第一章 导数及其应用

合集下载

人教版高中数学选修2-2习题第一章导数及其应用1.1.2导数的概念

人教版高中数学选修2-2习题第一章导数及其应用1.1.2导数的概念

第一章导数及其应用1.1变化率与导数导数的观点A 级基础稳固一、选择题1. y= x2在 x= 1 处的导数为 ()A. 2x B. 2 C. 2+ x D. 1分析:由于 f(x)= x2,x= 1,因此y= f(1+x)- f (1)= (1+x)2- 1= 2x+ (x)2,所以y=(2+x)= 2.x答案: B2.一物体运动知足曲线方程s=4t2+ 2t- 3,且 s′(5)= 42(m/s),其实质意义是 () A.物体 5 秒内共走过42 米B.物体每 5 秒钟运动42 米C.物体从开始运动到第 5 秒运动的均匀速度是42 米/秒D.物体以 t= 5 秒时的刹时速度运动的话,每经过一秒,物体运动的行程为42 米分析:由导数的物理意义知,s′ (5)= 42(m/s)表示物体在t= 5 秒时的刹时速度.答案: D3.设函数 f (x)在点 x0邻近有定义,且有 f(x0+x)- f(x0 )= a x+ b(x)2,(a,b 为常数 ),则 ()A. f′ (x)= a B. f′ (x)= bC. f′ (x0)= a D. f′ (x0)= b分析:由于 f′(x=f( x0+x)-f(x)=0)xa x+ b(x)2=(a+ b x)= a,因此 f′(xx0)=a.答案: C4.已知 y=x+ 4,则 y′|x1= ________.=555A. 2B. 10C. 5 D.-10分析:由题意知y=1+x+ 4- 1+ 4=5+x-5,y+-5+-5所以=5x1=5x=. 所以 y′|xx x=xx=5x ( 5+ x +5) 10.答案: B5.假如某物体做运动方程为s = 2(1- t 2)的直线运动 (s 的单位为 m , t 的单位为 s),那么 其在 1.2 s 末的刹时速度为 ()A .- 4.8 m/sB .- 0.88 m/sC . 0.88 m/sD . 4.8 m/s解 析 : 运 动 物 体 在1.2s 末 的 瞬 时 速 度 即 为 s 在 1.2 处 的 导数 , 所 以f ( 1.2+ t )- f ( 1.2)=t222[1-( 1.2+t ) ]- 2×( 1- 1.2 )=2(- 答案: A 二、填空题6.设函数t - 2.4)=- 4.8(m/s).f(x)知足f ( 1)- f ( 1- x )=- 1,则 f ′(1)= ________.x分析: f ( 1)- f ( 1- x ) = f ( 1- x )- f ( 1)= f ′(1)=- 1.x- x答案:- 17.函数 f(x)= x 2+ 1 在 x = 1 处可导,在求 f ′(1)的过程中,设自变量的增量为x ,则函数的增量y = ________.分析:y = f(1+ x)- f(1) =- (1 2+ 1)=2 x + ( x)2.答案: 2 x + (x)28.某物体做匀速直线运动,其运动方程是 s = vt ,则该物体在运动过程中其均匀速度与任何时辰的刹时速度的大小关系是________.s ( +t )- s ( t )分析: v 0== s t 0=ttv ( t 0+ t )- v ( t 0)=v tt= v.t答案:相等三、解答题19.利用导数的定义,求函数y = x 2+ 2 在点 x = 1 处的导数. 解:由于y = 1 2+2 - 1 =( x + x ) x 2+ 2- 2x x -(x ) 2,因此y =- 2x - x ,( x + x ) 2· x 2 x ( x + x ) 2· x 2因此 y ′=y = - 2x - x2=- 23,( x +2xx ) · xx因此 y ′|x =1=- 2.10.在自行车竞赛中,运动员的位移与竞赛时间t 存在关系 s(t)= 10t + 5t 2(s 的单位是 m ,t 的单位是 s).(1)求 t = 20,t = 0.1 时的s 与s ;t(2)求 t = 20 时的速度.解: (1) 当 t = 20, t = 0.1 时,s = s(20+ t)- s(20)= 10(20+ 0.1)+ 5(20+ 0.1)2- (10 ×20+ 5× 202)= 1+ 20+ 5×0.01=21.05.因此s 21.05 = 210.5.= 0.1ts( + t)+(+ t) 2- 10t - 5t 2(2)v ==10 t 5 t =tt5(t ) 2+ 10 t + 10tt(5 t + 10+ 10t)= 10+ 10t ,t=因此 t = 20 时的速度即为10+ 10×20= 210(m/s).B 级 能力提高1.某物体运动规律是 s = t 2 - 4t + 5,若此物体的刹时速度为 0,则 t = ()A .3B .2.5C .2D .1分析: s = (t + t)2- 4(t +t) + 5- ( t 2- 4t + 5)= 2t t + ( t)2- 4 t ,由于 v =st= 2t - 4= 0,因此 t = 2.答案: C2.婴儿从出生到第24 个月的体重变化如下图,第二年婴儿体重的均匀变化率为________kg/ 月.分析:第二年婴儿体重的均匀变化率为14.25- 11.25= 0.25(kg/月 ).24- 12答案: 0.253.若一物体运动方程是 (s 的单位是 m , t 的单位是 s)3t 2+ 2( t ≥3),s =29+ 3( t - 3) 2( 0≤t < 3) .求: (1) 物体在 t ∈内的均匀速度;(2) 物体的初速度v 0;(3) 物体在 t = 1 时的刹时速度.解: (1) 由于物体在 t ∈内的时间变化量为t = 5-3= 2,物体在 t ∈内的位移变化量为:= × 2+ 2- (3 ×32+ 2)= 3×(52- 32s 3 5 )= 48,因此物体在 t ∈上的均匀速度为 s 48 = 24(m/s).= 2t (2) 求物体的初速度 v 0 即求物体在 t = 0 时的刹时速度.由于物体在 t = 0 邻近的均匀变化率为s ( +)- ( ) == ftftt29+ 3[( 0+ t )- 3]2- 29- 3( 0- 3) 2= 3t - 18.t因此物体在 t = 0 处的刹时变化率为,s (3 t - 18)=- 18,t =即物体的初速度为- 18 m/s.(3)物体在 t = 1 时的刹时速度即为函数在 t = 1 处的刹时变化率.由于物体在 t = 1 邻近的均匀变化率为:s ( + )- ( )= f 1 t f 1 = tt29+ 3[( 1+ t )- 3]2- 29- 3( 1- 3) 2t - 12,= 3t因此物体在 t = 1 处的刹时变化率为:s = (3 t - 12)=- 12.t即物体在 t = 1 时的速度为- 12 m/s.。

