2020年湘教版数学八年级上册第2章三角形单元测试卷(附答案)

合集下载

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章三角形数学八年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1B.2C.3D.42、如图,∠AOB=60°,点P是∠AOB内的定点且OP= ,若点M、N分别是射线OA、OB 上异于点O的动点,则△PMN周长的最小值是()A. B. C.6 D.33、已知△ABC≌△A´B´C´,且△ABC的周长为20,AB=8,BC=5,则A´C´等于()A.5B.6C.7D.84、一副三角板有两个直角三角形,如图叠放在一起,则的度数是()A.165°B.120°C.150°D.135°5、如下图,分别为的中线和高,,已知,则面积为()A.5B.10C.15D.206、下列说法不正确的是().A.两边和它们的夹角分别相等的两个三角形全等B.两角分别相等且其中一组等角的对边相等的两个三角形全等C.底边和顶角分别相等的两个等腰三角形全等D.两边和其中一边的对角分别相等的两个三角形全等7、如图,过圆外一点P作⊙O的两条切线,切点分别为A、B,连接AB,在AB、PB、PA上分别取一点D、E、F,使AD=BE,BD=AF,连接DE、DF、EF,则∠EDF等于()A.90°﹣∠PB.90°﹣∠PC.180°﹣∠PD.45°﹣∠P8、如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANB=60°,则∠MAC的度数等于()A.120°B.70°C.60°D.50°.9、在△ABC中,AB=AC,∠B=50°,∠A的度数为().A.50°B.65°C.75°D.80°10、如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A.3B.4C.5D.611、如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON 于点B,再分别以A,B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC,连接AB.若OA=5,AB=6,则点B到AC的距离为()A.4.8B.4C.2.4D.512、已知:如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°13、等腰三角形的两个内角的比是1:2,则这个等腰三角形是()A.锐角三角形B.直角三角形C.锐角三角形或直角三角形D.以上结论都不对14、如图,RtABC中,∠ACB=90°,CD是高,∠A=30°,CD= cm则AB的长为()A.4cmB.6cmC.8cmD.10cm15、如图,在平面直角坐标系中,直线y= x﹣与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.6B.3C.12D.二、填空题(共10题,共计30分)16、如图,l∥m,等边△ABC的顶点A在直线m上,则∠=________.17、如果等腰三角形一腰上的高与另一腰的夹角为20°,那么这个等腰三角形的底角为________.18、在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是________.19、在△ABC中,AB=AC,高AH与中线BD相交于点E,如果BC=2,BD=3,那么AE=________.20、如图,已知△ABC和△ADE均为等边三角形,点OAC的中点,点D在A射线BO上,连接OE,EC,若AB=4,则OE的最小值为________.21、如图,把平面内一条数轴x绕点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:已知点P是平面斜坐标系中任意一点,过点P 作y轴的平行线交x轴于点A,过点P作x轴的平行线交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标.在平面斜坐标系中,若θ=45°,点P的斜坐标为(1,2 ),点G的斜坐标为(7,﹣2 ),连接PG,则线段PG的长度是________.22、如图,在菱形ABCD中,∠B=60°,点E、F分别从点B、D出发以同样的速度沿边BC、DC向点运动.给出以下四个结论:①AE=AF②∠CEF=∠CFE③当点E、F分别为边BC、DC的中点时,△AEF是等边三角形④当点E、F分别为边BC、DC的中点时,△AEF的面积最大.上述结论中正确序号有________.(把你认为正确序号都填上)23、如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是________.24、如图,一张ΔABC纸片,∠A=80°,点D.E分别在边AB.AC上,将ΔABC沿着DE所在的直线折叠压平,使点A落在点N的位置,则∠1+∠2=________.25、如图,在Rt△ABC中,∠C=90°,∠CAB的平分线BC交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为________。

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章三角形数学八年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、图中的小正方形边长都相等,若,则点Q可能是图中的()A.点DB.点CC.点BD.点A2、如图,在△ABC中,∠C=90°,AB的垂直平分线交AB与D,交BC于E,连接AE,若CE=5,AC=12,则BE的长是()A.13B.10C.12D.53、若等腰三角形的两边长分别为4和6,则它的周长是()A.14B.15C.16D.14或164、如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是()A.(1)(2)(3)B.(1)(3)(4)C.(2)(3)(4) D.(1)(2)(4)5、如图,已知与的角平分线相交于点,若,设,则的度数是()A. B. C. D.6、三角形的两边分别2和6,第三边是方程x2-10x+21=0的解,则三角形周长为()A.11B.15C.11或15D.不能确定7、如图,直线,,是截线且交于点,若,,则()A. B. C. D.8、已知一个等腰三角形有一个角为50o,则顶角是()A.50 oB.50 o或65 oC.50 o或80 oD.不能确定9、边长为的正六边形的面积等于()A. B. C. D.10、为解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路.现已知这四个村庄及电厂之间的距离如图所示(距离单位:公里),则能把电力输送到这四个村庄的输电线路的最短总长度应该是()A.19.5B.20.5C.21.5D.25.511、△ABC中,AB=AC,∠A=∠C,则∠B=()A.36°B.45°C.60°D.90°12、如图,AD=AB=BC,那么∠1和∠2之间的关系是()A.∠1=∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°13、下列物品不是利用三角形稳定性的是( )A.自行车的三角形车架B.三角形房架C.照相机的三脚架D.放缩尺14、如图,已知Rt△ABC中,∠C=90°,D,E分别AC,AB的中点.连接DE,并延长到点F,使EF=EB,过点F作FG⊥AB于点G,连接DG并延长,交CB的延长线于点H,连接FH.给出以下四个结论:①∠FGH=∠CDG;②DE=GE;③;④四边形CDFH是矩形.其中正确结论的个数是A.1B.2C.3D.415、如图,在等边中,,点在上,且,点是上一动点,连结,将线段绕点逆时针旋转得到线段.要使点恰好落在上,则的长是()A. B. C. D.二、填空题(共10题,共计30分)16、等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________ .17、如图,在中,,点在上,,连接、,若,,则________.18、如图,在中,.则的度数是________.19、如图,在△ABC中,∠A=45°,直线l与边AB、AC分别交于点M、N,则∠1+∠2的度数是________.20、如图,∠AOB的两边OA、OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,光线经过镜子反射时,∠ADC=∠ODE,则∠DEB=________°.21、如图,15个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若E也在格点上,且∠AED=∠ACD,则cos∠AEC=________.22、如图,中,E、F分别为BC、AD边上的点,要使,需添加一个条件:________.23、如图,在△ABC中,点D,E分别在AB,BC边上,若△ACE≌△ADE≌△BDE,则∠B的大小为________.24、如图,在△ABC中,∠A=80°,∠ABC和∠ACD的平分线交于点E,则∠E=________.25、在中,边上的高为4,,,则的周长等于________.三、解答题(共5题,共计25分)26、先化简,再求值:,其中a与2,3构成的三边,且a 为整数.27、如图,CD平分∠ACB,DE∥BC,∠AED=46°,求∠CDE的度数.28、如图,已知点B、F、C、E在一条直线上,BF=CE,AB=DE,∠B=∠E.试判断AC、DF的关系并说明理由.29、如图,△ABC为等腰三角形,AC=BC,△BDC和△ACE分别为等边三角形,AE与BD相交于点F,连接CF并延长,交AB于点G,求证:G为AB的中点.30、如图,△ABC中,AB=AC,∠A=50°,AB的垂直平分线DE分别交AC、AB于点D、E.求∠CBD的度数.参考答案一、单选题(共15题,共计45分)1、A2、A4、B5、C6、B7、A8、C9、C10、B11、C12、D13、D14、C15、B二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章三角形数学八年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、下列说法正确的是()A.完全重合的两个三角形全等B.面积相等的两个三角形全等C.所有的等边三角形全等D.形状相同的两个三角形全等2、如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3cm,那么AE+DE等于()A.2cmB.3cmC.4cmD.5cm3、有下列说法:①有一个角为60°的等腰三角形是等边三角形;②两条平行线之间的距离处处相等;③三边长为,,9的三角形为直角三角形;④长方体、直六棱柱、圆锥都是多面体。

⑤一边上的中线等于这边长的一半的三角形是直角三角形。

其中正确的个数是( )。

A.1个B.2个C.3个D.4个4、在△ABC中,AB=AC,AD⊥BC,中线CE交AD于点F,AD=18,EF=5,则BC长为()A.12B.14C.16D.185、课本107页,画∠AOB的角平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M,N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSSB.SASC.ASAD.AAS6、等腰三角形中,一个角为40°,则这个等腰三角形的顶角的度数为()A.40°B.100°C.40°或70°D.40°或100°7、如图,在等边三角形中,在边上取两点、,使.若,,,则以,,为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随,,的值而定8、如图,在中,,分别以点和点为圆心,以大于的长为半径作弧,两弧相交于点和点,作直线交于点,交于点,连接.若,则的度数是()A. B. C. D.9、如图,菱形纸片ABCD的边长为a,∠ABC=60°, 将菱形ABCD沿EF,GH折叠,使得点B,D两点重合于对角线BD上一点P,若,则六边形AEFCHG面积的是()A. B. C. D.10、在三角形内部,到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点11、如图,是的角平分线,过点作交延长线于点,若,,则的度数为()A.100°B.110°C.125°D.135°12、如图,在中,将绕点A按逆时针方向旋转得到.若点恰好落在BC边上,且,,则的度数为().A.72°B.108°C.144°D.15613、在中,,的外角为,则的度数()A. B. C. D.14、一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的解,则三角形的周长为()A.12B.16C.12或16D.不能确定15、如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A.80°B.60°C.40°D.20°二、填空题(共10题,共计30分)16、如图,点P是∠BAC的平分线上一点,PB⊥AB于B,且PB=4cm,AC=10cm,则△APC的面积是________ 。

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章三角形数学八年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为()A.6B.9C.3D.82、下列叙述中错误的一项是()A.三角形的中线、角平分线、高都是线段B.三角形的三条高线中至少存在一条在三角形内部C.只有一条高在三角形内部的三角形一定是钝角三角形D.三角形的三条角平分线都在三角形内部3、把直线a沿箭头方向平移1.5cm得直线b,这两条直线之间的距离是()A.1.5cmB.3cmC.0.75cmD. cm4、如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE 等于()A. B. C. D.5、如图,在等边三角形中,为边的中点,为边的延长线上一点,,于点.下列结论错误的是()A. B. C. D. .6、等腰三角形的两边长分别为4厘米和9厘米,则这个三角形的周长为()A.22厘米B.17厘米C.13厘米D.17厘米或22厘米7、如图,在中,,于点,和的角平分线相较于点,为边的中点,,则()A.125°B.145°C.175°D.190°8、已知等腰三角形的一边长等于2,一边长等于4,则它的周长为( )A.8B.2C.10D.8或109、小明把一副直角三角板如图摆放,其中,则等于( )A.180°B.210°C.360°D.270°10、点P是△ABC内一点,连结BP并延长交AC于D,连结PC,则图中∠1、∠2、∠A的大小关系是()A.∠A>∠2>∠1B.∠1>∠A>∠2C.∠2>∠1>∠AD.∠1>∠2>∠A11、下列长度的三根木棒首尾相接,不能做成三角形框架的是()A.5cm、7cm、2cmB.7cm、13cm、10cmC.5cm、7cm、11cm D.5cm、10cm、13cm12、如图所示,已知∠1=∠2,若添加一个条件使△ABC≌△ADC,则添加错误的是()A. B. C. D.13、如图:有一钢架AOB,∠AOB=10°,为了加固这一钢架,现有长度与OC相等的钢管若干根,焊接在钢架AOB的内部,则最多用去钢管()根.A.6B.7C.8D.914、如图,已知AB=12,AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,则AE的长为()A.6B.C.5D.15、如图所示,若∠1 = 75°,AB = BC = CD = DE = EF,则∠A的度数为()A.30°B.20°C.25°D.15°二、填空题(共10题,共计30分)16、如图,△ABC中,∠C= 90º,AC=12,AB=13,AB的垂直平分线交AB、AC于点D、E,则CE=________.17、一个三角形的三边长分别为4、8、x,那么x的取值范围是________.18、已知AD为△ABC的高,∠BAD=30°,∠CAD=40°,则∠BAC=________.19、如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________度.20、如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A'处,折痕为CD,则∠A'DB=________度。

