考点16 三角函数答案
2016-2019年高考真题三角函数解答题全集(含详细解析)
2016-2019年高考真题三角函数解答题全集(含详细解析)1.(2019•全国)已知函数22()2sin 4cos 1f x x x =-+. (1)求()f x 的最小正周期;(2)设g ()()2x x f =,求()g x 在区间[0,]3π的最大值与最小值.2.(2019•新课标Ⅲ)ABC ∆的内角A 、B 、C 的对边分别为a ,b ,c .已知sin sin 2A Ca b A +=.(1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.3.(2019•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值; (Ⅱ)求sin(2)6B π+的值.4.(2019•浙江)设函数()sin f x x =,x R ∈.(Ⅰ)已知[0θ∈,2)π,函数()f x θ+是偶函数,求θ的值; (Ⅱ)求函数22[()][()]124y f x f x ππ=+++的值域.5.(2019•北京)在ABC ∆中,3a =,2b c -=,1cos 2B =-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin()B C -的值.6.(2019•江苏)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .(1)若3a c =,b =,2cos 3B =,求c 的值; (2)若sin cos 2A Ba b=,求sin()2B π+的值. 7.(2019•北京)在ABC ∆中,3a =,2b c -=,1cos 2B =-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin()B C +的值.8.(2019•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .设22(sin sin )sin sin sin B C A B -=-C . (1)求A ;(22b c +=,求sin C .9.(2018•全国)在ABC ∆中,角A 、B 、C 对应边a 、b 、c ,外接圆半径为1,已知222(sin sin )()sin A C a b B -=-. (1)证明222a b c ab +-=; (2)求角C 和边c .10.(2018•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin cos()6b A a B π=-.(Ⅰ)求角B 的大小;(Ⅱ)设2a =,3c =,求b 和sin(2)A B -的值.11.(2018•北京)在ABC ∆中,7a =,8b =,1cos 7B =-.(Ⅰ)求A ∠;(Ⅱ)求AC 边上的高.12.(2018•江苏)已知α,β为锐角,4tan 3α=,cos()αβ+=(1)求cos2α的值; (2)求tan()αβ-的值.13.(2018•新课标Ⅰ)在平面四边形ABCD 中,90ADC ∠=︒,45A ∠=︒,2AB =,5BD =. (1)求cos ADB ∠;(2)若DC =,求BC .14.(2018•浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点3(5P -,4)5-.(Ⅰ)求sin()απ+的值; (Ⅱ)若角β满足5sin()13αβ+=,求cos β的值.15.(2018•北京)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若()f x 在区间[3π-,]m 上的最大值为32,求m 的最小值. 16.(2018•上海)设常数a R ∈,函数2()sin 22cos f x a x x =+.(1)若()f x 为偶函数,求a 的值;(2)若()14f π=,求方程()1f x =-[π-,]π上的解.17.(2018•上海)已知cos y x =(1)若1()3f α=,且[0α∈,]π,求()3f πα-的值(2)求函数(2)2()y f x f x =-的最小值18.(2017•上海)已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设ABC ∆为锐角三角形,角A 所对边a =B 所对边5b =,若f (A )0=,求ABC ∆的面积.19.(2017•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin 4sin a A b B =,222)ac a b c =--(Ⅰ)求cos A 的值; (Ⅱ)求sin(2)B A -的值20.(2017•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a b >,5a =,6c =,3sin 5B =. (Ⅰ)求b 和sin A 的值; (Ⅱ)求sin(2)4A π+的值.21.(2017•山东)设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<,已知()06f π=.(Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在[4π-,3]4π上的最小值.22.(2017•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC ∆的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1B C =,3a =,求ABC ∆的周长.23.(2017•新课标Ⅱ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin 2B AC +=. (1)求cos B ;(2)若6a c +=,ABC ∆的面积为2,求b .24.(2017•北京)已知函数())2sin cos 3f x x x x π=--.()I 求()f x 的最小正周期; ()II 求证:当[4x π∈-,]4π时,1()2f x -….25.(2017•新课标Ⅲ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 0A A =,a =,2b =.(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积.26.(2017•江苏)已知向量(cos ,sin )a x x =,(3,3)b =-,[0x ∈,]π. (1)若//a b ,求x 的值;(2)记()f x a b =,求()f x 的最大值和最小值以及对应的x 的值. 27.(2017•北京)在ABC ∆中,60A ∠=︒,37c a =.(1)求sin C 的值;(2)若7a =,求ABC ∆的面积.28.(2017•浙江)已知函数22()sin cos f x x x x =--cos ()x x R ∈. (Ⅰ)求2()3f π的值. (Ⅱ)求()f x 的最小正周期及单调递增区间.29.(2016•北京)已知函数()2sin cos cos2(0)f x x x x ωωωω=+>的最小正周期为π. (1)求ω的值;(2)求()f x 的单调递增区间.30.(2016•浙江)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos b c a B +=. (1)证明:2A B =; (2)若2cos 3B =,求cos C 的值. 31.(2016•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2sin a B A =.(1)求B ; (2)已知1cos 3A =,求sin C 的值.32.(2016•山东)设2())sin (sin cos )f x x x x x π=---. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移3π个单位,得到函数()y g x =的图象,求()6g π的值. 33.(2016•浙江)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos b c a B +=. (Ⅰ)证明:2A B =;(Ⅱ)若ABC ∆的面积24a S =,求角A 的大小.34.(2016•江苏)在ABC ∆中,6AC =,4cos 5B =,4C π=.(1)求AB 的长; (2)求cos()6A π-的值.35.(2016•北京)在ABC ∆中,222a c b +=+. (Ⅰ)求B ∠的大小;cos A C +的最大值.36.(2016•四川)在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且c o s c o ss i n A B Cab c+=.(Ⅰ)证明:sin sin sin A B C =; (Ⅱ)若22265b c a bc +-=,求tan B .37.(2016•天津)已知函数()4tan sin()cos()23f x x x x ππ=--(1)求()f x 的定义域与最小正周期; (2)讨论()f x 在区间[4π-,]4π上的单调性. 38.(2016•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=.(Ⅰ)求C ;(Ⅱ)若c =ABC ∆,求ABC ∆的周长. 39.(2016•山东)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知t a n t a n2(t a n t a n )c o s c o sA B A B B A +=+. (Ⅰ)证明:2a b c +=; (Ⅱ)求cos C 的最小值.40.(2016•江苏)如图,在ABC ∆中,90ABC ∠=︒,BD AC ⊥,D 为垂足,E 为BC 的中点,求证:EDC ABD ∠=∠.41.(2016•上海)已知函数()sin f x x x =+,求()f x 的最小正周期及最大值,并指出()f x 取得最大值时x 的值.2016-2019年高考真题三角函数解答题全集(含详细解析)参考答案与试题解析1.(2019•全国)已知函数22()2sin 4cos 1f x x x =-+. (1)求()f x 的最小正周期;(2)设g ()()2x x f =,求()g x 在区间[0,]3π的最大值与最小值.【解答】解:22()2sin 4cos 11cos22(1cos2)13cos2f x x x x x x =-+=--++=-. (1)()f x 的最小正周期22T ππ==; (2)g ()()3cos(2)3cos 22x xx f x ==-=-,[0x ∈,]3π,3cos [3x ∴-∈-,3]2-.即()g x 在区间[0,]3π的最大值为32-,最小值为3-.2.(2019•新课标Ⅲ)ABC ∆的内角A 、B 、C 的对边分别为a ,b ,c .已知sin sin 2A Ca b A +=.(1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【解答】解:(1)sin sin 2A C a b A +=,即为sin cos sin 22B Ba ab A π-==, 可得sin cossin sin 2sin cos sin 222B B BA B A A ==, sin 0A >,cos2sin cos 222B B B ∴=, 若cos 02B=,可得(21)B k π=+,k Z ∈不成立, 1sin22B ∴=, 由0B π<<,可得3B π=;(2)若ABC ∆为锐角三角形,且1c =,由余弦定理可得1cos3b a =,由三角形ABC 为锐角三角形,可得2211a a a +-+>且2211a a a +-+>,且2211a a a +>-+,解得122a <<, 可得ABC ∆面积13sin 23S a π==∈. 3.(2019•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值; (Ⅱ)求sin(2)6B π+的值. 【解答】解(Ⅰ)在三角形ABC 中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得43a b =,23a c =,由余弦定理可得222222416199cos 22423a a a ac b B ac aa +-+-===-.(Ⅱ)由(Ⅰ)得sin B ,从而sin 22sin cos B B B ==, 227cos2cos sin 8BB B =-=-,故71sin(2)sin 2cos cos2sin 66682B B B πππ+=+=-⨯=. 4.(2019•浙江)设函数()sin f x x =,x R ∈.(Ⅰ)已知[0θ∈,2)π,函数()f x θ+是偶函数,求θ的值; (Ⅱ)求函数22[()][()]124y f x f x ππ=+++的值域.【解答】解:(1)由()sin f x x =,得 ()sin()f x x θθ+=+, ()f x θ+为偶函数,∴()2k k Z πθπ=+∈, [0θ∈,2)π,∴2πθ=或32πθ=, (2)22[()][()]124y f x f x ππ=+++ 22sin ()sin ()124x x ππ=+++1cos(2)1cos(2)6222x x ππ-+-+=+11(cos2cos sin 2sin sin 2)266x x x ππ=---3sin 214x x =+)16x π=-+, x R ∈,∴sin(2)[1,1]6x π-∈-,∴)1[16y x π=-+∈, ∴函数22[()][()]124y f x f x ππ=+++的值域为:[1. 5.(2019•北京)在ABC ∆中,3a =,2b c -=,1cos 2B =-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin()B C -的值.【解答】解:(Ⅰ)3a =,2b c -=,1cos 2B =-.∴由余弦定理,得2222cos b a c ac B =+-219(2)23(2)()2b b =+--⨯⨯-⨯-,7b ∴=,25c b ∴=-=;(Ⅱ)在ABC ∆中,1cos 2B =-,sin B ∴=,由正弦定理有:sin sin c bC B=,∴5sin 2sin 7c BC b=== b c >,B C ∴>,C ∴为锐角,11cos 14C ∴=, sin()sin cos cos sin B C B C B C ∴-=-111()142=--=. 6.(2019•江苏)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .(1)若3a c =,b =,2cos 3B =,求c 的值; (2)若sin cos 2A Ba b=,求sin()2B π+的值. 【解答】解:(1)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c . 3a c =,b =,2cos 3B =, ∴由余弦定理得:222221022cos 263a cbc B ac c +--===,解得c =. (2)sin cos 2A Ba b=, ∴由正弦定理得:sin sin cos 2A B Ba b b==, 2sin cos B B ∴=,22sin cos 1B B +=,sin B ∴,cos B =sin()cos 2B B π∴+==. 7.(2019•北京)在ABC ∆中,3a =,2b c -=,1cos 2B =-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin()B C +的值.【解答】解:(1)3a =,2b c -=,1cos 2B =-.∴由余弦定理,得2222cos b a c ac B =+-219(2)23(2)()2b b =+--⨯⨯-⨯-,7b ∴=,25c b ∴=-=;(2)在ABC ∆中,1cos 2B =-,sin B ∴=,由正弦定理有:sin sin a bA B =,3sin 2sin 7a BA b∴===,sin()sin()sin B C A A π∴+=-==8.(2019•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .设22(sin sin )sin sin sin B C A B -=-C . (1)求A ;(22b c +=,求sin C .【解答】解:(1)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c . 设22(sin sin )sin sin sin B C A B -=-C .则222sin sin 2sin sin sin sin sin B C B C A B C +-=-,∴由正弦定理得:222b c a bc +-=,2221cos 222b c a bc A bc bc +-∴===,0A π<<,3A π∴=.(2)2b c +=,3A π=,∴sin 2sin A B C +=,∴2sin()2sin 3C C π+-=解得sin()6C π-=64C ππ∴-=,46C ππ=+,1sin sin()sin cos cos sin 464646222C ππππππ∴=+=+=⨯=. 9.(2018•全国)在ABC ∆中,角A 、B 、C 对应边a 、b 、c ,外接圆半径为1,已知222(sin sin )()sin A C a b B -=-. (1)证明222a b c ab +-=; (2)求角C 和边c .【解答】证明:(1)在ABC ∆中,角A 、B 、C 对应边a 、b 、c ,外接圆半径为1,∴由正弦定理得:22sin sin sin a b cR A B C====, sin 2aA ∴=,sin 2b B =,sin 2c C =,222(sin sin )()sin A C a b B -=-,222()()442a cb a b ∴-=-,化简,得:222a b c ab +-=, 故222a b c ab +-=. 解:(2)222a b c ab +-=,2221cos 222a b c ab C ab ab +-∴===,解得3C π=,32sin 23c C ∴===. 10.(2018•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin cos()6b A a B π=-.(Ⅰ)求角B 的大小;(Ⅱ)设2a =,3c =,求b 和sin(2)A B -的值. 【解答】解:(Ⅰ)在ABC ∆中,由正弦定理得sin sin a bA B=,得sin sin b A a B =, 又sin cos()6b A a B π=-.sin cos()6a B a B π∴=-,即1sin cos()cos cos sin sin sin 6662B B B B B B πππ=-=+=+,tan B ∴又(0,)B π∈,3B π∴=.(Ⅱ)在ABC ∆中,2a =,3c =,3B π=,由余弦定理得b ==sin cos()6b A a B π=-,得sin A =,a c <,cosA ∴=,sin 22sin cos A A A ∴==, 21cos22cos 17A A =-=,11sin(2)sin 2cos cos2sin 27A B A B A B ∴-=-=-=11.(2018•北京)在ABC ∆中,7a =,8b =,1cos 7B =-.(Ⅰ)求A ∠;(Ⅱ)求AC 边上的高.【解答】解:(Ⅰ)a b <,A B ∴<,即A 是锐角, 1cos 7B =-,sin B ∴== 由正弦定理得sin sin a b A B =得7sin 7sin 8a BA b===, 则3A π=.