常见分数、小数及百分数互化-常用平方数、立方数及各种计算方法
常见分数、小数及百分数互化-常用平方数、立方数及各种计算方法
1、C列分数化小数的记法:分子乘5,小数点向左移动两位。
2、D、E两列分数化小数的记法:分子乘4,小数点向左移动两位常见分数、小数互化表常见的分数、小数及百分数的互化错位相加/减A×9型速算技巧:A×9= A×10-A;例:743×9=743×10-743=7430-743=6687A×9.9型速算技巧:A×9.9= A×10+A÷10;例:743×9.9=743×10-743÷10=7430-74.3=7355.7A×11型速算技巧:A×11= A×10+A;例:743×11=743×10+743=7430+743=8173A×101型速算技巧:A×101= A×100+A;例:743×101=743×100+743=75043乘/除以5、25、125的速算技巧:A×5型速算技巧:A×5=10A÷2;例:8739.45×5=8739.45×10÷2=87394.5÷2=43697.25A÷5型速算技巧:A÷5=0.1A×2;例:36.843÷5=36.843×0.1×2=3.6843×2=7.3686A×25型速算技巧:A×25=100A÷4;例:7234×25=7234×100÷4=723400÷4=180850A÷25型速算技巧:A÷25=0.01A×4;例:3714÷25=3714×0.01×4=37.14×4=148.56A×125型速算技巧:A×5=1000A÷8;例:8736×125=8736×1000÷8=8736000÷8=1092000A÷125型速算技巧:A÷1255=0.001A×8;例:4115÷125=4115×0.001×8=4.115×8=32.92减半相加:A×1.5型速算技巧:A×1.5=A+A÷2;例:3406×1.5=3406+3406÷2=3406+1703=5109“首数相同尾数互补”型两数乘积速算技巧:积的头=头×(头+1);积的尾=尾×尾例:23×27=首数均为2,尾数3与7的和是10,互补所以乘积的首数为2×(2+1)=6,尾数为3×7=21,即23×27=621本方法适合11~99 所有平方的计算。
常见分数小数及百分数互化 常用平方数立方数及各种计算方法
1、C列分数化小数的记法:分子乘5,小数点向左移动两位。
2、D、E两列分数化小数的记法:分子乘4,小数点向左移动两位常见分数、小数互化表1 / 12常见的分数、小数及百分数的互化常用平方数2 / 12常见立方数减错位相加/ ;9= A×10-A×9型速算技巧:A×A10-743=7430-743=6687 ×743×9=743例:;÷10A×9.9= A×10+AA×9.9型速算技巧:10=7430-74.3=7355.7 ÷×10-743例:743×9.9=74310+A;11= A型速算技巧:A××A×1110+743=7430+743=8173 11=743×例:743×100+A;×101= A×AA×101型速算技巧:100+743=75043 101=743×例:743×的速算技巧:25、125除以乘/5、;5=10A÷2×5型速算技巧:A×A2=43697.25 ÷÷2=87394.58739.45×5=8739.45×10例:2;A÷5=0.1A×5A÷型速算技巧:2=7.3686 ×2=3.6843×0.1×例:36.843÷5=36.843;÷4A×25型速算技巧:×25=100AA4=180850 4=723400÷25=7234×100÷7234例:×4;25=0.01A25÷型速算技巧:A÷×A4=148.564=37.140.0125=37143714例:÷×××3 / 12A×125型速算技巧:A×5=1000A÷8;例:8736×125=8736×1000÷8=8736000÷8=1092000A÷125型速算技巧:A÷1255=0.001A×8;例:4115÷125=4115×0.001×8=4.115×8=32.92减半相加:A×1.5型速算技巧:A×1.5=A+A÷2;例:3406×1.5=3406+3406÷2=3406+1703=5109“首数相同尾数互补”型两数乘积速算技巧:×(头+1);积的尾=尾×尾头=积的头例:23×27=首数均为2,尾数3与7的和是10,互补所以乘积的首数为2×(2+1)=6,尾数为3×7=21,即23×27=621本方法适合11~99 所有平方的计算。