湘教版八年级数学上《第2章三角形》单元试卷含答案

湘教版八年级数学上《第2章三角形》单元试卷含答案

2020年~2021年最新初中数学湘教版八年级上册:第2章三角形一、选择题(共10小题;共50分)1. 如图,在中,,,是上一点.将沿折叠,使点落在边上的处,则等于 ( )A. B. C. D.2. 如图所示,,,,则,此时运用的判定定理是A. B. C. D.3. 如图,已知,求作一点,使到的两边的距离相等,且.下列确定点的方法正确的是 ( )A. 为、两角平分线的交点B. 为的角平分线与的垂直平分线的交点C. 为、两边上的高的交点D. 为、两边的垂直平分线的交点4. 下列语句不是命题的有 ( )①两点之间,线段最短;②不许大声讲话;③连接,两点;④鸟是动物;⑤不相交的两条直线叫做平行线;⑥无论为怎样的自然数,式子的值都是质数吗?A. 个B. 个C. 个D. 个5. 如果一个三角形的两边长分别为和,则第三边长可能是 ( )A. B. C. D.6. 如图,正方形中,点分别在上,是等边三角形,连接交于,下列结论:;;垂直平分;;.其中正确结论有A. 个B. 个C. 个D. 个7. 用直尺和圆规作一个角等于已知角的示意图如下,则说明的依据是 ( )A. B. C. D.8. 已知,的周长相等,现有两个判断:①若,,则;②若,,则,对于上述的两个判断,下列说法正确的是 ( )A. ①正确,②错误B. ①错误,②正确C. ①,②都错误D. ①,②都正确9. 如图,已知,用尺规在上确定一点,使.则下列四种不同方法的作图中准确的是A. B.C. D.10. 在建筑工地我们常可看见如图1所示,用木条固定矩形门框的情形.这种做法根据 ( ).A. 两点之间线段最短B. 两点确定一条直线C. 三角形的稳定性D. 矩形的四个角都是直角二、填空题(共10小题;共50分)11. 如图所示,,若,,则的长是.12. 在数学课上,老师提出如下问题:小义同学作法如下:老师说:“小义的作法正确.”请回答:小义的作图依据是.13. 如图所示,已知平行四边形,是延长线上一点,连接交于点,在不添加任何辅助线的情况下,请补充一个条件,使,这个条件是.(只要填一个)14. 如果一个定理的逆命题是正确的,它也是一个定理,那么称它为原定理的.15. 请用“如果,那么”的形式写一个命题:.16. 如图所示,,,,,则,.17. 在等腰中,,则有边上的中线,高线和的平分线重合于(如图一).若将等腰的顶点向右平行移动后,得到(如图二),那么,此时边上的中线、边上的高线和的平分线应依次分别是,,.(填,,)18. 如图,在中,,三角形的外角和的平分线交于点,则度.19. 如图,在中,按以下步骤作图:① 分别以点,为圆心,以大于的长为半径作弧,两弧相交于,两点;② 作直线交于点,连接.若,,则的度数为.20. 各边长度都是整数,最大边长为的三角形共有个.三、解答题(共5小题;共65分)21. 如图,,,,求证:.22. 如图,在中,.(1)用尺规在边上求作一点,使(不写作法,保留作图痕迹);(2)连接,当为度时,平分.23. 已知:如图所示,点、分别在等边的边、上,且,与相交于点.(1)求证:(2)求的度数.24. 如图,在中,是上的高,平分,,.求与的度数.25. 如图,在中,,,,垂足分别为点,,点为中点,与,分别交于点,,.(1)线段与相等吗,若相等给予证明,若不相等请说明理由;(2)求证:.答案第一部分1. D2. C3. B4. B5. B6. C7. A8. D9. D 10. C第二部分11.12. 三边分别相等的两个三角形全等;全等三角形对应角相等(写出其中一个即可)13. 或或.14. 经过证明;逆定理15. 如果,,那么.16. ;17. ,,18.19.20.第三部分21. ,,即.又,,..22. (1)如图所示.(2)23. (1)是等边三角形,.,.(2),.,.24. ,,.又平分,.又,..25. (1),,,,,,,在和中,,,,,(2)连接CG.为的中点,,垂直平分,,,,在和中,,,,,.在中,由勾股定理得,。

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章三角形数学八年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、下列多边形中,具有稳定性的是()A.正方形B.矩形C.梯形D.三角形2、如图,△ABC中,AB=AC,AD⊥BC,下列结论中不正确的是()A.D是BC中点B.AD平分∠BACC.AB=2BDD.∠B=∠C3、三角形的一个外角小于与它相邻的内角,则这个三角形是()A.锐角三角形B.钝角三角形;C.直角三角形D.无法确定4、已知等腰三角形的两条边长分别是 7 和 3,则第三条边长是( )A.8B.7C.4D.35、如图,在等边三角形中,为边的中点,为边的延长线上一点,,于点.下列结论错误的是()A. B. C. D. .6、在平面直角坐标系内点A、点B的坐标分别为(0,3)、(4,3),在坐标轴上找一点C,使△ABC是等腰三角形,则符合条件的点C的个数是()A.5个B.6个C.7个D.8个7、如图,点O为平行四边形ABCD对角线AC、BD的交点,过点O的直线与边AB、DC的延长线分别交于点E、F,EF与AD、BC相交于点G、H.则图中全等三角形有()A.8对B.9对C.10对D.11对8、已知三角形三边的长分别为4,9,则这个等腰三角形的周长为()A.13B.17C.22D.17或229、如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A.∠C=2∠AB.BD平分∠ABCC.S△BCD =S△BODD.点D为线段AC的黄金分割点10、如图,直线a、b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°11、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中符合题意的个数是()①点D到∠BAC的两边距离相等;②点D在AB的中垂线上;③AD=2CD④AB=2 CDA.1B.2C.3D.412、已知等腰三角形一边长为4,一边的长为10,则等腰三角形的周长为()A.14B.18C.24D.18或2413、三角形的一个外角小于与它相邻的内角,这个三角形是()A.直角三角形B.钝角三角形C.锐角三角形D.不确定14、如图,将绕顶点C旋转得到,且点B刚好落在上,若,,则等于()A. B. C. D.15、下列说法中错误的有()个①三角形的一个外角等于这个三角形的两个内角的和;②直角三角形只有一条高;③在同圆中任意两条直径都互相平分;④n边形的内角和等于(n﹣2)•360°.A.4B.3C.2D.1二、填空题(共10题,共计30分)16、在平面直角坐标系中,将点绕原点顺时针旋转90°,所得到的对应点的坐标为________.17、如图,在ABC中,∠ACB=60°,点D,E分别是AB,AC的中点,点F在线段DE上,连接AF,CF.若CF恰好平分∠ACB ,则∠FAC的度数为________.18、在等腰三角形ABC中,有一边的长为4cm,另一边的长是8cm,则它的周长为________cm.19、如图所示,AB=BC=CD=DE=EF=FG,∠1=125°,则∠A=________度.20、三角形的内角和等于________。

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章三角形数学八年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、下列说法:①等边三角形的三个内角都相等;②等边三角形的每一个角都等于60°;③三个角都相等的三角形是等边三角形;④有一个角是60°的等腰三角形是等边三角形.其中,正确说法的个数是()A.1B.2C.3D.42、如图,已知在△ABC中,AB=AC,∠ABC=76°,点P是△ABC内角和外角角平分线的交点,射线CP交AB的延长线于点D,下列四个结论:①∠ACB=76°,②∠APB=38°,③∠D=24°,④AB+BC>AP+PC其中正确的结论共有()A.1个B.2个C.3个D.4个3、在平面直角坐标系中,将-块含有角的直角三角板如图放置,直角顶点C的坐标为,顶点A的坐标为,顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A. B. C. D.4、已知△ABC的外角∠CBE,∠BCF的角平分线BP,CP交于P点,则∠BPC是()A.钝角B.锐角C.直角D.无法确定5、下列图形中,阴影部分的面积为2的有()个A.4个B.3个C.2个D.1个6、在中,对角线的垂直平分线交于点连接,若的周长为,则的周长为()A. B. C. D.7、如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的依据是()A.HLB.ASAC.AASD.SAS8、如图:,则∠D的度数()A.30°B.60°C.45°D.90°9、如图,在中,,将绕点A按逆时针方向旋转得到.若点恰好落在边上,且,则的度数为()A. B. C. D.10、已知:如图,在平行四边形ABCD中,AB=4,AD=7,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF的长为()A.6B.5C.4D.311、如图,,,,则的度数为()A.10°B.20°C.30°D.40°12、用直角三角板,作△的高,下列作法正确的是A. B. C.D.13、如果CD平分含30°三角板的∠ACB,则∠1等于()A.110°B.105°C.100°D.95°14、△ABC中,∠A=30°,∠B=60°,AC=6,则△ABC外接圆的半径为()A. B. C. D.315、已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )A.1B.2C.8D.11二、填空题(共10题,共计30分)16、如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________.17、已知,如图,网格中每个小正方形的边长为1,则四边形ABCD的面积为________.18、如图,DE,MN分别垂直平分AB,AC,且cm,则的周长为________cm.19、正三角形的内切圆半径、外接圆半径和高的比为________.20、如图,在▱ABCD中,AC⊥CD,延长DC到点E,使CE=CD,连接AE,若∠B=60°,AB=,则△ADE的周长为________.21、∠A、∠B、∠C是△ABC的三个内角,,其中锐角至多有________个.22、如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2, A3,…都在直线C1C2同侧,如此下去,可得到△A1C1C2,△A2C2C3,△A3C3C4,…,△A n C n C n+1,则△A n C n C n+1的周长为________(n≥1,且n为整数).23、如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是________(把所有正确结论的序号都填在横线上)①∠DCF= ∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.24、三角形的三边长分别为3、7、a,且a为偶数,则这个三角形的周长为________.25、已知△ABC是等腰三角形,它的周长为20cm,一条边长6cm,那么腰长是________.三、解答题(共5题,共计25分)26、如图,在△ABC中,∠B=50°,AD平分∠CAB,交BC于D,E为AC边上一点,连接DE,∠EAD=∠EDA,EF⊥BC于点F.求∠FED的度数.27、如图,在△ABC中,AD是高,AE是角平分线,∠B=70°,∠DAE=10°,求∠C的度数.28、如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y 轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.(Ⅰ)当t=2时,求点M的坐标;(Ⅱ)设ABCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;(Ⅲ)当t为何值时,BC+CA取得最小值.29、如图,已知在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.试探索BF与CF的数量关系,写出你的结论并证明.30、如图,等边的边长为,是边上的中线,是边上的动点,是边上一点,若,当取得最小值时,则的度数为多少?参考答案一、单选题(共15题,共计45分)2、C3、D4、B5、B6、C7、A8、A9、C10、D11、B12、D13、B14、A15、C二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、。

