x﹣y)(﹣x+y)6.已知关于x、y的方程组的解满足x+y=﹣1,则a的值为()A.1B.2C.3D.47.如图,是关于x的不等式2x﹣m<﹣1的解集,则m的值为()A.m≤﹣2B.m≤﹣1C.m=﹣2D.m=﹣18.对于一个数x,我们用(x]表示小于x的最大整数,例如:(2.6]=2,(﹣3]=﹣4,(10]=9,如果(x]=﹣3,则x的取值范围为()A.﹣3<﹣x<﹣2B.﹣3≤x<﹣2C.﹣3<x≤﹣2D.﹣3≤x≤﹣2二.填空题(共10题,每题3分,共30分)9.若a m=2,a n=3,则a m﹣n的值为.10.当k=时,关于x、y的多项式x2+kxy﹣2xy+6中不含xy项.11.已知y=x﹣3,则代数式x2﹣2xy+y2的值为.12.光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面AB与水杯下沿CD平行,光线EF从水中射向空气时发生折射,光线变成FH,点G在射线EF上,已知∠HFB=20°,∠FED=45°,则∠GFH=°.13.如图所示,点A,B,P在正方形网格的格点(水平线与垂直线的交点)处,则∠PAB+∠PBA的度数等于.14.某文具店有5元一支和4元一支的钢笔,王老师带48元去买钢笔,钱正好全部用完,共有种购买方案.15.不等式4(x﹣1)<3x﹣2的正整数解为.16.已知x+y=5,xy=6,求x2+y2=.17.如果关于x的不等式组无解,那么m的取值范围是.18.若不等式a≤x≤a+1中每一个x的值,都不是不等式1<x<3的解,则a的取值范围是.三.解答题(共10小题,共96分)19.解方程组:(1)(2)20.解不等式:3(x+1)≤5x+7,并把它的解集在数轴上表示出来.21.解一元一次不等式组,并写出它的所有非负整数解.22.分解因式:(1)x2﹣16;(2)﹣3x2+6xy﹣3y2.23.如图,∠1=∠BCE,∠2+∠3=180°.(1)判断AC与EF的位置关系,并说明理由;(2)若CA平分∠BCE,EF⊥AB于F,∠1=72°,求∠BAD的度数.24.若是二元一次方程组的解,求(a+3b)(5a﹣b)的值.25.已知关于x、y的二元一次方程组(1)若方程组的解满足x﹣y=6,求m的值;(2)若方程组的解满足x<﹣y,求m的取值范围.26.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)a b产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多2万元,购买2台甲型机器比购买3台乙型机器少6万元.(1)a=,b=.(2)若该公司购买新机器的资金不超过110万元,请问该公司有几种购买方案?(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月.若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.27.先阅读短文,然后回答短文后面所给出的问题:对于三个数a、b、c中,我们给出符号来表示其中最大(小)的数,规定min{a,b,c}表示这三个数中最小的数,max{a,b,c}表示这三个数中最大的数.例如:min{﹣1,2,3}=﹣1,max{﹣1,2,3}=3;min{﹣1,2,a}=.(1)min{﹣2019,﹣2020,﹣2021}=;max{2,x2+2,2x}=;(2)若max{2,x+1,2x}=2x,求x的取值范围;(3)若min{4,2x+4,4﹣2x}=max{2,x+1,2x},求x的值.28.如图①,在四边形ABCD中,∠A=x°,∠C=y°.(1)∠ABC+∠ADC=°(用含x,y的代数式表示);(2)BE、DF分别为∠ABC、∠ADC的外角平分线,①当x=y时,BE与DF的位置关系是;②当y=2x时,若BE与DF交于点P,且∠DPB=10°,求y的值.(3)如图②,∠ABC的平分线与∠ADC的外角平分线交于点Q,则∠Q=(用含x,y的代数式表示).参考答案一.单选题(共8题,每题3分,共24分)1.计算:2a(5a﹣3b)=()A.10a﹣6ab B.10a2﹣6ab C.10a2﹣5ab D.7a2﹣6ab【分析】单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.依此即可求解.解:2a(5a﹣3b)=10a2﹣6ab.故选:B.2.下列方程是二元一次方程的是()A.x+y=2B.xy=3C.x2﹣2x=1D.【分析】根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.解:A.x+y=2是二元一次方程,故本选项符合题意;B.xy=3是二元二次方程,故本选项不符合题意;C.x2﹣2x=1是一元二次方程,故本选项不符合题意;D.=x﹣2是分式方程,故本选项不符合题意;故选:A.3.如果一个正多边形的一个内角与一个外角的度数之比是7:2,那么这个正多边形的边数是()A.11B.10C.9D.8【分析】设这个正多边形的边数为n,由“如果一个正多边形的一个内角与一个外角的度数之比是7:2”,得出此多边形的外角和为(n﹣2)×180°,又根据多边形的外角和为360°,由此列出方程,解方程即可.解:设这个正多边形的边数为n,由题意得:(n﹣2)×180=360,解得:n=9,故选:C.4.若三角形两边长分别是4、5,则第三边c的范围是()A.1<c<9B.9<c<14C.10<c<18D.无法确定【分析】直接利用三角形的三边关系进而得出答案.解:∵三角形两边长分别是4、5,∴第三边c的范围是:5﹣4<c<4+5,则1<c<9.故选:A.5.在下列多项式的乘法中,可以用平方差公式计算的是()A.(2x+y)(2y﹣x)B.(x+1)(﹣x﹣1)C.(3x﹣y)(3x+y)D.(x﹣y)(﹣x+y)【分析】平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,由此进行判断即可.解:A、(2x+y)(2y﹣x),不能用平方差公式进行计算,故本选项不符合题意;B、(x+1)(﹣x﹣1),不能用平方差公式进行计算,故本选项不符合题意;C、(3x﹣y)(3x+y),能用平方差公式进行计算,故本选项符合题意;D、(x﹣y)(﹣x+y)不能用平方差公式进行计算,故本选项不符合题意;故选:C.6.已知关于x、y的方程组的解满足x+y=﹣1,则a的值为()A.1B.2C.3D.4【分析】将x+y=﹣1与第二个方程联立,解方程组得到x,y的值,代入第一个方程,求出a即可.解:根据题意得:,解得:,代入x﹣2y=a+2中,得:a=3,故选:C.7.如图,是关于x的不等式2x﹣m<﹣1的解集,则m的值为()A.m≤﹣2B.m≤﹣1C.m=﹣2D.m=﹣1【分析】根据不等式的解集,可得关于m的方程,解方程,可得答案.解:解不等式,得x<,又不等式的解集是x<﹣1,得=﹣1,解得m=﹣1,故选:D.8.对于一个数x,我们用(x]表示小于x的最大整数,例如:(2.6]=2,(﹣3]=﹣4,(10]=9,如果(x]=﹣3,则x的取值范围为()A.﹣3<﹣x<﹣2B.﹣3≤x<﹣2C.﹣3<x≤﹣2D.﹣3≤x≤﹣2【分析】(x]表示小于x的最大整数,依此即可求解.解:∵(x]=﹣3,∴﹣3<x≤﹣2,故选:C.二.填空题(共10题,每题3分,共30分)9.若a m=2,a n=3,则a m﹣n的值为.【分析】根据同底数幂的除法底数不变指数相减,可得答案.解:a m﹣n=a m÷a n=2÷3=,故答案为:.10.当k=2时,关于x、y的多项式x2+kxy﹣2xy+6中不含xy项.【分析】先合并同类项,再根据题意得出k﹣2=0,求出方程的解即可.解:x2+kxy﹣2xy+6=x2+(k﹣2)xy+6,∵关于x、y多项式x2+kxy﹣2xy+6中不含xy项,∴k﹣2=0,解得:k=2,故答案为:2.11.已知y=x﹣3,则代数式x2﹣2xy+y2的值为9.【分析】求出x﹣y=3,根据完全平方公式得出x2﹣2xy+y2=(x﹣y)2,再代入求出答案即可.解:∵y=x﹣3,∴x﹣y=3,∴x2﹣2xy+y2=(x﹣y)2=32=9,故答案为:9.12.光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面AB与水杯下沿CD平行,光线EF从水中射向空气时发生折射,光线变成FH,点G 在射线EF上,已知∠HFB=20°,∠FED=45°,则∠GFH=25°.【分析】根据平行线的性质知∠GFB=∠FED=45°,结合图形求得∠GFH的度数.解:∵AB∥CD,∴∠GFB=∠FED=45°.∵∠HFB=20°,∴∠GFH=∠GFB﹣∠HFB=45°﹣20°=25°.故答案为:25°.13.如图所示,点A,B,P在正方形网格的格点(水平线与垂直线的交点)处,则∠PAB+∠PBA的度数等于45°.【分析】根据图形,可知∠CPA=45°,根据三角形外角的性质可得∠CPA=∠PAB+∠PBA,从而可以得到∠PAB+∠PBA的值.解:∵∠CPA=45°,∠CPA=∠PAB+∠PBA,∴∠PAB+∠PBA=45°.故答案为:45°.14.某文具店有5元一支和4元一支的钢笔,王老师带48元去买钢笔,钱正好全部用完,共有3种购买方案.【分析】设购买5元一支的钢笔是x支,购买4元一支的钢笔是y支,根据题意列出方程,求得方程的非负整数解即可.解:设购买5元一支的钢笔是x支,购买4元一支的钢笔是y支,根据题意,得5x+4y=48.所以y=12﹣.因为x、y都是非负整数,所以当x=0时,y=12;当x=4时,y=7;当x=8时,y=2;即共有3 种购买方案.故答案是:3.15.不等式4(x﹣1)<3x﹣2的正整数解为1.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.解:不等式的解集是x<2,故不等式4(x﹣1)<3x﹣2的正整数解为1.故答案为:1.16.已知x+y=5,xy=6,求x2+y2=13.【分析】根据x2+y2=(x+y)2﹣2xy,然后代入求值即可.解:x2+y2=(x+y)2﹣2xy=25﹣6×2=13.故答案是:13.17.如果关于x的不等式组无解,那么m的取值范围是m≥5.