常见的分数小数及百分数的互化常用平方数立方数及各种计算方法
常见的分数小数及百分数的互化常用平方数立方数及各种计算方法分数、小数和百分数是数学中常见的表示形式,它们之间可以进行互化。
下面就常见的分数、小数和百分数的互化以及一些常用平方数、立方数和计算方法进行详细介绍。
一、分数的互化分数是用两个数的比值表示的数,通常写成a/b的形式,其中a为分子,b为分母。
分数可以互化成小数和百分数。
1.分数转化为小数:(1)当分子能整除分母时,分数转化为小数的方法是将分子除以分母,如2/4=0.5(2)当分子不能整除分母时,分数转化为小数的方法是将分子乘以十的倍数,再除以分母,如3/7=3×10/7=30/7≈4.286(保留三位小数)。
2.分数转化为百分数:分数转化为百分数的方法是将分子除以分母,再乘以100%,如2/5=2/5×100%=40%。
二、小数的互化小数是以小数点为界限,将整数部分和小数部分表示的数。
小数可以互化成分数和百分数。
1.小数转化为分数:小数转化为分数的方法是:根据小数点后面数字的位数,将小数的数字除以对应的10的幂。
例如:0.25=25/100=1/42.小数转化为百分数:小数转化为百分数的方法是将小数乘以100%,即移动小数点两位,如0.25=0.25×100%=25%。
三、百分数的互化百分数是将数表示成百分之几的形式。
百分数可以互化成分数和小数。
1.百分数转化为分数:百分数转化为分数的方法是将百分数的数字除以100,分子是百分数的数字,分母是100,如40%=40/100=2/52.百分数转化为小数:百分数转化为小数的方法是将百分数的数字除以100,如40%=40/100=0.4四、常用平方数和立方数常用平方数是指一个数的平方,即一个数乘以自己,如1的平方是1,2的平方是4,3的平方是9,以此类推。
常用立方数是指一个数的立方,即一个数乘以自己两次,如1的立方是1,2的立方是8,3的立方是27,以此类推。
五、计算方法在数学中,有一些常用的计算方法可以用于简化计算过程,提高计算效率。
常见分数、小数及百分数互化-常用平方数、立方数及各种计算方法
1、C列分数化小数的记法:分子乘5,小数点向左移动两位。
2、D、E两列分数化小数的记法:分子乘4,小数点向左移动两位常见分数、小数互化表A 列B列C列D列E列1 21 43 40.50.250.75183858780.1250.3750.6250.8751203207209200.050.150.350.451252253254250.040.080.120.1613251425162517250.520.560.640.681 52 53 54 50.20.40.60.81103107109100.10.30.70.911201320172019200.550.650.850.956257258259250.240.280.320.3618251925212522250.720.760.840.881 500.021160.062511250.4423250.921 1000.0112250.4824250.96除法常见的分数、小数及百分数的互化除不尽(按四舍五入计算)除法1÷2 1÷4 1÷5 2÷5 3÷5 4÷5比1:21:41:52:53:54:5分数1/21/41/52/53/54/5小数0.50.250.20.40.60.8百分50%25%20%40%60%80%除法1÷32÷31÷65÷61÷72÷7比1:32:31:65:61:72:7分数1/32/31/65/61/72/7小数0.330.670.170.830.140.29百分33%67%17%83%14%29%1÷8 3÷8 5÷8 7÷81:83:85:87:81/83/85/87/80.1250.3750.6250.87512.5% 3÷737.5% 4÷762.5% 5÷787.5% 6÷73:74:75:76:73/74/75/76/70.430.570.710.8643%57%71%86%1÷10 3÷10 7÷10 9÷10 3÷2 5÷4 7÷51:103:107:109:103:25:47:51/103/107/109/103/25/47/50.10.30.70.91.51.251.410%30%70%90%150%125%140%1÷92÷94÷95÷97÷98÷94÷31:92:94:95:97:98:94:31/92/94/95/97/98/94/30.110.220.440.560.780.891.3311%22%44%56%78%89%133%备注除尽是指除数(前项、分子)除以除数(后项、分母)得商不出现循环(或无限循环)小数;除不尽与除尽相反,是无限循环小数。