人教版高中数学选修2-2第一章导数及其应用复习优质

人教版高中数学选修2-2第一章导数及其应用复习优质
1 故函数 f(x)的单调递增区间是 (0, );单调递减 e 1 区间是 ( ,1)和 (1,+∞). e
3.利用导数研究函数的极值和最值
1.应用导数求函数极值的一般步骤: (1)确定函数f(x)的定义域; (2)解方程f′(x)=0的根; (3) 检 验 f′(x) = 0 的 根 的 两 侧 f′(x) 的 符 号. 若左正右负,则f(x)在此根处取得极大值; 若左负右正,则f(x)在此根处取得极小值; 否则,此根不是f(x)的极值点.
(2)法一:设切点为(x0,y0), 则直线 l 的斜率为 f′(x0)=3x2 0+1, ∴直线 l 的方程为 3 y=(3x2 + 1)( x - x ) + x 0 0 0+x0-16, 又∵直线 l 过点(0,0), 3 ∴0=(3x2 + 1)( - x ) + x 0 0 0+x0-16, 3 整理得,x0=-8, ∴x0=-2.
解之得,x0=-2, 3 ∴y0=(-2) +(-2)-16=-26, k=3×(-2)2+1=13. ∴直线 l 的方程为 y=13x, 切点坐标为(-2, -26). x (3)∵切线与直线 y=- +3 垂直, 4 ∴切线的斜率 k=4. 设切点坐标为(x0, y0),则 f′ (x0)= 3x2 0+ 1= 4, ∴ x0= ± 1, x0=1 x0=-1, ∴ 或 y0=- 14 y0=- 18. 即切点为 (1,- 14)或 (- 1,- 18). 切线方程为 y=4(x- 1)-14 或 y= 4(x+ 1)-18. 即 y=4x- 18 或 y=4x- 14.
例 3: 已知函数 f(x)=-x3+ax2+bx, 在区间(-2,1) 2 内,当 x=-1 时取极小值,当 x= 时取极大值. 3 (1)求函数 y=f(x)在 x=-2 时的对应点的切线方程; (2)求函数 y=f(x)在[-2,1]上的最大值与最小值.