【分析】根据找不等式组解集的规律得出即可.解:∵关于x的不等式组无解,∴m≥5,故答案为:m≥5.18.若不等式a≤x≤a+1中每一个x的值,都不是不等式1<x<3的解,则a的取值范围是a≥3或a≤0.【分析】根据题意得到:a≥3或a+1≤1.解不等式即可.解:根据题意得到:a≥3或a+1≤1.所以a≥3或a≤0.故答案是:a≥3或a≤0.三.解答题(共10小题,共96分)19.解方程组:(1)(2)【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.解:(1),①+②得:3x=15,解得:x=5,把x=5代入①得:y=1,则方程组的解为;(2)方程组整理得:,①+②×5得:8x=48,解得:x=6,把x=6代入②得:y=4,则方程组的解为.20.解不等式:3(x+1)≤5x+7,并把它的解集在数轴上表示出来.【分析】去括号,移项,合并同类项,系数化成1,最后在数轴上表示出来即可.解:3(x+1)≤5x+7,去括号,得3x+3≤5x+7,移项、合并同类项,得﹣2x≤4,系数化成1,得x≥﹣2,在数轴上表示不等式的解集为:.21.解一元一次不等式组,并写出它的所有非负整数解.【分析】先求出其中各不等式的解集,再求出这些解集的公共部分,再写出它的所有非负整数解即可求解.解:,解①得x>﹣1,解②得x≤2.故不等式组的解集是﹣1<x≤2.故它的所有非负整数解为0,1,2.22.分解因式:(1)x2﹣16;(2)﹣3x2+6xy﹣3y2.【分析】(1)直接利用平方差公式分解因式即可;(2)直接提取公因式﹣3,再利用完全平方公式分解因式即可.解:(1)原式=x2﹣42=(x+4)(x﹣4);(2)原式=﹣3(x2﹣2xy+y2)=﹣3(x﹣y)2.23.如图,∠1=∠BCE,∠2+∠3=180°.(1)判断AC与EF的位置关系,并说明理由;(2)若CA平分∠BCE,EF⊥AB于F,∠1=72°,求∠BAD的度数.【分析】(1)由∠1=∠BCE,可得到直线AD与EC平行,可得到∠2与∠4间关系,再由∠2+∠3=180°判断AC与EF的位置关系;(2)由(1)的结论及垂直可得到∠BAC的度数,再由平行线及角平分线的性质得到∠2的度数,利用角的和差关系可得结论.解:(1)AC∥EF.理由:∵∠1=∠BCE,∴AD∥CE.∴∠2=∠4.∵∠2+∠3=180°,∴∠4+∠3=180°.∴EF∥AC.(2)∵AD∥EC,CA平分∠BCE,∴∠ACD=∠4=∠2.∵∠1=72°,∴∠2=36°.∵EF∥AC,EF⊥AB于F,∴∠BAC=∠F=90°.∴∠BAD=∠BAC﹣∠2=54°.24.若是二元一次方程组的解,求(a+3b)(5a﹣b)的值.【分析】把x=2,y=1,代入方程组,然后求a+3b和5a﹣b的值.解:把x=2,y=1代入方程组,得:,①﹣②,得:a+3b=3,①+②,得:5a﹣b=7,∴(a+3b)(5a﹣b)=3×7=21.25.已知关于x、y的二元一次方程组(1)若方程组的解满足x﹣y=6,求m的值;(2)若方程组的解满足x<﹣y,求m的取值范围.【分析】(1)用加减消元法解出x和y的值,把x和y用含有m的式子表示,代入x﹣y =6,求出m的值即可,(2)把x和y用含有m的式子表示,代入x+y<0,得到关于m的一元一次不等式,解之即可.解:(1),①+②得:8x﹣8y=4m+8,即x﹣y=1+m,代入x﹣y=6得:1+m=6,解得:m=10,故m的值为10,(2)②﹣①得:2x+2y=8﹣4m,即x+y=4﹣2m,∵x<﹣y,∴x+y<0,∴4﹣2m<0,解得:m>2,故m的取值范围为:m>2.26.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)a b产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多2万元,购买2台甲型机器比购买3台乙型机器少6万元.(1)a=12,b=10.(2)若该公司购买新机器的资金不超过110万元,请问该公司有几种购买方案?(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月.若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.【分析】(1)根据“购买一台甲型机器比购买一台乙型机器多2万元,购买2台甲型机器比购买3台乙型机器少6万元”,即可得出关于a,b的二元一次方程组,解之即可得出a,b的值;(2)设该公司购买甲型机器x台,则购买乙型机器(10﹣x)台,利用总价=单价×数量,结合总价不超过110万元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再结合x为非负整数,即可得出购买方案的个数;(3)利用每月的总产量=每天机器的月产量×购买数量,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,结合x≤5且x为非负整数,即可得出x的值,再利用总价=单价×数量,可求出选各x值时的购买总费用,比较后即可得出最省钱的购买方案.解:(1)依题意得:,解得:.故答案为:12;10.(2)设该公司购买甲型机器x台,则购买乙型机器(10﹣x)台,依题意得:12x+10(10﹣x)≤110,解得:x≤5.又∵x为非负整数,∴x可以取0,1,2,3,4,5,∴该公司有6种购买方案.(3)依题意得:240x+180(10﹣x)≥2040,解得:x≥4.又∵x≤5,且x为非负整数,∴x可以取4,5.当x=4时,10﹣x=6,此时购买10台节省能源的新机器所需费用为12×4+10×6=108(万元),当x=5时,10﹣x=5,此时购买10台节省能源的新机器所需费用为12×5+10×5=110(万元).∵108<110,∴最省钱的购买方案为:购买4台甲型机器,6台乙型机器.27.先阅读短文,然后回答短文后面所给出的问题:对于三个数a、b、c中,我们给出符号来表示其中最大(小)的数,规定min{a,b,c}表示这三个数中最小的数,max{a,b,c}表示这三个数中最大的数.例如:min{﹣1,2,3}=﹣1,max{﹣1,2,3}=3;min{﹣1,2,a}=.(1)min{﹣2019,﹣2020,﹣2021}=﹣2021;max{2,x2+2,2x}=x2+2;(2)若max{2,x+1,2x}=2x,求x的取值范围;(3)若min{4,2x+4,4﹣2x}=max{2,x+1,2x},求x的值.【分析】(1)根据新定义即可得出结论;(2)根据新定义列出关于x的不等式组,解之可得;(3)分情况分别列出关于x的方程,解方程可得.min{4,2x+4,4﹣2x}=max{2,x+1,2x},解:(1)∵﹣2019>﹣2020>﹣2021,∴min{﹣2019,﹣2020,﹣2021}=﹣2021;∵x2+2>2x,x2+2≥2,∴max{2,x2+2,2x}=x2+2;故答案为:﹣2021,x2+2;(2)∵max{2,x+1,2x}=2x,∴,解得:x≥1;(3)①当4最小时,∴2x+4>4,4﹣2x>4,此种情况不成立,②当2x+4最小时,∴4≥2x+4,4﹣2x≥2x+4,∴x≤0,2x+4=2,解得:x=﹣1;③当4﹣2x最小时,4>4﹣2x,4+2x>4﹣2x,∴x>0Ⅰ、当2最大时,∴2≥x+1,2≥2x,∴x≤1,∴4﹣2x=2,解得:x=1;Ⅱ、当2x最大时,∴2x>2,2x>x+1,∴x>1,∴4﹣2x=2x,解得:x=1(舍去);Ⅲ、当x+1最大时,∴x+1>2,x+1>2x,此种情况不成立,综上,x的值为1或﹣1.28.如图①,在四边形ABCD中,∠A=x°,∠C=y°.(1)∠ABC+∠ADC=(360﹣x﹣y)°(用含x,y的代数式表示);(2)BE、DF分别为∠ABC、∠ADC的外角平分线,①当x=y时,BE与DF的位置关系是BE∥DF;②当y=2x时,若BE与DF交于点P,且∠DPB=10°,求y的值.(3)如图②,∠ABC的平分线与∠ADC的外角平分线交于点Q,则∠Q=[90+(x ﹣y)]°(用含x,y的代数式表示).【分析】(1)根据四边形内角和等于360°,即可解决问题,(2)①如图1中,作出相关辅助线连接AC,过点C作CG∥DF,利用角平分线的定义及平行线的性质推出角之间的关系,再根据平行线的判定及平行线的传递性得出BE∥DF,②根据三角形外角的性质和角平分线的性质推出∠BCD=∠PDC+∠PBC+∠P,代入求解即可,(3)如图②中,利用三角形内角和定理以及角平分线的性质解决问题即可.解:(1)在四边形ABCD中,∠ABC+∠ADC=360°﹣∠A﹣∠DCB,∵∠A=x°,∠DCB=y°,∴∠ABC+∠ADC=360﹣x﹣y=(360﹣x﹣y)°,故答案为:(360﹣x﹣y),(2)①如图①中,连接AC,过点C作CG∥DF,则有:∠MDC═∠DAC+∠DCA,∠NBC═∠CAB+∠CBA,∵BE、DF分别为∠NBC、∠MDC的角平分线,∠DAB═∠DCB═x°═y°,∴∠FDC+∠CBE═(∠MDC+∠NBC)═(∠DAC+∠DCA+∠CAB+∠CBA)═(∠DAB+DCB)═x°,∵CG∥DF,∴∠FDC═∠GCD,∵∠DCG+∠BCG═∠DCB═x°,∠FDC+∠CBE═x°,∴∠CBE═∠BCG,∴CG∥BE,∴BE∥DF,故答案为:BE∥DF.②由(1)可知:∠ABC+∠ADC=(360﹣x﹣y)°,∵∠ADC+∠MDC=180°,∠ABC+∠NBC=180°,∴∠NBC+∠MDC=(x+y)°,∵BE、DF分别为∠ABC、∠ADC的外角平分线,∴∠PBC=∠NBC,∠PDC=∠MDC,∴∠PBC+∠PDC=[(x+y)]°,∵∠BCD=∠PDC+∠PBC+∠P,∴y=10+(x+y),即y﹣x=20,∵y=2x,∴x=20°,y=40°.(3)如图②中,由题意:∠DNQ=∠ANB=180°﹣x°﹣∠ABC,∠QDN=(180°﹣∠ADC),∴∠Q=180°﹣∠DNQ﹣∠QDN=180°﹣(180°﹣x°﹣∠ABC)﹣(180°﹣∠ADC),=x°+(∠ABC+∠ADC)﹣90°,=x°+180°﹣(x+y)°﹣90°,=[90+(x﹣y)]°,故答案为:[90+(x﹣y)]°.。