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章三角形数学八年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、若一个三角形的一个外角小于与它相邻的内角,则这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.无法确定2、如图,Rt△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,DE⊥AB于E,若BC=9,CD=3,则△ADB的面积是()A.27B.18C.18 DD.93、若等腰三角形的两边长为3和4,则这个三角形的周长为()A.10B.11C.12D.10或114、如图,已知中,CD⊥AB,垂足为D,CE平分∠ACD交AD于E,若CD=12,BC =13,且的面积为48,则点E到AC的距离为()A.5B.3C.4D.15、如图,菱形的对角线、相交于点,,,则边与之间的距离为()A. B. C. D.6、如图,△ABC内接于⊙O,将沿BC翻折,交AC于点D,连接BD,若∠BAC=66°,则∠ABD的度数是()A.66B.44C.46D.487、如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD:5,CE=4,则00的半径是( )A.3B.4C.D.8、如图,已知AD∥CD,∠1=109°,∠2=120°,则∠α的度数是()A.38°B.48°C.49°D.60°9、如图,在 Rt△ABC 中,∠BAC=90°,AD⊥BC 于 D,BE 平分∠ABC 交 AC 于 E,交AD 于 F,FG∥BC,FH∥AC,下列结论:①AE=AF;②ΔABF≌ΔHBF;③AG=CE;④AB+FG =BC,其中正确结论有()A.①②③B.①③④C.①②③④D.①②④10、如图,在△ABC中,∠ACB=90°,点E为AB的中点,点D在BC上,且AD=BD,AD,CE 相交于点F.若∠B=20°,则∠DFE等于()A.40°B.50°C.60°D.70°11、如图,是的角平分线,,垂足为,,,,则的面积为()A.4B.6C.8D.1012、如图所示,在下列条件中,不能作为判断△ABD≌△BAC的条件是( )A.∠D=∠C,∠BAD=∠ABCB.∠BAD=∠ABC,∠ABD=∠BACC.BD =AC,∠BAD=∠ABCD.AD=BC,BD=AC13、如图,⊙O中,弦AB、CD相交于点P,∠A=40°,∠APD=75°,则∠B的度数是()A.15°B.40°C.75°D.35°14、如图,OP平分于点A,点Q是射线OM上的一个动点,若PA=4,则PQ的最小值为( )A.1B.2C.3D.415、如图,在四边形AOBC中,若∠1=∠2,∠3+∠4=180°,则下列结论正确有()(1)A、O、B、C四点共圆(2)AC=BC(3)cos∠1=(4)S四边形AOBC=A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=________cm.17、如图所示,在中,分别是边上的点,且,则________.18、如图,正方形ABCO的顶点C,A分别在轴,轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是________.19、如图, OP平分,于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为________.20、如图,Rt△ABC纸片中,∠C=90°,点D在BC上,沿AD折叠,点C恰好落在AB上的点E处,已知BC=24,∠B=30°,则DE的长是________.21、如图,某同学把一块三角形的玻璃打破成了三块,现要到玻璃店去配一块大小、形状完全相同的玻璃,那么他可以带那一块________.22、如图,在中,点E是边的中点,⊙O经过A、C、E三点,交于点D,是⊙O的直径,F是上的一个点,且,则________ .23、如图,在四边形ABCD中,AD∥BC (BC>AD),∠D=90°,∠ABE=45°,BC=CD,若AE=5,CE=2,则BC的长度为________.24、如图示在△ABC中∠B=________.25、已知等边△ABC的重心为G,△DEF与△ABC关于点G成中心对称,将它们重叠部分的面积记作S1,△ABC的面积记作S2,那么的值是________三、解答题(共5题,共计25分)26、先化简,再求值:,其中a与2,3构成的三边,且a 为整数.27、在△ABC中,已知∠A= ∠B= ∠C,求∠A、∠B、∠C的度数.28、在中,BD是的角平分线,,交AB于点E,,,求各内角的度数.29、如图,BM是⊙O的直径,四边形ABMN是矩形,D是⊙O上的点,DC⊥AN,与AN交于点C,己知AC=15,⊙O的半径为30,求的长.30、如图所示,中,,,的垂直平分线交于点,交于点.求证:.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、B5、B6、D7、D8、C9、C10、C11、D12、C13、D14、D15、D二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、。

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章三角形数学八年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、如图,锐角△ABC中,D、E分别是AB、AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F.若∠BAC=35°,则∠BFC的大小是()A.105°B.110°C.100°D.120°2、要说明“若两个单项式的次数相同,则它们是同类项”是假命题,可以举的反例是()A.2ab和3abB.2a 2b和3ab 2C.2ab和2a 2b 2D.2a 3和﹣2a 33、一个三角形三边长分别为1、2、x,且x为整数,则此三角形的周长是()A.4B.5C.6D.74、以下各组线段为边不能组成三角形的是()A.1,5,6B.4,3,3C.2,5,4D.5,8,45、已知等腰三角形的一个角为80°,则其顶角为()A.20°B.50°或80°C.10°D.20°或80°6、如图,点P是∠BAC内一点,且点P到AB,AC的距离相等,则△PEA≌△PFA的理由是( )A.HLB.AASC.SSSD.ASA7、如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC的度数为()A.120°B.30°C.60°D.80°8、在平行四边形中,,,的垂直平分线交于点,则的周长是()A. B. C. D.9、如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.∠C=∠DB.∠CAB=∠DBAC.AC=BDD.BC=AD10、如图,AD∥BC,AD⊥AB,点A,B在y轴上,CD与x轴交于点E(2,0),且AD=DE,BC=2CE,则BD与x轴交点F的横坐标为()A. B. C. D.11、如图,平行四边形ABCD中,E是AB上一点,DE、CE分别是∠ADC、∠BCD的平分线,若AD=5,DE=6,则平行四边形的面积为()A.96B.48C.60D.3012、如图,CD丄AB于D,BE丄AC于E,BE与CD交于O,OB=OC ,则图中全等三角形共有()A.2对B.3对C.4对D.5对13、已知一个等腰三角形两内角的度数之比为,则这个等腰三角形顶角的度数为()A.20ºB.120ºC.20º或120ºD.36º14、如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则对△ADE的形状最准确的判断是()A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状15、如图,△ABC内接于⊙O,若∠A=α度,则∠OBC的度数为( )A.αB.90-αC.90+αD.90+2α二、填空题(共10题,共计30分)16、如图,以正六边形ADHGFE的一边AD为边向外作正方形ABCD,则∠BED=________.17、已知一等腰三角形的周长为30cm,其中一边长为7cm,则此等腰三角形的腰长________ cm.18、如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=10,则CP的长为________.19、如图,AD、AE分别是△ABC的高和角平分线,∠B=58°,∠C=36°,∠EAD=________.20、如图在□ABCD中∠BCD和∠ABC的平分线分别交于AD与E、F两点,AB=6,BC=10则EF的长度是 ________.21、已知一个等腰三角形的两边长分别为2cm、3cm,那么它的第三边长为________.22、如图,在正方形ABCD中,点P是边AB上一点,AB=5BP,点E在对角线AC上,△PEF是直角三角形,PE=PF,AE=2,△APF的面积为12,则BF的长是________.23、如图所示,在纸片中,,将纸片绕点A按逆时针方向旋转50°,得到,此时边经过点C,连接,若的度数为40°,则的度数为________.24、如图,△ABC中,AB=10,AC=4,点O在边BC上,OD垂直平分BC,AD平分∠BAC,过点D作DM⊥AB于点M,则BM=________.25、如图,在中,平分,的中垂线交于点,交于点,连接,.若,则的度数为________;三、解答题(共5题,共计25分)26、如图,在△ABC中,D是BC上的一点,∠1=∠2,∠3=∠4,∠B=40°,求∠BAC的度数.27、如图,若长方形APHM,BNHP,CQHN的面积分别为7、4、6,求阴影部分的面积是多少?28、如图,点A,B,C,D在一条直线上,△ABF≌△DCE.你能得出哪些结论?(请写出三个以上的结论)29、如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE 和AB的位置关系,并给出证明.30、如图,AB⊥AC,CD⊥BD,AC、BD相交于点O.①已知AB=CD,利用可以判定△ABO≌△DCO;②已知AB=CD,∠BAD=∠CDA,利用可以判定△ABD≌△DCA;③已知AC=BD,利用可以判定△ABC≌△DBC;④已知AO=DO,利用可以判定△ABO≌△DCO;⑤已知AB=CD,BD=AC,利用可以判定△ABD≌△DCA;参考答案一、单选题(共15题,共计45分)1、B2、B3、B4、A6、A7、C8、C9、A10、A11、B12、C13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。

湘教版八年级上册数学第二章三角形单元测试卷(含答案解析)

湘教版八年级上册数学第二章三角形单元测试卷(含答案解析)

湘教版八年级上册数学第二章三角形单元测试卷第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1.已知三角形的三边长分别为a、b、c,化简|a+b−c|−2|a−b−c|+|a+b+c|得( )A. 4a−2cB. 2a−2b−cC. 4b+2cD. 2a−2b+c2.如图,在△ABC中,以点B为圆心,AB为半径画弧交BC于点D,以点C为圆心,AC为半径画弧交BC于点E,连接AE,AD.设∠ACB=α,∠EAD=β,则∠B的度数为( )A. 2β−αB. α−12β C. 2α−β D. α+12β3.在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,下列命题中,属于假命题的是( )A. 若∠C=∠A+∠B,则△ABC是直角三角形B. 若c2=b2−a2,则△ABC是直角三角形,且∠C=90°C. 若(c+a)(c−a)=b2,则△ABC是直角三角形D. 若∠A:∠B:∠C=5:2:3,则△ABC是直角三角形4.能说明命题“若a2=b2,则a=b”是假命题的一个反例可以是( )A. a=2,b=−2B. a=2,b=3C. a=−2,b=−2D. a=−2,b=−35.下列命题:①若|a|>|b|,则a>b;②直角三角形的两个锐角互余;③如果a=0,那么ab=0;④同旁内角互补,两直线平行.其中,原命题和逆命题均为真命题的有( )A. 0个B. 1个C. 2个D. 3个6.如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上,且CG=CD,DF=DE,则∠E的度数为( )A. 25°B. 20°C. 15°D. 7.5°7.如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=( )A. a+b2B. a−b2C. a−bD. b−a8.在如图所示的尺规作图中,与AD相等的线段是( )A. 线段ACB. 线段BDC. 线段DCD. 线段DE9.如图,AB//CD,BE垂直平分AD,DC=BC.若∠A=70°,则∠C的度数为( )A. 100°B. 110°C. 115°D. 120°10.如图,Rt△ABC沿直线边AB所在的直线向下平移得到△DEF,下列结论中不一定正确的( )A. S四边形ADHC=S四边形BEFHB. AD=BDC. AD=BED. ∠DEF=90°11.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,将△ABP绕点B顺时针旋转得到△CBQ,连接PQ,则以下结论中不正确是( )A. ∠PBQ=60°B. ∠APB=150°C. S △PQC =6D. S △BPQ =8√312. 下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;⑤作图语句:连接AD ,并且平分∠BAC.其中正确的有个.( )A. 0B. 1C. 2D. 3第II 卷(非选择题)二、填空题(本大题共4小题,共12分)13. 已知:一等腰三角形的两边长x 、y 满足方程组{2x −y =33x +2y =8,则此等腰三角形的周长为 .14. 已知等腰三角形的一个内角为40∘,则它的顶角的度数为 .15. 如图,在△PAB 中,PA =PB ,M 、N 、K 分别是PA ,PB ,AB 上的点,且AM =BK ,BN =AK.若∠MKN =40°,则∠P 的度数为 .16. 已知线段a ,b 和m ,求作△ABC ,使BC =a ,AC =b ,BC 边上的中线AD =m.下面作法的合理顺序为 (填序号):①延长CD 到B ,使BD =CD ;②连接AB ;③作△ADC ,使DC =12a ,AC =b ,AD =m .三、解答题(本大题共8小题,共72分。