_高中数学第一章导数及其应用2

_高中数学第一章导数及其应用2

f(x)=1x
f ′(x)=-x12=-x-2
f(x)= x
f ′(x)=21 x=12x-12
f(x)=x3
f′(x)=3x2
结论:若f(x)=xα(α为有理数),则f′(x)=αxα-1.
1.y=c表示平行于x轴的直线,或与x轴重合的直线, 其斜率为0,故y=c上任一点处的导数值为____0____, 直线y=x的斜率为1,故直线y=x上任一点处的导数值 为___1_____.
[分析] 只需求出K、Q两点的横坐标即可.
[解析]
设P(x0,y0),则kl1=y′|x=x0=2
1 x0
.
∵直线l1与l2垂直,则kl2=-2 x0,
∴直线l2的方程为y-y0=-2 x0(x-x0).
∵点P(x0,y0)在曲线y= x上,∴y0= x0.
在直线l2的方程中令y=0,则- x0=-2 x0(x-x0).
2.当y=c表示路程关于时间的函数时,常数c表明路 程不变化,因此一直处于__静__止____状态,故瞬时速度 为___0_____,因此y′=____0____;
当y=x表示路程关于时间的函数时,路程的改变量等 于时间的改变量,因此物体做匀速直线运动,瞬时速 度为___1_____,故y′=____1____.
当P点不是切点时,设切点为A(x0,y0),由定义可求得切 线的斜率为k=3x20.
∵A在曲线上,∴y0=x30,∴xx300--82=3x20,
∴x30-3x20+4=0,∴(x0+1)(x0-2)2=0, ∴x0=-1或x0=2(舍去),∴y0=-1,k=3, 此时切线方程y+1=3(x+1),即3x-y+2=0. 故经过点P的曲线的切线有两条,方程为12x-y-16=0和 3x-y+2=0. [警示] 求曲线过点P的切线时,应注意检验点P是否在曲 线上,若点P在曲线上,应分P为切点和P不是切点讨论.

高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案

高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案
求下列函数的导数: (1)y = e3x+2 ;(2)ln(2x − 1).

解:(1)y ′ = (e3x+2 ) = e3x+2 ⋅ (3x + 2)′ = 3e3x+2 ; (2)y ′ = (ln(2x − 1))′ =
1 2 . ⋅ (2x − 1)′ = 2x − 1 2x − 1
2.利用导数求函数的切线方程 描述: 利用导数求函数的切线方程 步骤一:求出函数 y = f (x) 在点 x0 处的导数 f ′ (x0 ) ; 步骤二:根据直线方程的点斜式,得到切线方程为 y − f (x0 ) = f ′ (x0 )(x − x0 ). 例题: 求曲线 y = ex + 1 在 (0, 2) 处的切线方程. 解:因为 y = ex + 1,所以 y ′ = ex ,故曲线 y = ex + 1在 (0, 2)处的切线斜率为
解:(1)因为 y =
所以在点 P 处的切线的斜率等于 4 .所以在点 P 处的切线方程是
y−

8 = 4(x − 2), 3
12x − 3y − 16 = 0.
(2)设切点为 (x 0 , y 0 ),则由(1)知切线的斜率 k = x2 ,切线方程为 y − y 0 = x2 (x − x 0 ) . 0 0 又切线过点 P (2,
8 1 ) 且 (x0 , y 0 ) 在曲线 y = x3 上,所以 3 3 ⎧ ⎪ 8 − y = x2 (2 − x0 ), 0 0 ⎨3 1 ⎪ ⎩ y = x3 , ⎪ 0 3 0 − 3x2 + 4 = 0, x3 0 0
整理得

(x0 − 2)2 (x0 + 1) = 0.