(Ⅱ)由余弦定理得2222cos b a c ac B =+-, 即216449277c c =++⨯⨯⨯,即22150c c +-=, 得(3)(5)0c c -+=, 得3c =或5c =-(舍), 则AC边上的高sin 3h c A ===12.(2018•江苏)已知α,β为锐角,4tan 3α=,cos()αβ+=(1)求cos2α的值; (2)求tan()αβ-的值.【解答】解:(1)由22431sin cos sin cos ααααα⎧=⎪⎪+=⎨⎪⎪⎩为锐角,解得4sin 53cos 5αα⎧=⎪⎪⎨⎪=⎪⎩,227cos225cos sin ααα∴=-=-; (2)由(1)得,24sin 22sin cos 25ααα==,则sin 224tan 2cos27ααα==-. α,(0,)2πβ∈,(0,)αβπ∴+∈,sin()αβ∴+= 则sin()tan()2cos()αβαβαβ++==-+.tan 2tan()2tan()tan[2()]1tan 2tan()11ααβαβααβααβ-+∴-=-+==-++.13.(2018•新课标Ⅰ)在平面四边形ABCD 中,90ADC ∠=︒,45A ∠=︒,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .【解答】解:(1)90ADC ∠=︒,45A ∠=︒,2AB =,5BD =.∴由正弦定理得:sin sin AB BD ADB A =∠∠,即25sin sin 45ADB =∠︒,2sin 45sin 5ADB ︒∴∠==, AB BD <,ADB A ∴∠<∠,cos ADB ∴∠==(2)90ADC ∠=︒,cos sin BDC ADB ∴∠=∠=, 2DC =BC ∴=5==.14.(2018•浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点3(5P -,4)5-.(Ⅰ)求sin()απ+的值; (Ⅱ)若角β满足5sin()13αβ+=,求cos β的值. 【解答】解:(Ⅰ)角α的顶点与原点O 重合,始边与x 轴非负半轴重合,终边过点3(5P -,4)5-.35x ∴=-,45y =-,||1r OP =,4sin()sin 5y r απα∴+=-=-=; (Ⅱ)由35x =-,45y =-,||1r OP ==,得4sin 5α=-,3cos 5α=-,又由5sin()13αβ+=,得12cos()13αβ+=±,则1235456cos cos[()]cos()cos sin()sin ()()13513565βαβααβααβα=+-=+++=⨯-+⨯-=-, 或1235416cos cos[()]cos()cos sin()sin ()()13513565βαβααβααβα=+-=+++=-⨯-+⨯-=. cos β∴的值为5665-或1665.15.(2018•北京)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若()f x 在区间[3π-,]m 上的最大值为32,求m 的最小值.【解答】解:()I 函数21cos2()sin cos 22x f x x x x x -=+=+ 1sin(2)62x π=-+,()f x 的最小正周期为22T ππ==; (Ⅱ)若()f x 在区间[3π-,]m 上的最大值为32, 可得52[66x ππ-∈-,2]6m π-,即有262m ππ-…,解得3m π…, 则m 的最小值为3π. 16.(2018•上海)设常数a R ∈,函数2()sin 22cos f x a x x =+. (1)若()f x 为偶函数,求a 的值;(2)若()14f π=,求方程()1f x =-[π-,]π上的解.【解答】解:(1)2()sin 22cos f x a x x =+,2()sin 22cos f x a x x ∴-=-+,()f x 为偶函数, ()()f x f x ∴-=,22sin 22cos sin 22cos a x x a x x ∴-+=+, 2sin20a x ∴=, 0a ∴=;(2)()14f π=,2sin2cos ()1124a a ππ∴+=+=,a ∴=,2()22cos 2cos212sin(2)16f x x x x x x π∴+++=++,()1f x =2sin(2)116x π∴++=sin(2)6x π∴+= 2264x k πππ∴+=-+,或52264x k πππ+=+,k Z ∈, 524x k πππ∴=-+,或1324x k ππ=+,k Z ∈, [x π∈-,]π, 1324x π∴=或1924x π=或524x π=-或1124x π=-17.(2018•上海)已知cos y x =(1)若1()3f α=,且[0α∈,]π,求()3f πα-的值(2)求函数(2)2()y f x f x =-的最小值 【解答】解:(1)若1()3f α=,且[0α∈,]π,则1cos 3α=,则sin 3α==,则111()cos()cos cos sin sin 3333326f ππππαααα-=-=+=⨯+=. (2)函数2213(2)2()cos22cos 2cos 2cos 12(cos )22y f x f x x x x x x =-=-=--=--,1cos 1x -剟,∴当1cos 2x =时,函数取得最小值,最小值为32-. 18.(2017•上海)已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设ABC ∆为锐角三角形,角A 所对边a =B 所对边5b =,若f (A )0=,求ABC ∆的面积.【解答】解:(1)函数221()cos sin 2f x x x =-+ 1cos22x =+,(0,)x π∈, 由222k x k πππ-剟,解得12k x k πππ-剟,k Z ∈,1k =时,12x ππ剟,可得()f x 的增区间为[2π,)π;(2)设ABC ∆为锐角三角形,角A 所对边a =B 所对边5b =, 若f (A )0=,即有1cos202A +=, 解得223A π=,即13A π=,由余弦定理可得2222cos a b c bc A =+-, 化为2560c c -+=, 解得2c =或3, 若2c =,则cos 0B =<,即有B 为钝角,2c =不成立, 则3c =,ABC ∆的面积为11sin 5322S bc A ==⨯⨯=. 19.(2017•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin 4sin a A b B =,222)ac a b c =--(Ⅰ)求cos A 的值; (Ⅱ)求sin(2)B A -的值【解答】(Ⅰ)解:由sin sin a bA B=,得sin sin a B b A =, 又sin 4sin a A b B =,得4sin sin b B a A =, 两式作比得:4a bb a=,2a b ∴=.由222)ac a b c =--,得222b c a +-=,由余弦定理,得2225cos 2b c aA bcac +-===; (Ⅱ)解:由(Ⅰ),可得sin A =,代入sin 4sin a A b B =,得sin sin 4a A B b ==. 由(Ⅰ)知,A 为钝角,则B 为锐角,∴cos B = 于是4sin 22sin cos 5B B B ==,23cos212sin 5B B =-=,故43sin(2)sin 2cos cos2sin (55B A B A B A -=-=⨯-= 20.(2017•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a b >,5a =,6c =,3sin 5B =. (Ⅰ)求b 和sin A 的值; (Ⅱ)求sin(2)4A π+的值.【解答】解:(Ⅰ)在ABC ∆中,a b >, 故由3sin 5B =,可得4cos 5B =. 由已知及余弦定理,有22242cos 2536256135b ac ac B =+-=+-⨯⨯⨯=,b ∴=由正弦定理sin sin a bA B=,得sin sin a B A b =b ∴=sin A (Ⅱ)由(Ⅰ)及a c <,得cos A =,12sin 22sin cos 13A A A ∴==, 25cos212sin 13A A =-=-.故125sin(2)sin 2cos cos2sin 44413213226A A A πππ+=+=⨯-=.21.(2017•山东)设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<,已知()06f π=.(Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在[4π-,3]4π上的最小值.【解答】解:(Ⅰ)函数()sin()sin()62f x x x ππωω=-+-sin cos cos sin sin()662x x x πππωωω=---3cos 2x x ωω=-)3x πω=-,又()3sin()0663f πππω=-=,∴63k ππωπ-=,k Z ∈,解得62k ω=+, 又03ω<<, 2ω∴=;(Ⅱ)由(Ⅰ)知,())3f x x π-,将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数)3y x π-的图象;再将得到的图象向左平移4π个单位,得到)43y x ππ+-的图象,∴函数())12y g x x π=-;当[4x π∈-,3]4π时,[123x ππ-∈-,2]3π,sin()[12x π∴-∈1],∴当4x π=-时,()g x 取得最小值是32-. 22.(2017•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC ∆的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1B C =,3a =,求ABC ∆的周长. 【解答】解:(1)由三角形的面积公式可得21sin 23sin ABC a S ac B A∆==, 3sin sin 2c B A a ∴=,由正弦定理可得3sin sin sin 2sin C B A A =, sin 0A ≠,2sin sin 3B C ∴=; (2)6cos cos 1B C =, 1cos cos 6B C ∴=, 121cos cos sin sin 632B C B C ∴-=-=-, 1cos()2B C ∴+=-,1cos 2A ∴=, 0A π<<,3A π∴=,2sin sin sin a b c R A B C ===== 2sin sin 22123(23)b c bc B C R R ∴====,8bc ∴=,2222cos a b c bc A =+-, 229b c bc ∴+-=,2()9392433b c cb ∴+=+=+=,b c ∴+=∴周长3a b c ++=23.(2017•新课标Ⅱ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2s i n ()8s i n 2B AC +=.(1)求cos B ;(2)若6a c +=,ABC ∆的面积为2,求b .【解答】解:(1)2sin()8sin 2BA C +=, sin 4(1cos )B B ∴=-, 22sin cos 1B B +=,2216(1cos )cos 1B B ∴-+=, 2216(1cos )cos 10B B ∴-+-=,216(cos 1)(cos 1)(cos 1)0B B B ∴-+-+=, (17cos 15)(cos 1)0B B ∴--=, 15cos 17B ∴=; (2)由(1)可知8sin 17B =, 1sin 22ABC S ac B ∆==,172ac ∴=, 2222217152cos 2217b ac ac B a c ∴=+-=+-⨯⨯ 22215()2153617154a c a c ac =+-=+--=--=, 2b ∴=.24.(2017•北京)已知函数())2sin cos 3f x x x x π=--.()I 求()f x 的最小正周期; ()II 求证:当[4x π∈-,]4π时,1()2f x -….【解答】解:(Ⅰ)())2sin cos 3f x x x x π=--,13(22)sin 22co x x x =+-,1sin 22x x =+, sin(2)3x π=+,22T ππ∴==, ()f x ∴的最小正周期为π,(Ⅱ)[4x π∈-,]4π, 2[36x ππ∴+∈-,5]6π, 1sin(2)123x π∴-+剟,1()2f x ∴-… 25.(2017•新课标Ⅲ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c,已知sin 0A A =,a =,2b =.(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积. 【解答】解:(1)sin 0A A +=, tan A ∴=0A π<<,23A π∴=, 由余弦定理可得2222cos a b c bc A =+-, 即2128422()2c c =+-⨯⨯-,即22240c c +-=,解得6c =-(舍去)或4c =, 故4c =.(2)2222cos c b a ab C =+-, 1628422cos C ∴=+-⨯⨯,cos C ∴=22cos AC CD C∴===12CD BC ∴=11sin 4222ABC S AB AC BAC ∆=∠=⨯⨯=,12ABD ABC S S ∆∆∴=26.(2017•江苏)已知向量(cos ,sin )a x x =,(3,3)b =-,[0x ∈,]π. (1)若//a b ,求x 的值;(2)记()f x a b =,求()f x 的最大值和最小值以及对应的x 的值. 【解答】解:(1)(cos ,sin )a x x =,(3,3)b =-,//a b ,3sin x x =,当cos 0x =时,sin 1x =,不合题意,当cos 0x ≠时,tan x =, [0x ∈,]π, 56x π∴=,(2)1()3cos sin ))26f x a b x x x x x π===-=+, [0x ∈,]π, [66x ππ∴+∈,7]6π,1cos()6x π∴-+剟 当0x =时,()f x 有最大值,最大值3,当56x π=时,()f x 有最小值,最小值- 27.(2017•北京)在ABC ∆中,60A ∠=︒,37c a =.(1)求sin C 的值;(2)若7a =,求ABC ∆的面积. 【解答】解:(1)60A ∠=︒,37c a =,由正弦定理可得33sin sin 77C A ==, (2)7a =,则3c =,C A ∴<,22sin cos 1C C +=,又由(1)可得13cos 14C =,131sin sin()sin cos cos sin 142B A C A C A C ∴=+=+=+=11sin 7322ABC S ac B ∆∴==⨯⨯=28.(2017•浙江)已知函数22()sin cos f x x x x =--cos ()x x R ∈. (Ⅰ)求2()3f π的值. (Ⅱ)求()f x 的最小正周期及单调递增区间.【解答】解:函数22()sin cos f x x x x =--7cos 2cos22sin(2)6x x x x π=-=+ (Ⅰ)2275()2sin(2)2sin 23362f ππππ=⨯+==, (Ⅱ)2ω=,故T π=, 即()f x 的最小正周期为π, 由72[262x k πππ+∈-+,2]2k ππ+,k Z ∈得: 5[6x k ππ∈-+,]3k ππ-+,k Z ∈,故()f x 的单调递增区间为5[6k ππ-+,]3k ππ-+或写成[6k ππ+,2]3k ππ+,k Z ∈. 29.(2016•北京)已知函数()2sin cos cos2(0)f x x x x ωωωω=+>的最小正周期为π. (1)求ω的值;(2)求()f x 的单调递增区间.【解答】解:()2sin cos cos2f x x x x ωωω=+, sin2cos2x x ωω=+,)4x πω=+,由于函数的最小正周期为π, 则:22T ππω==, 解得:1ω=.(2)由(1)得:函数())4f x x π=+,令222()242k x k k Z πππππ-+++∈剟,解得:3()88k x k k Z ππππ-++∈剟, 所以函数的单调递增区间为:3[,]()88k k k Z ππππ-++∈. 30.(2016•浙江)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos b c a B +=. (1)证明:2A B =; (2)若2cos 3B =,求cos C 的值. 【解答】(1)证明:2cos b c a B +=, sin sin 2sin cos B C A B ∴+=,sin sin()sin cos cos sin C A B A B A B =+=+,sin sin cos cos sin sin()B A B A B A B ∴=-=-,由A ,(0,)B π∈,0A B π∴<-<,B A B ∴=-,或()B A B π=--,化为2A B =,或A π=(舍去). 2A B ∴=.()II 解:2cos 3B =,sin B ∴=.21cos cos22cos 19A B B ==-=-,sin A =.2122cos cos()cos cos sin sin ()3927C A B A B A B ∴=-+=-+=-⨯-+=. 31.(2016•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2sin a B A=. (1)求B ; (2)已知1cos 3A =,求sin C 的值.【解答】解:(1)sin 2sin a B A =,2sin sin cos sin A B B B A ∴=,cos B ∴=6B π∴=.(2)1cos 3A =,sin A ∴,11sin sin()sin cos cos sin 23C A B A B A B ∴=+=++⨯=.32.(2016•山东)设2())sin (sin cos )f x x x x x π=---. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移3π个单位,得到函数()y g x =的图象,求()6g π的值. 【解答】解:(Ⅰ)221cos2()23sin()sin (sin cos )23sin 1sin 2231sin 22xf x x x x x x x x π-=---=-+=-+sin 212sin(2)13x x x π==-,令222232k x k πππππ--+剟,求得51212k x k ππππ-+剟, 可得函数的增区间为[12k ππ-,5]12k ππ+,k Z ∈. (Ⅱ)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得2sin()13y x π=-+的图象;再把得到的图象向左平移3π个单位,得到函数()2sin 1y g x x ==+的图象,()2sin 166g ππ∴==33.(2016•浙江)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos b c a B +=. (Ⅰ)证明:2A B =;(Ⅱ)若ABC ∆的面积24a S =,求角A 的大小.【解答】(Ⅰ)证明:2cos b c a B +=, sin sin 2sin cos B C A B ∴+=,sin sin()2sin cos B A B A B ∴++=sin sin cos cos sin 2sin cos B A B A B A B ∴++=sin sin cos cos sin sin()B A B A B A B ∴=-=-A ,B 是三角形中的角, B A B ∴=-, 2A B ∴=;(Ⅱ)解:ABC ∆的面积24a S =,∴21sin 24a bc A =, 22sin bc A a ∴=,2sin sin sin sin2B C A B ∴==, sin cos C B ∴=,90B C ∴+=︒,或90C B =+︒, 90A ∴=︒或45A =︒.34.