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章三角形数学八年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、以下四个命题中正确的是()A.三角形的角平分线是射线B.过三角形一边中点的线段一定是三角形的中线C.三条线段一定能组成一个三角形D.三角形的中线是线段2、如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为A.10 °B.15 °C.20 °D.30 °3、如图,E是▱ABCD的对角线AC上任一点,则下列结论不一定成立的是( )A.S△ABE =S△ADEB.S△BCE=S△DCEC.S△ADE+S△BCE= S▱ABCD D.S△ADE<S△BCE4、若等腰三角形中有一个角等于110°,则其它两个角的度数为().A.70°B.110°和70°C.35°和35°D.30°和70°5、如图,在中,平分,与交于点D,于点E,若,的面积为5,则的长为()A. B. C. D.6、如图,△ABC中,∠ACB=90°,BA的垂直平分线交CB边于D,若AB=10,AC=5,则图中等于60°的角的个数为()A.2B.3C.4D.57、如图,已知△ABC的周长是20,OB和OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,则△ABC的面积是()A.20B.25C.30D.358、已知三角形的两边长分别为4cm和10cm,则第三边长可以是()A.13cmB.16cmC.6 cmD.5cm9、如图,在四边形ABCD中,CD∥AB,AC⊥BC,若∠B=50°,则∠DCA等于()A.30°B.35°C.40°D.45°10、如图,是一块直角三角板,,,现将三角板叠放在一把直尺上,与直尺的两边分别交于点D,E,AB与直尺的两边分别交于点F,G,若∠1=40°,则∠2的度数为()A.40ºB.50ºC.60ºD.70º11、对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=45°,∠2=45°C.∠1=60°,∠2=30° D.∠1=50°,∠2=50°12、如图,正三角形ABC的三边表示三面镜子,BP=AB=1。

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章三角形数学八年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、下列说法正确的是()A.形状相同的两个三角形是全等三角形B.面积相等的两个三角形是全等三角形C.三个角对应相等的两个三角形是全等三角形D.三条边对应相等的两个三角形是全等三角形2、如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A. B. C. D.不能确定3、△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是()A.1个B.2个C.3个D.4个4、下列命题中是假命题的是()A.△ABC中,若∠B=∠C-∠A,则△ABC是直角三角形B.△ABC中,若a 2=(b+c)(b-c),则△ABC是直角三角形C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,则△ABC是直角三角形 D.△ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形5、如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°6、如图,在△ABC中,∠A=36°,AB=AC,CD是△ABC的角平分线,若在边BC上截取CE=CB,连接DE,则图中等腰三角形有()A.3个B.4个C.5个D.6个7、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是( )A. B. C.D.8、分别以2cm、3cm、4cm、5cm的线段为边可构成()三角形.A.2个B.3个C.4个D.5个9、如图,△ABC中,∠C=90°,∠BAC=60°,AD是角平分线,若BD=8,则CD等于()A.4B.3C.2D.110、如图,AD是△ABC的外角平分线,下列一定结论正确的是()A.AD+BC=AB+CD,B.AB+AC=DB+DC,C.AD+BC<AB+CD, D.AB+AC<DB+DC11、已知等腰三角形的两边长分别为3和,则这个三角形的周长为()A. B. C. D. 或12、如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置时,若AB =2,AD=4,则阴影部分的面积为()A. B. C. D.13、如图,已知AB=AC,D,E分别为AB、AC上的点,AD=AE,则下列结论不一定成立的是()A.∠B=∠CB.DB=ECC.DC=EBD.AD=DB14、如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正确结论的个数为()A.5B.4C.3D.215、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CD=2,BD=1,则AD的长是()A.1B.C.2D.4二、填空题(共10题,共计30分)16、如图,在中,AB=AC=1cm,∠A=36°,BD是∠ABC的角平分线,则底边BC的长是________cm.17、已知等腰三角形的两条边长分别为3和7,那么它的周长等于________.18、如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=20°,则∠C的度数是________.19、如图,是的角平分线,于点,于点,给出下列结论:①;②≌;③和的面积相等.其中正确结论的序号是________.20、如图,是的中线,是的中线,是的中线,若的面积为1 cm 2,则的面积为________cm 2.21、已知等腰三角形的一个外角为,则它的顶角的度数为________.22、如图,为等边三角形,,,点为线段上的动点,连接,以为边作等边,连接,则线段的最小值为________.23、如图,在△ABC中,AC=BC,∠C=90°,AD是∠BAC的平分线,折叠△ACD使得点C 落在AB边上的E处,连接DE、CE.下列结论:①∠CAD=∠EAD;②△CDE是等腰三角形;③AD⊥CE;④AB=AC+CD,其中正确的结论是________.(填写序号)24、已知点O是△ABC的三条角平分线的交点,若△ABC的周长为12cm,面积为36cm2,则点O到AB的距离为________cm.25、若一个等腰三角形的底角为15°,腰长为8,则这个等腰三角形的面积是________.三、解答题(共5题,共计25分)26、如图所示,已知在△ABC中,AD⊥BC于D,AE平分∠BAC,若∠B=28°,∠DAE=16°,求∠C的度数.27、如图,是的直径,为半圆上一点,直线经过点,过点作于点,连接,当平分时,求证:直线是的切线.28、如图.△ABC中,CA=CB.D是AB的中点.∠CED=∠CFD=90°,CE=CF,求证:∠ADF=∠BDE.29、根据下列命题画出图形,写出已知、求证,并完成证明过程.命题:等腰三角形两底角的角平分线相等.已知:如图,;求证:.30、如图,在上,且,求证:.参考答案一、单选题(共15题,共计45分)1、D2、B3、D4、C5、B6、C7、D8、B9、A10、D11、B12、D13、D14、B15、D二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、30、。

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章三角形数学八年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,连接BD.若AC=6,AD=2,则BD的长为()A.2B.3C.4D.62、下列语句中,是命题的为( ).A.延长线段AB到CB.垂线段最短C.过点O作直线a∥bD.锐角都相等吗3、到三角形的三个顶点距离相等的点是()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点4、如图,在△ABC中,AB=AC=6,BC=4,AD是BC边上的高,AM是△ABC外角∠CAE的平分线.以点D为圆心,适当长为半径画弧,交DA于点G,交DC于点H.再分别以点G、H为圆心,大于GH的长为半径画弧,两弧在∠ADC内部交于点Q,连接DQ并延长与AM交于点F,则DF的长度为().A.6B.C.D.85、等腰三角形的两边长分别是4和9,则这个等腰三角形的周长是()A.17B.22C.13D.17或226、画△ABC的BC边上的高,正确的是()A. B. C. D.7、一块三角形玻璃样板不慎被小强同学碰破,成了如图所示的四块,聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板,你认为可行的方案是()A.带其中的任意两块去都可以B.带①、②或②、③去就可以了C.带①、④或③、④去就可以了D.带①、④或①、③去就可以了8、若一个三角形的两边长分别是4cm和10cm,那么第三边的长度不可能是()A.6cmB.7cmC.8cmD.9cm9、一个三角形的两边长为2和6,第三边为偶数,则这个三角形的周长为()A.10B.12C.14D.1610、如图,在Rt△ABC中,∠C=90°,BC=1,AB=2,∠B的度数为()A.30°B.45°C.60°D.75°11、如图,用三角板作的边上的高线,下列三角板的摆放位置正确的是()A. B. C. D.12、在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7B.11C.7或11D.7或1013、如图钢架中,∠A=a,焊上等长的钢条P1P2, P2P3, P3P4, P4P5来加固钢架,若P1A=P1P2,∠P5P4B=95°,则a等于()A.18°B.23.75°C.19°D.22.5°14、下列说法正确的是()A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等15、直角三角形的两条直角边长为6,8.则它斜边上的高为()A.10B.5C.3.6D.4.8二、填空题(共10题,共计30分)16、若直线y=kx+b(k≠0)的图象经过点(0,2),且与坐标轴所围成的三角形面积是2,则k的值为________17、如图,等边△ABC中,点分别在上,且,连接交于点,则的度数为________。

湘教版八年级数学上册《第2章三角形》单元试卷含答案(3套).doc

湘教版八年级数学上册《第2章三角形》单元试卷含答案(3套).doc

题号—•二三总分得分一、选择题(每小题3分,共30分)以下列各组线段为边,能组成三角形的是(下列命题是假命题的是(全等三角形的对应角相等若\a\ = — a,则曰〉0C.两直线平行,内错角相等只有锐角才有余角已知的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与力全等的三角形)6.如图,在中,处垂直平分/1C,若〃C=20cm, /l〃=12cm,则△/!血的周长为()A. 20cmB. 22cmC. 26cmD. 32cm7.如图,己孤AB//CD, AB=CD, AE= FD,则图中的全等三角形有()A. 1对B. 2对C. 3对D. 4对第2章检测卷B.只有丙D.乙和丙如图,\ABg\ADE、Z〃=80° , ZC=30°,ZZMC=30° ,则Z场C的度数是(A. 2cm, 3cm, 5cmB. 5cm, 6cnb 10cmC. 1cm, lcnb 3cmD. 3cm, 4cm, 9cm2.如图,图中Z1的度数为()A. 40°B. 50°C. 60°D. 70°3.A.B.D.4.是(A.只有乙C.甲和乙5.A. 35°甲乙I人j第2题图1.8. 如图,在△/!%中,AD 丄BC, CE1AB,垂足分别为〃,E, AD, CE 交于点〃,已知E4EB=\, AE =2,则67/的长是()A. 1B. 2C. 3D. 49. 如图,△仙C 中,以〃为圆心,臆长为半径画弧,分别交/G AB 予D, E 两点,并连接加,DE.若Z^=30° , AB=AC f 则乙BDE 的度数为()A. 45°B. 52.5°C. 67.5°D. 75°10. 在等腰中,AB=AQ 边SC 上的中线 血将这个三角形的周长分为15和12两部分,则这个 等腰三角形的底边长为()A. 7B. 11C. 7 或 10D. 7 或 11二、填空题(每小题3分,共24分)11. 如图,把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架利用了三角形的 性.12 .把“等腰三角形的两个底角相等”改写成“如果……,那么……”形式为:13. __________________________________________________________________________ 如图,已知Z1 = Z2,要得到△/!贻△力〃,还需补充一个条件,则这个条件可以是 _______________________14. 如图,肋是△血农的角平分线,少是△肋C 的高,ZBAC=40° ,则ZAFE 的度数为 15. 如图,AD 、处是△力兀的两条中线,则S MX : S®= ___________ ・第9题图第13题图BB DC 第8题图B(:第16题图16.如图,在厶ABC^t处平分ZABC,过点F作DE//BC交肋于点〃,若处=3cm, △弭防的周长为10cm,则初= __________ .17.如图,己知AB//CF, E为化的中点,若阳=6cm, DB=3cm,则肋= _________________ c m.18. 如图,HABC 、△初F 与△肪J 都是等边三角形,〃和。