_高中数学第一章导数及其应用1

_高中数学第一章导数及其应用1

ΔΔst=29+31+Δt-3Δ2t-29-31-32=3Δt-12,
∴物体在 t=1 处的瞬时变化率为lim Δt→0
ΔΔst =Δlitm→0
(3Δt-12)
=-12(m/s),
即物体在 t=1 时的瞬时速度为-12 m/s.
3.求函数f(x)在某点处的导数
• 例题3 若函数y=x2+ax在x=2处的导数为8,求a的值.
8分
10 分 12 分
规律方法
利用导数定义求导数的三步曲:
(1)求函数的增量 Δy=f(x0+Δx)-f(x0); (2)求平均变化率ΔΔxy=fx0+ΔΔxx-fx0;
(3)取极限,得导数 f′(x0)=Δlixm→0
Δy Δx.
简记为:一差,二比,三趋近. 特别提醒:取极限前,要注意化简ΔΔyx,保证使 Δx→0 时,分母
不为 0.
• 3.已知函数y=2x2+4x,(1)求函数在x=3处的导数. • (2)若函数在x0处的导数是12,求x0的值. 解析: (1)Δy=2(3+Δx)2+4(3+Δx)-(2×32+4×3) =12Δx+2(Δx)2+4Δx =2(Δx)2+16Δx, ∴ΔΔyx=2Δx2Δ+x 16Δx=2Δx+16. ∴y′|x=3=Δlixm→0 ΔΔyx=Δlixm→0 (2Δx+16)=16.
=Δx+1+ΔxΔx,
ΔΔyx=Δx+Δ1x+ΔxΔx=1+1+1Δx,
∴ lim Δx→0
ΔΔyx=Δlixm→0
1+1+1Δx=2,
从而 y′|x=1=2.
典例导航
1.求函数的平均变化率
• 例题1 求函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的平均 变化率,并求当x0=2,Δx=0.1时平均变化率的值.

高中数学第一章导数及其应用1.2.1_2几个常用函数的导数基本初等函数的导数公式及导数的运算法则(一)课件新

高中数学第一章导数及其应用1.2.1_2几个常用函数的导数基本初等函数的导数公式及导数的运算法则(一)课件新
【课标要求】
1. 能根据定义求函数 y=c(c 为常数),y=x,y=x2,y=1x, y= x的导数.
2.能利用给出的基本初等函数的导数公式求简单函数的导 数.
自主学习 基础认识
|新知预习|
1.几个常用函数的导数
函数 导数 函数
导数
f(x)=c f′(x)=0 f(x)=x f′(x)=1
f(x)=x2 f′(x)=2x f(x)=1x f′(x)=-x12
3.函数 f(x)=sinx,则 f′(6π)=________.
解析:f′(x)=cosx,所以 f′(6π)=1. 答案:1
【解析】 (1)因为 y=sinx,所以 y′=cosx,
曲线在点 Pπ6,12处的切线斜率是
y′|x=π6=cosπ6=
3 2.
所以过点
P
且与切线垂直的直线的斜率为-
2, 3
故所求的直线方程为 y-12=- 23x-π6,
即 2x+ 3y- 23-π3=0.
(2)因为 y′=(x2)′=2x, 设切点为 M(x0,y0), 则 y′|x=x0=2x0, 又因为直线 PQ 的斜率为 k=42- +11=1,而切线平行于直线 PQ,
切线方程为 y-14=-x+12, 即 4x+4y+1=0.
|素养提升|
1.基本初等函数的导数公式可分为四类 第一类为幂函数,y′=(xα)′=αxα-1(注意幂指数 α 可推广到全体 非零实数); 第二类为三角函数,可记为正弦函数的导数为余弦函数,余弦函 数的导数为正弦函数的相反数; 第三类为指数函数,y′=(ax)′=axlna,当 a=e 时,y=ex 的导 数是指数函数的导数的一个特例; 第四类为对数函数,y′=(logax)′=xl1na,也可写为(logax)′= 1x·logae,当 a=e 时,y=lnx 的导数是对数函数的导数的一个特例.

医用高等数学完整答案

医用高等数学完整答案

医用高等数学完整答案第一部分:导数及其应用导数是高等数学中的一个重要概念,它描述了函数在某一点的变化率。

在医用高等数学中,导数的应用非常广泛,例如在药物动力学、生物力学等领域。

1. 导数的定义:导数可以理解为函数在某一点的变化率。

对于一个函数 f(x),它在点 x=a 处的导数定义为:f'(a) = lim (h→0) [f(a+h) f(a)] / h其中,h 表示自变量 x 的微小变化量。