(2016•江苏)在ABC ∆中,6AC =,4cos 5B =,4C π=.(1)求AB 的长; (2)求cos()6A π-的值.【解答】解:(1)ABC ∆中,4cos 5B =,(0,)B π∈, 3sin 5B ∴=, sin sin AB ACC B=,6235AB ∴==;(2)cos cos()cos()sin sin cos cos A A C B B C B C π==--=-+=-= A 为三角形的内角,sin A ∴=,1cos()sin 62A A A π∴-=+=35.(2016•北京)在ABC ∆中,222a c b +=+. (Ⅰ)求B ∠的大小;cos A C +的最大值.【解答】解:(Ⅰ)在ABC ∆中,222a c b +=.222a c b ∴+-=.222cos 2a c b B ac +-∴==, 4B π∴=(Ⅱ)由()I 得:34C A π=-,∴3cos cos()4A C A A π++-A A A =A A =+ sin()4A π=+.3(0,)4A π∈, (44A ππ∴+∈,)π,故当42A ππ+=时,sin()4A π+取最大值1,cos A C +的最大值为1.36.(2016•四川)在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且c o s c o ss i n A B Cab c+=.(Ⅰ)证明:sin sin sin A B C =; (Ⅱ)若22265b c a bc +-=,求tan B .【解答】(Ⅰ)证明:在ABC ∆中,cos cos sin A B Ca b c+=, ∴由正弦定理得:cos cos sin sin sin sin A B C A B C+=, ∴cos sin cos sin sin()1sin sin sin sin A B B A A B A B A B++==,sin()sin A B C +=.∴整理可得:sin sin sin A B C =,(Ⅱ)解:22265b c a bc +-=,由余弦定理可得3cos 5A =.4sin 5A =,cos 3sin 4A A = cos cos sin 1sin sin sin AB CA B C +==,cos 1sin 4B B =, tan 4B =.37.(2016•天津)已知函数()4tan sin()cos()23f x x x x ππ=--(1)求()f x 的定义域与最小正周期; (2)讨论()f x 在区间[4π-,]4π上的单调性.【解答】解:(1)()4tan sin()cos()23f x x x x ππ=--.2x k ππ∴≠+,即函数的定义域为{|2x x k ππ≠+,}k Z ∈,则1()4tan cos (cos )2f x x x x x =14sin (cos )2x x x =22sin cos x x x =+sin 2cos 2)x x =+--sin 2x x =2sin(2)3x π=-, 则函数的周期22T ππ==; (2)由222232k x k πππππ-<-<+,k Z ∈,得51212k x k ππππ-<<+,k Z ∈,即函数的增区间为(12k ππ-,5)12k ππ+,k Z ∈, 当0k =时,增区间为(12π-,5)12π,k Z ∈, [4x π∈-,]4π,∴此时(12x π∈-,]4π, 由3222232k x k πππππ+<-<+,k Z ∈, 得5111212k x k ππππ+<<+,k Z ∈,即函数的减区间为5(12k ππ+,11)12k ππ+,k Z ∈,当1k =-时,减区间为7(12π-,)12π-,k Z ∈, [4x π∈-,]4π,∴此时[4x π∈-,)12π-,即在区间[4π-,]4π上,函数的减区间为[4π∈-,)12π-,增区间为(12π-,]4π.38.(2016•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=.(Ⅰ)求C ;(Ⅱ)若c =ABC ∆,求ABC ∆的周长. 【解答】解:(Ⅰ)在ABC ∆中,0C π<<,sin 0C ∴≠已知等式利用正弦定理化简得:2cos (sin cos sin cos )sin C A B B A C +=, 整理得:2cos sin()sin C A B C +=, 即2cos sin(())sin C A B C π-+= 2cos sin sin C C C =1cos 2C ∴=, 3C π∴=;(Ⅱ)由余弦定理得221722a b ab=+-, 2()37a b ab ∴+-=,1sin 2S ab C ===6ab ∴=,2()187a b ∴+-=, 5a b ∴+=,ABC ∴∆的周长为5+.39.(2016•山东)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知t a n t a n2(t a n t a n )c o s c o sA B A B B A +=+. (Ⅰ)证明:2a b c +=; (Ⅱ)求cos C 的最小值.【解答】解:(Ⅰ)证明:由tan tan 2(tan tan )cos cos A BA B B A+=+得: sin sin sin sin 2()cos cos cos cos cos cos A B A BA B A B A B+=+; ∴两边同乘以cos cos A B 得,2(sin cos cos sin )sin sin A B A B A B +=+;2sin()sin sin A B A B ∴+=+;即sin sin 2sin A B C +=(1);根据正弦定理,2sin sin sin a b c R A B C ===; ∴sin ,sin ,sin 222a b c A B C R R R ===,带入(1)得:2222a b c R R R +=; 2a b c ∴+=;(Ⅱ)2a b c +=;2222()24a b a b ab c ∴+=++=;22242a b c ab ∴+=-,且244c ab …,当且仅当a b =时取等号; 又a ,0b >; ∴21c ab…; ∴由余弦定理,222223231cos 12222a b c c ab c C ab ab ab +--===-…; cos C ∴的最小值为12. 40.(2016•江苏)如图,在ABC ∆中,90ABC ∠=︒,BD AC ⊥,D 为垂足,E 为BC 的中点,求证:EDC ABD ∠=∠.【解答】解:在ABC ∆中,由BD AC ⊥可得90BDC ∠=︒, 因为E 为BC 的中点,所以12DE CE BC ==, 则:EDC C ∠=∠,由90BDC ∠=︒,可得90C DBC ∠+∠=︒,由90ABC ∠=︒,可得90ABD DBC ∠+∠=︒,因此ABD C ∠=∠,而EDC C ∠=∠,所以,EDC ABD ∠=∠.41.(2016•上海)已知函数()sin f x x x =+,求()f x 的最小正周期及最大值,并指出()f x 取得最大值时x 的值.【解答】解:()sin 2sin()3f x x x x π==+,∴函数的周期为2T π=,函数的最大值为2,且函数取得最大值时,232x k πππ+=+,即26x k ππ=+,k Z ∈.。
2019年人教版最新高中数学三角函数复习专题及参考答案
2019年人教版最新高中数学三角函数复习专题及参考答案(附参考答案)一、知识点整理: 1、角的概念的推广:正负,范围,象限角,坐标轴上的角; 2、角的集合的表示:①终边为一射线的角的集合:=⇔{}|360,k k Z ββα=+⋅∈ ②终边为一直线的角的集合:;③两射线介定的区域上的角的集合:⇔{}Z k k x k x ∈+≤<+,22απβπ④两直线介定的区域上的角的集合:;⇔{}Z k k x k x ∈+≤<+,απβπ3、任意角的三角函数:(1) 弧长公式: R 为圆弧的半径,为圆心角弧度数,为弧长。
R a l =a l(2) 扇形的面积公式: R 为圆弧的半径,为弧长。
lRS 21=l(3) 三角函数定义:角中边上任意一点为,设则:r=αP ),(y x r OP =||,cos ,sin r x r y ==ααxy =αtan 22b a +反过来,角的终边上到原点的距离为的点P 的坐标可写为:比如:公式 的证明αr ()cos ,sin P r r ααβαβαβαsin sin cos cos )cos(+=-(4)特殊角的三角函数值(5)三角函数符号规律:第一象限全正,二正三切四余弦。
(6)三角函数线:(判断正负、比较大小,解方程或不等式等)如图,角的终边与单位圆交于点P ,过点P 作轴的垂线,αx垂足为M ,则 过点A(1,0)作轴的切线,交角终边OP 于点T ,则 。
x(7)同角三角函数关系式:①倒数关系: ②商数关系:1cot tan =a a a a a cos sin tan =③平方关系:1cos sin 22=+a a(8)诱导公试三角函数值等于的同名三角函数值,前面加上一个把看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限αα三角函数值等于的异名三角函数值,前面加上一个把看作锐角时,原三角函数值的符号;αα即:函数名改变,符号看象限:比如sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 4.两角和与差的三角函数: (1)两角和与差公式:βββtan tan 1tan tan )(tan a a a a ±=± 注:公式的逆用或者变形(2)二倍角公式: (3)几个派生公式:①辅助角公式:)cos()sin(cos sin 2222ϕϕ-+=++=+x b a x b a x b x a例如:sin α±cos α=sin =cos .sin α±cos α=2sin =2cos 等.3⎪⎭⎫ ⎝⎛±3πα⎪⎭⎫ ⎝⎛±3πα ②降次公式:ααα2sin 1)cos (sin 2±=±③)tan tan 1)(tan(tan tan βαβαβα⋅-+=+5、三角函数的图像和性质:(其中)z k ∈6、.函数的图像与性质:)sin(ϕω+=x A y(本节知识考察一般能化成形如图像及性质))sin(ϕω+=x A y(1)函数和的周期都是)sin(ϕω+=x A y )cos(ϕω+=x A y ωπ2=T(2)函数和的周期都是)tan(ϕω+=x A y )cot(ϕω+=x A y ωπ=T(3)五点法作的简图,设,取0、、、、来求相应的值以及对应的y 值再描点作图。
人教版高中数学三角函数复习专题及参考答案
高中数学三角函数复习专题(附参考答案)一、知识点整理:1、角的概念的推广:正负,范围,象限角,坐标轴上的角; 2、角的集合的表示:①终边为一射线的角的集合:⇔{}Z k k x x ∈+=,2απ={}|360,k k Z ββα=+⋅∈②终边为一直线的角的集合:⇔{}Z k k x x ∈+=,απ;③两射线介定的区域上的角的集合:⇔{}Z k k x k x ∈+≤<+,22απβπ④两直线介定的区域上的角的集合:⇔{}Z k k x k x ∈+≤<+,απβπ;3、任意角的三角函数:(1) 弧长公式:R a l = R 为圆弧的半径,a 为圆心角弧度数,l 为弧长。
(2) 扇形的面积公式:lR S 21= R 为圆弧的半径,l 为弧长。
(3) 三角函数定义:角α中边上任意一点P 为),(y x ,设r OP =||则:,cos ,sin r x r y ==αα xy =αtan r=22b a + 反过来,角α的终边上到原点的距离为r 的点P 的坐标可写为:()cos ,sin P r r αα比如:公式βαβαβαsin sin cos cos )cos(+=- 的证明(6)如图,角α 垂足为M 过点A(1,0)作x (7 ①倒数关系: 1cot tan =a a ②商数关系:aa cos tan =③平方关系:1cos sin 22=+a a(8)诱导公试三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限:比如sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭4.两角和与差的三角函数: (1)两角和与差公式:βββαsin sin cos cos )cos(a a =± βββsin cos cos sin )sin(a a a ±=±βββtan tan 1tan tan )(tan a a a a ±=± 注:公式的逆用或者变形......... (2)二倍角公式:a a a cos sin 22sin = 1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a aa aa 2tan 1tan 22tan -=(3)几个派生公式: ①辅助角公式:)cos()sin(cos sin 2222ϕϕ-+=++=+x b a x b a x b x a例如:sin α±cos α=2sin ⎪⎭⎫ ⎝⎛±4πα=2cos ⎪⎭⎫ ⎝⎛±4πα.sin α±3cos α=2sin ⎪⎭⎫ ⎝⎛±3πα=2cos ⎪⎭⎫ ⎝⎛±3πα等.②降次公式:ααα2sin 1)cos (sin 2±=±221cos 21cos 2cos ,sin 22αααα+-==③)tan tan 1)(tan(tan tan βαβαβα⋅-+=+56、.函数)sin(ϕω+=x A y 的图像与性质:(本节知识考察一般能化成形如)sin(ϕω+=x A y 图像及性质) (1) 函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y 的周期都是ωπ2=T(2) 函数)tan(ϕω+=x A y 和)cot(ϕω+=x A y 的周期都是ωπ=T (3) 五点法作)sin(ϕω+=x A y 的简图,设ϕω+=x t ,取0、2π、π、23π、π2来求相应x 的值以及对应的y 值再描点作图。
(完整版)高考三角函数经典解答题及答案
1在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)若b=2,求△ABC 面积的最大值. 解:(1) 由余弦定理:conB=14sin22A B ++cos2B= -14(2)由.415sin ,41cos ==B B 得 ∵b=2, a2+c 2=12ac+4≥2ac,得ac ≤38,S △ABC =12acsinB ≤315(a=c 时取等号)故S △ABC 的最大值为3152在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cosB 的值;(II )若2=⋅BC BA ,且22=b ,求c a 和b 的值.解:(I )由正弦定理得C R c B R b A R a sin 2,sin 2,sin 2===,,0sin .cos sin 3sin ,cos sin 3)sin(,cos sin 3cos sin cos sin ,cos sin cos sin 3cos sin ,cos sin 2cos sin 6cos sin 2≠==+=+-=-=A B A A B A C B B A B C C B B C B A C B B C R B A R C B R 又可得即可得故则因此.31cos =B(II )解:由2cos ,2==⋅B a 可得,,,0)(,12,cos 2,6,31cos 222222c a c a c a B ac c a b ac B ==-=+-+===即所以可得由故又 所以a =c = 63已知向量m =()B B cos 1,sin -, 向量n = (2,0),且m 与n 所成角为π3,其中A 、B 、C 是ABC ∆的内角。
(1)求角B 的大小;(2)求 C A sin sin +的取值范围。
16年全国卷三角函数部分试题及答案
16年三角函数部分高考考题整理:(16年1卷)4、△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b=C.2D.3答案:D14、题已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)= 答案:34-(16年Ⅱ卷)3、 函数=sin()y A x ωϕ+的部分图像如图所示,则 A.2sin(2)6y x π=- B.2sin(2)3y x π=- C.2sin(2+)6y x π= D.2sin(2+)3y x π= 答案:A11、 函数π()cos 26cos()2f x x x =+-的最大值为A.4B.5C.6D.7 答案:B15、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a =1,则b =___.答案:2113(16年Ⅲ卷)6、若tanθ=13,则cos2θ= A.45-B.15-C.15D.45 答案:D9、在ABC ∆中,B=4π,BC 边上的高等于31BC ,则=A sin A.310B.10C.5D.10答案:D14、函数y =sin x –cos x 的图像可由函数y =2sin x 的图像至少向右平移______个单位长度得到. 答案:3π(16年北京卷)13、在△ABC 中,23A π∠=,,则b c =_________. 答案:116、已知函数f (x )=2sin ωx cos ωx +cos 2ωx (ω>0)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求f (x )的单调递增区间.答案:解:依题,)42sin(22cos 2sin 2cos cos sin 2)(π+=+=+=wx wx wx wx wx wx x f (1))(x f 的最小正周期为πππ===w w T 22 1=∴w(1) x y sin =的单调增区间为[22,22ππππ+-k k ](Z k ∈) 令224222πππππ+≤+≤-k x k 得883ππππ+≤≤-k x k )(x f ∴的单调递增区间为[8,83ππππ+-k k ](Z k ∈)。
锐角三角函数及其应用-2022年中考数学一轮复习考点(浙江专用)(解析版)
考点16 锐角三角函数及其应用【命题趋势】中考数学中,对锐角三角函数的考察主要以特殊角的三角函数值及其有关计算、解直角三角形、解直角三角形的应用三个方面为主。
其中,锐角三角函数的性质及解直角三角形多以选择填空题为主,解直角三角形的应用多以解答题为主。
整体难度不大,但是所占分值有3~12分,还是需要考生对这块易拿分的考点多加重视。