常见的分数、小数及百分数的互化,常用平方数、立方数及各种计算方法
常见的分数、⼩数及百分数的互化,常⽤平⽅数、⽴⽅数及各种计算⽅法1、C列分数化⼩数的记法:分⼦乘5,⼩数点向左移动两位。
2、D、E两列分数化⼩数的记法:分⼦乘4,⼩数点向左移动两位常见分数、⼩数互化表常见的分数、⼩数及百分数的互化常⽤平⽅数常见⽴⽅数常见特殊数的乘积错位相加/减A×9型速算技巧:A×9= A×10-A;例:743×9=743×10-743=7430-743=6687 A×型速算技巧:A×= A×10+A÷10;例:743×=743×10-743÷10==A×11型速算技巧:A×11= A×10+A;例:743×11=743×10+743=7430+743=8173 A×101型速算技巧:A×101= A×100+A;例:743×101=743×100+743=75043乘/除以5、25、125的速算技巧:A×5型速算技巧:A×5=10A÷2;例:×5=×10÷2=÷2=A÷5型速算技巧:A÷5=×2;例:÷5=××2=×2=A×25型速算技巧:A×25=100A÷4;例:7234×25=7234×100÷4=723400÷4=180850A÷25型速算技巧:A÷25=×4;例:3714÷25=3714××4=×4=A×125型速算技巧:A×5=1000A÷8;例:8736×125=8736×1000÷8=8736000÷8=1092000A÷125型速算技巧:A÷1255=×8;例:4115÷125=4115××8=×8=减半相加:A×型速算技巧:A×=A+A÷2;例:3406×=3406+3406÷2=3406+1703=5109“⾸数相同尾数互补”型两数乘积速算技巧:积的头=头×(头+1);积的尾=尾×尾例:23×27=⾸数均为2,尾数3与7的和是10,互补所以乘积的⾸数为2×(2+1)=6,尾数为3×7=21,即23×27=621本⽅法适合11~99 所有平⽅的计算。
常见的分数、小数与百分数的互化常用平方数、立方数与各种计算方法
1、C列分数化小数的记法:分子乘5,小数点向左移动两位。
2、D、E两列分数化小数的记法:分子乘4,小数点向左移动两位常见分数、小数互化表常见的分数、小数及百分数的互化或无限循错位相加/减A X9型速算技巧:A X9= A X10-A ;例:743 X9=743 X 10-743=7430-743=6687A X9.9 型速算技巧:A X9.9= A X10+A -10 ;例:743 X9.9=743 X10-743 -10=7430-74.3=7355.7A X11型速算技巧:A X1仁A X10+A ;例:743 X1仁743 X10+743=7430+743=8173A X101 型速算技巧:A X101= A X100+A ;例:743 X10仁743 X100+743=75043乘/除以5、25、125的速算技巧:A X5型速算技巧:A X5=10A -2;例:8739.45 X5=8739.45 X10 十2=87394.5 十2=43697.25A廿型速算技巧:A-5=0.1A X2 ;例:36.843 廿=36.843 X0.1 X2=3.6843 X2=7.3686A X25 型速算技巧:A X25=100A -4 ;例:7234 X25=7234 X100 -4=723400 -4=180850A -25 型速算技巧:A -25=0.01A X4;例:3714 -25=3714 X0.01 X4=37.14 X4=148.56A X125 型速算技巧:A X5=1000A -8;例:8736 X125=8736 X1000 十8=8736000 