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章三角形数学八年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1,当点C1、B1、C三点共线时,旋转角为α,连接BB1,交AC于点D.下列结论:①△AC1C 为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1,其中正确的是()A.①③④B.①②④C.②③④D.①②③④2、如图,AB为半圆O的直径,,点C为半圆上动点,以BC为边向形外作正方形BCDE,连接OD,则OD的最大值为A.2B.C.D.3、如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个B.2个C.3个D.4个4、下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是( )A.0个B.1个C.2个D.3个5、在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A.∠A=40°,∠B=50B.∠A=40°,∠B=60°C.∠A=40°,∠B=70 D.∠A=40°,∠B=80°6、已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是()A. B.3 C. +2 D.7、如图,在平面直角坐标系中,四边形ABCD是菱形,点A的坐标为(0,),分别以A,B为圆心,大于AB的长为半径作弧,两弧交于点E,F,直线EF恰好经过点D,则点D的坐标为()A.(2,2)B.(2,)C.(,2)D.(+1,8、直线,一块含角的直角三角板,如图放置,,则等于()A. B. C. D.9、如图,将正方形 OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1, ),则点C 的坐标为()A.(﹣1,)B.(﹣,1)C.(﹣,1)D.(﹣,2)10、如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6B.5C.3D.311、在直角坐标系中,O为坐标原点,已知A(,1),在y轴上确定点P,使得△AOP为等腰三角形,则符合条件的P点共有几个()A.4B.3C.2D.112、已知一元二次方程x2﹣6x+8=0的两个解恰好分别是等腰△ABC的底和腰,则△ABC的周长为()A.10B.10或8C.9D.813、如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠A的度数为()A.45°B.50°C.60°D.80°14、如下图,要用“HL”判断Rt△ABC和Rt△DEF全等的条件是()A.AC=DF,BC=EFB.∠A=∠D,AB=DEC.AC=DF,AB=DED.∠B=∠E,BC=EF15、如图,是的中线,E,F分别是和延长线上的点,且,连结,.下列说法:①;②和面积相等;③;④.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,在中,M,N分别是和的中点,连接,点E是的中点,连接并延长,交的延长线于点D,若,则的长为________.17、如图,点A在双曲线y=(k<0)上,连接OA,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,直线DE交x轴于点B,交y轴于点C(0,3),连接AB.若AB=1,则k的值为________.18、如图,等边△ABC的边长为8,D、E分别是BC、AC边的中点,过点D作DF⊥AB于F,连接EF,则EF的长为________.19、一个正方形和两个等边三角形的位置如图所示,则∠1+∠2+∠3 的度数为________.20、如图,△ABC的中线BD、CE相交于点O,OF⊥BC,且AB=5cm,BC=4cm,AC=cm,OF=2cm,则四边形ADOE的面积是________.21、已知≌,的周长为100,,,则________.22、已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且=,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为________.23、如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,点P的速度都是1cm/s,点Q的速度都是2cm/s当点P到达点B 时,P、Q两点停止.当t=________时,△PBQ是直角三角形.24、如图,点E,F在AC上,AE=CF,∠AFD=∠CEB,要使△ADF≌△CBE,需要添加的一个条件是________.25、如图,矩形中,,点是上的一点,,的垂直平分线交的延长线于点,连接交于点.若是的中点,则的长是________.三、解答题(共5题,共计25分)26、已知ABC中∠BAC=140°, AB、AC的垂直平分线分别交BC于E、F,AEF的周长为10㎝,求BC的长度和∠EAF的度数.27、已知:如图,在⊙O中,弦AB=CD.求证:∠AOC =∠BOD.28、如图,在△ABC 中,∠ACB=90°,AC=BC,BE⊥CE 于 E,AD⊥CE 于 D,AD=2.5,DE=1.7,求BE的长.29、已知:如图, AB为⊙O的直径,CE⊥AB于E,BF∥OC,连接BC,CF.求证:∠OCF=∠ECB.30、已知,如图,点E、H分别为▱ABCD的边AB和CD延长线上一点,且BE=DH,EH分别交BC、AD于点F、G.求证:△AEG≌△CHF.参考答案一、单选题(共15题,共计45分)1、B2、C3、D4、B5、C7、B8、C9、B10、C11、C12、A13、B14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章三角形数学八年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、给出下列命题,其中错误命题的个数是()①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形;③有一个角是直角的平行四边形是矩形;④有一组邻边相等的菱形是正方形.A.1个B.2个C.3个D.4个2、等腰三角形一腰上的高线与底边的夹角等于()A.顶角B.底角C.顶角的一半D.底角的一半3、如图,直线AB,CD被直线EF所截,AB∥CD,DG⊥BF于点G,若∠1=130°,则∠2的度数为()A.25°B.30°C.35°D.40°4、如图,在△ABC中,AB=AC=BD,AD=CD,则∠ADB的度数是()A.36°B.45°C.60°D.72°5、如图所示,在矩形ABCD中,AB= ,BC=2,对角线AC、BD相交于点O,过点O作OE 垂直AC交AD于点E,则AE的长是()A. B. C.1 D.1.56、如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连接OD。

若∠AOD=80°,则∠C的度数为( )A.40°B.50°C.60°D.80°7、下列命题错误的是()A.矩形的对角线相等B.平行四边形的对角线互相平分C.对角线相等的四边形是矩形D.对角线互相垂直平分的四边形是菱形8、如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=1,则BB’的长为( )A.4B.C.D.9、在平面直角坐标系中,如果 x 与 y 都是整数,就称点(x,y)为整点.下列命题中错误的是( )A.存在这样的直线,既不与坐标轴平行,又不经过任何整点B.若 k 与 b 都是无理数,则直线 y=kx+b 不经过任何整点C.若直线 y=kx+b 经过无数多个整点,则 k 与 b 都是有理数D.存在恰好经过一个整点的直线10、如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于O,AO的延长线交BC于F,则图中全等的直角三角形有()A.3对B.4对C.5对D.6对11、下列句子是命题的是( )A.画∠AOB=45°B.小于直角的角是锐角吗?C.连结CDD.三角形内角和等于180°12、如图,与相交于点O,,如果,,那么为()A. B. C. D.13、如图,CD⊥AB于D,BE⊥AC于E,BE与CD交于O,OB=OC,则图中全等三角形共有()A.2对B.3对C.4对D.5对14、下列说法中正确的是()①角平分线上任意一点到角的两边的距离相等;②等腰三角形两腰上的高相等;③等腰三角形的中线也是它的高;④线段垂直平分线上的点(不在这条线段上)与这条线段两个端点构成等腰三角形A.①②③④B.①②③C.①②④D.②③④15、已知一个三角形的两边长分别为和,则这个三角形的第三边长可能是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,⊙O的半径OA长为6,BA与⊙O相切于点A,交半径OC的延长线于点B,BA长为,AH⊥OC,垂足为H,则图中阴影部分面积为________.(结果保留根号)17、如图,在中,,是的平分线,⊥于点,点在上,,若,,则的长为________.18、如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB 于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确的有________.(填序号)19、如图,BD是△ABC的角平分线,AE⊥BD,垂足为F,且交线段BC于点E,连结DE,若∠C=50°,设∠ABC=x°,∠CDE=y°,则y关于x的函数表达式为________。

2020年湘教版八年级数学上册第2章三角形单元测试卷(附答案)

2020年湘教版八年级数学上册第2章三角形单元测试卷(附答案)