2. 导数的几何意义:导数还可以理解为函数图像在某一点的切线斜率。

切线是函数图像在该点附近最接近的直线,斜率则表示切线与x 轴的夹角。

3. 导数的计算:导数的计算方法有很多种,包括求导法则、微分法则、链式法则等。

下面列举一些常用的求导法则:常数函数的导数为 0。

幂函数的导数为幂指数乘以幂函数的导数。

指数函数的导数为指数函数乘以底数的对数。

对数函数的导数为底数的对数除以对数函数。

三角函数的导数可以根据三角函数的和差公式进行计算。

4. 导数的应用:导数在医用高等数学中的应用非常广泛,例如:药物动力学:通过求导可以计算药物在体内的浓度变化率,从而预测药物的疗效和副作用。

生物力学:通过求导可以计算生物体的运动速度和加速度,从而分析生物体的运动状态。

生理学:通过求导可以计算生理参数的变化率,从而分析生理过程的变化规律。

导数是医用高等数学中的一个重要概念,它描述了函数在某一点的变化率,并在药物动力学、生物力学等领域有着广泛的应用。

第二部分:微积分的应用微积分是高等数学的另一个重要分支,它包括微分和积分两部分。

在医用高等数学中,微积分的应用同样非常重要,它可以帮助我们理解和分析医学问题。

1. 微分的应用:微分是微积分的基础,它描述了函数在某一点的变化情况。

在医学中,微分可以用来研究药物在体内的浓度变化、生物体的生长速度等。

例如,我们可以通过微分方程来描述药物在体内的代谢过程,从而预测药物的疗效和副作用。

2. 积分的应用:积分是微积分的另一个重要部分,它描述了函数在某个区间上的累积效果。

高中数学教案新人教版选修

高中数学教案新人教版选修

高中数学全套教案新人教版选修一、第一章:导数及其应用1.1 导数的定义与计算学习目标:理解导数的定义,掌握基本的导数计算方法。

教学内容:引入导数的定义,讲解导数的计算规则,举例说明。

教学活动:讲解导数的定义,通过数学软件或板书演示导数的计算过程,学生跟随练习。

1.2 导数在函数中的应用学习目标:理解导数在函数中的应用,学会求函数的极值和单调性。

教学内容:讲解导数与函数的极值、单调性的关系,举例分析。

教学活动:通过例题讲解导数在函数中的应用,学生跟随练习,讨论解题方法。

二、第二章:积分及其应用2.1 积分的定义与计算学习目标:理解积分的定义,掌握基本的积分计算方法。

教学内容:引入积分的定义,讲解基本的积分计算规则,举例说明。

教学活动:讲解积分的定义,通过数学软件或板书演示积分的计算过程,学生跟随练习。

2.2 积分在几何中的应用学习目标:理解积分在几何中的应用,学会计算几何图形的面积和体积。

教学内容:讲解积分在几何中的应用,举例说明计算面积和体积的方法。

教学活动:通过例题讲解积分在几何中的应用,学生跟随练习,讨论解题方法。

三、第三章:概率与统计学习目标:理解概率的基本概念,学会计算事件的概率。

教学内容:讲解概率的基本定义,举例说明如何计算事件的概率。

教学活动:通过实例讲解概率的基本概念,学生跟随练习,讨论解题方法。

3.2 统计的基本概念学习目标:理解统计的基本概念,学会计算数据的均值、方差等统计量。

教学内容:讲解统计的基本定义,举例说明如何计算均值、方差等统计量。

教学活动:通过实例讲解统计的基本概念,学生跟随练习,讨论解题方法。

四、第四章:数列与级数4.1 数列的基本概念学习目标:理解数列的基本概念,学会计算数列的通项公式和求和公式。

教学内容:讲解数列的定义,举例说明如何求解数列的通项公式和求和公式。

教学活动:通过实例讲解数列的基本概念,学生跟随练习,讨论解题方法。

4.2 级数的基本概念学习目标:理解级数的基本概念,学会判断级数的收敛性。

[精品课件]高中数学 第一章 导数及其应用 1.2.1 常数函数与幂函数的导数 1.2.2 导数公式表及数学软件的应

[精品课件]高中数学 第一章 导数及其应用 1.2.1 常数函数与幂函数的导数 1.2.2 导数公式表及数学软件的应

3.已知函数 f(x)=ax3+x+1 的图象在点(1,f(1))处的切线过点(2,7),则 a =________.
【解析】 ∵f′(x)=3ax2+1, ∴f′(1)=3a+1. 又 f(1)=a+2, ∴切线方程为 y-(a+2)=(3a+1)(x-1). ∵切线过点(2,7),∴7-(a+2)=3a+1,解得 a=1. 【答案】 1
1 A.10
B.10
C.10ln 10
1 D.10ln 10
【解析】 ∵f′(x)=10xln 10,∴f′(1)=10ln 10.
【答案】 C
[质疑·手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问 1:_______________________________________________________ 解惑:________________________________________________________ 疑问 2:_______________________________________________________ 解惑:________________________________________________________ 疑问 3:_______________________________________________________ 解惑:________________________________________________________
y′=________
y=logax (a>0,a≠1,x>0)
y=ln x y=sin x y=cos x
y′=________
y′=________ y′=________ y′=________