专题09 实数-2020-2021学年七年级数学下册常考题专练(人教版)(原卷版)

专题09 实数-2020-2021学年七年级数学下册常考题专练(人教版)(原卷版)

专题09 实数★ 知识归纳● 有理数与无理数有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数.要点梳理:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111…….● 实数有理数和无理数统称为实数.1.实数的分类按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数2.实数与数轴上的点一一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.● 实数大小的比较对于数轴上的任意两个点,右边的点所表示的实数总是比左边的点表示的实数大.正实数大于0,负实数小于0,两个负数,绝对值大的反而小.●实数的运算有理数关于相反数和绝对值的意义同样适合于实数.当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用.★实操夯实一.选择题(共20小题)1.下列实数,,3.14159,﹣,,﹣0.1010010001…(每两个1之间多1个0)中无理数有()A.1个B.2个C.3个D.4个2.在3,0,﹣2,﹣四个数中,最小的数是()A.3B.0C.﹣2D.﹣3.下列数中,无理数的是()A.πB.C.D.3.14159264.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.2与(﹣)2D.|﹣|与5.下列说法中正确的是()A.不循环小数是无理数B.分数不是有理数C.有理数都是有限小数D.3.1415926是有理数6.下列说法正确的是()A.无限小数都是无理数B.没有立方根C.正数的两个平方根互为相反数D.﹣(﹣13)没有平方根7.实数的倒数是()A.3B.C.﹣D.8.如图,数轴上表示实数的点可能是()A.点P B.点Q C.点R D.点S9.正方形纸板ABCD在数轴上的位置如图所示,点A,D对应的数分别为1和0,若正方形纸板ABCD绕着顶点顺时针方向在数轴上连续翻转,则在数轴上与2020对应的点是()A.A B.B C.C D.D10.下列语句错误的是()A.无理数都是无限小数B.任何一个正数都有两个平方根C.=±2D.有理数和无理数统称实数11.的相反数的倒数是()A.B.C.D.12.下列说法:①实数与数轴上的点一一对应;②﹣a2没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1;⑤的算术平方根是2.其中正确的有()A.1个B.2个C.3个D.4个13.在﹣,,,1四个实数中,最大的实数是()A.﹣B.C.D.114.如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC的中点,则点C所表示的数为()A.B.1﹣C.D.2﹣15.如图,数轴上点C所表示的数是()A.2B.3.7C.3.8D.16.实数a,b在数轴上对应点的位置如图所示,则必有()A.a+b>0B.a﹣b<0C.ab>0D.ab﹣1<017.实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A.|a﹣b|<1B.|a|<|b|C.|a+1|+|1﹣b|=a﹣b D.<018.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列,正确的是()A.﹣b<﹣a<a<b B.﹣b<a<﹣a<b C.﹣a<﹣b<a<b D.﹣b<b<﹣a<a19.如图,数轴上点A所表示的数是()A.B.﹣1C.D.﹣120.若|a|=4,,且a+b<0,则a﹣b的值是()A.1,7B.﹣1,7C.1,﹣7D.﹣1,﹣7二.填空题(共3小题)21.﹣的相反数是,的倒数是,的立方根是.22.比较大小:﹣﹣2.(填“>”或“<”号)23.比较大小:.三.解答题(共5小题)24.在数轴上将数﹣2.5,0,|﹣3|,(﹣2)2,﹣5,表示出来,并结合数轴用“<”号将它们连接起来.25.课堂上,老师出了一道题,比较与的大小.小明的解法如下:解:﹣==,因为42=16<19,所以>4,所以﹣4>0.所以>0,所以>,我们把这种比较大小的方法称为作差法.(1)根据上述材料填空(在横线上填“>”“=”或“<”):①若a﹣b>0,则a b;②若a﹣b=0,则a b;③若a﹣b<0,则a b.(2)利用上述方法比较实数与的大小.26.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而1<<2,于是可用﹣1来表示的小数部分.请解答下列问题:(1)的整数部分是,小数部分是.(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值(3)已知:100+=x+y,其中x是整数,且0<y<1,求x++24﹣y的平方根.27.如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,长方形ABCD的长AD 是4个单位长度,长方形EFGH的长EH是8个单位长度,点E在数轴上表示的数是5.且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.(2)若线段AD的中点为M,线段EH上一点N,EN=EH,M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒,求当x多少秒时,OM=ON.(3)若长方形ABCD以每秒2个单位的速度向右匀速运动,长方形EFGH固定不动,当两个长方形重叠部分的面积为6时,求长方形ABCD运动的时间.28.如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3(1)数轴上点A表示的数为.(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B'C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S①设点A的移动距离AA′=x.当S=4时,x=.②当S恰好等于原长方形OABC面积的一半时,求数轴上点A′表示的数为多少.。

2020-2021学年黑龙江省哈尔滨市南岗区萧红中学七年级(下)月考数学试卷(附答案详解)

2020-2021学年黑龙江省哈尔滨市南岗区萧红中学七年级(下)月考数学试卷(附答案详解)