第2章测试题一.选择题(共10小题)1.(3分)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48° B.36° C.30° D.24°2.(3分)如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC 的周长是()A.8 B.9 C.10 D.113.(3分)如图所示,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中不一定相等的线段有()A.AC=AE=BE B.AD=BD C.AC=BD D.CD=DE4.(3分)等腰三角形ABC中,一腰AB的垂直平分线交另一腰AC于G,已知AB=10,△GBC 的周长为17,则底BC为()A.5 B.7 C.10 D.95.(3分)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或126.(3分)如图,△ABC、△ADE中,C、D两点分别在AE、AB上,BC与DE相交于F点.若BD=CD=CE,∠ADC+∠ACD=114°,则∠DFC的度数为何?()A.114 B.123 C.132 D.1477.(3分)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5°C.20° D.22.5°8.(3分)已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若DE=8,则线段BD+CE的长为()A.5 B.6 C.7 D.89.(3分)如图所示,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC.∠EBC=∠E=60°,若BE=6,DE=2,则BC的长度是()A.6 B.8 C.9 D.1010.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个二.填空题(共8小题)11.(3分)如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为.12.(3分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为.13.(3分)等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.14.(3分)如图,△ABC中,∠A=90°,DE是BC的垂直平分线,AD=DE,则∠C的度数是°.15.(3分)如图,锐角三角形ABC中,直线PL为BC的垂直平分线,射线BM为∠ABC的平分线,PL与BM相交于P点.若∠PBC=30°,∠ACP=20°,则∠A的度数为°.16.(3分)如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是 cm.17.(3分)如图,在△ABC中,AB=1.8,BC=3.9,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为.18.(3分)如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是.三.解答题(共6小题)19.如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.20.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.21.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,EH⊥AB,垂足是H.在AB上取一点M,使BM=2DE,连接ME.求证:ME⊥BC.22.如图,在△ABC中,DE,FG分别是AB,AC的垂直平分线,连接AE,AF,已知∠BAC=80°,请运用所学知识,确定∠EAF的度数.23.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.24.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?参考答案:一.选择题(共10小题)1.(3分)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48° B.36° C.30° D.24°【分析】根据角平分线的性质可得∠DBC=∠ABD=24°,然后再计算出∠ACB的度数,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCB=24°,然后可算出∠ACF的度数.【解答】解:∵BD平分∠ABC,∴∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°﹣60°﹣24°×2=72°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=24°,∴∠ACF=72°﹣24°=48°,故选:A.【点评】此题主要考查了线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.2.(3分)如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC 的周长是()A.8 B.9 C.10 D.11【分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC 的周长=AD+BC+CD=AC+BC.【解答】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.【点评】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.3.(3分)如图所示,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中不一定相等的线段有()A.AC=AE=BE B.AD=BD C.AC=BD D.CD=DE【分析】分别根据线段垂直平分线及角平分线的性质对四个答案进行逐一判断即可.【解答】解:∵∠B=30°,∠C=90°,∴∠BAC=60°,AC=,∵DE是AB的垂直平分线,∴AD=BD,AE=BE=AB,∴∠DAB=30°,AC=AE=BE,故A、B正确;∴∠CAD=30°,∴AD是∠BAC的平分线∵CD⊥AC,DE⊥AB,∴CD=DE,故D正确;故选C.【点评】本题考查的是线段垂直平分线及角平分线的性质、直角三角形的性质,涉及面较广,难度适中.4.(3分)等腰三角形ABC中,一腰AB的垂直平分线交另一腰AC于G,已知AB=10,△GBC 的周长为17,则底BC为()A.5 B.7 C.10 D.9【分析】根据垂直平分线上的点到线段两个端点的距离相等,得GB=GA,即△GBC的周长=AC+BC,从而就求得了BC的长.【解答】解:设AB的中点为D,∵DG为AB的垂直平分线∴GA=GB (垂直平分线上一点到线段两端点距离相等),∴三角形GBC的周长=GB+BC+GC=GA+GC+BC=AC+BC=17,又∵三角形ABC是等腰三角形,且AB=AC,∴AB+BC=17,∴BC=17﹣AB=17﹣10=7.故选B.【点评】此题考查了等腰三角形的性质及线段垂直平分线的性质;进行有效的等量代换是正确解答本题的关键.5.(3分)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或12【分析】题目给出等腰三角形有两条边长为5和2,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故选:B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.(3分)如图,△ABC、△ADE中,C、D两点分别在AE、AB上,BC与DE相交于F点.若BD=CD=CE,∠ADC+∠ACD=114°,则∠DFC的度数为何?()A.114 B.123 C.132 D.147【分析】先根据等腰三角形的性质得出∠B=∠DCB,∠E=∠CDE,再利用三角形的内角和进行分析解答即可.【解答】解:∵BD=CD=CE,∴∠B=∠DCB,∠E=∠CDE,∵∠ADC+∠ACD=114°,∴∠BDC+∠ECD=360°﹣114°=246°,∴∠B+∠DCB+∠E+∠C DE=360°﹣246°=114°,∴∠DCB+∠CDE=57°,∴∠DFC=180°﹣57°=123°,故选B.【点评】此题考查等腰三角形的性质,关键是利用等边对等角和三角形内角和分析解答.7.(3分)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5°C.20° D.22.5°【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故选A.【点评】本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.8.(3分)已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若DE=8,则线段BD+CE的长为()A.5 B.6 C.7 D.8【分析】根据角平分线的性质,可得∠DBF与∠FBC的关系,∠ECF与∠FCB的关系,根据两直线平行,可得∠DFB与∠FBC的关系,∠EFC与∠FCB的关系,根据等腰三角形的判定,可得BD与DF的关系,EF与EC的关系,可得答案.【解答】解:OB和OC分别平分∠ABC和∠ACB,∴∠DBF=∠FBC,∠ECF=∠FCB.∵DE∥BC,∴∠FBC=∠DFB,∠EFC=∠FCB.∠DBF=∠DFB,∠EFC=∠ECF.∴DB=DF,EF=EC,DE=DF+EF=DB+EC=8,故选:D.【点评】此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题关键是求证DB=DO,OE=EC,难度不大,是一道基础题.9.(3分)如图所示,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC.∠EBC=∠E=60°,若BE=6,DE=2,则BC的长度是()A.6 B.8 C.9 D.10【分析】作出辅助线后根据等腰三角形的性质得出BE=6,DE=2,进而得出△BEM为等边三角形,△EMD为等边三角形,从而得出BN的长,进而求出答案.【解答】解:延长ED交BC于M,延长AD交BC于N,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∴BE=EM∵BE=6,DE=2,∴DM=EM﹣DE═6﹣2=4,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=2,∴BN=4,∴BC=2BN=8,故选B.【点评】此题主要考查了等腰三角形的性质和等边三角形的性质,能求出MN的长是解决问题的关键.10.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.【点评】此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.二.填空题(共8小题)11.(3分)如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为 7 .【分析】根据等边对等角得出∠B=∠C,再根据EP⊥BC,得出∠C+∠E=90°,∠B+∠BFP=90°,从而得出∠D=∠BFP,再根据对顶角相等得出∠E=∠AFE,最后根据等角对等边即可得出答案.【解答】证明:在△ABC中,∵AB=AC,∴∠B=∠C,∵EP⊥BC,∴∠C+∠E=90°,∠B+∠BFP=90°,∴∠E=∠BFP,又∵∠BFP=∠AFE,∴∠E=∠AFE,∴AF=AE,∴△AEF是等腰三角形.又∵AF=2,BF=3,∴CA=AB=5,AE=2,∴CE=7.【点评】本题考查了等腰三角形的判定和性质,解题的关键是证明∠E=∠AFE,注意等边对等角,以及等角对等边的使用.12.(3分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为120°或20° .【分析】设两个角分别是x,4x,根据三角形的内角和定理分情况进行分析,从而可求得顶角的度数.【解答】解:设两个角分别是x,4x①当x是底角时,根据三角形的内角和定理,得x+x+4x=180°,解得,x=30°,4x=120°,即底角为30°,顶角为120°;②当x是顶角时,则x+4x+4x=180°,解得,x=20°,从而得到顶角为20°,底角为80°;所以该三角形的顶角为120°或20°.故答案为:120°或20°.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.已知中若有比出现,往往根据比值设出各部分,利用部分和列式求解.13.(3分)等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是110°或70° .【分析】本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【解答】解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为:110°或70°.【点评】考查了等腰三角形的性质,注意此类题的两种情况.其中考查了直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.14.(3分)如图,△ABC中,∠A=90°,DE是BC的垂直平分线,AD=DE,则∠C的度数是 30 °.【分析】根据角平分线性质求出∠ABD=∠DBE,根据线段垂直平分线求出CD=BD,推出∠C=∠DBE=∠ABD,根据三角形内角和定理求出即可.【解答】解:∵△ABC中,∠A=90°,DE⊥BC,AD=DE,∴∠ABD=∠DBE,∵DE是BC的垂直平分线,∴CD=BD,∴∠C=∠DBE,∵∠A=90°,∴3∠C=90°,∴∠C=30°,故答案为:30.【点评】本题考查了线段垂直平分线性质,角平分线性质,等腰三角形性质,三角形内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.15.(3分)如图,锐角三角形ABC中,直线PL为BC的垂直平分线,射线BM为∠ABC的平分线,PL与BM相交于P点.若∠PBC=30°,∠ACP=20°,则∠A的度数为 70 °.【分析】根据角平分线得出∠ABC=60°,再根据线段垂直平分线得出∠PCB=30°,利用三角形的内角和解答即可.【解答】解:∵射线BM为∠ABC的平分线,∠PBC=30°,∴∠ABC=60°,∵直线PL为BC的垂直平分线,∴∠PCB=30°,∴∠A的度数=180°﹣60°﹣30°﹣20°=70°,故答案为:70.【点评】此题考查线段垂直平分线性质,关键是根据角平分线得出∠ABC=60°,再根据线段垂直平分线得出∠PCB=30°进行分析.16.(3分)如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是 19 cm.【分析】由已知条件,根据垂直平分线的性质得到线段相等,进行线段的等量代换后可得到答案.【解答】解:∵△ABC中,DE是AC的中垂线,∴AD=CD,AE=CE=AC=3cm,∴△ABD得周长=AB+AD+BD=AB+BC=13 ①则△ABC的周长为AB+BC+AC=AB+BC+6 ②把②代入①得△ABC的周长=13+6=19cm故答案为:19.【点评】本题考查了线段垂直平分线的性质;解答此题时要注意利用垂直平分线的性质找出题中的等量关系,进行等量代换,然后求解.17.(3分)如图,在△ABC中,AB=1.8,BC=3.9,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为 2.1 .【分析】由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.【解答】解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=1.8,BC=3.9,∴CD=BC﹣BD=3.9﹣1.8=2.1.故答案为:2.1.【点评】此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.18.(3分)如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是 400 .【分析】先证出阴影的三角形是等边三角形,又观察图可得,第n个图形中大等边三角形有2n个,小等边三角形有2n个,据此求出第100个图形中等边三角形的个数.【解答】解:如图①∵△ABC是等边三角形,∴AB=BC=AC,∵A′B′∥AB,BB′=B′C=BC,∴B′O=AB,CO=AC,∴△B′OC是等边三角形,同理阴影的三角形都是等边三角形.又观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有4个,小等边三角形有4个,第3个图形中大等边三角形有6个,小等边三角形有6个,…依次可得第n个图形中大等边三角形有2n个,小等边三角形有2n个.故第100个图形中等边三角形的个数是:2×100+2×100=400.故答案为:400.【点评】本题主要考查了等边三角形的判定和性质及平移的性质,解题的关键是据图找出规律.三.解答题(共6小题)19.如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.【分析】首先根据等腰三角形的两个底角相等得到∠A=∠C,再根据等角的余角相等得∠FEC=∠D,同时结合对顶角相等即可证明△DBE是等腰三角形.【解答】证明:在△ABC中,BA=BC,∵BA=BC,∴∠A=∠C,∵DF⊥AC,∴∠C+∠FEC=90°,∠A+∠D=90°,∴∠FEC=∠D,∵∠FEC=∠BED,∴∠BED=∠D,∴BD=BE,即△DBE是等腰三角形.【点评】此题主要考查等腰三角形的基本性质及综合运用等腰三角形的性质来判定三角形是否为等腰三角形.20.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.21.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,EH⊥AB,垂足是H.在AB上取一点M,使BM=2DE,连接ME.求证:ME⊥BC.【分析】根据EH⊥AB于H,得到△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可.【解答】解:∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵EH⊥AB于H,∴△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC.【点评】本题考查等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟记性质并证明出等腰直角三角形是解题的关键.22.如图,在△ABC中,DE,FG分别是AB,AC的垂直平分线,连接AE,AF,已知∠BAC=80°,请运用所学知识,确定∠EAF的度数.【分析】在△ABC中,利用三角形内角定理易求∠B+∠C,再根据线段垂直平分线的性质易求∠BAE=∠B,同理可得∠CAF=∠C,再结合三角形内角和定理进而可得∠BAE+∠CAF﹣∠BAC=∠EAF.【解答】解:在△ABC中,∠BAC=80°,∴∠B+∠C=180°﹣∠BAC=100°,∵DE是AB的垂直平分线,∴EB=EA,∴∠BAE=∠B,同理可得∠CAF=∠C,∴∠EAF=∠BAE+∠CAF﹣∠BAC=∠B+∠C﹣∠BAC=20°.【点评】本题考查了线段垂直平分线的性质,解题的关键是先求出∠B+∠C.23.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.【分析】(1)先根据线段垂直平分线的性质得出AD=BD,AE=CE,再根据AD+DE+AE=BD+DE+CE 即可得出结论;(2)先根据线段垂直平分线的性质得出OA=OC=OB,再由∵△OBC的周长为16cm求出OC的长,进而得出结论.【解答】解:(1)∵DF、EG分别是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16﹣6=10,∴OC=5,∴OA=OC=OB=5.【点评】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.24.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?【分析】(1)根据EF∥BC,∠B、∠C的平分线交于O点,可得∠EOB=∠OBC,∠FOC=∠OCB,∠EOB=∠OBE,∠FCO=∠FOC,再加上题目中给出的AB=AC,共5个等腰三角形;根据等腰三角形的性质,即可得出EF与BE、CF间有怎样的关系.(2)根据EF∥BC 和∠B、∠C的平分线交于O点,还可以证明出△OBE和△OCF是等腰三角形;利用几个等腰三角形的性质即可得出EF与BE,CF的关系.(3)EO∥BC和OB,OC分别是∠ABC与∠ACL的角平分线,还可以证明出△BEO和△CFO是等腰三角形.【解答】解:(1)有5个等腰三角形,EF与BE、CF间有怎样的关系是:EF=BE+CF=2BE=2CF.理由如下:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,又∠B、∠C的平分线交于O点,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠OBE,∠FCO=∠FOC,∴OE=BE,OF=CF,∴EF=OE+OF=BE+CF.又AB=AC,∴∠ABC=∠ACB,∴∠EOB=∠OBE=∠FCO=∠FOC,∴EF=BE+CF=2BE=2CF;(2)有2个等腰三角形分别是:等腰△OBE和等腰△OCF;第一问中的EF与BE,CF的关系是:EF=BE+CF.(3)有,还是有2个等腰三角形,△EBO,△OCF,EF=BE﹣CF,理由如下:∵EO∥BC,∴∠EOB=∠OBC,∠EOC=∠OCG(G是BC延长线上的一点)又∵OB,OC分别是∠ABC与∠ACG的角平分线∴∠EBO=∠OBC,∠ACO=∠OCD,∴∠EOB=∠EBO,∴BE=OE,∠FCO=∠FOC,∴CF=FO,又∵EO=EF+FO,∴EF=BE﹣CF.【点评】此题主要考查学生对等腰三角形的判定与性质和平行线性质的理解和掌握,此题难度并不大,但是步骤繁琐,属于中档题,还有第(1)中容易忽略△ABC也是等腰三角形,因此这又是一道易错题.要求学生在证明此题时一定要仔细,认真.1、三人行,必有我师。