【中考考查重点】一、锐角三角函数的定义及其性质 二、特殊角的三角函数值 三、解直角三角形 四、解直角三角形的应用考向一:锐角三角函数的定义及其性质 一.锐角三角函数的定义:在Rt △AABC 中,∠C=90°,AB=c ,BC=a ,AC=b 则:∠A 正弦:caA A =∠=斜边的对边sin ;∠A 余弦:c bA ==斜边的邻边cos ;∠A 正切:baA A A =∠∠=的邻边的对边tan ;二.锐角三角函数的函数关系当∠A +∠B=90°时,有以下两种关系:(1).同角三角函数的关系:AA A cos sin tan =; 1cos sin 22=+A A (2)互余两角的三角函数的关系:B A B A sin cos ;cos sin ==; )90(1tan tan ︒=∠+∠=•B A B A【同步练习】1.(2021•句容市模拟)在△ABC 中,∠C =90°,设∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,则( )ACBabcA.c=b sin B B.b=c sin B C.a=b tan B D.b=c tan B【分析】根据正弦、正切的定义计算,判断即可.【解答】解:A、sin B=,则b=c sin B,本选项说法错误;B、b=c sin B,本选项说法正确;C、tan B=,则b=a tan B,本选项说法错误;D、b=a tan B,本选项说法错误;故选:B.2.(2021•饶平县校级模拟)如图,在Rt△ABC中,∠C=90°,BC=m,∠B=β,那么AB=()A.m⋅sin βB.C.m⋅cosβD.【分析】根据余弦的概念解答即可.【解答】解:∵∠C=90°,m,∠B=β,∴cosβ=,∴AB=,故选:D.3.(2021•张湾区模拟)如图,小正方形的边长均为1,有格点△ABC,则sin C=()A.B.C.D.【分析】连接BD,根据正方形的性质得到,∠CDB=90°,BD=,BC=,根据正弦的定义计算即可.【解答】解:如图,连接BD,由正方形的性质可知,∠CDB=90°,BD=,BC=,则sin C==,故选:B.4.(2021•商河县校级模拟)当A为锐角,且<cos∠A<时,∠A的范围是()A.0°<∠A<30°B.30°<∠A<60°C.60°<∠A<90°D.30°<∠A<45°【分析】根据锐角的余弦值随着角度的增大而减小进行解答.【解答】解:∵cos60°=,cos30°=,∴30°<∠A<60°.故选:B.5.(2021•桓台县一模)在Rt△ABC中,若∠ACB=90°,tan A=,则sin B=()A.B.C.D.【分析】作出草图,根据∠A的正切值设出两直角边分别为k,2k,然后利用勾股定理求出斜边,则∠B 的正弦值即可求出.【解答】解:如图,∵在Rt△ABC中,∠C=90°,tan A=,∴设AC=2k,BC=k,则AB==k,∴sin B===.故选:D.6.(2021•蒙阴县模拟)如图,在△ABC中,∠ACB=∠ADC=90°,若sin A=,则cos∠BCD的值为.【分析】设BC=3x,AB=5x,由勾股定理求出AC=4x,求出cos A=,证出∠BCD=∠A,即可得出答案.【解答】解:∵在Rt △ACB 中,∠ACB =90°,sin A ==,∴设BC =3x ,AB =5x , 由勾股定理得:AC =4x , ∴cos A ===,∵∠ACB =∠ADC =90°, ∴∠A +∠B =∠B +∠BCD =90°, ∴∠A =∠BCD , ∴cos ∠BCD =cos A =, 故答案为:.考向二:特殊角的三角函数值特殊角的三角函数值表α sin αcos αtan α30°21 23 33 45°22 22 160°23 21 3【同步练习】1.(2021•宜兴市模拟)已知cos α=,且α是锐角,则α=( )A .30°B .45°C .60°D .90°【分析】直接利用特殊角的三角函数值得出答案. 【解答】解:∵cos α=,且α是锐角,∴α=30°. 故选:A .2.(2022•龙岗区一模)Rt△ABC中∠C=90°,sin A=,则tan A的值是()A.B.C.D.【分析】由sin A=,得出∠A=30°,再根据正切=对边÷邻边求得即可.【解答】解:∵∠C=90°,sin A=,∴∠A=30°,∴tan30°=.故选:C.3.(2021•邵阳模拟)在△ABC中,若|sin A﹣|+(cos B﹣)2=0,则∠C的度数是()A.30°B.45°C.60°D.90°【分析】直接利用特殊角的三角函数值以及偶次方和绝对值的性质得出∠A和∠B的度数进而求出即可.【解答】解:∵|sin A﹣|+(cos B﹣)2=0,∴sin A=,cos B=,∴∠A=60°,∠B=30°,∴∠C的度数是90°.故选:D.4.(2022•无为市校级一模)计算:(1)sin60°•cos30°﹣1;(2)2sin30°+3cos60°﹣4tan45°.【分析】(1)(2)把特殊角的三角函数值代入计算即可.【解答】解:(1)原式=×﹣1=﹣1=﹣;(2)原式=2×+3×﹣4×1=1+﹣4=﹣.考向三:解直角三角形解直角三角形相关:在Rt△ABC中,∠C=90°AB=c,BC=a ,AC=b三边关系:222cba=+两锐角关系:︒=∠∠90BA+边与角关系:caBA==cossin,cbBA==sincos,baanA=t,abanB=t锐角α是a、b的夹角面积:αsin21abS=【方法提炼】与三角函数有关的倍半角问题倍半角模型①知“半角”求“倍角”→知θ,截取使相等(或中垂线),得2θ②知“倍角”求“半角”→知2θ,延长使相等(或做角平分线),得θ(等腰出,半角现)解题主要思想特别记忆:1.“倍半角”模型也可用于“角平分线”类问题相等角倍角半角常构造(或选择)Rt△延长直角边=作斜边的中垂线,得2可构造K型相似,得矩形当有特殊tanα值时,可转化为主要变“求点的坐标”为“求直线与函数图象交点”抓本质——对称全等+l1⊥l2此处k型相似比已知,矩形对边相等是列方程的等量关系2.“倍半角模型”常常转化为“θ”的正切值来计算3.☆【同步练习】1.(2021•樊城区一模)如图,A 、B 、C 是3×1的正方形网格的三个格点,则tan ∠ABC 的值为( )A .B .C .D .【分析】把∠ABC 放在Rt △ABD 中,利用锐角三角函数的定义进行计算即可解答. 【解答】解:如图:在Rt △ABD 中,AD =1,BD =2, ∴tan ∠ABC ==,故选:A .2.(2021•滨江区校级三模)如图,点A 为∠B 边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示tan B 的值,错误的是( )A .B .C .D . 【分析】证明∠B =∠ACD ,推出tan B =tan ∠ACD ,可得tan B ===,由此即可判断.【解答】解:∵AC ⊥BC 于点C ,CD ⊥AB 于点D , ∴∠ACB =∠CDB =90°,∴∠B +∠BCD =90°,∠BCD +∠ACD =90°, ∴∠B =∠ACD ,和角公式:αααβαβαβαβαβαβα2tan -12tan 2tan tan tan 1tan -tan -tan ;tan tan 1tan tan tan =•+=•-+=+;)()( ;时,③当;时,②当;时,①当7242tan 43tan 432tan 31tan 342tan 21tan ======θθθθθθ∴tan B=tan∠ACD,∴tan B===,故选:A.3.(2021•榆阳区模拟)如图,点A,B是以CD为直径的⊙O上的两点,分别在直径的两侧,其中点A是的中点,若tan∠ACB=2,AC=,则BC的长为()A.B.2C.1D.2【分析】连接AB,连接AO,延长AO交BC于T.由点A是的中点得AT⊥BC,由tan∠ACT==2,设CT=k,AT=2k,在Rt△ACT中,AC2=CT2+AT2,可得()2=k2+(2k)2,推出k=1,根据垂径定理即可解决问题.【解答】解:连接AB,连接AO,延长AO交BC于T.∵点A是的中点,∴AT⊥BC,∵tan∠ACT==2,∴设CT=k,AT=2k,在Rt△ACT中,AC2=CT2+AT2,∴()2=k2+(2k)2,∴k=1,∵AT⊥BC,AT过圆心O,∴BC=2CT=2,故选:D.4.(2021•阿城区模拟)如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足是D,设∠CAB=α,CD =h,那么BC的长度为()A .B .C .D .h •cos α【分析】根据余角性质得∠BCD =∠CAD =α,然后利用余弦的定义可得答案. 【解答】解:∵CD ⊥AB , ∴∠CAD +∠DCA =90°, ∵∠ACB =∠ACD +∠BCD =90°, ∴∠BCD =∠CAD =α, 在Rt △BCD 中, ∵cos ∠BCD =,CD =h ,∴BC =.故选:B .考向四:解直角三角形的应用 解直角三角形的应用:仰角和俯角仰角:在视线与水平线所成的角中,视线在水平线上方的叫仰角. 俯角:视线在水平线下方的叫俯角坡度和坡角坡度:坡面的铅直高度h 和水平宽度l 的比叫做坡面的坡度(或坡比),记作lhi = 坡角:坡面与水平面的夹角叫做坡角,记作α,αtan =i 坡度越大,坡角越大,坡面越陡【方法提炼】1. 在实际测量高度、宽度、距离等问题中,常结合平面几何知识构造直角三角形,利用三角函数或相似三角形来解决问题,常见的构造的基本图形有如下几种: (1)不同地点看同一点,如图① (2)同一地点看不同点,如图② (3)利用反射构造相似,如图③2. 常用结论:【同步练习】1.(2022•鹿城区校级一模)如图,在Rt△ABC中,∠CAB=90°,点A,B分别在墙面ED和地面FD上,且斜边BC∥ED,若AC=1,∠CBA=α,则AD的长为()A.cosα×tanαB.C.D.【分析】先利用平行线的性质说明∠1与∠3的关系,在Rt△ABC中用AC、∠1的正切表示出AB,在Rt△ABD中用∠3、AB表示出AD.【解答】解:由题意,得DE⊥DF,∴∠EDF=90°.∵BC∥ED,∴∠1=∠3=α.在Rt△ABC中,∵tan∠1=,∴AB==.在Rt△ABD中,∵cos∠3=,∴AD=AB•cosα=•cosα=.故选:C.2.(2022•无为市校级一模)如图,给出了一种机器零件的示意图,其中CE=1米,BF=米,则AB=()A.(1+)米B.(﹣1)米C.(2﹣)米D.(2+)米【分析】作AH⊥EF于H,利用三角函数求出EF,再根据AB=HF=CF﹣CH得出AB的长即可.【解答】解:作AH⊥EF于H,由图知,BE与水平方向呈30°夹角,BF=米,∴EF=BF•tan30°=×=1(米),∵AC与水平方向呈45°夹角,∴△ACH是等腰直角三角形,∴CH=AH=FB=米,∵CE=1米,∴AB=HF=CF﹣CH=CE+EF﹣CH=1+1﹣=(2﹣)(米),故选:C.3.(2020•秦皇岛一模)如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼上钩的情况,把鱼竿AC逆时针转动15°到′的位置,此时露在水面上的鱼线B'C'长度是()A.3m B.m C.m D.4m【分析】因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度.【解答】解:∵sin∠CAB===,∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°==,解得:B′C′=3.故选:B.1.在直角△ABC中,∠C=90°,AB=3,AC=2,则sin A的值为()A.B.C.D.【分析】如图,根据勾股定理,得BC==.再根据锐角的正弦值的定义,求得sin A.【解答】解:如图.在Rt△ABC中,∠C=90°,∴BC==.∴sin A=.故选:A.2.如图所示,△ABC的顶点是正方形网格的格点,则sin B的值为()A.B.C.D.1【分析】根据勾股定理列式求出AB,再根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:由勾股定理得,AB==3,所以,sin B==.故选:B.3.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°【分析】先由特殊角的三角函数值及余弦函数随锐角的增大而减小,得出45°<α<90°;再由特殊角的三角函数值及正切函数随锐角的增大而增大,得出0<α<60°;从而得出45°<α<60°.【解答】解:∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选:B.4.下列计算错误的个数是()①sin60°﹣sin30°=sin30°;②sin245°+cos245°=1;③;④.A.1B.2C.3D.4【分析】根据特殊锐角三角函数值以及同角三角函数之间的关系逐个进行进行判断即可.【解答】解:sin60°﹣sin30°=﹣=,而sin30°=,因此①是错误的;sin245°+cos245°=()2+()2=1,因此②是正确的;(tan60°)2=()2=3,因此③是错误的;tan30°=,==,因此④是错误的;综上所述,错误的有①③④,共3个,故选:C.5.如图所示,网格中的每个小正方形的边长都是1,△ABC的顶点都在交点处,则∠ABC的正弦值为()A.B.C.D.【分析】利用网格求出AC和AB的长,根据等腰三角形的性质可得AD⊥BC,最后根据三角函数的意义求解即可.【解答】解:如图,取BC的中点D,连接AD,由网格可得,AC=AB==2,∴AD⊥BC,Rt△ABD中,∵AD==3,∴sin∠ABC===.故选:D.6.把直尺、三角尺和圆形螺母按如图所示的方式放置于桌面上,AB与螺母相切,D为螺母与桌面的切点,∠CAB=60°.若量出AD=6cm,则圆形螺母的外直径是()A.cm B.12cm C.cm D.cm【分析】设圆形螺母的圆心为O,与AB切于E,连接OD,OE,OA,然后利用三角函数求出OD的长度即可得出直径.【解答】解:设圆形螺母的圆心为O,与AB切于E,连接OD,OE,OA,如下图所示:∵AD,AB分别为圆的切线,∴AO为∠DAB的平分线,OD⊥AC,OE⊥AB,又∵∠CAB=60°,∴∠OAE=∠OAD=∠DAB=60°,在Rt△AOD中,∠OAD=60°,AD=6cm,∴tan∠OAD=tan60°=,即,∴OD=6cm,则圆形螺母的直径为12,故选:A.7.计算tan30°•sin60°的结果是.【分析】把特殊角的三角函数值代入进行计算即可解答.【解答】解:tan30°•sin60°=×=,故答案为:.8.如图所示,在一次数学活动课上,初三1班的同学们利用长杆来测量某段城墙的倾斜角α,把一根长为6.6米的长杆AC斜靠在城墙旁,量出杆长2米处在地面投影AE的长约为1米,长杆的底端与墙角的距离AB约为2.7米,则倾斜角α的正切值约为.(结果精确到0.01,参考数据≈1.73)【分析】过点C作CF⊥AB于点F,先利用Rt△ADE求出∠A=60°,再利用Rt△ACF求出AF、CF,BF,即可判断出tanα.【解答】解:过点C作CF⊥AB于点F,在Rt△ADE中,AD=2,AE=1,∴cos A=,∴∠A=60°,在Rt△ACF中,∠ACF=180°﹣90°﹣60°=30°,∴AF==3.3,CF=∴BF=3.3﹣2.7=0.6∴tanα==≈9.52.故倾斜角α的正切值约为9.52.故答案为9.52.9.如图1是我们经常看到的一种折叠桌子,它是由下面的支架AD,BC与桌面构成如图2,已知OA=OB=OC=OD=20cm,∠COD=60°,则点A到地面(CD所在的平面)的距离是cm.【分析】连接CD,过点A作AE⊥CD,垂足为E,先证明△COD是等边三角形,从而求出∠ODC=60°,然后在Rt△AED中,利用锐角三角函数进行计算即可解答.【解答】解:连接CD,过点A作AE⊥CD,垂足为E,∵OC=OD,∠COD=60°,∴△COD是等边三角形,∴∠ODC=60°,在Rt△AED中,AD=OA+OD=40cm,∴AE=AD sin60°=40×60(cm),∴点A到地面(CD所在的平面)的距离是60cm,故答案为:60.10.计算:tan30°sin60°﹣cos245°+tan45°.【分析】把特殊角的三角函数值代入进行计算即可解答.【解答】解:tan30°sin60°﹣cos245°+tan45°=+1==1.11.计算:(1)sin60°•cos30°﹣1;(2)2sin30°+3cos60°﹣4tan45°.【分析】(1)(2)把特殊角的三角函数值代入计算即可.【解答】解:(1)原式=×﹣1=﹣1=﹣;(2)原式=2×+3×﹣4×1=1+﹣4=﹣.12.如图,在△ABC中,BC=4,∠B=45°,∠A=30°,求AB.【分析】过点C作CD⊥AB,垂足为D,先在Rt△CDB中,利用锐角三角函数求出CD,BD,再在Rt △ACD中,求出AD,然后进行计算即可解答.【解答】解:过点C作CD⊥AB,垂足为D,在Rt△CDB中,∠B=45°,BC=4,∴CD=BC sin45°=4×=4,BD=BC cos45°=4×=4,在Rt△ACD中,∠A=30°,∴tan30°==,∴AD==4,∴AB=AD+BD=4+4,∴AB的值为4+4.13.如图1,2分别是某款篮球架的实物图与示意图,已知支架AB与支架AC所成的角∠BAC=15°,点A、H、F在同一条直线上,支架AH段的长为0.5米,HF段的长为1.50米,篮板底部水平支架HE的长为0.75米,篮板顶端F到地面的距离为4.4米.(1)则篮板底部支架HE与支架AF所成的角∠FHE的度数为;(2)求底座BC的长(结果精确到0.1米;参考数据:sin15°≈026,cos15°≈097,tan15°≈027,≈1.732,≈1.414).【分析】(1)在Rt△HFE中,利用锐角三角函数的定义进行计算即可解答;(2)延长FE交CB的延长线于点M,过点A作AG⊥FM,垂足为G,先在Rt△AFG中求出FG,从而求出GM,最后在Rt△ABC中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)在Rt△HFE中,cos∠FHE===,∴∠FHE=60°,故答案为:60°;(2)延长FE交CB的延长线于点M,过点A作AG⊥FM,垂足为G,∴AG∥HE,∴∠FHE=∠F AG=60°,∵AH=0.5,HF=1.5,∴AF=AH+HF=2(米),∴FG=AF sin60°=2×=≈1.73(米),∵FM=4.4,∴GM=FM﹣FG=4.4﹣1.73=2.67(米),∴AB=GM=2.67(米),在Rt△ABC中,∠BAC=15°,∴BC=AB tan15°=2.67×0.27≈0.7(米),∴底座BC的长为0.7米.1.(2021·浙江湖州)如图,已知在Rt△ABC中,∠ACB=90°,AC=1,AB=2,则sin B的值是.【分析】根据在直角三角形中sin B=,代值计算即可得出答案.【解答】解:∵∠ACB=90°,AC=1,AB=2,∴sin B==.故答案为:.2.(2021·浙江金华)如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为()A.4cosα米B.4sinα米C.4tanα米D.米【分析】直接利用等腰三角形的性质得出BD=DC,再利用锐角三角函数关系得出DC的长,即可得出答案.【解答】解:过点A作AD⊥BC于点D,∵AB=AC=2米,AD⊥BC,∴BD=DC,∴cosα==,∴DC=2cosα(米),∴BC=2DC=2×2cosα=4cosα(米).故选:A.3.(2021·浙江丽水)如图,AB是⊙O的直径,弦CD⊥OA于点E,连结OC,OD.若⊙O的半径为m,∠AOD=∠α,则下列结论一定成立的是()A.OE=m•tanαB.CD=2m•sinαC.AE=m•cosαD.S△COD=m2•sinα【分析】根据垂径定理和锐角三角函数计算则可进行判断.【解答】解:∵AB是⊙O的直径,弦CD⊥OA于点E,∴DE=CD,在Rt△EDO中,OD=m,∠AOD=∠α,∴tanα=,∴OE==,故选项A不符合题意;∵AB是⊙O的直径,CD⊥OA,∴CD=2DE,∵⊙O的半径为m,∠AOD=∠α,∴DE=OD•sinα=m•sinα,∴CD=2DE=2m•sinα,故选项B正确,符合题意;∵cosα=,∴OE=OD•cosα=m•cosα,∵AO=DO=m,∴AE=AO﹣OE=m﹣m•cosα,故选项C不符合题意;∵CD=2m•sinα,OE=m•cosα,∴S△COD=CD×OE=×2m•sinα×m•cosα=m2sinα•cosα,故选项D不符合题意;故选:B.4.(2021·浙江温州)图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC=1,∠AOB=α,则OC2的值为()A.+1B.sin2α+1C.+1D.cos2α+1【分析】在Rt△OAB中,sinα=,可得OB的长度,在Rt△OBC中,根据勾股定理OB2+BC2=OC2,代入即可得出答案.【解答】解:∵AB=BC=1,在Rt△OAB中,sinα=,∴OB=,在Rt△OBC中,OB2+BC2=OC2,∴OC2=()2+12=.故选:A.5.(2021·浙江绍兴)如图,Rt△ABC中,∠BAC=90°,cos B=,点D是边BC的中点,以AD为底边在其右侧作等腰三角形ADE,使∠ADE=∠B,连结CE,则的值为()A.B.C.D.2【分析】设DE交AC于T,过点E作EH⊥CD于H.首先证明EA=ED=EC,再证明∠B=∠ECD,可得结论。