2020-2021学年黑龙江省哈尔滨市南岗区萧红中学七年级(下)月考数学试卷(4月份)(五四学制)一、选择题(本大题共10小题,共30.0分)1. (2021·黑龙江省哈尔滨市·月考试卷)下列方程组中,( )是二元一次方程组.A. {x +y =2y −z =1B. {1x+1y =1x +y =2C. {xy =12y −x =3D. {x +y =43x −y =52. (2020·黑龙江省哈尔滨市·月考试卷)下列图形中有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形3. (2021·黑龙江省哈尔滨市·月考试卷)下列各组长度的线段中,能组成三角形的是( )A. 1,2,3B. 1,4,2C. 2,3,4D. 6,2,34. (2021·安徽省·期中考试)若x >y ,则下列式子错误的是( )A. x −3>y −3B. x 3>y3C. −2x <−2yD. 3−x >3−y5. (2021·全国·期中考试)下列四个图形中,线段BE 是△ABC 的高的是( )A.B.C.D.6. (2020·黑龙江省哈尔滨市·月考试卷)不等式组{2x +2>0−x ≥−1的解在数轴上表示为( )A.B.C.D.7. (2018·山东省泰安市·期末考试)关于x ,y 的二元一次方程组{x +y =5kx −y =9k的解也是二元一次方程2x +3y =6的解,则k 的值是( )A. −34B. 34C. 43D. −438. 把一根17米的钢管截成3m 长和2m 长两种规格的钢管,怎样截不造成浪费?共有( )种不同的截法.A. 1B. 2C. 3D. 无数9. (2019·黑龙江省哈尔滨市·期中考试)甲、乙两人练习跑步,如果乙先跑16米,甲8秒钟可以追上乙;如果乙先跑2秒钟,甲4秒钟可以追上乙;求甲、乙二人每秒钟各跑多少米?若设甲每秒钟跑x 米,乙每秒钟跑y 米,则所列方程组应该是( )A. {16=8(x −y)(2+4)y =4x B. {8x −8y =164x −4y =4 C. {8x +16=5y4x −4y =2D. {8x =8y +164x −2=4y10. (2021·黑龙江省哈尔滨市·月考试卷)如图,AD 和BE 是△ABC 的中线,AD 与BE 交于点O ,下列结论正确的有( )个. (1)S △ABE =S △ABD (2)AO =2OD(3)S △ABO =S 四边形DOECA. 0个B. 1个C. 2个D. 3个二、填空题(本大题共10小题,共30.0分)11. (2021·黑龙江省哈尔滨市·月考试卷)把方程3x +2y =1改写成用含x 的式子表示y的形式,则y = ______ .12. (2021·黑龙江省哈尔滨市·月考试卷)若方程2x 2m+3+(n +3)y |n|−2=4是关于x ,y的二元一次方程,则m n = ______ .13. (2021·陕西省西安市·月考试卷)若不等式(a −1)x <a −1的解集是x >1,则a 的取值范围是______.14. (2016·四川省成都市·单元测试)一个等腰三角形一腰上的中线把这个三角形的周长分成15cm 和18cm 两部分,则三角形底边长为______ .15. (2021·黑龙江省哈尔滨市·月考试卷)已知关于x 的不等式3x +m −4<0的最大整数解为−2,m 的取值范围是______ .16. (2021·黑龙江省哈尔滨市·月考试卷)某校七年级(1)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有______ 棵.17. (2012·四川省绵阳市·历年真题)一个长方形的长减少5cm ,宽增加2cm ,就变成了一个正方形,并且这两个图形的面积相等,则原长方形的面积为______cm 2.18. (2021·黑龙江省哈尔滨市·月考试卷)当m 的取值范围是______ 时,关于x 的方程x−12−mx+13=1的解不大于11.19. (2021·黑龙江省哈尔滨市·月考试卷)在等式y =ax 2+bx +c 中,当x =1时,y =−2;当x =−1时,y =20;当x =32与x =13时,y 的值相等,则a −b +c = ______ . 20. (2021·黑龙江省哈尔滨市·月考试卷)如果关于x 的方程2x+13=a +4,有非负整数解,且关于x 的不等式组{x−23≥3ax +a ≤6a +10有解,那么符合条件的所有整数a 的和是______ .三、解答题(本大题共7小题,共60.0分)21. (2021·黑龙江省哈尔滨市·月考试卷)(1){4x +y =153x −2y =3;(2){4(x +2)+5y =12x +3(y +2)=3.22. (2021·黑龙江省哈尔滨市·月考试卷)(1)解不等式10−4(x −4)≤2(x −1),并在数轴上表示解集;(2)解不等式组{x −3(x −2)≤41+2x 3>x −1.23. (2021·黑龙江省哈尔滨市·月考试卷)如图,网格中的每个小正方形的边长都是2,线段交点称做格点. (1)画出△ABC 的高CD ;(2)连接格点,用一条线段将图中△ABC分成面积相等的两部分;(3)直接写出△ABC的面积是______ .24.(2018·江西省南昌市·期中考试)用一条长为20cm的细绳围成一个等腰三角形(1)如果腰长是底边长的2倍,那么各边的长是多少(2)能围成有长是4cm的等腰三角形吗?为什么?25.(2018·全国·期末考试)去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%,如果今年(365天)这样的比值要超过70%,那么今年空气质量良好的天数比去年至少要增加多少天?26. (2021·黑龙江省哈尔滨市·月考试卷)已知二元一次方程组{x +y =3a +9x −y =5a +1的解x ,y均为正数.(1)求a 的取值范围; (2)化简:|5a +5|−|a −4|.27. (2021·黑龙江省哈尔滨市·月考试卷)某商店购进便携榨汁杯和酸奶机进行销售,其进价与售价如表:(1)第一个月,商店购进这两种电器共30台,用去5600元,并且全部售完,这两种电器赚了多少钱?(2)第二个月,商店决定用不超过9000元的资金采购便携榨汁杯和酸奶机共50台,且便携榨汁杯的数量不少于酸奶机的56,这家商店有哪几种进货方案?说明理由; (3)在(2)的条件下,请你通过计算判断,哪种进货方案赚钱最多?答案和解析1.【答案】D【知识点】二元一次方程组的概念【解析】解:A.此选项方程组含有3个未知数,不是二元一次方程组;B.此方程组第1个方程不是整式方程,不是二元一次方程组;C.此方程组中第1个方程不是一次方程,不是二元一次方程组;D.此选项方程组是二元一次方程组;故选:D.根据二元一次方程组的定义:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组逐一判断即可.本题主要考查二元一次方程组的定义,二元一次方程组要满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.2.【答案】C【知识点】三角形的稳定性【解析】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.稳定性是三角形的特性.稳定性是三角形的特性,这一点需要记忆.3.【答案】C【知识点】三角形三边关系【解析】解:根据三角形任意两边的和大于第三边,得A、1+2=3,不能组成三角形;B、1+2=3<4,不能组成三角形;C、2+3>4,能够组成三角形;D、2+3=5<6,不能组成三角形.故选:C.根据三角形的三边关系进行分析判断.本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.4.【答案】D【知识点】不等式的基本性质 【解析】解:若x >y ,则有x −3>y −3;3−x <3−y ;−2x <−2y ;x3>y3, 所以错误的是3−x >3−y . 故选:D .利用不等式的性质判断即可得到结果.此题考查了不等式的性质,熟练掌握不等式的性质是解本题的关键.5.【答案】D【知识点】三角形的角平分线、中线和高【解析】解:线段BE 是△ABC 的高的图是选项D . 故选:D .根据三角形高的画法知,过点B 作AC 边上的高,垂足为E ,其中线段BE 是△ABC 的高,再结合图形进行判断.本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.6.【答案】D【知识点】在数轴上表示不等式组的解集、一元一次不等式组的解法 【解析】 【分析】本题考查了解不等式组及在数轴上表示不等式组的解集.先求出不等式组中每一个不等式的解集,再求出它们的公共部分,得出不等式组的解集,然后把不等式组的解集表示在数轴上即可. 【解答】解:{2x +2>0−x ≥−1,解得{x >−1x ≤1,∴不等式组的解集是−1<x ≤1, 在数轴上表示为:故选D .7.【答案】B【知识点】解三元一次方程组*、灵活选择解法解二元一次方程(组)、二元一次方程组的解【解析】解:解方程组{x +y =5k x −y =9k得:{x =7ky =−2k ,∵关于x ,y 的二元一次方程组{x +y =5kx −y =9k 的解也是二元一次方程2x +3y =6的解,∴代入得:14k −6k =6, 解得:k =34, 故选:B .先求出方程组的解,把x 、y 的值代入方程2x +3y =6,即可求出k .本题考查了解二元一次方程组,二元一次方程组的解,解一元一次方程等知识点,能得出关于k 的方程是解此题的关键.8.【答案】C【知识点】二元一次方程的应用【解析】解:设可以截成x 段3m 长,y 段2m 长的钢管, 依题意得:3x +2y =17, ∴y =17−3x 2.又∵x ,y 均为非负整数, ∴{x =1y =7或{x =3y =4或{x =5y =1, ∴共有3种不同的截法. 故选:C .设可以截成x 段3m 长,y 段2m 长的钢管,根据截成钢管的总长度为17m ,即可得出关于x ,y 的二元一次方程,结合x ,y 均为非负整数,即可得出结论.本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.9.【答案】A【知识点】由实际问题抽象出二元一次方程组、二元一次方程组的应用【解析】解:设甲每秒跑x 米,乙每秒跑y 米,根据题意得出: {16=8(x −y)(2+4)y =4x . 故选:A .根据题意,由如果乙先跑16米,甲8秒可以追上乙,可根据两人行驶时间相同得出等式,根据如果乙先跑2秒,则甲4秒可以追上乙,根据行驶时间差为2由路程得出等式,进而得出答案.此题主要考查了二元一次方程组的应用,此题解答的关键是求出追及速度,再根据路程、速度、时间三者之间的关系列式解答即可.10.【答案】D【知识点】三角形的面积【解析】解:∵AD 和BE 是△ABC 的中线,∴S △ABE =S △BEC =12S △ABC ,S △ABD =S △ADC =12S △ABC . ∴S △ABE =S △ABD ,故(1)正确;连接CO ,设S △AOE =a ,由E 为AC 中点,如图所示. ∴S △AOE =S △COE =a , 又D 为BC 中点,∴S △ABE =S △ABD =12⋅S △ABC ,又S △AOE =a , ∴S △BOD =a =S △COD ,∴S 四边形DOEC =S △COD +S △COE =2a .又因为S △ABE =S △ADC =12⋅S △ABC ,且S △AOE =a , ∴S △ABO =S 四边形DOEC =2a ,故(3)正确; ∵△ABO 与△BOD 等高,面积比为2:1,故底之比AO :OD =2:1,即AO =2OD ,故(2)正确. 故选:D .由AD 和BE 是△ABC 的中线,可知S △ABD =S △ADC =S △ABE =S △BEC =12S △ABC .连接CO ,设S △AOE =a ,可逐步推出S △AOE =S △COE =S △BOD =S △COD =a ,S 四边形DOEC =S △ABO =2a ,即可判断以上结论.