选修2-2第一章导数及其应用归纳整合

选修2-2第一章导数及其应用归纳整合

边梯形面积的区别.
网络构建
专题归纳
解读高考
专题一 应用导数解决与切线相关的问题 根据导数的几何意义,导数就是相应切线的斜率,从而就可 以应用导数解决一些与切线相关的问题.
网络构建
专题归纳
解读高考
【例 1】 设函数 f(x)=4x2-ln x+2,求曲线 y=f(x)在点(1,f(1)) 处的切线方程. 1 解 f′(x)=8x- x. 所以在点(1,f(1))处切线的斜率 k=f′(1)=7, 又 f(1)=4+2=6, 所以切点的坐标为(1,6), 所以切线的方程为 y-6=7(x-1),即 y=7x-1.
(2)求函数最值的步骤
一般地,求函数y =f(x) 在[a ,b] 上最大值与最小值的步骤如下: ①求函数y=f(x)在(a,b)内的极值; ②将函数y=f(x)的各极值与端点处的函数值 f(a),f(b)比较,其 中最大的一个是最大值,最小的一个是最小值.
网络构建
专题归纳
解读高考
7.应用导数解决实际问题,关键在于建立恰当的数学模型(函数 关系),如果函数在区间内只有一个点x0,使f′(x0)=0,则f(x0)是 函数的最值.
为增(或减)函数的充分条件.
网络构建
专题归纳
解读高考
5.利用导数研究函数的极值要注意 (1) 极值是一个局部概念,是仅对某一点的左右两侧领域而言 的.
(2) 连续函数f(x) 在其定义域上的极值点可能不止一个,也可能
没有极值点,函数的极大值与极小值没有必然的大小联系,函 数的一个极小值也不一定比它的一个极大值小. (3)可导函数的极值点一定是导数为零的点,但函数的导数为零 的点,不一定是该函数的极值点.因此导数为零的点仅是该点
3.利用基本初等函数的求导公式和四则运算法则求导数,熟记基

高中数学选修2-2第一章-导数及其应用

高中数学选修2-2第一章-导数及其应用
选修2-2
第一章 导数及其应用目录
§1.1.1变化率问题(新授课)
§1.1.2导数的概念(新授课)
§1.1.3导数的几何意义(新授课)
§1.2.1几个常用函数的导数(新授课)
§1.2.2第一课时:基本初等函数的导数公式及
导数的运算法则(新授课)
§1.2.2第二课时:复合函数的求导法则(新授课)
§1.3.1函数的单调性与导数(2课时)(新授课)
二、教学重点与难点:
重点:平均变化率的概念、函数在某点处附近的平均变化率;
难点:平均变化率的概念.
三、教学过程:
(一).创设情景
为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:
1、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;
§3.3.2函数的极值与导数(2课时)(新授课)
§1.3.3函数的最大(小)值与导数(2课时)(新授课)
§1.4生活中的优化问题举例(2课时)(新授课)
§1.5.1曲边梯形的面积(新授课)
§1.5.2汽车行驶的路程(新授课)
§1.5.3定积分的概念(新授课)
§1.6微积分基本定理(新授课)
§1.7定积分的简单应用(两课时)(新授课)
⑴运动员在这段时间内使静止的吗?
⑵你认为用平均速度描述运动员的运动状态有什么问题吗?
探究过程:如图是函数h(t)=-4.9t2+6.5t+10的图像,结合图形可知, ,
所以 ,
虽然运动员在 这段时间里的平均速度为 ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.

高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案

高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案

导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).



高考不提分,赔付1万元,关注快乐学了解详情。

解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为

A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。

(人教版)高中数学选修2-2课件:第1章 导数及其应用1.2.1、2(1)

(人教版)高中数学选修2-2课件:第1章 导数及其应用1.2.1、2(1)