人教版高中数学高考三角函数重点题型解析及常见试题、答案及参考答案
高考三角函数重点题型解析及常见试题(附参考答案)三角函数的主要考点是:三角函数的概念和性质(单调性,周期性,奇偶性,最值),三角函数的图象,三角恒等变换(主要是求值),三角函数模型的应用,正余弦定理及其应用,平面向量的基本问题及其应用.题型1 三角函数的最值:最值是三角函数最为重要的内容之一,其主要方法是利用正余弦函数的有界性,通过三角换元或者是其它的三角恒等变换转化问题.例 1 若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的最大值是( )A .1-BC .12-+D .12+分析:三角形的最小内角是不大于3π的,而()2sin cos 12sin cos x x x x +=+,换元解决.解析:由03x π<≤,令s i n c s2s i n (4t x x π=++而74412x πππ<+≤,得1t <≤ 又212sin cos t x x =+,得21sin cos 2t x x -=,得2211(1)122t y t t -=+=+-,有2111022y -+<≤=.选择答案D .点评:涉及到sin cos x x ±与sin cos x x 的问题时,通常用换元解决.解法二:1sin cos sin cos sin 242y x x x x x x π⎛⎫=++=++ ⎪⎝⎭,当4x π=时,max 12y =+,选D 。
例2.已知函数2()2sin cos 2cos f x a x x b x =+.,且(0)8,()126f f π==.(1)求实数a ,b 的值;(2)求函数)(x f 的最大值及取得最大值时x 的值.分析:待定系数求a ,b ;然后用倍角公式和降幂公式转化问题. 解析:函数)(x f 可化为()sin 2cos 2f x a x b x b =++.(1)由(0)8f = ,()126f π=可得(0)28f b ==,3()12622f a b π=+= ,所以4b =,a =(2)()24cos 248sin(2)46f x x x x π=++=++,故当2262x k πππ+=+即()6x k k Z ππ=+∈时,函数()f x 取得最大值为12.点评:结论()sin cos a b θθθϕ+=+是三角函数中的一个重要公式,它在解决三角函数的图象、单调性、最值、周期以及化简求值恒等式的证明中有着广泛应用,是实现转化的工具,是联系三角函数问题间的一条纽带,是三角函数部分高考命题的重点内容.题型2 三角函数的图象:三角函数图象从“形”上反应了三角函数的性质,一直是高考所重点考查的问题之一.例3.(2009年福建省理科数学高考样卷第8题)为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位分析:先统一函数名称,在根据平移的法则解决. 解析:函数π55cos 2sin 2sin 2sin 2332612y x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=++=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故要将函数sin 2y x =的图象向左平移5π12个长度单位,选择答案A .例 4 (2008高考江西文10)函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是 分析:分段去绝对值后,结合选择支分析判断. 解析:函数2tan ,tan sin tan sin tan sin 2sin ,tan sin x x x y x x x x x x x <⎧=+--=⎨≥⎩当时当时.结合选择支和一些特殊点,选择答案D .点评:本题综合考察三角函数的图象和性质,当不注意正切函数的定义域或是函数分段不准确时,就会解错这个题目.题型3 用三角恒等变换求值:其主要方法是通过和与差的,二倍角的三角变换公式解决.例 5 (2008高考山东卷理5)已知πc o s s i n 36αα⎛⎫-+= ⎪⎝⎭,则7πs i n 6α⎛⎫+ ⎪⎝⎭的值是A. BC .45-D .45分析:所求的7πsin sin()66παα⎛⎫+=+ ⎪⎝⎭,将已知条件分拆整合后解决. 解析: C.ABCD34cos sin sin cos sin 6522565ππααααα⎛⎫⎛⎫-+=⇔+=⇔+=⎪ ⎪⎝⎭⎝⎭,所以74sin sin 665ππαα⎛⎫⎛⎫+=-+=- ⎪ ⎪⎝⎭⎝⎭. 点评:本题考查两角和与差的正余弦、诱导公式等三角函数的知识,考查分拆与整合的数 学思想和运算能力.解题的关键是对πcos sin 6αα⎛⎫-+= ⎪⎝⎭例6(2008高考浙江理8)若cos 2sin αα+=则tan α= A .21B .2C .21-D .2- 分析:可以结合已知和求解多方位地寻找解题的思路.()αϕ+=其中sin ϕϕ==即1t a n 2ϕ=,再由()sin 1αϕ+=-知道()22k k παϕπ+=-∈Z ,所以22k παπϕ=--, 所以s c 2t a 2c 2k πϕπαππϕϕ⎛⎫-- ⎪⎛⎫⎛⎫⎝⎭=--=--=== ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭.方法二:将已知式两端平方得()2222222cos 4cos sin 4sin 55sin cos sin 4sin cos 4cos 0tan 4tan 40tan 2ααααααααααααα++==+⇒-+=⇒-+=⇒=方法三:令sin 2cos t αα-=,和已知式平方相加得255t =+,故0t =, 即sin 2cos 0αα-=,故tan 2α=.方法四:我们可以认为点()cos ,sin M αα在直线2x y +=而点M 又在单位圆221x y +=上,解方程组可得x y ⎧=⎪⎪⎨⎪=⎪⎩从而tan 2y x α==.这个解法和用方程组22cos 2sin sin cos 1αααα⎧+=⎪⎨+=⎪⎩是一致的.方法五:α只能是第三象限角,排除C .D .,这时直接从选择支入手验证,由于12计算麻烦,我们假定tan 2α=,不难由同角三角函数关系求出sin 55αα=-=-B . 点评:本题考查利用三角恒等变换求值的能力,试题的根源是考生所常见的“已知()1sin cos ,0,5βββπ+=∈,求tan β的值(人教A 版必修4第三章复习题B 组最后一题第一问)”之类的题目 ,背景是熟悉的,但要解决这个问题还需要考生具有相当的知识迁移能力.题型4 正余弦定理的实际应用:这类问题通常是有实际背景的应用问题,主要表现在航海和测量上,解决的主要方法是利用正余弦定理建立数学模型. 例7.(2008高考湖南理19)在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A .某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45且与点A相距置B ,经过40分钟又测得该船已行驶到点A 北偏东45θ+ (其中sin 26θ=,090θ<<)且与点A相距C . (1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.分析:根据方位角画出图形,如图.第一问实际上就是求BC 的长,在ABC ∆中用余弦定理即可解决;第二问本质上求是求点E 到直线BC 的距离,即可以用平面解析几何的方法,也可以通过解三角形解决. 解析:(1)如图,AB =AC =,,sin BAC θθ∠== 由于090θ<<,所以cos θ==由余弦定理得BC ==所以船的行驶速度为23=/小时). (2)方法一 : 如上面的图所示,以A 为原点建立平面直角坐标系, 设点,B C 的坐标分别是()()1122,,,B x y C x y ,BC 与x 轴的交点为D . 由题设有,11402x y AB ===,2cos )30x AC CAD θ=∠=-=,2sin )20.y AC CAD θ=∠=-=所以过点,B C 的直线l 的斜率20210k ==,直线l 的方程为240y x =-. 又点()0,55E -到直线l的距离7d ==<,所以船会进入警戒水域.解法二: 如图所示,设直线AE 与BC 的延长线相交于点Q .在ABC ∆中,由余弦定理得,222cos 2AB BC AC ABC AB BC +-∠=⋅222=10.从而sin 10ABC ∠=== 在ABQ ∆中,由正弦定理得,sin 40sin(45)AB ABC AQ ABC ∠===-∠. 由于5540A E A Q =>=,所以点Q 位于点A 和点E 之间,且15EQ AE AQ =-=.过点E 作EP BC ⊥于点P ,则EP 为点E 到直线BC 的距离. 在QPE ∆Rt 中,sin sin sin(45)157.5PE QE PQE QE AQC QE ABC =∠=⋅∠=⋅-∠=⨯=<所以船会进入警戒水域.点评:本题以教材上所常用的航海问题为背景,考查利用正余弦定理解决实际问题的能力,解决问题的关键是根据坐标方位画出正确的解题图. 本题容易出现两个方面的错误,一是对方位角的认识模糊,画图错误;二是由于运算相对繁琐,在运算上出错.题型5 三角函数与平面向量的结合:三角函数与平面向量的关系最为密切,这二者的结合有的是利用平面向量去解决三角函数问题,有的是利用三角函数去解决平面向量问题,更多的时候是平面向量只起衬托作用,三角函数的基本问题才是考查的重点.例8(2009年杭州市第一次高考科目教学质量检测理科第18题)已知向量)1,(sin ),2cos ,cos 2(x x x ωωω==,(0>ω),令x f ⋅=)(,且)(x f 的周期为π. (1) 求4f π⎛⎫⎪⎝⎭的值;(2)写出()f x 在]2,2[ππ-上的单调递增区间. 分析:根据平面向量数量积的计算公式将函数()f x 的解析式求出来,再根据)(x f 的周期为π就可以具体确定这个函数的解析式,下面只要根据三角函数的有关知识解决即可.解析:(1)xx x b a x f ωωω2cos sin cos 2)(+=⋅=xx ωω2cos 2sin +=)42sin(2πω+=x ,∵)(x f 的周期为π. ∴1=ω, )42sin(2)(π+=x x f ,12cos 2sin )4(=π+π=π∴f .(2) 由于)42sin(2)(π+=x x f ,当πππππk x k 224222+≤+≤+-(Z k ∈)时,()f x 单增,即ππππk x k +≤≤+-883(Z k ∈),∵∈x ]2,2[ππ- ∴()f x 在]2,2[ππ-上的单调递增区间为]8,83[ππ-.点评:本题以平面向量的数量积的坐标运算为入口,但本质上是考查的三角函数的性质,这是近年来高考命题的一个热点. 例9 (2009江苏泰州期末15题)已知向量()3sin ,cos a αα=,()2sin ,5sin 4cos b ααα=-,3,22παπ⎛⎫∈⎪⎝⎭,且a b ⊥. (1)求tan α的值; (2)求cos 23απ⎛⎫+⎪⎝⎭的值. 分析:根据两个平面向量垂直的条件将问题转化为一个三角函数的等式,通过这个等式探究第一问的答案,第一问解决后,借助于这个结果解决第二问. 解析:(1)∵a b ⊥,∴0a b ⋅=.而()3s i n,c os a αα=,()2sin ,5sin 4cos b ααα=-,故226sin5sin cos 4cos 0a b αααα⋅=+-=,由于c o s α≠,∴26tan 5tan 40αα+-=,解得4tan 3α=-,或1tan 2α=.∵3π 2π2α⎛⎫∈ ⎪⎝⎭,,tan 0α<,故1tan 2α=(舍去).∴4tan 3α=-. (2)∵3π 2π2α⎛⎫∈ ⎪⎝⎭,,∴3ππ24α∈(,). 由4tan 3α=-,求得1tan 22α=-,tan 22α=(舍去).∴sincos 22αα==,cos 23απ⎛⎫+= ⎪⎝⎭ππcoscos sin sin 2323αα-=12=点评:本题以向量的垂直为依托,实质上考查的是三角恒等变换.在解题要注意角的范围对解题结果的影响.题型6 三角形中的三角恒等变换:这是一类重要的恒等变换,其中心点是三角形的内角和是π,有的时候还可以和正余弦定理相结合,利用这两个定理实现边与角的互化,然后在利用三角变换的公式进行恒等变换,是近年来高考的一个热点题型. 例10.(安徽省皖南八校2009届高三第二次联考理科数学17题)三角形的三内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量(,),(,)m c a b a n a b c =--=+,若//m n ,(1)求角B 的大小;(2)求sin sin A C +的取值范围.分析:根据两个平面向量平行的条件将向量的平行关系转化为三角形边的关系,结合余弦定理解决第一问,第一问解决后,第二问中的角,A C 就不是独立关系了,可以用其中的一个表达另一个,就把所要解决的问题归结为一个角的三角函数问题. 解析:(1)//,()()()m n c c a b a a b ∴---+,222222,1a c b c ac b a ac +-∴-=-∴=. 由余弦定理,得1cos ,23B B π==.(2)2,3A B C A C ππ++=∴+=,222sin sin sin sin()sin sin cos cos sin 333A C A A A A A πππ∴+=+-=+-3sin )226A A A π=+=+ 250,3666A A ππππ<<∴<+<1sin()1,sin sin 262A A C π∴<+≤∴<+≤点评:本题从平面向量的平行关系入手,实质考查的是余弦定理和三角形中的三角恒等变换,解决三角形中的三角恒等变换要注意三角形内角和定理和角的范围对结果的影响.题型7 用平面向量解决平面图形中的问题:由于平面向量既有数的特征(能进行类似数的运算)又具有形的特征,因此利用平面向量去解决平面图形中的问题就是必然的了,这在近年的高考中经常出现.考试大纲明确指出用会用平面向量解决平面几何问题.例11. 如图,已知点G 是ABO ∆的重心,点P 在OA 上,点Q 在OB 上,且PQ 过ABO ∆ 的重心G ,OP mOA =,OQ nOB =,试证明11m n+为常数,并求出这个常数.分析:根据两向量共线的充要条件和平面向量基本定理,把题目中需要的向量用基向量表达出来,本题的本质是点,,P G Q 共线,利用这个关系寻找,m n 所满足的方程.解析:令OA a =,OB b =,则OP ma =,OQ nb =,设AB 的中点为M , 显然1().2O M a b =+,因为G 是ABC ∆的重心,所以21()33OG OM a b ==⋅+.由P 、G 、Q 三点共线,有PG 、GQ 共线,所以,有且只有一个实数λ,使 PG GQ λ=,而111()()333P G O GO P a b m a m ab=-=+-=-+,111()()333GQ OQ OG nb a b a n b =-=-+=-+-,所以1111()[()]3333m a b a n b λ-+=-+-.又因为a 、不共线,由平面向量基本定理得⎪⎪⎩⎪⎪⎨⎧-=-=-)31(313131n m λλ,消去λ,整理得3mn m n =+,故311=+nm .结论得证.这个常数是3. 【点评】平面向量是高中数学的重要工具,它有着广泛的应用,用它解决平面几何问题是一个重要方面,其基本思路是根据采用基向量或坐标把所要解决的有关的问题表达出来,再根据平面向量的有关知识加以处理.课标区已把几何证明选讲列入选考范围,应引起同学们的注意.题型8 用导数研究三角函数问题:导数是我们在中学里引进的一个研究函数的重要工具,利用导数探讨三角函数问题有它极大的优越性,特别是单调性和最值.例12. 已知函数22()cos 2sin cos sin f x x t x x x =+-,若函数()f x 在区间(,]126ππ上是增函数,求实数t 的取值范围. 分析:函数的()f x 导数在(,]126ππ大于等于零恒成立. 解析:函数()f x 在区间(,]126ππ上是增函数,则等价于不等式()0f x '≥在区间(,]126ππ上恒成立,即()2sin 22cos 20f x x t x '=-+≥在区间(,]126ππ上恒成立, 从而tan 2t x ≥在区间(,]126ππ上恒成立, 而函数tan 2y x =在区间(,]126ππ上为增函数,所以函数tan 2y x =在区间(,]126ππ上的最大值为m a x tan(2)6y π=⨯t ≥为所求. 点评:用导数研究函数问题是导数的重要应用之一,是解决高中数学问题的一种重要的思想意识.本题如将()f x 化为()s i n 2s 21s i n (2)fxt xt x ϕ=+++的形式,则ϕ与t 有关,讨论起来极不方便,而借助于导数问题就很容易解决.题型9 三角函数性质的综合应用:将三角函数和其它的知识点相结合而产生一些综合性的试题,解决这类问题往往要综合运用我们的数学知识和数学思想,全方位的多方向进行思考.例13. 设二次函数2()(,)f x x bx c b c R =++∈,已知不论α,β为何实数,恒有(sin )0f α≥和(2cos )0f β+≤. (1)求证:1b c +=- ; (2)求证:3c ≥;(3)若函数(sin )f α的最大值为8,求b ,c 的值.分析:由三角函数的有界性可以得出()10f =,再结合有界性探求. 解析:(1)因为1sin 1α-≤≤且(sin )0f α≥恒成立,所以(1)0f ≥,又因为 12c o s 3β≤+≤且(2cos )0f β+≤恒成立,所以(1)0f ≤, 从而知(1)0f =,10b c ++=,即1b c +=-.(2)由12c o s 3β≤+≤且(2cos )0f β+≤恒成立得(3)0f ≤, 即930b c ++≤,将1b c =--代如得9330c c --+≤,即3c ≥.(3)22211(sin )sin(1)sin (sin )()22c c f c c c αααα++=+--+=-+-, 因为122c+≥,所以当sin 1α=-时max [(sin )]8f α=, 由1810b c b c -+=⎧⎨++=⎩, 解得 4b =-,3c =.点评:本题的关键是1b c +=-,由(sin )0(2cos )0f f αβ≥⎧⎨+≤⎩ 利用正余弦函数的有界性得出()()1010f f ≥⎧⎪⎨≤⎪⎩,从而(1)0f =,使问题解决,这里正余弦函数的有界性在起了重要作用.【专题训练与高考预测】 一、选择题1.若[0,2)απ∈sin cos αα=-,则α的取值范围是( )A .[0,]2πB .[,]2ππC .3[,]2ππ D .3[,2)2ππ 2.设α是锐角,且lg(1cos )m α-=,1lg 1cos n α=+,则lgsin α=( ) A .m n - B .11()2m n - C .2m n - D .11()2n m-3.若00||2sin15,||4cos15a b ==,a 与b 的夹角为30。
三角函数参考答案