本题考查了三角形中线的性质,三角形中线将三角形面积分成两个相等的部分,三角形中线的交点即为重心,熟练掌握重心到顶点的距离与重心到对边中点的距离之比为2:1是解题的关键.11.【答案】−32x+12【知识点】解二元一次方程【解析】解:∵3x+2y=1,∴2y=−3x+1,则y=−32x+12,故答案为:−32x+12.先将3x移到方程右边,再两边都除以2即可.本题主要考查解二元一次方程,解题的关键是掌握等式的基本性质.12.【答案】−1【知识点】绝对值、二元一次方程的概念【解析】解:由题意得,2m+3=1,|n|−2=1,解得,m=−1,n=±3,∵n+3≠0,解得,n≠−3,∴m=−1,n=3,∴m n=(−1)3=−1.故答案为:−1.根据二元一次方程的定义可得:2m+3=1,|n|−2=1且n+3≠0,求出m、n的值,进而得到m n的值.此题主要考查了二元一次方程的定义,关键是掌握二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.13.【答案】a<1【知识点】一元一次不等式的解法【解析】解:∵不等式(a −1)x <a −1的解集是x >1,∴a −1<0,解得a <1.故答案为:a <1.先根据不等式的解集是x >1得出关于a 的不等式,求出a 的取值范围即可. 本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键. 14.【答案】13cm 或9cm【知识点】二元一次方程的应用、三角形三边关系、等腰三角形的性质【解析】解:∵等腰三角形的周长是15+18=33cm ,设等腰三角形的腰长为xcm 、底边长为ycm ,由题意得{x +12x =1512x +y =18或{x +12x =1812x +y =15 解得{x =10y =13或{x =12y =9. ∴等腰三角形的底边长为13cm 或9cm .故答案为:13cm 或9cm .设等腰三角形的腰长、底边长分别为xcm ,ycm ,根据题意列二元一次方程组,注意没有指明具体是哪部分的长为15cm ,哪部分的长为18cm ,故应该列两个方程组求解. 此题主要考查等腰三角形的性质,解二元一次方程组和三角形三边关系的综合运用,此题的关键是分两种情况分析,求得解之后注意用三角形三边关系进行检验. 15.【答案】7≤m <10【知识点】一元一次不等式的整数解【解析】解:解不等式3x +m −4<0,得:x <4−m 3, ∵不等式有最大整数解−2,∴−2<4−m 3≤−1,解得:7≤m <10,故答案为:7≤m <10.先解出不等式,然后根据最大整数解为−2得出关于m 的不等式组,解之即可求得m 的取值范围.本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.16.【答案】121【知识点】一元一次不等式组的应用【解析】解:设共有x 人植树,则这批树苗共有(4x +37)棵,依题意得:{4x +37>6(x −1)4x +37<6(x −1)+3, 解得:20<x <432.又∵x 为正整数,∴x =21,∴4x +37=121(棵).故答案为:121.设共有x 人植树,则这批树苗共有(4x +37)棵,根据“若每人植6棵树,则最后一人有树植,但不足3棵”,即可得出关于x 的一元一次不等式组,解之即可得出x 的取值范围,由x 为正整数即可确定x 的值,再将其代入(4x +37)中可求出结论.本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.17.【答案】1009【知识点】整式的混合运算、一元一次方程的应用【解析】解:正方形的边长是xcm ,则(x +5)(x −2)=x 2,解得x =103,∴S =x 2=1009. 故答案为:1009.先设正方形的边长是xcm ,根据题意可得(x +5)(x −2)=x 2,解得x =103,进而可求面积. 本题考查了整式的混合运算、解一元一次方程,解题的关键是求出x .18.【答案】m ≤1或m >32【知识点】一元一次不等式的解法、一元一次方程的解【解析】解:解关于x 的方程x−12−mx+13=1得x =113−2m , 根据题意,得:113−2m ≤11,则13−2 m ≤1,∴3−2m <0或3−2m ≥1,解得m ≤1或m >32,故答案为:m ≤1或m >32.解关于x 的方程得出x =113−2m ,再根据解不大于11得出关于m 的不等式,解之可得答案.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 19.【答案】20【知识点】解三元一次方程组*【解析】解:根据题意得:{a +b +c =−2①a −b +c =20②94a +32b +c =19a +13b +c③,解得:a =6,b =−11,c =3.∴a −b +c =20.故答案为:20.将x 与y 的三对值代入计算求出a ,b ,c 的值,再代入求解即可.此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【答案】−3【知识点】一元一次方程的解、一元一次不等式组的解法【解析】解:解方程2x+13=a +4,得x =3a+112, 根据题意知3a+112≥0,解得a ≥−113,解不等式x−23≥3a ,得:x ≥9a +2,解不等式x +a ≤6a +10,得:x ≤5a +10,∵不等式组有解,∴9a +2≤5a +10,解得a ≤2,∴−113≤a ≤2,又∵方程的解为非负整数,∴a ≠±2,a ≠0,则符合条件的所有整数a 的和为−3−1+1=−3,故答案为:−3.由不等式组无解确定出a 的取值,再根据一元一次方程有非正整数解确定出a 的值,再求出之和即可.此题考查了一元一次方程的解,解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.21.【答案】解:(1){4x +y =15①3x −2y =3②, ①×2+②得,11x =33,解得,x =3, 将x =3代入①得,y =3,故原方程组的解为:{x =3y =3.(2)原方程组可化为,{4x +5y =−7①2x +3y =−3②, ②×2−①得,y =1,将y =1代入②得,x =−3,故原方程组的解为:{x =−3y =1.【知识点】灵活选择解法解二元一次方程(组)【解析】(1)根据解二元一次方程组的方法中的加减消元法可以解答本题;(2)根据解二元一次方程组的方法中的加减消元法可以解答本题;本题考查了解二元一次方程组,这组题用的是加减消元法.22.【答案】解:(1)去括号,得:10−4x+16≤2x−2,移项、合并,得:−6x≤−28,系数化为1,得:x≥143,将不等式的解集表示在数轴上如下:(2)解不等式x−3(x−2)≤4,得:x≥1,解不等式1+2x3>x−1,得:x<4,则不等式组的解集为1≤x<4.【知识点】在数轴上表示不等式的解集、一元一次不等式的解法、一元一次不等式组的解法【解析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组和一元一次不等式,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.【答案】40【知识点】尺规作图与一般作图、三角形的面积【解析】解:(1)如图,线段CD即为所求作.(2)如图,线段CE即为所求作.(3)S△ABC=12⋅AB⋅CD=12×8×10=40.故答案为:40.(1)根据三角形的高的定义画出图形即可.(2)作三角形的中线CE即可.(3)利用三角形的面积公式求解即可.本题考查作图−应用与设计作图,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.【答案】解:(1)设底边长为xcm,则腰长为2xcm,则2x+2x+x=20解得,x=4∴2x=8∴各边长为:8cm,8cm,4cm.(2)能围成有长是4cm的等腰三角形,理由:①当4cm为底时,腰长=8cm;②当4cm为腰时,底边=12cm,因为4+4<12,故不能构成三角形,故舍去;故能构成有一边长为4cm的等腰三角形.【知识点】三角形三边关系、等腰三角形的判定【解析】(1)设底边长为xcm,则腰长为2xcm,根据周长公式列一元一次方程,解方程即可求得各边的长;(2)题中没有指明4cm所在边是底还是腰,故应该分情况进行分析,注意利用三角形三边关系进行检验.此题主要考查等腰三角形的性质及三角形三边关系的综合运用,熟练掌握三角形的三边关系是解题的关键.25.【答案】解:设今年比去年空气质量良好的天数增加了x天,依题意,得x+365×60%>365×70%解这个不等式,得x>36.5.由x 应为正整数,得x ≥37.答:今年空气质量良好的天数比去年至少要增加37,才能使这一年空气质量良好的天数超过全年天数的70%.【知识点】一元一次不等式的应用【解析】设今年比去年空气质量良好的天数增加了x 天,根据“今年(365天)这样的比值要超过70%,”列出不等式解答即可.此题考查一元一次不等式的实际运用,找出题目蕴含的不等关系是解决问题的关键. 26.【答案】解:(1)解方程组得{x =4a +5y =4−a ,∵x 、y 均为正数,∴{4a +5>04−a >0, 解得−54<a <4;(2)当−54<a ≤−1时,原式=−(5a +5)+(a −4)=−4a −9;当−1<a <4时,原式=5a +5+(a −4)=6a +1.【知识点】绝对值、二元一次方程组的解、一元一次不等式组的解法【解析】(1)解方程组得出{x =4a +5y =4−a,根据x 、y 均为正数得出关于a 的不等式组,解之可得;(2)根据绝对值的性质分−54<a ≤−1和−1<a <4两种情况,取绝对值符号、合并同类项即可.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则和解二元一次方程组、绝对值的性质是解答此题的关键. 27.【答案】解:(1)设购进x 台便携榨汁杯,y 台酸奶机,依题意得:{x +y =30200x +160y =5600, 解得:{x =20y =10, ∴(250−200)x +(200−160)y =(250−200)×20+(200−160)×10=1400(元). 答:销售这两种电器赚了1400元.(2)设购进m 台便携榨汁杯,则购进(50−m)台酸奶机,依题意得:{m ≥56(50−m)200m +160(50−m)≤9000, 解得:25011≤m ≤25.又∵m 为整数,∴m 可以取23,24,25,∴这家商店有3种进货方案,方案1:购进23台便携榨汁杯,27台酸奶机;方案2:购进24台便携榨汁杯,26台酸奶机;方案3:购进25台便携榨汁杯,25台酸奶机.(3)方案1获得的利润为(250−200)×23+(200−160)×27=2230(元); 方案2获得的利润为(250−200)×24+(200−160)×26=2240(元);方案3获得的利润为(250−200)×25+(200−160)×25=2250(元).∵2230<2240<2250,∴方案3赚钱最多.【知识点】一元一次不等式组的应用、一元一次方程的应用、二元一次方程组的应用【解析】(1)设购进x 台便携榨汁杯,y 台酸奶机,根据总价=单价×数量,结合商店购进这两种电器30台且共用去5600元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进m 台便携榨汁杯,则购进(50−m)台酸奶机,根据“购进便携榨汁杯的数量不少于酸奶机的56,且总费用不超过9000元”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为整数,即可得出各进货方案;(3)利用总利润=每台的利润×销售数量,分别求出3种进货方案可获得的利润,比较后即可得出结论.本题考查了一元一次不等式组的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)利用总利润=每台的利润×销售数量,分别求出3种进货方案可获得的利润.。