自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
求简单函数的导函数有两种基本方法: (1)用导数的定义求导,但运算比较繁杂; (2)用导数公式求导 ,可以简化运算过程、降低运算难 度.解题时根据所给问题的特征,将题中函数的结构进行调 整,再选择合适的求导公式.
数学 选修2-2
第一章 导数及其应用
A.(0,0)
B.(0,1)
C.(1,0)
D.以上都不是
解析: (x3)′=3x2,若切线平行或重合于x轴则切线斜率k
=0,即3x2=0得x=0,
∴y=0,即切点为(0,0).故选A.
答案: A
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
3.函数f(x)=sin x,则f′(6π)=________. 解析: f′(x)=cos x,所以f′(6π)=1. 答案: 1
6分 8分
10 分 12 分
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.求过点P的切线方程时应注意,P点在曲线 上还是在曲线外,两种情况的解法是不同的.
2.解决此类问题应充分利用切点满足的三个关系: 一是切点坐标满足曲线方程;二是切点坐标满足对应切线 的方程;三是切线的斜率是曲线在此切点处的导数值.
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(1)y′=-3x-4.(2)y′=3xln 3.
(4)y′=xln1 5.(5)y=sin x,y′=cos x. (6)y′=0.(7)y′=1x.(8)y′=ex.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
学习重、难点
重点:掌握导数有关切线、极值、最值、零 点等问题的应用。 难点:深刻理解运用导数研究函数的工具性以 及应用导数解决与函数有关的综合问题。
2018/10/23
高三数学——导数及其应用
3

【课前预习】 1、



2、
2018/10/23
高三数学——导数及其应用
4
1 3 4 例 1 已知曲线 y= x + . 3 3 (1)求曲线在 x=2 处的切线方程; (2)变式:求曲线过点(2,4)的切线方程.
(1)a≥f(x)(或≤f(x))恒成立⇔a≥f(x)max(或≤f(x)min); (2)a≥f(x)(或≤f(x))恒有解⇔a≥f(x)min(或≤f(x)max); (3)f(x)≥g(x)恒成立⇔F(x)min≥0(其中F(x)=f(x)-g(x));
(4)f(x)≥g(x)恒有解⇔F(x)max≥0(其中F(x)=f(x)-g(x)).
当x= ≥1时,即b≥6时,[f′(x)]min=f′(1)=3-b+b>0,∴b≥6 时符合要求. b 当x= 6 ≤-2时,即b≤-12时,[f′(x)]min=f′(-2)=12+ 2b+b≥0b ,∴b不存在. 2 b 12 b b 当-2< 6 <1即-12<b<6时,[f′(x)]min= f′( )= ≥0, 6 12 ∴0≤b<6, 综上所述b≥0.

【典例讲解】
解析:(1)∵y′=x ,
2



∴在点 P(2,4)处的切线的斜率 k=y′|x=2=4. ∴曲线在点 P(2,4)处的切线方程为 y-4=4(x- 2), 即 4x-y-4=0.

【典例讲解】



1 3 4 (2)设曲线 y=3x +3与过点 P(2,4)的切线相切于 1 3 4 点 Ax0,3x0+3,则切线的斜率 k=y′|x=x0=x2 0. 1 4 3 2 x + ∴切线方程为 y- = x 0 0(x-x0), 3 3 2 3 4 2 即 y=x0· x- x0+ . 3 3

【典例讲解】



例1 :规律方法总结:
在 与 过
类型一:曲线y=f(x)在点P(x0,f(x0))处的切线方程为
y-f(x0)=f′(x0)(x-x0).
类型二:曲线y=f(x)过点P的切线方程:应先设切点
(x0,f(x0)) ,再利用切点是切线和曲线的交点, 构造方程组解出切点,进而转化为类型一求解。 即用“待定切点法”来求解。
高三数学——导数及其应用
b 6




【典例讲解】 例2 :规律方法总结: 1.用“导数法” 求单调区间的步骤: 2.求函数极值的步骤如下:
(1)确定函数的定义域;
定义域优先考虑
(2)求导数f′(x);
(3)求方程f′(x)=0的全部实根;
求参数时 需验证
(4)检查f′(x)在方程根左右的值的符号,如果左正右负,那 么f(x)在这个根处取得极大值;如果左负右正,那么f(x) 在这个根处取得极小值. 即“高 f′( x )=0”是“x是f(x)极值点”的必要不充分条件 三 数学——导数及其应用 13 . 2018/10/23
2018/10/23 高二数学——导数及其应用
17

【小结反思】



通过本节课的学习你学到了哪些知识? 掌握了那些数学思想方法?
你认为解题中易出错的地方在哪里?
2018/10/23
高二数学——导数及其应用
18
【作业布置】

案: 高考典例

2018/10/23 高二数学——导数及其应用
19
14

【典例讲解】
设函数f(x)= x 例3 :
3

2



f(x)<m成立,求实数m的取值范围
1 2
x
2 x 5,若对于任意x∈[-1,2]都有
1. [7,f(x)的最小值为f(1)=
7 2.(- ∞,) 2
7 2
所以
7 3. (- ∞, ] 2 4.(
2018/10/23