参考答案1.A【解析】tan(α+β)=13+tanβ1−1tanβ=12,解得tan β=17.【备注】无2.D【解析】原式=2cos240°-2sin240°=2cos 40°-2sin 40°=2cos(40°+45°)=2cos 85°=2sin 5°.【备注】无3.A【解析】2cos10°−sin20°cos20°=2cos(30°−20°)−sin20°cos20°=3cos20°+sin20°−sin20°cos20°=3.【备注】无4.B【解析】原式=tan x+tanπ41−tan x tanπ4−tanπ4−tan x1+tanπ4tan x=1+tan x1−tan x−1−tan x1+tan x=4tan x1−ta n x=2(tan x+tan x)1−ta n x=2tan 2x,故选B.【备注】无5.A【解析】因为cosα=-45,α是第三象限的角,所以sin α=-35,由两角和的正弦公式可得sin(α+π4)=sinαcosπ4+cosαsinπ4=(-35)×22+(-45)×22=-7210.【备注】无6.B【解析】本题主要考查正、余弦函数齐次式的化归、两角和正切公式的灵活应用.∵tanβ=cosα−sinαcosα+sinα=1−tanα1+tanα,∴tanβ+tanαtanβ=1−tanα,∴tanα+tanβ=1−tanαtanβ,∴tan(α+β)=tanα+tanβ1−tanαtanβ=1.故选B.【备注】无7.B【解析】原式=tan60°−tan15°1+tan60°tan15°=tan(60°-15°)=tan 45°=1.【备注】无8.B【解析】无【备注】无9.C【解析】1tan(α−β)=1tanα−tanβ1+tanαtanβ=1+tanαtanβtanα−tanβ=1+3×433−43=3.【备注】无10.C【解析】cos(-75°)=cos(45°-120°)=cos 45°·cos 120°+sin 45°sin 120°=22×(-12)+22×32=6−24,故选C.【备注】无11.C【解析】本题主要考查余弦的二倍角公式的灵活应用.由cosθ=1−2sin2θ2,得2sin2θ2=1−cosθ=1+15=65,∴sin2θ2=35.∵5π2<θ<3π,∴sinθ2<0,∴sinθ2=−155.故选C.【备注】无12.D【解析】本题主要考查同角关系与二倍角公式的逆用.∵θ∈[π4,π2],∴2θ∈[π2,π],∴cos2θ=− 1−sin22θ=−18,∴sinθ=1−cos2θ2=34.故选D.【备注】无13.C【解析】因为cos x=-14,x为第二象限角,所以sin x=154,所以sin 2x=2sin x cos x=2×154×(-14)=-158,故选C.【备注】无14.B【解析】无【备注】无15.A【解析】无【备注】无16.A【解析】由题意可知tan α+tan β=3,tan αtan β=2,所以tan(α+β)=tanα+tanβ1−tanαtanβ=-3,故选A.【备注】无17.C【解析】tan(α-π4)=tanα−11+tanα=13.【备注】无18.D【解析】sin 405°cos 15°+sin 135°sin 15°=sin 45°cos 15°+cos 45°sin 15°=sin(45°+15°)=sin 60°=32.故选D.【备注】无19.A【解析】因为15°是第一象限角,所以cos 15°>0,符号是确定的,由半角的余弦公式可知cos15°=1+cos30°2.【备注】无20.C【解析】因为α,β为钝角,所以由sinα=55,得cosα=− 1−sin2α=−1−552=−255.由cosβ=−31010,得sinβ=1−cos2β=1− −310102=1010,所以cosα+β=cosαcosβ−sinαsinβ= −255× −31010−55×1010=22.又因为π<α+β<2π,所以α+β=7π4.【备注】无21.A【解析】由公式sin(α-β)=sin αcos β-cos αsin β可知原式=sin(43°-13°)=sin 30°=12,故选A.【备注】无22.D【解析】原式=cos 75°cos 75°+sin 75°sin 75°=cos(75°-75°)=cos 0°=1.故选D.【备注】无23.C【解析】原式=-cos[(x+y)+(x-y)]=-cos 2x,故选C.【备注】无24.B【解析】逆用二倍角公式:1-2sin2α=cos 2α,显然1-2sin 222.5°=cos 45°=22.【备注】无25.A【解析】无【备注】无26.D【解析】本题考查诱导公式和两角和的正弦公式.−cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°=12.故选D.【备注】无27.B【解析】由tan(π4-α)=3,得tanπ4−tanα1+tanπtanα=3,即1−tanα1+tanα=3,解得tan α=-12,故选B.【备注】无28.B【解析】sin 105°=sin(60°+45°)=sin 60°cos 45°+cos 60°sin 45°=32×22+12×22=6+24.【备注】无29.C【解析】tan(α+π4)=tan[(α+β)-(β-π4)]=tan(α+β)−tan(β−π4)1+tan(α+β)tan(β−π)=322,故选C.【备注】无30.A【解析】因为α∈[π2,π],所以sin α>0,由半角公式可得sin α=1−cos2α2=31010.【备注】无31.−2316【解析】本题考查同角三角函数的基本关系.由sinα−2cosα3sinα+5cosα=sinαcosα−2cosαcosα3sinαcosα+5cosαcosα=tanα−23tanα+5=−5,得tanα=−2316. 【备注】无32.−cosα【解析】无【备注】无33.223【解析】由公式六知cos (α+π2)=-sin α,因为α是第四象限角,且cosα=13,所以sinα=-1−cos2α=-1−19=-223.故cos(α+π2)=-sin α=223.【备注】无34.13【解析】∵sin(α+β)=1,∴α+β=2kπ+π2(k∈Z).∴cos(2α+β)=cos(α+α+β)=cos(α+2kπ+π2)=-sin α=13.【备注】无35.−72【解析】本题考查同角三角函数基本关系式的应用;由题意,得3sin2x−2sin x cos x =3sin2x−2(sin2x+cos2x)sin x cos x=sin2x−2cos2x sin x cos x =tan2x−2tan x=14−212=−72;故填−72.【备注】无36.4【解析】∵tanα+15−tanα=2,∴tan α=3,∴sinα+cosαsinα−2cosα=tanα+1tanα−2=3+13−2=4.37.− 32【解析】无 【备注】无 38.-1tan α【解析】原式=(−tan α)tan αtan α(−tan α)(−tan α)=-1tan α. 【备注】无 39. 32【解析】本题主要考查三角函数的诱导公式. sin 25π3=sin 8π+π3 =sin π3= 32.故答案为 32. 【备注】无 40.12【解析】主要考查任意角的三角函数值.因为cos 5π3=cos 2π−π3 =cos π3=12.故答案为12.【备注】无 41.B【解析】由题意,可得cos θ=45,所以cos(π-θ)=-cos θ=-45. 【备注】无42.根据诱导公式计算可得:【解析】无43.原式=cosα∙sinα−cosα+sinα∙sinα−sinα=−sinα−sinα=−2sinα.又cosπ2+α =13,所以sinα=−13.所以原式=23.【解析】无【备注】无44.由sin180°+α=−sinα=−1010, 0°<α<90°,得sinα=1010,cosα=31010,所以原式=−sinα−sin(90°+α)cos360°+180°−α+cos(270°+α)=−sinα−cosα−cosα+sinα=−1010−−31010−310+10=2.【解析】无【备注】无45.cosπ6+α =cosπ2−π3−α =sinπ3−α =12.【解析】无【备注】无46.∵tan(π+α)=3,∴tan α=3.故2cos(π−α)−3sin(π+α) 4cos(−α)+sin(2π−α)=−2cosα+3sinα4cosα−sinα=−2+3tanα4−tanα=−2+3×34−3=7.【解析】无【备注】无。
高三数学三角函数试题答案及解析
高三数学三角函数试题答案及解析1.某广告公司设计一个凸八边形的商标,它的中间是一个正方形,外面是四个腰长为,顶角为的等腰三角形.(1)若角时,求该八边形的面积;(2)写出的取值范围,当取何值时该八边形的面积最大,并求出最大面积.【答案】(1);(2),当时,八边形的面积取最大值.【解析】(1)先利用结合余弦定理确定正方形的边长,然后将八边形分为一个正方形与四个等腰三角形求面积,最后将面积相加得到八边形的面积;(2)利用得到角的取值范围,利用正弦定理求出正方形的边长(利用含的代数式表示),然后利用面积公式求出八边形的面积关于的三角函数,结合降幂公式、辅助角公式将三角函数解析式进行化简,最后求出相应函数在区间的最大值.(1)由题可得正方形边长为,;(2)显然,所以,,,,故,,此时.【考点】1.三角形的面积;2.二倍角;3.辅助角公式;4.三角函数的最值2.已知函数,则一定在函数图象上的点是()A.B.C.D.【答案】C.【解析】根据的解析式,求出,判断函数的奇偶性,由函数的奇偶性去判断四个选项是否在图象上..为奇函数,在图象上.故选C.【考点】函数的奇偶性.3.已知函数,若数列满足,且的前项和为,则_____________.【答案】8042【解析】.因为,,,,,,,.所以8042.【考点】1.分段函数的问题.2.数列的思想.3.三角函数的周期性.4.分类列举的数学思想.4.设,将函数在区间内的全部极值点按从小到大的顺序排成数列.(1)求数列的通项公式;(2)设,数列的前项和为,求.【答案】(1);(2).【解析】(1)先根据三角函数的恒等变换化简,得,再根据三角函数的性质找到极值点,利用等差数列的性质写出数列的通项公式;(2)先根据(1)中的结果写出的通项公式,然后写出的解析式,在构造出,利用错位相减法求,计算量比较大,要细心.试题解析:(1),其极值点为, 2分它在内的全部极值点构成以为首项,为公差的等差数列, 4分所以; 6分(2), 8分所以,,相减,得,所以. 12分【考点】1、三角函数的恒等变换及化简;2、三角函数的性质的应用;3、等差数列的通项公式;4、错位相减法求数列的前项和;5、等比数列的前项和.5.已知函数d的最大值为2,是集合中的任意两个元素,且的最小值为.(1)求函数的解析式及其对称轴;(2)若,求的值.【答案】(1),;(2).【解析】本题主要考查两角和与差的正弦公式、二倍角的余弦公式、诱导公式、三角函数的最小正周期、单调性等基础知识,考查运算能力.第一问,利用倍角公式化简表达式,先利用周期求出,再求最值,通过解方程求出,确定了解析式后求正弦函数的对称轴;第二问,通过角之间的关系转化角,考查诱导公式和倍角公式.试题解析:(1),由题意知:的周期为,由,知 2分由最大值为2,故,又, 4分∴ 5分令,解得的对称轴为 7分(2)由知,即, 8分∴ 10分12分【考点】1.倍角公式;2.两角和与差的三角函数;3.函数的周期;4.函数的对称轴.6.把函数的图像上所有的点向左平移个单位长度,再把图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到的图像所表示的函数为()A.B.C.D.【答案】B【解析】把函数的图象上所有的点向左平移个单位长度,得到,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到,选择.【考点】三角函数图像的变换.7.已知向量,向量,函数·.(1)求的最小正周期T;(2)若方程在上有解,求实数的取值范围.【答案】(1);(2).【解析】(1)先列出的表达式,利用倍角公式将其化为一个复合角的三角函数,即可求得结果;(2)根据已知的范围,先求出的值域,从而得实数的取值范围.试题解析: 2分4分6分7分8分10分11分方程在上有解,实数的取值范围为 12分【考点】1.平面向量;2.三角恒等变换;3.三角函数的周期、值域.8.在△ABC中,若,则AB= .【答案】5【解析】因为,所以,由正弦定理,所以,即.【考点】同角三角函数的关系,正弦定理.9.在△ABC中,a,b,c分别是角A,B,C的对边,若=2014,则的值为( )A.0B.1C.2013D.2014【答案】C【解析】由正弦、余弦定理得.选C.【考点】1.正弦定理;2余弦定理.10.已知函数,则下列结论正确的是()A.函数的图象关于直线对称B.函数的最大值为C.函数在区间上是增函数D.函数的最小正周期为【答案】C【解析】令得错误;函数的最大值为,故错误;函数的最小正周期为,故错误;当时,,故函数在区间上是增函数,所以选.【考点】考查三角函数的图像及其性质.11.已知函数的最小正周期为.(Ⅰ)求的值;(Ⅱ)讨论在区间上的单调性.【答案】(Ⅰ)(Ⅱ)当,即时,单调递增;当,即,单调递减.【解析】(1)由题意,所以由(1)知若,则当,即时,单调递增;当,即,单调递减.第(1)题根据三角函数的和差化简,二倍角公式以及辅助角公式,最后化成的形式,利用确定的值;第(2)题用整体法的思想确定的单调性,再反求出在指定范围内的单调性.本题属简单题.【考点】本题主要考查三角恒等变形、三角函数的图像及性质与三角函数图像的变换.考查逻辑推理和运算求解能力,中等难度.12.已知函数的部分图象如图所示,设是图象的最高点,是图象与轴的交点,则()A.B.C.D.【答案】B【解析】函数周期由余弦定理得【考点】三角函数性质及解三角形点评:三角函数中,解三角形时常借助于正余弦定理实现边与角的互化,本题中由三边长度利用余弦定理求得三角形内角,进而利用同角间的三角函数关系式求得正切值13.将函数的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位,所得函数图象的一条对称轴是 ( )A.B.C.D.【答案】D【解析】通过函数的图象上的各点的横坐标伸长到原来的2倍,求出函数的解析式,三角函数的平移原则为左加右减上加下减,求出函数的表达式即可.解:函数的图象上的各点的横坐标伸长到原来的2倍,得到函数的解析式为:y=cos(),再向左平移个单位得到函数为:y=cos(+)=cos( ),所得函数的图象的一条对称轴为:.故选D【考点】三角函数的图象的变换点评:本题考查三角函数的图象的变换,图象的平移,考查计算能力,是基础题.14.已知函数图像的一部分(如图所示),则与的值分别为()A.B.C.D.【答案】A【解析】观察图象可得,,解得,与的值分别为,故选A。
2013年高考真题分类汇编:考点16 两角和与差的正弦、余弦和正切公式、简单的三角恒等变换 Word版含解析
考点16 两角和与差的正弦、余弦和正切公式、简单的三角恒等变换一、选择题1. (2013·新课标全国Ⅱ高考文科·T6)已知2sin 23α=,则2cos ()4πα+=( )A.16B.13C.12D.23【解题指南】利用“降幂公式”将2cos ()4πα+化简,建立与sin 2α的关系,可得结果.【解析】选A.因为21cos 2()1cos(2)1sin 242cos ()4222ππααπαα++++-+===,所以2211sin 213cos ()4226παα--+===,选A. 2.(2013·江西高考文科·T3)若sin 2α=cosa=( ) A.23- B.13- C. 13D. 23【解题指南】利用二倍角的余弦公式即可. 【解析】选C.2cos 12sin 2αα=-=213-=13.3(2013·大纲版全国卷高考理科·T12)已知函数()=cos sin 2,f x x x 下列结论中错误的是( ) A .()(),0y f x π=的图像关于中心对称 B.()2y f x x π==的图像关于对称C.()2f x 的最大值为D.()f x 既是奇函数,又是周期函数【解析】选C.x x x x x x x f 32sin 2sin 2sin cos 22sin cos )(-===,令x t sin =,11≤≤-t ,则322)(t t t g -=,262)(t t g -='.令062)(2=-='t t g ,解得33-=t 或33=t .比较两个极值点和两个端点0)1(=-g ,0)1(=g ,0)33(<-g ,934)33(=g ,)(x f 的最大值为934,故C 错误 4. (2013·重庆高考理科·T9)=- 40tan 50cos 4 ( )A.2C.1 【解题指南】先切化弦,然后通分化简求解即可.【解析】选C.40cos 40sin 40cos 50cos 440cos 40sin 50cos 440tan 50cos 4-=-=-40cos )3010sin(10cos 240cos 40sin 80sin 240cos 40sin 40cos 40sin 4+-=-=-=40cos 10sin 2110cos 23340cos 10sin 2310cos 2340cos 10cos 2110sin 2310cos 2⎪⎪⎭⎫ ⎝⎛-=-=--= .340cos 40cos 3==5. (2013·辽宁高考文科·T6)与(2013·辽宁高考理科·T6)相同 在ABC ∆中,内角,,A B C 的对边分别为,,.a b c 若1sin cos sin cos ,2a B C c B Ab +=且,a b >则B ∠=( )25....6336A B C D ππππ 【解题指南】利用正弦定理,将边化为角,借助式子的特点,利用和角公式与相关的诱导公式解决问题【解析】选A. 据正弦定理,设sin sin sin a b ck A B C===,则sin ,sin ,sin .a k Ab k Bc k C ===将它们代入1sin cos sin cos ,2a B C c B Ab +=整理得1sin cos cos sin ,2A C A C +=即1sin(),2A C +=又sin()sin()sin ,A C B B π+=-=所以1sin 2B =因为,a b >所以B ∠必为锐角,所以.6B π∠=二、填空题6.(2013·四川高考文科·T14)和(2013·四川高考理科·T13)相同 设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是____________。
(完整word版)三角函数高考题及答案
1.(上海,15)把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是( ) A 。
(1-y )sin x +2y -3=0 B.(y -1)sin x +2y -3=0 C 。
(y +1)sin x +2y +1=0D.-(y +1)sin x +2y +1=02.(北京,3)下列四个函数中,以π为最小正周期,且在区间(2π,π)上为减函数的是( ) A.y =cos 2xB.y =2|sin x |C.y =(31)cos xD.y =-cot x3。
(全国,5)若f (x )sin x 是周期为π的奇函数,则f (x )可以是( ) A 。
sin x B 。
cos x C.sin2x D.cos2x4.(全国,6)已知点P (sin α-cos α,tan α)在第一象限,则在[0,2π]内α的取值范围是( ) A.(2π,43π)∪(π,45π) B.(4π,2π)∪(π,45π) C.(2π,43π)∪(45π,23π)D 。
(4π,2π)∪(43π,π) 5.(全国)若sin 2x >cos 2x ,则x 的取值范围是( )A.{x |2k π-43π〈x 〈2k π+4π,k ∈Z }B 。
{x |2k π+4π<x 〈2k π+45π,k ∈Z } C.{x |k π-4π<x 〈k π+4π,k ∈Z } D.{x |k π+4π<x 〈k π+43π,k ∈Z } 6.(全国,3)函数y =4sin (3x +4π)+3cos (3x +4π)的最小正周期是( )A 。
6πB 。
2π C.32πD 。
3π7。
(全国,9)已知θ是第三象限角,若sin 4θ+cos 4θ=95,那么sin2θ等于( ) A 。
322 B.-322 C 。
32D.-32 8。
(全国,14)如果函数y =sin2x +a cos2x 的图象关于直线x =-8π对称,那么a 等于( ) A.2B.-2C 。
三角函数的图象与性质-备战高考数学(理)一轮复习考点
(1)形如y=asinx+bcosx+k的三角函数化为y=Asin(ωx+φ)+k的形式,再求最值(值域);
(2)形如y=asin2x+bsinx+k的三角函数,可先设sinx=t,化为关于t的二次函数求值域(最值);
(3)形如y=asinxcosx+b(sinx±cosx)+c的三角函数,可先设t=sinx±cosx,化为关于t的二次函数求值域(最值).