2020-2021人教版数学七年级下册 专项测试卷(二)新定义数学问题

2020-2021人教版数学七年级下册 专项测试卷(二)新定义数学问题

人教版数学七年级下册 专项测试卷(二)新定义数学问题一、按要求做题1.用“※”定义一种新运算:对于任意有理数a 和b .规定a ※b =ab ²+2ab+a ,如1※2=1x2²+2x1x2+1=9.(1)求(-4)※3;(2)若21+a ※3=-16,求a 的值.2.定义新运算:对于任意实数a 、b 都有a ▲b=ab -a -b+1,等式右边是通常的加法、减法及乘法运算,例如:2▲4= 2x4-2-4+1=3.试根据上述知识解决下列问题.(1)若3▲x =6,求x 的值;(2)若▲x 5的值不大于9,求x 的取值范围.3.对于实数a ,我们规定:用符号[a ]表示不大于a 的最大整数,称为a 的根整数,例如:[9]=3,[10]_3.(1)仿照以上方法计算:[4]=____,[37]=____.(2)若[x ]=1,写出满足题意的x 的整数值:____;如果我们对a 连续求根整数,直到结果为1.例如:对10连续求根整数2次,[10]=3→[3]=1,这时的结果为1.(3)对120连续求根整数,____次之后结果为1;(4)只需进行3次连续求根整数运算,最后结果为1的所有正整数中,最大的是____.4.对于实数a 、b ,定义两种新运算“※”和“*”:a ※b=a+kb ,a*b=ka+b(其中k 为常数,且k ≠0).若对于平面直角坐标系xOy 中的点P(a ,b),有点P'(a ※b ,a*b)与之对应,则称点P 的“k 衍生点”为点P',例如:P(1,3)的“2衍生点”为P'(1+2x3,2x1+3),即P'(7,5).(1)点P( -1,5)的“3衍生点”的坐标为____;(2)若点P 的“5衍生点”的坐标为(9,-3),求点P 的坐标;(3)若点P 的“k 衍生点”为点P',且直线PP'平行于y 轴,线段PP'的长度为线段OP 长度的3倍,求k 的值.5.在平面直角坐标系xOy 中,对于任意两点P ₁(x ₁,y ₁)与P ₂(x ₂,y ₂)的“识别距离”,给出如下定义: 若y y x x 2121-≥-,则点P ₁(x ₁,y ₁)与点P ₂(x ₂,y ₂)的“识别距离”为x x 21-;若y y x x 2121--<,则点P ₁(x ₁,y ₁)与点P ₂(x ₂,y ₂)的“识别距离”为y y 21-.(1)已知点A(-1,0),点B 为y 轴上的动点.①若点A 与点B 的“识别距离”为2,则写出满足条件的点B 的坐标为____;②直接写出点A 与点B 的“识别距离”的最小值为____;(2)已知点C 的坐标为⎪⎭⎫ ⎝⎛+343m m ,点D 的坐标为(0,1),求点C 与点D 的“识别距离”的最小值及相应的点C 的坐标.6.在平面直角坐标系xOy 中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义,“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2)、B(-3,1)、C(2,-2),则“水平底”a=5,“铅垂高”h=4,“矩面积”D=ah=20.根据所给定义解决下列问题:(1)已知点D(1,2)、E(-2,1)、F(0,6),则这三点的“矩面积”S=____;(2)若D(1,2)、E(-2,1)、F(0,t)三点的“矩面积”S 为18,求点F 的坐标.7.[阅读材料,获取新知]在航空、航海等领域我们经常用距离和角度来确定点的位置,规定如下:在平面内取一个定点O .叫做极点,引一条射线O x ,叫做极轴,再选定单位长度和角度的正方向(通常取逆时针方向).对于平面内任意一点M ,用p 表示线段OM 的长度(有时也用r 表示),p 表示从O x 到OM 的角度,p 叫做点M 的极径,ρ叫做点M 的极角,有序数对(p ,θ)就叫做点M 的极坐标,这样建立的坐标系叫做极坐标系.通常情况下,M 的极径坐标单位为1(长度单位),极角坐标单位为rad(或°).例如:如图①所示,点M 到点O 的距离为5个单位长度,OM 与O x 的夹角为70°(O x 的逆时针方向).则点M 的极坐标为(5,70°);点N 到点O 的距离为3个单位长度,ON 与O x 的夹角为50°(O x 的顺时针方向),则点N 的极坐标为(3,-500).[利用新知,解答问题]如图②所示,已知过点O 的所有射线等分圆周且相邻两射线的夹角为15°,且极径坐标单位为1.(1)点A 的极坐标是____,点D 的极坐标是____.(2)请在图②中标出点B(5,45°),点E(2,-90°);(3)怎样从点B 运动到点C?小明设计的一条路线为点B →(4,45°)→(3,45°)→(3,30°)→点C .请你设计一条与小明不同的路线,也可以从点B 运动到点C .8.定义:可化为其中一个未知数的系数都为1,另一个未知数的系数互为倒数,并且常数项互为相反数的二元一次方程组,称为“相关线性方程组”,如所示,其中k 、b 称为该方程组的“相关系数”.(1)若关于x 、y 的方程组可化为“相关线性方程组”,则该方程组的解为____,(2)若某“相关线性方程组”有无数组解,求该方程组的两个“相关系数”之和.9.阅读下列材料:我们给出如下定义:数轴上给定不重合的两点A 、B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.解答下列问题:(1)若点A 表示的数为-3。

2020-2021学年北京市朝阳区七年级(下)月考数学试卷(3月份)(含解析)

2020-2021学年北京市朝阳区七年级(下)月考数学试卷(3月份)(含解析)