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章三角形数学八年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、以下列各组线段为边,能组成三角形的是A.2cm、2cm、4cmB.2cm、6cm、3cmC.8cm、6cm、3cm D.11cm、4cm、6cm2、如图,CE⊥AB,DF⊥AB,垂足分别为E、F,AC∥DB,且AC=BD,那么Rt△AEC≌Rt△BFD的理由是()A.SSSB.AASC.SASD.HL3、下列说法中:①线段是轴对称图形,②成轴对称的两个图形对称点的连线互相平行,③等腰三角形的角平分线就是底边的垂直平分线,④已知两腰就能确定等腰三角形的形状和大小,错误的有( ).A.1个B.2个C.3个D.4个4、如图,在△ABC中,∠C=90°,∠B=15°,AC=3,AB的垂直平分线l交BC于点D,连接AD,则BC的长为()A.12B.3 +3C.6+3D.65、如图,⊙是的外接圆,,则的度数为( )A.60°B.65°C.70°D.75°6、如图,正方形的边长为a,点E在边上运动(不与点A,B重合),,点在射线上,且,与相交于点G,连接、、.则下列结论:①;②的周长为;③;④的面积的最大值是;⑤当时,G是线段的中点.其中正确的结论是()A.①②③B.②④⑤C.①③④D.①④⑤7、如图,点F,C在BE上,△ABC≌△DEF,AB和DE,AC和DF是对应边,AC,DF交于点M,则∠AMF等于()A.2∠BB.2∠ACBC.∠A+∠DD.∠B+∠ACB8、如图,在△ABC中,∠C=20°,将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC交于点F,则∠AFB的度数是()A. B. C. D.9、如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC 交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为()A. B. C.4 D.810、已知等腰三角形的一边长5cm,另一边长8cm,则它的周长是()A.18cmB.21cmC.18cm或21cmD.无法确定11、如图,已知△ABC中,∠BAC=130°,现将△ABC进行折叠,使顶点B,C均与顶点A 重合,则∠DAE=()A.80°B.90°C.100°D.110°12、如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于()A. B. C. D.13、如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为( )A.72B.36°C.60°D.82°14、如图,小明书上的三角形被墨迹遮挡了一部分,但他很快想到办法在作业本上画了一样的三角形,那么这两个三角形完全一样的依据是()A.AASB.ASAC.SSSD.SAS15、有下列命题:①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④全等三角形的对应角相等.它们的逆命题一定成立的有( )A.①②③④B.①④C.②④D.②二、填空题(共10题,共计30分)16、如图,点0为优弧所在圆的圆心,∠AOC=108°,点D在AB延长线上,BD=BC,则∠D=________.17、如图,AB为⊙O的直径,半径OA的垂直平分线交⊙O于点C,D,P为优弧AC上一点,则∠APC=________°.18、如图,在△ABC中,已知点D、E、F分别是BC、AD、BE上的中点,且△ABC的面积为8㎝2,则△BCF的面积为 ________19、如图,在△ABC中,CA=CB,∠C=40°,点E是△ABC内一点,且EA=EB,△ABC外一点D满足BD=AC,且BE平分∠DBC,则∠BDE的度数=________ .20、如图,已知△ABC,∠C=70°,∠B=40°,AD⊥BC,AE平分∠BAC,则∠DAE=________.21、如图,AD⊥BC于点D,D为BC 的中点,连接AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC=________.22、等腰三角形ABC的周长为30,其中一个内角的余弦值为,则其腰长为________.23、如图,OP平分,,,,则的面积等于________.24、直径为10cm的⊙O中,弦AB=5cm,则弦AB所对的圆周角是________.25、如图,在△ABC中,∠C=35°,AB=AD,DE是AC的垂直平分线,则∠BAD=________度.三、解答题(共5题,共计25分)26、在△ABC中,∠ABC的平分线与在∠ACE的平分线相交于点D.已知∠ABC=70°,∠ACB=30°,求∠A和∠D的度数.27、已知:如图,∠ABC=90°,AB=BC, CE⊥BE,AD⊥BE,求证:△ABD≌△BCE.28、如图,D、C、F、B四点在一条直线上,AC=EF,AC⊥BD,EF⊥BD,垂足分别为点C、点F,DF=BC,求证:AB∥DE29、如图,在△AOB和△DOC中,AO=BO,CO=DO,∠AOB=∠COD,连接AC、BD,求证:△AOC≌△BOD.30、求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形,如图.已知:求证:证明:参考答案一、单选题(共15题,共计45分)1、C2、B3、A4、C5、C6、D7、E8、C9、B10、C11、A13、A14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章 三角形数学八年级上册-单元测试卷-湘教版(含答案)