十8=1092000A -125 型速算技巧:A -1255=0.001A X8 ;例:4115 -125=4115 X0.001 X8=4.115 X8=32.92减半相加:A X1.5型速算技巧:A X1.5=A+A 十2 ;例:3406 X1.5=3406+3406 十2=3406+1703=5109“首数相同尾数互补”型两数乘积速算技巧:积的头=头X(头+1);积的尾=尾X尾例:23 X27=首数均为2,尾数3与7的和是10,互补所以乘积的首数为2 X(2+1 )=6,尾数为3X7=21 ,即23 X27=621本方法适合11~99所有平方的计算。
常见的分数、小数及百分数的互化,常用平方数、立方数及各种计算方法
1、C列分数化小数的记法:分子乘5,小数点向左移动两位。
2、D、E两列分数化小数的记法:分子乘4,小数点向左移动两位常见分数、小数互化表常见的分数、小数及百分数的互化或无限循环)小数;除不尽与除尽相反,是无限循环小数。
错位相加/减A X 9型速算技巧:A X 9= A X 10-A ;例:743 X 9=743 X 10-743=7430-743=6687A X 9.9 型速算技巧:A X 9.9= A X 10+A十10;例:743X 9.9=743X 10-743- 10=7430-74.3=7355.7A X 11 型速算技巧:A X 11= A X 10+A ;例:743 X 1仁743 X 10+743=7430+743=8173A X 101 型速算技巧:A X 101= A X 100+A;例:743X101=743X100+743=75043乘/除以5、25、125的速算技巧:A X 5型速算技巧:A X 5=10A-2;例:8739.45X 5=8739.45X 10十2=87394.5- 2=43697.25A -5型速算技巧:A -5=0.1A X 2;例:36.843- 5=36.843X 0.1X 2=3.6843X 2=7.3686A X 25型速算技巧:A X 25=100A十4;例:7234 X 25=7234 X 100 十4=723400- 4=180850A - 25 型速算技巧:A - 25=0.01A X 4;例:3714-25=3714X 0.01 X 4=37.14X 4=148.56A X 125型速算技巧:A X 5=1000A十8;例:8736 X 125=8736 X 1000- 8=8736000十8=1092000A - 125 型速算技巧:A - 1255=0.001A X 8;例:4115- 125=4115X 0.001 X 8=4.115X 8=32.92减半相加:A X 1.5 型速算技巧:A X 1.5=A+A - 2;例:3406 X 1.5=3406+3406十2=3406+1703=5109“首数相同尾数互补”型两数乘积速算技巧:积的头=头X(头+1);积的尾=尾乂尾例:23X 27=首数均为2,尾数3 与7 的和是10,互补所以乘积的首数为2X( 2+1) =6,尾数为3X 7=21,即23X 27=621本方法适合11~99 所有平方的计算。
常见分数、小数及百分数互化-常用平方数、立方数及各种计算方法
1、C列分数化小数的记法:分子乘5,小数点向左移动两位。
2、D、E两列分数化小数的记法:分子乘4,小数点向左移动两位常见分数、小数互化表常见的分数、小数及百分数的互化错位相加/减A×9型速算技巧:A×9= A×10-A;例:743×9=743×10-743=7430-743=6687A×9.9型速算技巧:A×9.9= A×10+A÷10;例:743×9.9=743×10-743÷10=7430-74.3=7355.7A×11型速算技巧:A×11= A×10+A;例:743×11=743×10+743=7430+743=8173A×101型速算技巧:A×101= A×100+A;例:743×101=743×100+743=75043乘/除以5、25、125的速算技巧:A×5型速算技巧:A×5=10A÷2;例:8739.45×5=8739.45×10÷2=87394.5÷2=43697.25A÷5型速算技巧:A÷5=0.1A×2;例:36.843÷5=36.843×0.1×2=3