2020-2021学年北京市朝阳区七年级(下)月考数学试卷(3月份)一、选择题(共10小题).1.已知a、b是两个连续的整数,且a<<b,a+b则等于()A.7B.8C.9D.102.下列命题中,是真命题的是()A.相等的角是对顶角B.垂线段最短C.的平方根是±9D.无限小数都是无理数3.下列各式中,正确的是()A.±=±3B.(﹣)2=9C.=﹣3D.=﹣2 4.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1B.2C.3D.45.如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A是100°第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是()A.120°B.130°C.140°D.150°6.如图,a∥b,AB∥CD,CE⊥b,FG⊥b,E、G为垂足,则下列说法中错误的是()A.CE∥FGB.CE=FGC.A、B两点的距离就是线段AB的长D.直线a、b间的距离就是线段CD的长7.关于代数式的说法正确的是()A.x=0时最大B.x=0时最小C.x=﹣4时最大D.x=﹣4时最小8.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A.30°B.45°C.60°D.75°9.如图,将△ABE向右平移2cm得到△DCF.如果△ABE的周长是16cm,那么四边形ABFD 的周长是()A.16 cm B.18 cm C.20 cm D.21 cm10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是()A.∠A=∠1+∠2B.3∠A=2∠1+∠2C.2∠A=∠1+∠2D.3∠A=2(∠1+∠2)二、填空题11.如果的平方根是±3,则=.12.设:=1.732,=5.477,则=.13.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=.14.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB =70°,则∠AED′等于.15.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC =度,∠COB=度.16.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.17.如图,数轴上A、B两点表示的数分别为1和,且AB=AC,那么数轴上C点表示的数为.18.已知,BC∥OA,∠B=∠A=100°,点E、F在BC上,OE平分∠BOF,且∠FOC=∠AOC,下列结论中正确的是:.①OB∥AC;②∠EOC=45°;③∠OCB:∠OFB=1:3;④若∠OEB=∠OCA,则∠OCA=60°.三、计算题19.计算:(1)|﹣2|+|﹣1|﹣.(2)﹣22﹣+(﹣1)2013×+.20.求下列各式中x的值.(1)8x2﹣128=0;(2)(x+2)3=﹣27.(3)4(x+1)2=64.21.将下列各数填入相应的集合内.﹣7,0.32,,0,,,,π,0.1010010001…①有理数集合{ …}②无理数集合{ …}③负实数集合{ …}.22.(1)已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,求a+2b的平方根;(2)若x,y都是实数,且y=+8,求x+3y的立方根.23.阅读理解∵<<,即2<<3.∴的整数部分为2,小数部分为﹣2∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2解决问题:已知:a是﹣3的整数部分,b是﹣3的小数部分,求:(1)a,b的值;(2)(﹣a)3+(b+4)2的平方根.24.如图,经过平移,△ABC的顶点A移到了点D,请作出平移后的三角形.25.完成证明并写出推理根据已知,如图,∠1=132°,∠ACB=48°,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.证明:∵∠1=132°,∠ACB=48°∴∠1+∠ACB=180°∴DE∥BC∴∠2=∠DCB()又∵∠2=∠3∴∠3=∠DCB()∴HF∥DC()∴∠CDB=∠FHB.()又∵FH⊥AB,∴∠FHB=90°∴∠CDB=°∴CD⊥AB.()26.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的角平分线.你能判断DF与AB 的位置关系吗?请说明理由.27.学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1,l2内部,探究∠A,∠APB,∠B的关系小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=;(2)如图2,若AC∥BD,点P在AC,BD外部,∠A,∠B,∠APB的数量关系是否发生变化?请写出证明过程;(3)随着以后的学习你还会发现平行线的许多用途.试构造平行线解决以下问题:已知:如图3,三角形ABC,求证:∠A+∠B+∠C=180°.参考答案一、选择题1.已知a、b是两个连续的整数,且a<<b,a+b则等于()A.7B.8C.9D.10【分析】先估算出的取值范围,再求出a,b的值,进而可得出结论.解:∵16<19<25,∴4<<5.∵a、b是两个连续的整数,∴a=4,b=5,∴a+b=4+5=9.故选:C.2.下列命题中,是真命题的是()A.相等的角是对顶角B.垂线段最短C.的平方根是±9D.无限小数都是无理数【分析】根据对顶角的定义、垂线段的性质、平方根以及无理数的概念进行判断.解:A.相等的角不一定是对顶角,错误;B.垂线段最短,正确;C.的平方根是±3,错误;D.无限小数不都是无理数,错误;故选:B.3.下列各式中,正确的是()A.±=±3B.(﹣)2=9C.=﹣3D.=﹣2【分析】直接利用二次根式的性质分别化简得出答案.解:A、±=±3,故此选项正确;B、(﹣)2=3,故此选项错误;C、,无法化简,故此选项错误;D、=2,故此选项错误;故选:A.4.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1B.2C.3D.4【分析】[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.解:121[]=11[]=3[]=1,∴对121只需进行3次操作后变为1,故选:C.5.如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A是100°第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是()A.120°B.130°C.140°D.150°【分析】首先根据题意作辅助线:过点B作BD∥AE,即可得AE∥BD∥CF,则可求得:∠A=∠1,∠2+∠C=180°,则可求得∠C的值.解:过点B作BD∥AE,∵AE∥CF,∴AE∥BD∥CF,∴∠A=∠1,∠2+∠C=180°,∵∠A=100°,∠1+∠2=∠ABC=150°,∴∠2=50°,∴∠C=180°﹣∠2=180°﹣50°=130°,故选:B.6.如图,a∥b,AB∥CD,CE⊥b,FG⊥b,E、G为垂足,则下列说法中错误的是()A.CE∥FGB.CE=FGC.A、B两点的距离就是线段AB的长D.直线a、b间的距离就是线段CD的长【分析】根据垂线的性质以及两点之间的距离定义以及两直线之间的距离定义分别分析得出即可.解:A、∵CE⊥b,FG⊥b,∴FG∥EC,故此选项正确,不符合题意;B、∵a∥b,FG∥EC,∴四边形FGEC是平行四边形,∴FG=EC,故此选项正确,不符合题意;C、A、B两点的距离就是线段AB的长,此选项正确,不符合题意;D、直线a、b间的距离就是线段CE的长,故此选项错误,符合题意.故选:D.7.关于代数式的说法正确的是()A.x=0时最大B.x=0时最小C.x=﹣4时最大D.x=﹣4时最小【分析】由算术平方根的性质可知,是非负数,最小是0,这时的值最大,即可解答.解:当=0时,的值最大,即x+4=0,解得x=﹣4.故选:C.8.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A.30°B.45°C.60°D.75°【分析】过E作EF∥AC,然后根据平行线的传递性可得EF∥BD,再根据平行线的性质可得∠B=∠2=45°,∠1=∠A=30°,进而可得∠AEB的度数.解:过E作EF∥AC,∵AC∥BD,∴EF∥BD,∴∠B=∠2=45°,∵AC∥EF,∴∠1=∠A=30°,∴∠AEB=30°+45°=75°,故选:D.9.如图,将△ABE向右平移2cm得到△DCF.如果△ABE的周长是16cm,那么四边形ABFD 的周长是()A.16 cm B.18 cm C.20 cm D.21 cm【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=△ABE的周长+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.故选:C.10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是()A.∠A=∠1+∠2B.3∠A=2∠1+∠2C.2∠A=∠1+∠2D.3∠A=2(∠1+∠2)【分析】根据三角形的内角和定理,以及四边形的内角和定理即可求出答案.解:由题意可知:∠AED+∠ADE=180°﹣∠A,∠B+∠C=180°﹣∠A∵∠AED+∠ADE+∠1+∠2+∠B+∠C=360°,∴360°﹣2∠A+∠1+∠2=360°,∴2∠A=∠1+∠2,故选:C.二、填空题11.如果的平方根是±3,则=4.【分析】求出a的值,代入求出即可.解:∵的平方根是±3,∴=9,∴a=81,∴==4,故答案为:4.12.设:=1.732,=5.477,则=17.32.【分析】由=1.732,根据移位规律可得只要将的结果的小数点向右移动一位即可得到答案.解:∵=1.732,而3×102=300∴=10×1.732=17.32,故答案为:17.32.13.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=60°.【分析】由AD∥BC,∠B=30°,根据平行线的性质,可得∠ADB=30°,又由DB平分∠ADE,可求得∠ADE的度数,继而求得答案.解:∵AD∥BC,∠B=30°,∴∠ADB=∠B=30°,∵DB平分∠ADE,∴∠ADE=2∠ADB=60°,∵AD∥BC,∴∠DEC=∠ADE=60°.故答案为:60°.14.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB =70°,则∠AED′等于40°.【分析】根据两直线平行,内错角相等求出∠DEF,再根据折叠的性质可得∠D′EF,然后利用平角等于180°列式计算即可得解.解:∵ABCD是长方形纸片,∴AD∥BC,∴∠DEF=∠EFB=70°,根据折叠的性质,∠D′EF=∠DEF=70°,所以,∠AED′=180°﹣(∠D′EF+∠DEF)=180°﹣(70°+70°)=180°﹣140°=40°.故答案为:40°.15.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC =52度,∠COB=128度.【分析】由已知条件和观察图形可知∠EOD与∠DOB互余,∠DOB与∠AOC是对顶角,∠COB与∠AOC互补,利用这些关系可解此题.解:∵OE⊥AB,∴∠EOB=90°,又∠EOD=38°,∴∠DOB=90°﹣38°=52°,∵∠AOC=∠DOB,∴∠AOC=52°,∵∠COB与∠AOC互补,∴∠COB=180°﹣52°=128°.故答案为:52;128.16.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为36°或37°.【分析】先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF =x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x﹣60°<15°,解得22°<x<25°,进而得到∠C的度数.解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x﹣60°,又∵6°<∠BAE<15°,∴6°<3x﹣60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°﹣23°=37°或∠C=60°﹣24°=36°,故答案为:36°或37°.17.如图,数轴上A、B两点表示的数分别为1和,且AB=AC,那么数轴上C点表示的数为2﹣.【分析】设C点表示x,再根据数轴上两点间距离的定义即可得出结论.解:设C点表示x,∵数轴上A、B两点表示的数分别为1和,且AB=AC,∴1﹣x=﹣1,解得x=2﹣.故答案为:2﹣.18.已知,BC∥OA,∠B=∠A=100°,点E、F在BC上,OE平分∠BOF,且∠FOC=∠AOC,下列结论中正确的是:①④.①OB∥AC;②∠EOC=45°;③∠OCB:∠OFB=1:3;④若∠OEB=∠OCA,则∠OCA=60°.【分析】①由BC∥OA,∠B=∠A=100°,∠AOB=∠ACB=180°﹣100°=80°,得到∠A+∠AOB=180°,得出OB∥AC.②OE平分∠BOF,得出∠FOE=∠BOE=∠BOF,∠FOC=∠AOC=∠AOF,从而计算出∠EOC=∠FOE+∠FOC=40°.③由∠OCB=∠AOC,∠OFB=∠AOF=2∠AOC,得出∠OCB:∠OFB=1:2.④由∠OEB=∠OCA=∠AOE=∠BOC,得到∠AOE﹣∠COE=∠BOC﹣∠COE,∠BOE =∠AOC,再得到∠BOE=∠FOE=∠FOC=∠AOC=∠AOB=20°,从而计算出∠OCA=∠BOC=3∠BOE=60°.解:∵BC∥OA,∠B=∠A=100°,∴∠AOB=∠ACB=180°﹣100°=80°,∴∠A+∠AOB=180°,∴OB∥AC.故①正确;∵OE平分∠BOF,∴∠FOE=∠BOE=∠BOF,∴∠FOC=∠AOC=∠AOF,∴∠EOC=∠FOE+∠FOC=(∠BOF+∠AOF)=×80°=40°.故②错误;∵∠OCB=∠AOC,∠OFB=∠AOF=2∠AOC,∴∠OCB:∠OFB=1:2.故③错误;∵∠OEB=∠OCA=∠AOE=∠BOC,∴∠AOE﹣∠COE=∠BOC﹣∠COE,∴∠BOE=∠AOC,∴∠BOE=∠FOE=∠FOC=∠AOC=∠AOB=20°,∴∠OCA=∠BOC=3∠BOE=60°.故④正确.故答案为:①④.三、计算题19.计算:(1)|﹣2|+|﹣1|﹣.(2)﹣22﹣+(﹣1)2013×+.解:(1)原式=2﹣+﹣1﹣2=﹣1;(2)原式=﹣4﹣2﹣﹣=﹣7.20.求下列各式中x的值.(1)8x2﹣128=0;(2)(x+2)3=﹣27.(3)4(x+1)2=64.【分析】(1)直接利用平方根的定义计算得出答案;(2)直接利用立方根的定义计算得出答案;(3)直接利用平方根的定义计算得出答案.解:(1)8x2﹣128=0,则8x2=128,故x2=16,解得:x=±4;(2)(x+2)3=﹣27,则x+2=﹣3,解得:x=﹣5;(3)4(x+1)2=64则(x+1)2=16,故x+1=±4,解得:x=﹣5或3.21.将下列各数填入相应的集合内.﹣7,0.32,,0,,,,π,0.1010010001…①有理数集合{ …}②无理数集合{ …}③负实数集合{ …}.【分析】根据实数的分类:实数分为有理数、无理数.或者实数分为正实数、0、负实数.进行填空.解:=5,=2.①有理数集合{﹣7,0.32,,0,…}②无理数集合{,,π,0.1010010001…}③负实数集合{﹣7…}.故答案是:﹣7,0.32,,0,;,,π,0.1010010001…;﹣7.22.(1)已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,求a+2b的平方根;(2)若x,y都是实数,且y=+8,求x+3y的立方根.解:(1)由题意可知:2a﹣1=9,3a+b﹣1=16,∴a=5,b=2,∴a+2b=5+4=9,∴9的平方根是±3,即a+2b的平方根为±3.(2)由题意可知:,∴x=3,∴y=8,∴x+3y=3+24=27,∴27的立方根是3,即x+3y的立方根是323.阅读理解∵<<,即2<<3.∴的整数部分为2,小数部分为﹣2∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2解决问题:已知:a是﹣3的整数部分,b是﹣3的小数部分,求:(1)a,b的值;(2)(﹣a)3+(b+4)2的平方根.解:(1)∵<<,∴4<<5,∴1<﹣3<2,∴a=1,b=﹣4,(2)(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17=16,故(﹣a)3+(b+4)2的平方根是:±4.24.如图,经过平移,△ABC的顶点A移到了点D,请作出平移后的三角形.解:如图,△DEF就是所求作的三角形.25.完成证明并写出推理根据已知,如图,∠1=132°,∠ACB=48°,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.证明:∵∠1=132°,∠ACB=48°∴∠1+∠ACB=180°∴DE∥BC∴∠2=∠DCB(两直线平行,内错角相等)又∵∠2=∠3∴∠3=∠DCB(等量代换)∴HF∥DC(同位角相等,两直线平行)∴∠CDB=∠FHB.(两直线平行,同位角相等)又∵FH⊥AB,∴∠FHB=90°∴∠CDB=90°∴CD⊥AB.(垂直的定义)【分析】求出∠1+∠ACB=180°,根据平行线的判定得出DE∥BC,根据平行线的性质得出∠2=∠DCB,求出∠3=∠DCB,根据平行线的判定得出HF∥CD,根据平行线的性质得出∠CDB=∠FHB,即可求出答案.【解答】证明:∵∠1=132°,∠ACB=48°,∴∠1+∠ACB=180°,∴DE∥BC,∴∠2=∠DCB(两直线平行,内错角相等),又∵∠2=∠3,∴∠3=∠DCB(等量代换),∴HF∥DC(同位角相等,两直线平行),∴∠CDB=∠FHB(两直线平行,同位角相等),又∵FH⊥AB,∴∠FHB=90°,∴∠CDB=90°,∴CD⊥AB.(垂直的定义)故答案为:两直线平行,内错角相等;等量代换;同位角相等,两直线平行;两直线平行,同位角相等;90;垂直的定义.26.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的角平分线.你能判断DF与AB 的位置关系吗?请说明理由.【解答】证明:平行,理由是:∵BE是∠ABC的角平分线∴∠1=∠2,∵∠E=∠1,∴∠E=∠2,∴AE∥BC,∴∠A+∠ABC=180°,∵∠3+∠ABC=180°,∴∠A=∠3,∴DF∥AB.27.学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1,l2内部,探究∠A,∠APB,∠B的关系小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB =∠A+∠B;(2)如图2,若AC∥BD,点P在AC,BD外部,∠A,∠B,∠APB的数量关系是否发生变化?请写出证明过程;(3)随着以后的学习你还会发现平行线的许多用途.试构造平行线解决以下问题:已知:如图3,三角形ABC,求证:∠A+∠B+∠C=180°.解:(1)∵l1∥PE∥l2,∴∠A=∠APE,∠B=∠BPE,∴∠APB=∠APE+∠BPE=∠A+∠B,(2)∵AC∥BD,∴∠PEC=∠B,∵∠PEC=∠A+∠APB,∴∠B=∠A+∠APB,(3)过点A作PE∥BC,∴∠PAB=∠B,∠EAC=∠C,∵∠PAB+∠BAC+∠CAE=180°,∴∠B+∠BAC+∠C=180°。