【典例讲解】
∵点



2 3 4 2 P(2,4)在切线上,∴4=2x0- x0+ , 3 3
2 即 x3 - 3 x 0 0+4=0, 2 2 ∴x3 + x - 4 x 0 0 0+4=0, ∴x2 0(x0+1)-4(x0+1)(x0-1)=0, ∴(x0+1)(x0-2)2=0,解得 x0=-1 或 x0=2, 故所求切线方程为 4x-y-4=0 或 x-y+2=0.
2018/10/23 高三数学——导数及其应用
9

【典例讲解】 例2 :函数f(x)= x a x
3 2



,在曲线y=f(x)上的 点P(1,f(1))的切线方程为y=3x+1. (1)若y=f(x)在x=-2时有极值,求f(x)的表达式; (2)若函数y=f(x)在区间[-2,1]上单调递增,求实数b的 取值范围.
f(x) 随x变化情况如下表:
x -1
11 2
f′(x) f(x)
(-1, 2 3 ) + 递增

0
5
2 3
2 ( ,1 3 ) -
1 0
7 2
(1,2) 2 + 递增 7
22 27
递减
f(x)的最大值为f(2)=7, 所以m>7,即实数m的取值范围 为(7,+∞)。
2018/10/23 高三数学——导数及其应用
bx c
2018/10/23
高三数学——导数及其应用
10

【典例讲解】 例2 :



x 解 (1)由f(x)= 求导数得f′(x)=3 x +2ax+b. 过y=f(x)上点P(1,f(1))的切线方程为y-f(1)=f′(1)(x-1), 即y-(a+b+c+1)=(3+2a+b)(x-1). 而过y=f(x)上点P(1,f(1))的切线方程为y=3x+1. ① 2 a b 0 3 2a b 3 故 即 ca 3 ② -a c- 2 1 ∵y=f(x)在x=-2时有极值,故f′(-2)=0.∴-4a+b=-12. ③ 由①②③联立解得a=2,b=-4,c=5,
∴f(x)= x 2 x 4 x 5
2018/10/23 高三数学——导数及其应用
3
a x bx c
2
2
3
2
11

【典例讲解】



2 (2)y=f(x)在[-2,1]上单调递增.又f′(x)=3 x + 2ax+b.由(1) 知2a+b=0. 2 ∴f′(x)=3 x -bx+b.依题意在[-2,1]上恒有f′(x)≥0, 即 [f′(x)]min ≥0.
第一章 导数及其应用
(高三一轮复习)
学习目标
1)了解导数概念的实际背景, 理解导数的 几何意义. 2)掌握常见函数的导数公式,会求初等函 数的导数。 3)会用导数求函数的单调区间, 极值及闭 区间上的最值,利用导数证明函数的的 单调性,会利用导数求最值的方法解决 一些实际问题(如恒成立问题).
2018/10/23 高三数学——导数及其应用
7 ,+ ∞ ) 2
高三数学——导数及其应用
15

【典例讲解】



例3 :规律方法总结: 1.求函数最大值或最小值的步骤:
(1)求f(x)在(a,b) 内的极值. (2)将f(x)的各极值与f(a),f(b)比较,确定f(x)的最大值与 最小值. 即最值只能在极值点或区间端点处取得。
2.不等式恒成立问题的转化技巧)
2018/10/23 高三数学——导数及其应用
16

【当堂检测】
3



1.函数y x 3x 5,则下列判断正确的是( D ) A.在区间(-1,1)内函数为增函数 B.在区间(-∞,-1)内函数为减函数 C.在区间(-∞,1)内函数为减函数 D.在区间(1,+∞)内函数为增函数 3 2 y x 3 x 6x 4 在点(0,4)处的切线方 2.求曲线 程 6x-y+4=0 . 3.已知函数 y = ax3- x2 +x-5 在(-∞,+∞)上 1 单调递增, 则实数 a 的取值范围为_______ [ 3 ,+∞ ) . 4.已知函数 f x x3 3x 2 6x 2, x 1,1 ,则函数的最大 值为_2 _。

【典例讲解】
设函数f(x)= x 例3 :
3

2



f(x)<m成立,求实数m的取值范围.
1 2
x
2 x 5,若对于任意x∈[-1,2]都有
解:因为f(x)<m恒成立,即为f(x)最大值<m成立, 2 2 1 f′(x) , 又因为 f′(x) = 3 x x ,2由 f′(x)=0得 所以 x1 3 , x2,
相关文档
最新文档