D.函数 的一个单调递减区间为
7.已知函数 (其中 , , )的部分图象如图所示,则下列结论正确的是()
A.函数 的最小正周期为 B.函数 的图象关于点 对称C.函数 在区间 上单调递减D.若 ,则 的值为
8.已知函数 的部分图象如图所示,下列结论正确的有()
A.函数 的最小正周期为
B.直线 为函数 的一条对称轴
【解析】由题图可知A=2,T=4π,故 =4π,解得ω= .所以f(x)=2sin .
把点 代入可得2sin =2,即sin =1,所以φ- =2kπ+ (k∈Z),
解得φ=2kπ+ (k∈Z).又0<φ<π,所以φ= .所以f(x)=2sin .
5.已知函数 ( )的部分图象如图所示,若 ,则 的最小值为。
A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线C2
B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线C2
解得 .
8.函数 的最小正周期为。
【答案】
【解析】因为 ,所以最小正周期为 .
三角函数解答题精选16道_带答案
期为
从而可得
;(2)根据同角的三角函数关系和三角恒等变换,
结合二倍角的余弦公式、二倍角的正弦公式可求出 .
详解:(1)∵函数 的图象的最高点的坐标为 ,
,
依题意,得 的周期为
(2)由(2)得
∵
,且
,
...
.
点睛:三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上 来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关 系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出 某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相 同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值, 再求角的范围,确定角.
复合函数的单调性规律进行求解;(2) 图象法:画出三角函数图象,利用图象求函数的单调 区间.
2.(1) ;(2)当 时,
;当 时,
【解析】分析:1)化简
,
所以 的最小正周期是 ;(2)结合
求出
,进而利用正弦函数的单调
性可求出函数 在区间 上的最值及相应的 值.
详解:(1)
,
所以 的最小正周期是 .
(2)因为
...
.
(2)求 f(x)在区间
上的最大值和最小值.
12.已知函数 f x 2 3sin xcosx 2cos2x a 1.
(Ⅰ)求 f x 的最小正周期;
(Ⅱ)若
f
x 在区间
6
, 3
上的最大值与最小值的和为
2,求 a
的值.
13.设函数
f
x
tan
(完整版)三角函数知识点及练习题含答案,推荐文档
y
++
o -
-x
y
-+
o -
+
x
y
-+
o +
-
x
、、 、、、
、、 、、、
、、 、、、
6、三角函数线 正弦线:MP; 余弦线:OM;
正切线: AT.
a的 的 的 P、 x,y) r
x
y T
P O M Ax
7. 三角函数的定义域: 三角函数 f (x) sinx f (x) cosx f (x) tanx
8.如果 π <θ< π ,那么下列各式中正确的是( )
4
2
A.cosθ<tanθ<sinθ
B.sinθ<cosθ<tanθ
C.tanθ<sinθ<cosθ
D.cosθ<sinθ<tanθ
9.若 A、B 是锐角△ABC 的两个内角,则 P(cosB-sinA,sinB-cosA)在( )
A.第一象限
任意角
1.D 2.C 3.A 4.D
三角函数
1.B 2.A 3. C 4.D 5. A 6. C 7.B
11.A
12.±4
4 ±
5
13. [ π , 3π ] 14. 0 22
15.二
16.[0, π ]∪( π , π ]∪( 3π ,2π) 17.( π , 3π
4
24
2
44
8.D
9. D
10. D
③终边不相同,它们的同名三角函数值一定不相同;
④不相等的角,同名三角函数值也不相同.
其中正确的个数是( )
A.0
B.1
C.2
D.3
2.若角 α、β 的终边关于 y 轴对称,则下列等式成立的是( )
高考文数考点16 正弦定理和余弦定理
考点16 正弦定理和余弦定理一、选择题1. (2014·新课标全国卷Ⅱ高考理科数学·T4)钝角三角形ABC 的面积是12,AB=1,BC=,则AC= ( )A.5B.错误!未找到引用源。
C.2D.1【解题提示】利用三角形面积公式求得角B,然后结合条件,利用余弦定理,求得AC.【解析】选B.因为S △ABC =12acsinB=112·sinB=12,所以sinB=2,所以B=4π或34π.当B=4π时,经计算△ABC 为等腰直角三角形,不符合题意,舍去.(2)所以B=34π,使用余弦定理,b 2=a 2+c 2-2accosB,解得b=故选B.二、填空题2. (2014·湖北高考文科·T13)在△ABC 中,角A,B,C 所对的边分别为a,b,c.已知A=π6,a=1,b=则B= .【解析】依题意,由正弦定理知1sin6π=得出sinB=由于0<B<π, 所以B=3π或23π.答案:3π或23π【误区警示】由于解题过程中无法判断B 是锐角还是钝角,所以由得到两个结果:B=3π或23π.本题的易错点是漏掉其中一个. 3.(2014·广东高考理科)在△ABC 中,角A,B,C 的对边分别为a,b,c,已知bcosC+ccosB=2b,则ab= . 【解析】方法一:由正弦定理bcosC+ccosB=2b, 即sinBcosC+sinCcosB=2sinB,即sin(B+C)=2sinB,sin(π-A)=2sinB, 有sinA=2sinB,再由正弦定理得a=2b,ab=2.方法二:如图,作AD ⊥BC 于点D,则a=BC=BD+DC=ccosB+bcosC=2b,即ab=2. 答案:2【创新提示】熟用三角形射影定理cos cos ,cos cos ,cos cos a c B b C b a C c A c a B b A =+⎧⎪=+⎨⎪=+⎩可迅速得解.4.(2014·福建高考文科·T14)14.在ABC ∆中,3,2,60==︒=BC AC A ,则AB 等于_________【解题指南】直接应用余弦定理求解。
2020届高考数学(理)一轮必刷题 专题16 任意角和弧度制及任意角的三角函数(解析版)
考点16 任意角和弧度制及任意角的三角函数1.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】当,可以得到,反过来若,则或,所以为充分不必要条件,故选A.2.如图所示,在中,点是的中点,过点的直线分别交直线,于不同的两点,,若,,则以为圆心角且半径为1的扇形的面积为()A.1 B.2 C.3 D.4【答案】A【解析】∵为的中点,∴.又∵三点共线,∴,得.∴扇形的面积为.故选A.3.如图,已知四边形为正方形,扇形的弧与相切,点为的中点,在正方形中随机取一点,则该点落在扇形内部的概率为()A.B.C.D.【答案】A【解析】设正方形的边长为,则扇形的半径为,,在直角三角形中,,所以,所以,,又由,所以,,所以,扇形的面积为该点落在扇形内部的概率为所以,答案选A.4.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为()平方米.(其中,)A.15 B.16 C.17 D.18【答案】B【解析】因为圆心角为,弦长为,所以圆心到弦的距离为半径为40,因此根据经验公式计算出弧田的面积为,实际面积等于扇形面积减去三角形面积,为,因此两者之差为,选B.5.已知圆O 与直线l 相切于A ,点,P Q 同时从点A 出发,P 沿着直线l 向右、Q 沿着圆周按逆时针以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积1S ,2S 的大小关系是( )A .12S S =B .12S S ≤C .12S S ≥D .先12S S <,再12S S =,最后12S S >【答案】A 【解析】如图所示,因为直线l 与圆O 相切,所以OA AP ⊥, 所以扇形的面积为1122AOQ S AQ r AQ OA =⋅⋅=⋅⋅扇形,12AOP S OA AP ∆=⋅⋅, 因为AQ AP =,所以扇形AOQ 的面积AOP AOQ S S ∆=扇形, 即AOP AOQ AOB AOB S S S S ∆-=-扇形扇形扇形, 所以12S S =,6.已知点()3,a 和()2,4a 分别在角β和角45β-︒的终边上,则实数a 的值是( ) A .-1 B .6 C .6或-1 D .6或1【答案】B由题得01tan 143tan ,tan(45)31tan 213a a a aββββ--=-===++,所以2560,6a a a --=∴=或-1.当a=-1时,两个点分别在第四象限和第二象限,不符合题意,所以舍去. 故选:B.7.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,M 为其终边上一点,则cos2α=( ) A .23-B .23C .13-D .13【答案】D 【解析】∵M 为角α终边上一点,∴cos 3α===,∴221cos 22cos 1213αα=-=⨯-=. 故选D .8.设函数54,(0)()2,(0)xx x f x x +<⎧=⎨≥⎩,若角α的终边经过(4,3)P -,则[(sin )]f f α的值为( ) A .12B .1C .2D .4【答案】C 【解析】因为角α的终边经过()4,3P -,所以3sin 5y r α-==,所以33(sin )()5()4155f f α=-=⨯-+=,则1[(sin )](1)22f f f α===,故选C .9.若复数cos isin z θθ=+,当4π3θ=时,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C由题,当4π3θ=时,1sin 22θθ=-=-所以复数122z =--在复平面所对应的点为1(,22--在第三象限 故选C .10.已知α∈(22ππ-,),tanα=sin76°cos46°﹣cos76°sin46°,则sinα=( ) AB. CD. 【答案】A 【解析】解:由tanα=sin76°cos46°﹣cos76°sin46°=sin (76°﹣46°)=sin30°12=, 且α∈(22ππ-,),∴α∈(0,2π), 联立22121sin cos sin cos αααα⎧=⎪⎨⎪+=⎩,解得sinα5=. 故选:A .11.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上一点,则( )A .B .C .D .【答案】A 【解析】由三角函数定义得tan ,即,得3cos解得或(舍去) 故选:A .12.在平面直角坐标系中,角的顶点在原点,始边与轴的非负半轴重合,终边经过点,则( )A.B.C.D.【答案】D【解析】解:∵角的顶点在原点,始边与轴的非负半轴重合,终边经过点,∴,∴.则.故选:D.13.已知角的顶点都为坐标原点,始边都与轴的非负半轴重合,且都为第一象限的角,终边上分别有点,,且,则的最小值为()A.1 B.C.D.2【答案】C【解析】由已知得,,,因为,所以,所以,,所以,当且仅当,时,取等号.14.在等差数列中,角顶点在坐标原点,始边与x轴正半轴重合,终边经过点,则A.5 B.4 C.3 D.2【答案】B【解析】解:角顶点在坐标原点,始边与x轴正半轴重合,终边经过点,可得,则.故选:B.15.已知扇形的圆心角为,其弧长为,则此扇形的面积为____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点16:三角函数的图象与应用【考纲要求】(1)能画出sin y x =,cos y x =,tan y x =的图像;(2)了解函数sin()y A x ωϕ=+的物理意义;能画出sin()y A x ωϕ=+的图像,了解参数,,A ωϕ对函数图像变化的影响;(3)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【命题规律】三角函数的图象是高考考查的重点和热点内容,主要从以下两个方面进行考查:(1)三角函数图象变换问题以及由图象确定解析式问题,主要以选择题、填空题的形式考查;(2)利用三角函数的图象求解与三角函数有关的函数的零点、方程的根、图象的交点等问题,通常以选择题与填空题形式考查.预计2018年高考对三角函数图象的考查也主要体现在函数图象的识别与应用,会以客观题出现. 【典型高考试题变式】(一)根据三角函数图象(或图象特征)确定解析式例1 【2016浙江】函数2sin y x =的图象是( )【答案】D【解析】因为2sin =y x 为偶函数,所以它的图象关于y 轴对称,排除A 、C 选项;当22x π=,即2x π=±时,1max y =,排除B 选项,故选D .【方法技巧归纳】根据函数解析式判断函数的图象的方法:(1)从函数的定义域,判断图象左右的位置;从函数的值域,判断图象上下的位置; (2)从函数的单调性(有时可借助导数判断),判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复; (5)从函数的极值点,判断图象的拐点.【变式1】【例题中解析式改变了】函数sin23y xπ⎛⎫=-⎪⎝⎭在区间,2ππ⎡⎤-⎢⎥⎣⎦上的简图是()A B C D【答案】A【解析】将6xπ=代入到函数解析式中得y=,可排除C,D;将xπ=代入到函数解析式中求出函数值为3-负数,可排除B,故选A.【变式2】【例题解析式改变了,且增加了一个参数,同时判断的问题也改变了】已知a是实数,则函数()1sinf x a ax=+的图象不可能是()【答案】D(二)根据三角函数图象(或图象特征)确定解析式例2【2016新课标】函数sin()y A xωϕ=+的部分图像如图所示,则A.2sin(2)6y xπ=-B.2sin(2)3y xπ=-C.2sin()6y xπ=+D.2sin()3y xπ=+【答案】A【方法技巧归纳】根据函数的图象确定函数()sin()(0,0)f x A x B Aωϕω=++>>中的参数主要方法:(1)A,B主要是根据图象的最高点或最低点的纵坐标确定,即2A-=最大值最小值,2B+=最大值最小值;(2)ω的值主要由周期T的值确定,而T的值的确定主要是根据图象的零点与最值点的横坐标确定;(3)ϕ值的确定主要是由图象的特殊点(通常优先取非零点)的坐标确定.【变式1】【例题给出的方式没有改变,解析式中增加了一个参数】如图所示,某地一天6~14时的温度变化曲线近似满足函数()siny A x bωϕ=++,则这段曲线的函数解析式可以为()A.3sin2084y A xππ⎛⎫=++⎪⎝⎭,[]6,14x∈B.5sin2084y A xππ⎛⎫=++⎪⎝⎭,[]6,14x∈C.3sin2084y A xππ⎛⎫=-+⎪⎝⎭,[]6,14x∈D.5sin2084y A xππ⎛⎫=-+⎪⎝⎭,[]6,14x∈【答案】A【变式2】【例题由直接给出图象改为由描述性给出图象特征,所求也适当有变化】若以函数sin(0)y A xωω=>的图象中相邻三个最值点为顶点的三角形是面积为1的直角三角形,则ω的值为()A.1B.2C.πD.2π【答案】C【解析】如图所示,由题意可得:ABC1==12S AB BC⨯,∴2AB BC==,则2T AC==,2Tπωπ==,故选C.(三)三角函数图象的变换例3【2017新课标1】已知曲线1C:cosy x=,2C:2sin(2)3y xπ=+,则下面结论正确的是()A.把1C上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C【答案】D【方法技巧归纳】在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.