七年级数学第二次月考试卷

七年级数学第二次月考试卷

2012-2013学年度第一学期第二次月考七年级数学月考测试卷(考生需知:本试卷满分120分,考试时间120分钟)班级: 学号: 姓名:一,选择题:(每题3分,共30分)1、如图所示,A 、B 、C 、D 四个图形中各有一条射线和一条线段,它们能相交的是( )A 、B 、C 、D 、2、如图,点A 位于点O 的( )方向上. A 、南偏东35° B 、北偏西65° C 、南偏东65°D 、南偏西65°3、下列说法中,正确的个数是( )①两条不相交的直线叫做平行线 ;②两条直线相交所成的四个角中有一个角是直角,则这两条直线互相垂直 ; ③经过一点有且只有一条直线与已知直线垂直 ; ④如果直线a ∥b ,a ∥c ,则b ∥c .A 、4个B 、3个C 、2个D 、 1个 4、用代数式表示“2a 与3的差”为 ( )A 、 3-2aB 、 2a -3C 、 2(a -3)D 、2(3-a) 5、下列方程中,是一元一次方程的是( )A 、x 2﹣4x=3B 、x=0C 、x+2y=1D 、x ﹣1=6、方程2x+a ﹣4=0的解是x=﹣2,则a 等于( )A 、﹣8B 、0C 、2D 、87、在解方程:632213=+--)()(x x 时,去括号正确的是( ) A 、63413=+--x x B 、66433=---x x C 、63413=--+x x D 、66413=-+-x x 8、在解方程:13121=--+x x 时,去分母正确的是( )。

题号 一 二 三 四 总分 得分A 、11213=--+x xB 、61213=--+x xC 、11213=--+)()(x xD 、61213=--+)()(x x9、一个两位数的个位数字是a ,十位数字是b ,则这个两位数可表示为( ) A 、ab B 、a+b C 、10a+b D 、10b+a10、如图是某超市中“漂柔”洗发水的价格标签,一售货员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价是()A 、15.36元B 、16元C 、23.04元D 、24元二,填空题:(每题4分,共32分)11、工人师傅在用方砖铺地时,常常打两个木桩,然后沿着拉紧的线铺砖,这样地砖就铺得整齐,这个事实说明的原理是 ; 12、关于x 的一元一次方程3x+9=0的解是 ; 13、一条射线有_______个端点,一条线段有_______个端点;14、小刚每晚19:00都要看央视的“新闻联播”节目,这时钟面上时针与分针夹角的度数为 度; 15、1°= ′;1′= ′′;4800′= °;16、把一副常用的三角形如图所示拼在一起,那么图中∠ADE 是度;17、已知,如图所示,OA ⊥OB ,∠BOC =40°,OD 平分∠AOC ,则∠BOD = ; 18、某中学七、八年级共1000名学生,八年级学生比七年级少40人,设七年级有x 名学生,可列出方程:_____________________________; 三,解答题:(本大题共31分)19、(8分)在如图的网络线中,过点C 画AB 的垂线和平行线,并分别表示出来.DCO BA第16题第17题20、(8分)如图,∠AOC和∠BOD都是直角,如果∠AOB=150°,求∠COD的度数.21,解下列方程:(每题5分,共15分)(1)7x﹣8=5x+2 (2) 5(x+8)﹣5=6(2x﹣7)(3)﹣=1四,应用题(每题9分,共27分)22、(8分)在一张日历表中,用一个正方形任意圈出2×2个数(如10,11,17,18),这4个数的和可以是78吗?简要说明你的理由.23、(9分)滨海公园成人票10元/张,学生票为6元/张,某一天在这个公园共售出800张门票,共得门票款6000元,则成人票与学生票各售出多少张?24、(10分)小丽的爸爸前年存了年利率为2.25%的二年期定期储蓄,今年到期后,扣除利息的20%作为利息税(所谓利息税的20%是指征收存款所产生利息的20%),所得利息正好为小丽买了一只价值36元的学习机,问小丽爸爸前年存了多少元钱?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每小题3分,共30分) 1、下列各组数是二元一次方程⎩⎨
⎧=-=+1
7
3x y y x 的解是( )
A 、⎩⎨⎧==21y x
B 、⎩⎨⎧==10y x
C 、⎩⎨⎧==07
y x
D 、⎩⎨
⎧-==2
1y x 2、二元一次方程5a -11b=21 ( )
A .有且只有一解
B .有无数个解
C .无解
D .有且只有两解
3、下列各式,属于二元一次方程的个数有( ) ①xy+2x -y=7; ②4x+1=x -y ; ③1x
+y=5; ④x=y ;
⑤x 2-y 2
=2
⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y
2
-y 2
+x
A .1
B .2
C .3
D .4 4、下列各式中,一元一次不等式是 ( )
A .x ≥5x
B .2x>1-x 2
C .x+2y<1
D .2x+1≤3x
5、某年级学生共有246人,其中男生人数y 比女生人数x
的2倍多2人,则下面所列的方程组中符合题意的是( )
1
2
(第6题)
A .246
246
216246
(22)
222222
x y x y x y x y B C D y x x y y x y x +=+=+=+=⎧⎧⎧⎧⎨



=-=+=+=+⎩⎩⎩⎩ 6、一副三角板按如图摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °, ∠2=y °,则可得到的方程组为( )
A 、⎩⎨⎧=+-=18050y x y x
B 、⎩⎨
⎧=++=18050
y x y x C 、⎩⎨⎧=+-=9050y x y x D 、⎩⎨
⎧=++=90
50
y x y x 7、若b a <,则下列各式中不一定...成立的是( ) A .11-<-b a B .
33
b a <
C . b a ->-
D . bc ac <
8、以下所给的数值中,为不等式-2x + 3<0的解的是( ).
A .-2
B .-1
C .
D .2
9、方程3x+y=7的正整数解的个数是( )
A .1个
B .2个
C .3个
D .4个 10、不等式02≤-x 的解集在数轴上表示正确的是( )
A .
B .
C .
D . 二、填空(每小题4分,共24分)
11、不等式7-2x >1的解集为 .
3-2-1-0 1 2 3
3-2-1-0 1 2 3
3
-2-1-0 1 2 3 3-2-1-0 1 2 3
12、由方程3x -y -6=0可得到用x 表示y 的式子是y =_________。

13、在二元一次方程-12
x+3y=2中,当x=4时,y=_______;
当y=-1时,x=______.
14、若32123=---n m y x 是二元一次方程,则m=_____,n=______. 15、2≥x 的最小值是a ,6-≤x 的最大值是b ,则.___________=+b a
16、如果点M (3m+1,-4)在第四象限内,那么m 的取值范围是 _________________. 三、解答题
17、解方程组 (6分) 18、解方
程组(6分)
218,
3 2.a b a b +=⎧⎨=+⎩29,32 1.x y x y +=⎧⎨-=-⎩
19、 解方程组(6分) 20、解
下列不等式, 并在数轴
上表示其解集(7分)
21、如图,在3×3的方格内,填写了一些代数式和数(7
1)1(2
2
<---x x 253,4 3.
x y x y -=-⎧⎨
-+=-⎩
2x y 4y
32
-33
2-3
图(1)
图(2)
分)
(1)在图中各行、各列及对角线上三个数之和都相等,请你求出x ,y 的值。

(2)把满足(1)的其它6个数填入图(2)中的方格内。

22、若方程组 ⎩
⎨⎧=-+=+k y x k
y x 3372 的解
x 与y 是互为相反数,求k
的值。

(7分)
23、某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使一个螺栓配套两个螺帽,应如何分配工人才能使螺栓和螺帽刚好配套?
24、如图,8块相同的长方形地砖拼成一个大长方形,大长方形的宽为60 cm,每块长方形地砖的长和宽分别是多少?
25、某公园的门票价格如下表所示:
某校八年级甲、乙两个班共100多人去该公园举行游园联欢活动,其中甲班有50多人,乙班不足50人。

如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一个团体购票,一共只要付515元。

问:甲、乙两个班分别有多少人?
购票人数
1
51~100人
100
票价
10
8
5。

相关文档
最新文档