第2章三角形数学八年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、到三角形三条边的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点2、如图,在△ABC中,AB>AC,分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=7,AC=5,则△ACD的周长为()A.2B.12C.17D.193、如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,BD平分∠ABC,E是AB中点,连接DE,则DE的长为()A. B.2 C. D.4、已知方格纸中的每个小方格是边长为1的正方形,两点在小方格的格点上,位置如图所示,在小方格的格点上确定一点,连接,使的面积为3个平方单位,则这样的点共有()个A.2B.4C.5D.65、下列能断定△ABC为等腰三角形的是()A.∠A=40º、∠B=50ºB.∠A=50º、∠B=65ºC.AB=AC=3,BC=6 D.AB=5、BC=8,∠B=45º6、有 2cm 和 3cm 的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形,下列长度的小棒不符合要求的是( ).A.2cmB.3cmC.4cmD.5cm7、下列叙述正确的语句是()A.等腰三角形两腰上的高相等B.等腰三角形的高、中线、角平分线互相重合C.顶角相等的两个等腰三角形全等D.两腰相等的两个等腰三角形全等8、如图,在平面直角坐标系中,抛物线y= x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为,则a、b的值分别为()A. ,B. ,﹣C. ,﹣D.﹣,9、已知图中的两个三角形全等,则等于()A.70°B.50°C.60°D.70°10、下列命题正确的是()①三角形中最大内角一定不小于60°;②所有等腰直角三角形都相似;③正多边形的外角为24°,则它的中心角也为24°;④顺次连接对角线相等的四边形各边中点得到矩形.A.①②B.①②③C.②③④D.①②④11、如图,在菱形中,,,E是中点,交于点F,连接,则的长为()A.4B.C.D.12、如图:,,,若,则等于()A. B. C. D.13、已知⊙O的半径为3,A为圆内一定点,AO=1,P为圆上一动点,以AP为边作等腰△APQ,AP=PQ,∠APQ=120°,则OQ的最大值为()A. B. C. D.14、如图,OA=OC,OB=OD,则图中全等三角形共有()A.2对B.3对C.4对D.5对15、如图,中,平分,垂直平分交于点,交于点,连接,若,,则的度数为A. B. C. D.二、填空题(共10题,共计30分)16、如图,将分别含有、角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为,则图中角的度数为________.17、如图,AC=AD,BC=BD,则△ABC≌△________;应用的判定方法是(简写)________.18、如图,和关于直线对称,,,则________.19、如图,建高楼常需要用塔吊来吊建筑材料,而塔吊的上部是三角形结构,这是应用了三角形的哪个性质?答:________.20、一个直角三角形面积为3,斜边长,则这个直角三角形的周长为________.21、如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:________,使△ABC≌△FED.22、如图,△ABC中,∠ABC,∠ACB的平分线相交于O,过点O作MN // BC,分别交AB、AC于点M、N.已知AB=5,AC=4,则△AMN的周长为________.23、如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是________.24、如图,等边△ABC的边长为8,D、E分别是BC、AC边的中点,过点D作DF⊥AB于F,连接EF,则EF的长为________.25、如图,直线经过的直角顶点的边上有两个动点,点以的速度从点出发沿移动到点,点以的速度从点出发,沿移动到点,两动点中有一个点到达终点后另一个点继续移动到终点过点分别作,垂足分别为点.若,设运动时间为,则当________ 时,以点为顶点的三角形与以点为顶点的三角形全等.三、解答题(共5题,共计25分)26、如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB 的长.27、如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上,求证:∠1=∠2.28、如图,已知OA、OB、OC是⊙O的三条半径,点C是弧AB的中点,M、N分别是OA、OB 的中点.求证:MC=NC.29、联想三角形外心的概念,我们可引入如下概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章测试题一.选择题(共10小题)1.(3分)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48° B.36° C.30° D.24°2.(3分)如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC 的周长是()A.8 B.9 C.10 D.113.(3分)如图所示,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中不一定相等的线段有()A.AC=AE=BE B.AD=BD C.AC=BD D.CD=DE4.(3分)等腰三角形ABC中,一腰AB的垂直平分线交另一腰AC于G,已知AB=10,△GBC 的周长为17,则底BC为()A.5 B.7 C.10 D.95.(3分)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或126.(3分)如图,△ABC、△ADE中,C、D两点分别在AE、AB上,BC与DE相交于F点.若BD=CD=CE,∠ADC+∠ACD=114°,则∠DFC的度数为何?()A.114 B.123 C.132 D.1477.(3分)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5°C.20° D.22.5°8.(3分)已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若DE=8,则线段BD+CE的长为()A.5 B.6 C.7 D.89.(3分)如图所示,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC.∠EBC=∠E=60°,若BE=6,DE=2,则BC的长度是()A.6 B.8 C.9 D.1010.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个二.填空题(共8小题)11.(3分)如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为.12.(3分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为.13.(3分)等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.14.(3分)如图,△ABC中,∠A=90°,DE是BC的垂直平分线,AD=DE,则∠C的度数是°.15.(3分)如图,锐角三角形ABC中,直线PL为BC的垂直平分线,射线BM为∠ABC的平分线,PL与BM相交于P点.若∠PBC=30°,∠ACP=20°,则∠A的度数为°.16.(3分)如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是 cm.17.(3分)如图,在△ABC中,AB=1.8,BC=3.9,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为.18.(3分)如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是.三.解答题(共6小题)19.如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.20.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.21.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,EH⊥AB,垂足是H.在AB上取一点M,使BM=2DE,连接ME.求证:ME⊥BC.22.如图,在△ABC中,DE,FG分别是AB,AC的垂直平分线,连接AE,AF,已知∠BAC=80°,请运用所学知识,确定∠EAF的度数.23.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.24.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?参考答案:一.选择题(共10小题)1.(3分)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48° B.36° C.30° D.24°【分析】根据角平分线的性质可得∠DBC=∠ABD=24°,然后再计算出∠ACB的度数,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCB=24°,然后可算出∠ACF的度数.【解答】解:∵BD平分∠ABC,∴∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°﹣60°﹣24°×2=72°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=24°,∴∠ACF=72°﹣24°=48°,故选:A.【点评】此题主要考查了线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.2.(3分)如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC 的周长是()A.8 B.9 C.10 D.11【分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC 的周长=AD+BC+CD=AC+BC.【解答】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.【点评】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.3.(3分)如图所示,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中不一定相等的线段有()A.AC=AE=BE B.AD=BD C.AC=BD D.CD=DE【分析】分别根据线段垂直平分线及角平分线的性质对四个答案进行逐一判断即可.【解答】解:∵∠B=30°,∠C=90°,∴∠BAC=60°,AC=,∵DE是AB的垂直平分线,∴AD=BD,AE=BE=AB,∴∠DAB=30°,AC=AE=BE,故A、B正确;∴∠CAD=30°,∴AD是∠BAC的平分线∵CD⊥AC,DE⊥AB,∴CD=DE,故D正确;故选C.【点评】本题考查的是线段垂直平分线及角平分线的性质、直角三角形的性质,涉及面较广,难度适中.4.(3分)等腰三角形ABC中,一腰AB的垂直平分线交另一腰AC于G,已知AB=10,△GBC 的周长为17,则底BC为()A.5 B.7 C.10 D.9【分析】根据垂直平分线上的点到线段两个端点的距离相等,得GB=GA,即△GBC的周长=AC+BC,从而就求得了BC的长.【解答】解:设AB的中点为D,∵DG为AB的垂直平分线∴GA=GB (垂直平分线上一点到线段两端点距离相等),∴三角形GBC的周长=GB+BC+GC=GA+GC+BC=AC+BC=17,又∵三角形ABC是等腰三角形,且AB=AC,∴AB+BC=17,∴BC=17﹣AB=17﹣10=7.故选B.【点评】此题考查了等腰三角形的性质及线段垂直平分线的性质;进行有效的等量代换是正确解答本题的关键.5.(3分)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或12【分析】题目给出等腰三角形有两条边长为5和2,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故选:B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.(3分)如图,△ABC、△ADE中,C、D两点分别在AE、AB上,BC与DE相交于F点.若BD=CD=CE,∠ADC+∠ACD=114°,则∠DFC的度数为何?()A.114 B.123 C.132 D.147【分析】先根据等腰三角形的性质得出∠B=∠DCB,∠E=∠CDE,再利用三角形的内角和进行分析解答即可.【解答】解:∵BD=CD=CE,∴∠B=∠DCB,∠E=∠CDE,∵∠ADC+∠ACD=114°,∴∠BDC+∠ECD=360°﹣114°=246°,∴∠B+∠DCB+∠E+∠C DE=360°﹣246°=114°,∴∠DCB+∠CDE=57°,∴∠DFC=180°﹣57°=123°,故选B.【点评】此题考查等腰三角形的性质,关键是利用等边对等角和三角形内角和分析解答.7.(3分)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5°C.20° D.22.5°【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故选A.【点评】本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.8.(3分)已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若DE=8,则线段BD+CE的长为()A.5 B.6 C.7 D.8【分析】根据角平分线的性质,可得∠DBF与∠FBC的关系,∠ECF与∠FCB的关系,根据两直线平行,可得∠DFB与∠FBC的关系,∠EFC与∠FCB的关系,根据等腰三角形的判定,可得BD与DF的关系,EF与EC的关系,可得答案.【解答】解:OB和OC分别平分∠ABC和∠ACB,∴∠DBF=∠FBC,∠ECF=∠FCB.∵DE∥BC,∴∠FBC=∠DFB,∠EFC=∠FCB.∠DBF=∠DFB,∠EFC=∠ECF.∴DB=DF,EF=EC,DE=DF+EF=DB+EC=8,故选:D.【点评】此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题关键是求证DB=DO,OE=EC,难度不大,是一道基础题.9.(3分)如图所示,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC.∠EBC=∠E=60°,若BE=6,DE=2,则BC的长度是()A.6 B.8 C.9 D.10【分析】作出辅助线后根据等腰三角形的性质得出BE=6,DE=2,进而得出△BEM为等边三角形,△EMD为等边三角形,从而得出BN的长,进而求出答案.【解答】解:延长ED交BC于M,延长AD交BC于N,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∴BE=EM∵BE=6,DE=2,∴DM=EM﹣DE═6﹣2=4,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=2,∴BN=4,∴BC=2BN=8,故选B.【点评】此题主要考查了等腰三角形的性质和等边三角形的性质,能求出MN的长是解决问题的关键.10.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.【点评】此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.二.填空题(共8小题)11.(3分)如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为 7 .【分析】根据等边对等角得出∠B=∠C,再根据EP⊥BC,得出∠C+∠E=90°,∠B+∠BFP=90°,从而得出∠D=∠BFP,再根据对顶角相等得出∠E=∠AFE,最后根据等角对等边即可得出答案.【解答】证明:在△ABC中,∵AB=AC,∴∠B=∠C,∵EP⊥BC,∴∠C+∠E=90°,∠B+∠BFP=90°,∴∠E=∠BFP,又∵∠BFP=∠AFE,∴∠E=∠AFE,∴AF=AE,∴△AEF是等腰三角形.又∵AF=2,BF=3,∴CA=AB=5,AE=2,∴CE=7.【点评】本题考查了等腰三角形的判定和性质,解题的关键是证明∠E=∠AFE,注意等边对等角,以及等角对等边的使用.12.(3分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为120°或20° .【分析】设两个角分别是x,4x,根据三角形的内角和定理分情况进行分析,从而可求得顶角的度数.【解答】解:设两个角分别是x,4x①当x是底角时,根据三角形的内角和定理,得x+x+4x=180°,解得,x=30°,4x=120°,即底角为30°,顶角为120°;②当x是顶角时,则x+4x+4x=180°,解得,x=20°,从而得到顶角为20°,底角为80°;所以该三角形的顶角为120°或20°.故答案为:120°或20°.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.已知中若有比出现,往往根据比值设出各部分,利用部分和列式求解.13.(3分)等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是110°或70° .【分析】本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【解答】解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为:110°或70°.【点评】考查了等腰三角形的性质,注意此类题的两种情况.其中考查了直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.14.(3分)如图,△ABC中,∠A=90°,DE是BC的垂直平分线,AD=DE,则∠C的度数是 30 °.【分析】根据角平分线性质求出∠ABD=∠DBE,根据线段垂直平分线求出CD=BD,推出∠C=∠DBE=∠ABD,根据三角形内角和定理求出即可.【解答】解:∵△ABC中,∠A=90°,DE⊥BC,AD=DE,∴∠ABD=∠DBE,∵DE是BC的垂直平分线,∴CD=BD,∴∠C=∠DBE,∵∠A=90°,∴3∠C=90°,∴∠C=30°,故答案为:30.【点评】本题考查了线段垂直平分线性质,角平分线性质,等腰三角形性质,三角形内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.15.(3分)如图,锐角三角形ABC中,直线PL为BC的垂直平分线,射线BM为∠ABC的平分线,PL与BM相交于P点.若∠PBC=30°,∠ACP=20°,则∠A的度数为 70 °.【分析】根据角平分线得出∠ABC=60°,再根据线段垂直平分线得出∠PCB=30°,利用三角形的内角和解答即可.【解答】解:∵射线BM为∠ABC的平分线,∠PBC=30°,∴∠ABC=60°,∵直线PL为BC的垂直平分线,∴∠PCB=30°,∴∠A的度数=180°﹣60°﹣30°﹣20°=70°,故答案为:70.【点评】此题考查线段垂直平分线性质,关键是根据角平分线得出∠ABC=60°,再根据线段垂直平分线得出∠PCB=30°进行分析.16.(3分)如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是 19 cm.【分析】由已知条件,根据垂直平分线的性质得到线段相等,进行线段的等量代换后可得到答案.【解答】解:∵△ABC中,DE是AC的中垂线,∴AD=CD,AE=CE=AC=3cm,∴△ABD得周长=AB+AD+BD=AB+BC=13 ①则△ABC的周长为AB+BC+AC=AB+BC+6 ②把②代入①得△ABC的周长=13+6=19cm故答案为:19.【点评】本题考查了线段垂直平分线的性质;解答此题时要注意利用垂直平分线的性质找出题中的等量关系,进行等量代换,然后求解.17.(3分)如图,在△ABC中,AB=1.8,BC=3.9,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为 2.1 .【分析】由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.【解答】解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=1.8,BC=3.9,∴CD=BC﹣BD=3.9﹣1.8=2.1.故答案为:2.1.【点评】此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.18.(3分)如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是 400 .【分析】先证出阴影的三角形是等边三角形,又观察图可得,第n个图形中大等边三角形有2n个,小等边三角形有2n个,据此求出第100个图形中等边三角形的个数.【解答】解:如图①∵△ABC是等边三角形,∴AB=BC=AC,∵A′B′∥AB,BB′=B′C=BC,∴B′O=AB,CO=AC,∴△B′OC是等边三角形,同理阴影的三角形都是等边三角形.又观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有4个,小等边三角形有4个,第3个图形中大等边三角形有6个,小等边三角形有6个,…依次可得第n个图形中大等边三角形有2n个,小等边三角形有2n个.故第100个图形中等边三角形的个数是:2×100+2×100=400.故答案为:400.【点评】本题主要考查了等边三角形的判定和性质及平移的性质,解题的关键是据图找出规律.三.解答题(共6小题)19.如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.【分析】首先根据等腰三角形的两个底角相等得到∠A=∠C,再根据等角的余角相等得∠FEC=∠D,同时结合对顶角相等即可证明△DBE是等腰三角形.【解答】证明:在△ABC中,BA=BC,∵BA=BC,∴∠A=∠C,∵DF⊥AC,∴∠C+∠FEC=90°,∠A+∠D=90°,∴∠FEC=∠D,∵∠FEC=∠BED,∴∠BED=∠D,∴BD=BE,即△DBE是等腰三角形.【点评】此题主要考查等腰三角形的基本性质及综合运用等腰三角形的性质来判定三角形是否为等腰三角形.20.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.21.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,EH⊥AB,垂足是H.在AB上取一点M,使BM=2DE,连接ME.求证:ME⊥BC.【分析】根据EH⊥AB于H,得到△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可.【解答】解:∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵EH⊥AB于H,∴△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC.【点评】本题考查等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟记性质并证明出等腰直角三角形是解题的关键.22.如图,在△ABC中,DE,FG分别是AB,AC的垂直平分线,连接AE,AF,已知∠BAC=80°,请运用所学知识,确定∠EAF的度数.【分析】在△ABC中,利用三角形内角定理易求∠B+∠C,再根据线段垂直平分线的性质易求∠BAE=∠B,同理可得∠CAF=∠C,再结合三角形内角和定理进而可得∠BAE+∠CAF﹣∠BAC=∠EAF.【解答】解:在△ABC中,∠BAC=80°,∴∠B+∠C=180°﹣∠BAC=100°,∵DE是AB的垂直平分线,∴EB=EA,∴∠BAE=∠B,同理可得∠CAF=∠C,∴∠EAF=∠BAE+∠CAF﹣∠BAC=∠B+∠C﹣∠BAC=20°.【点评】本题考查了线段垂直平分线的性质,解题的关键是先求出∠B+∠C.23.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.【分析】(1)先根据线段垂直平分线的性质得出AD=BD,AE=CE,再根据AD+DE+AE=BD+DE+CE 即可得出结论;(2)先根据线段垂直平分线的性质得出OA=OC=OB,再由∵△OBC的周长为16cm求出OC的长,进而得出结论.【解答】解:(1)∵DF、EG分别是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16﹣6=10,∴OC=5,∴OA=OC=OB=5.【点评】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.24.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?【分析】(1)根据EF∥BC,∠B、∠C的平分线交于O点,可得∠EOB=∠OBC,∠FOC=∠OCB,∠EOB=∠OBE,∠FCO=∠FOC,再加上题目中给出的AB=AC,共5个等腰三角形;根据等腰三角形的性质,即可得出EF与BE、CF间有怎样的关系.(2)根据EF∥BC 和∠B、∠C的平分线交于O点,还可以证明出△OBE和△OCF是等腰三角形;利用几个等腰三角形的性质即可得出EF与BE,CF的关系.(3)EO∥BC和OB,OC分别是∠ABC与∠ACL的角平分线,还可以证明出△BEO和△CFO是等腰三角形.【解答】解:(1)有5个等腰三角形,EF与BE、CF间有怎样的关系是:EF=BE+CF=2BE=2CF.理由如下:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,又∠B、∠C的平分线交于O点,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠OBE,∠FCO=∠FOC,∴OE=BE,OF=CF,∴EF=OE+OF=BE+CF.又AB=AC,∴∠ABC=∠ACB,∴∠EOB=∠OBE=∠FCO=∠FOC,∴EF=BE+CF=2BE=2CF;(2)有2个等腰三角形分别是:等腰△OBE和等腰△OCF;第一问中的EF与BE,CF的关系是:EF=BE+CF.(3)有,还是有2个等腰三角形,△EBO,△OCF,EF=BE﹣CF,理由如下:∵EO∥BC,∴∠EOB=∠OBC,∠EOC=∠OCG(G是BC延长线上的一点)又∵OB,OC分别是∠ABC与∠ACG的角平分线∴∠EBO=∠OBC,∠ACO=∠OCD,∴∠EOB=∠EBO,∴BE=OE,∠FCO=∠FOC,∴CF=FO ,又∵EO=EF+FO ,∴EF=BE ﹣CF .【点评】此题主要考查学生对等腰三角形的判定与性质和平行线性质的理解和掌握,此题难度并不大,但是步骤繁琐,属于中档题,还有第(1)中容易忽略△ABC 也是等腰三角形,因此这又是一道易错题.要求学生在证明此题时一定要仔细,认真.1、盛年不重来,一日难再晨。

相关文档
最新文档