“先平移,后伸缩”主要体现为由函数sin y x =平移得到函数()sin y x ϕ=+的图象时,平移ϕ个长度单位;“先伸缩,后平移” 主要体现为由函数()sin y x ω=平移得到函数()sin y x ωϕ=+的图象时,平移ϕω个长度单位.【变式1】【由例题确定平移过程改为了确定平移后的函数解析式】把函数cos y x =的图象向左平移4π个单位,然后把图象上的所有点的横坐标缩小到原来的一半(纵坐标不变),则所得图形对应的函数解析式为( )A .1cos 24y x π⎛⎫=+ ⎪⎝⎭ B .cos 24y x π⎛⎫=+ ⎪⎝⎭C .1cos 28y x π⎛⎫=+ ⎪⎝⎭ D .cos 22y x π⎛⎫=+ ⎪⎝⎭ 【答案】B【解析】把函数cos y x =的图象向左平移4π个单位,得到函数cos 4y x π⎛⎫=+ ⎪⎝⎭的图象,再把图象上的所有点的横坐标缩小到原来的一半(纵坐标不变),得到cos 24y x π⎛⎫=+ ⎪⎝⎭,故选B . 【变式2】【例题中的一个函数的解析式改变为较复杂的解析式,变换过程改为一个】为了得到函数3sin3cos3y x x =+的图象,可以将函数2sin3y x =的图象( )A .向右平移6π个单位B .向左平移6π个单位C .向右平移18π个单位D .向左平移18π个单位【答案】D【解析】函数3sin3cos32sin 32sin3618y x x x x ππ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭,将函数2sin3y x =的图象向左平移18π个单位可得函数3sin3cos3y x x =+的图象,故选D .(四)三角函数图象的应用例4 【2015湖北】函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为______.【答案】2【解析】因为2()4cos cos()2sin |ln(1)|22x f x x x x π=---+|)1ln(|sin 2sin )cos 1(2+--+=x x x x =sin 2|ln(1)|x x -+,所以函数)(x f 的零点个数为函数x y 2sin =与|)1ln(|+=x y 图象的交点的个数,函数x y 2sin =与|)1ln(|+=x y 图象如图,由图知,两函数图象有2个交点,所以函数)(x f 有2个零点.【方法技巧归纳】利用函数图象处理函数的零点(方程根)主要有两种策略:(1)确定函数零点的个数:利用图象研究与x 轴的交点个数或转化成两个函数图象的交点个数定性判断;(2)已知函数有零点(方程有根)求参数取值范围:通常也转化为两个新函数的交点,即在同一坐标系中作出两个函数的图象,通过观察它们交点的位置特征建立关于参数的不等式来求解.【变式1】【将例题中求函数的零点个数改为求函数的零点之和】函数()2πcos 23f x x ⎛⎫=- ⎪⎝⎭+2311π19π4cos 2,3π1212x x x ⎛⎫⎡⎤--∈- ⎪⎢⎥-⎣⎦⎝⎭所有零点之和为( )A .2π3B .4π3C .2πD .8π3【答案】B【变式2】【将例题中求零点个数改为求根据零点个数求参数的取值范围】9.若函数sinlog 2a y x xπ=-的图象至少有12个零点点,则a 的取值范围是( )A .(]1,14B .[)14,+∞C .(]1,7D .[)7,+∞【答案】D【解析】2y sinxπ= 与log xa y = 都是偶函数,所以sinlog 2a y x xπ=-是偶函数,只需0x >时,有至少6个零点,即可画出0x >时,函数sin2y xπ=的图象与log a y x=的图象,如图,由图可知,7log 1,7a a ≤≥ ,即a 的取值范围是[)7,+∞,故选D .【数学思想】 1.转化与化归的思想在三角函数图象中主要体现在当平移前与平移后的函数名称不一致时,常常要利用诱导公式将它们转化为同名函数;研究三角函数的零点时,常常转化为三角方程来求解.2.数形结合的思想研究与三角函数有关的零点、方程的根、图象的交点问题时,通常要将其转化为两个新函数的交点,通过作出它们的图象来解决;求不常规的三角函数的单调性区间可利用图象来解决.3.分类讨论思想遇到画形如sin()y A x B ωϕ=++的图象中时,如果解析式中的,,,A B ωϕ有符号不确定的字母参数时,常常要分类作其可能的图象来研究问题.【处理三角函数图象问题注意点】1.五点作图法画图列表时要注意借助于整体代换思想的应用,特别是作已知区间上的图象时,注意确定起始点与终止点.2.图象变换中,注意区分两种变换方式:“先平移,后伸缩”与“先伸缩,后平移”在平移单位的确定上的差异;同时在坐标伸缩上的也须注意确定其倍数.3.根据函数的图象求函数的解析式时,注意确定三角函数的零点、最值点与函数的周期的关系,特别是求初相ϕ时,要尽量取非零点来确定.4.注意正切函数的图象的对称性,正切函数只有对称中点,没有对称称,且不要误认为正切函数的对称中心为函数的零点.【典例试题演练】1.函数sin 23y x π⎛⎫=- ⎪⎝⎭在区间,2ππ⎡⎤-⎢⎥⎣⎦上的简图是( ) A . B .C .D .【答案】A【解析】将6x π=代入到函数解析式中得0y =,可排除C ,D ;将x π=代入到函数解析式中求出函数值为32-负数,可排除B ,C ,故选A .2.【2017届湖南省长沙市高三上学期统一模拟】()cos 1y x =+图像上相邻的最高点和最低点之间的距离是( )A 24π+B .πC .2D 21π+【答案】A【解析】函数的周期2T π= ,相邻最高点和最低点的横坐标间的距离为π ,根据勾股定理最高点和24π+A .3.【2017届阜阳市高三3月模拟考】要得到函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数cos2y x =的图象( )A .向左平移12π个单位B .向左平移6π个单位 C .向右平移12π个单位 D .向右平移6π个单位【答案】C【解析】由题意得,cos2sin 22x x π⎛⎫=+ ⎪⎝⎭,因此只需要将函数cos2y x =的图象向右平移12π个单位即可得到函数sin 23y x π⎛⎫=+ ⎪⎝⎭ 的图象,故选C . 4.【山西省运城市2017届高三4月模拟调研】函数()()sin f x A x bωϕ=++的部分图像如图,则()2017f =( )A .1B .32C .12D .34【答案】B【解析】由函数图像可知周期4T =,所以()()()2017504411f f f =⨯+=,观察图像可知()312f =,所以()320172f =,故选B .5.要得到函数cos2y x=的图象,只需将函数sin23y xπ⎛⎫=+⎪⎝⎭的图象()A.向左平行移动12π个单位长度B.向左平行移动6π个单位长度C.向右平行移动12π个单位长度D.向右平行移动6π个单位长度【答案】A【解析】cos2sin2sin2sin2236123y x x x xπππππ⎡⎤⎛⎫⎛⎫⎛⎫==+=++=++⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选A.6.【江西省抚州市临川区第一中学2017届高三4月模拟】定义函数()(){}()()()()()()()max,()f x f xg xf xg xg x f x g x⎧≥⎪=⎨<⎪⎩,则{}max sin,cosx x的最小值为()A.2-B.2C.2-D.2【答案】C【解析】根据题中定义的函数可知{},max sin,cos,sinx sinx cosxx xcosx sinx cosx≥⎧=⎨<⎩,则该函数图像如下图,由图可知函数的最小值为2-,故选C.7.【安徽省合肥市2018届高三调研性检测】已知函数()sin6f x xπω⎛⎫=+⎪⎝⎭的图象向右平移3π个单位后,所得的图象关于y轴对称,则ω的最小正值为()A.1B.2C.3D.4【答案】B8.【江西省新余市第一中学2017届高三高考全真模拟】已知函数()π2sin (04f x x ωω⎛⎫=+> ⎪⎝⎭)的图象在区间[]0,1上恰有3个最高点,则ω的取值范围为()A .19π27π,44⎡⎫⎪⎢⎣⎭ B .9π13π,22⎡⎫⎪⎢⎣⎭ C .17π25π,44⎡⎫⎪⎢⎣⎭ D .[)4π,6π 【答案】C【解析】因为函数()π2sin (04f x x ωω⎛⎫=+> ⎪⎝⎭)的图象在区间[]0,1上恰有3个最高点,所以函数()π2sin (04f x x ωω⎛⎫=+> ⎪⎝⎭)的图象在区间[]0,1上至少有两个周期加八分之一周期,少于三个周期加八分之一周期,所以4ππ6ππ144ωωωω+≤<+,所以17π25π44ω≤<,故选C .9.【江西师范大学附属中学2017届高三第三次模拟】已知函数()()sin (0,0)f x A x A ωϕω=+>>的图像的一个最高点坐标为()1,2,相邻的对称轴与对称中心间的距离为2,则下列结论正确的是( )A .()f x 的图像关于()2,0中心对称B .()f x 的图像关于直线3x =对称C .()f x 在区间()2,3上单调递增D .()20172f =【答案】D10.【2017届淮北市高三第二次模拟】已知函数()()sin ,(0,0,0)f x A x A ωφωφπ=+>><<,其部分图像如下图,则函数()f x 的解析式为( )A .()12sin 24f x x π⎛⎫=+ ⎪⎝⎭ B .()132sin 24f x x π⎛⎫=+ ⎪⎝⎭C .()132sin 44f x x π⎛⎫=+⎪⎝⎭ D .()2sin 24f x x π⎛⎫=+ ⎪⎝⎭ 【答案】B【解析】由图知3212,44222T A T T ππππω==-⇒=⇒==,,132sin 222πφ⎛⎫⨯+=- ⎪⎝⎭,∴3sin 14πφ⎛⎫+=- ⎪⎝⎭,∴()33242k k Z ππφπ+=+∈,∴()324k k Z πϕπ=+∈.因为0φπ<<《,所以34πφ=,故选B .11.【黑龙江省大庆实验中学2017届高三考前得分训练(一)】设函数()9sin 20,48f x x x ππ⎛⎫⎛⎫⎡⎤=+∈ ⎪⎪⎢⎥⎝⎭⎣⎦⎝⎭,若方程()f x a =恰好有三个根,分别为1x , 2x , 3x(123x x x <<),则123x x x ++的值为( )A .πB .34πC .32πD .54π【答案】C【解析】画出该函数的图象如图,当212a ≤<时方程()f x a =恰好有三个根,且点()1,0x 和()2,0x 关于直线8x π=对称,点()2,0x 和()3,0x 关于直线58x π=对称,所以124x x π+=, 2354x x π+=,从而123322x x xπ++=.故选C.12.【安徽省亳州市二中2017届高三下学期教学质量检测】已知函数()()2sin1(0,)2f x xπωϕωϕ=++>≤,其图象与直线1y=-相邻两个交点的距离为π,若()1f x>对,123xππ⎛⎫∀∈-⎪⎝⎭恒成立,则ϕ的取值范围是()A.,126ππ⎡⎤⎢⎥⎣⎦B.,62ππ⎡⎤⎢⎥⎣⎦C.,123ππ⎡⎤⎢⎥⎣⎦D.,63ππ⎡⎤⎢⎥⎣⎦【答案】D【解析】令()2sin11xωϕ++=-,得到()sin1xωϕ+=-,即()siny xωϕ=+的图像和1y=-相邻两个交点的距离为π,故2ππω=,2ω=,所以()()2sin21f x xϕ=++根据题意,若()1,123f x xππ⎛⎫>∀∈-⎪⎝⎭对恒成立,即()sin20xϕ+>,所以当12xπ=-时,26kπϕπ-+≥,当3xπ=时,223kπϕππ+≤+,所以2263k kπππϕπ+≤≤+,2πϕ≤结合选项,当0k=时,63ππϕ≤≤,故选D.13.【湖南省衡阳市2017届高三下学期第三次联考】函数()()[]12sin,2,41f x x xxπ=-∈--的所有零点之和为()A.2B.4C.6D.8【答案】D14.【广西省陆川中学2017届高三下学期期中】已知0ω>,在函数sin y x ω=与cos y x ω=的图象的交点中,相邻两个交点的横坐标之差的绝对值为2,则ω=__________.【答案】2π【解析】令sin cos x x ωω=,则tan 1x ω=,由题意,得tan 1x ω=的两个相邻解相差2,则π2ω=,解得π2ω=.15.【河南省2017届普通高中高三4月教学质量监测】已知函数()()sin (0,0)2f x M x M πωϕωϕ=+>><的部分图象如图所示,其中()2,3A (点A 为图象的一个最高点)5,02B ⎛⎫- ⎪⎝⎭,则函数()f x =___________.【答案】3sin36xππ⎛⎫-⎪⎝⎭【解析】35932422M T=⋅=+=,故6T=,故23Tππω==,将点()2,3A代入可得()2232kx k Zππϕ⨯+=+∈,故()26kx k Zπϕ=-+∈,∵2πϕ<,∴()3sin36f x xππ⎛⎫=-⎪⎝⎭.16.【河北省武邑中学2017届高三下学期第四次模拟】设0ω>,将函数πsin23y xω⎛⎫=++⎪⎝⎭的图象向右平移4π3个单位后与原图象重合,则ω的最小值是_________.【答案】32【解析】因为将函数πsin23y xω⎛⎫=++⎪⎝⎭的图象向右平移4π3个单位后与原图象重合,所以函数πsin23y xω⎛⎫=++⎪⎝⎭的周期T=2πω满足:2π4π,3n n Nω+⋅=∈,当1n=时, ω取得最小值为32.17.函数()()2sinf x xωϕ=+(()()2,3,1,2a b==-)的部分图象如上图所示,其中()()//2ma b a b+-两点之间的距离为m,则ω=___________.【答案】3π【解析】由题意可设AB之间的水平距离为d,则由题意可得[]222225d+--=(),解得3d=,故函数的周期223Tπω==⨯,解得3πω=.18.【天津市河东区2017届高三二模】已知0ω>,在函数siny xω=与cosy xω=的图象的交点中,距离最短的两个交点的距离为3,则ω值为__________.【答案】π【解析】由sin cosx xωω=,得交点坐标为12121212,,,(,4242k k k kππππωω⎛⎫⎛⎫⎛⎫⎛⎫++-⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭为整数),因为在函数siny xω=与cosy xω=的图象的交点中,距离最短的两个交点的距离为3,()222215223,4422ππωπω⎛⎫⎛⎫∴=-++∴=⎪⎪ ⎪⎝⎭⎝⎭.19.已知函数()[]()sin0,f x x xπ=∈和函数()1tan3g x x=的图像相交于,,A B C三点,则ABC∆的面积为__________.【答案】23π20.【2017届吉林省实验中学高三上学期二模】已知()y f x=的定义域为R的偶函数,当0x≥时,5sin,02,44()1()1,2,2xx xf xxπ⎧≤≤⎪⎪=⎨⎪+>⎪⎩若关于x的方程[]2()()0f x af x b++=(a,b R∈)有且仅有6个不同的实数根,在实数a的取值范围是______.【答案】5991244--⋃--(,)(,)【解析】如图所示,因为()f x是定义域为R的偶函数,则1()1,2,25sin,20,44()5sin,02,441()1,2,2xxxx xf xx xxππ-⎧+<-⎪⎪⎪--≤<⎪=⎨⎪≤≤⎪⎪⎪+>⎩,依题意()f x在2-∞-(,)和02(,)上递增,在20-(,)和2+∞(,)上递减,当2x=±时,函数取得极大值54;当0x=时,取得极小值0.要使关于x的方程[]2()()0f x af x b++=(a,b R∈)有且仅有6个不同的实数根.设t f x=(),则20t at b++=必有两个根12t t、,则有两种情况符合题意:(1)154t=,且2514t⎛⎫∈ ⎪⎝⎭,),此时12a t t-=+,则5924a∈--(,);(2)1250114]t t∈∈(,,(,),此时同理可得914a∈--(,),综上可得a的范围是5991244--⋃--(,)(,).。