.6843×2=7.3686A×25型速算技巧:A×25=100A÷4;例:7234×25=7234×100÷4=723400÷4=180850A÷25型速算技巧:A÷25=0.01A×4;例:3714÷25=3714×0.01×4=37.14×4=148.56A×125型速算技巧:A×5=1000A÷8;例:8736×125=8736×1000÷8=8736000÷8=1092000A÷125型速算技巧:A÷1255=0.001A×8;例:4115÷125=4115×0.001×8=4.115×8=32.92减半相加:A×1.5型速算技巧:A×1.5=A+A÷2;例:3406×1.5=3406+3406÷2=3406+1703=5109“首数相同尾数互补”型两数乘积速算技巧:积的头=头×(头+1);积的尾=尾×尾例:23×27=首数均为2,尾数3与7的和是10,互补所以乘积的首数为2×(2+1)=6,尾数为3×7=21,即23×27=621本方法适合11~99 所有平方的计算。
(完整版)常见的分数、小数及百分数的互化,常用平方数、立方数及各种计算方法
1、C列分数化小数的记法:分子乘5,小数点向左移动两位。
2、D、E两列分数化小数的记法:分子乘4,小数点向左移动两位常见分数、小数互化表常见的分数、小数及百分数的互化错位相加/减A×9型速算技巧:A×9= A×10-A;例:743×9=743×10-743=7430-743=6687A×9.9型速算技巧:A×9.9= A×10+A÷10;例:743×9.9=743×10-743÷10=7430-74.3=7355.7A×11型速算技巧:A×11= A×10+A;例:743×11=743×10+743=7430+743=8173A×101型速算技巧:A×101= A×100+A;例:743×101=743×100+743=75043乘/除以5、25、125的速算技巧:A×5型速算技巧:A×5=10A÷2;例:8739.45×5=8739.45×10÷2=87394.5÷2=43697.25A÷5型速算技巧:A÷5=0.1A×2;例:36.843÷5=36.843×0.1×2=3.6843×2=7.3686A×25型速算技巧:A×25=100A÷4;例:7234×25=7234×100÷4=723400÷4=180850A÷25型速算技巧:A÷25=0.01A×4;例:3714÷25=3714×0.01×4=37.14×4=148.56A×125型速算技巧:A×5=1000A÷8;例:8736×125=8736×1000÷8=8736000÷8=1092000A÷125型速算技巧:A÷1255=0.001A×8;例:4115÷125=4115×0.001×8=4.115×8=32.92减半相加:A×1.5型速算技巧:A×1.5=A+A÷2;例:3406×1.5=3406+3406÷2=3406+1703=5109“首数相同尾数互补”型两数乘积速算技巧:积的头=头×(头+1);积的尾=尾×尾例:23×27=首数均为2,尾数3与7的和是10,互补所以乘积的首数为2×(2+1)=6,尾数为3×7=21,即23×27=621本方法适合11~99 所有平方的计算。
常见的分数、小数及百分数的互化-常用平方数、立方数及各种计算方法
常见的分数、小数及百分数的互化-常用平方数、立方数及各种计算方法常见的分数、小数及百分数的互化常用平方数常见立方数常见特殊数的乘积错位相加/减A×9型速算技巧:A×9= A×10-A;例:743×9=743×10-743=7430-743=6687A×9.9型速算技巧:A×9.9= A×10+A÷10;例:743×9.9=743×10-743÷10=7430-74.3=7355.7A×11型速算技巧:A×11= A×10+A;例:743×11=743×10+743=7430+743=8173A×101型速算技巧:A×101= A×100+A;例:743×101=743×100+743=75043乘/除以5、25、125的速算技巧:A×5型速算技巧:A×5=10A÷2;例:8739.45×5=8739.45×10÷2=87394.5÷2=43697.25A÷5型速算技巧:A÷5=0.1A×2;例:36.843÷5=36.843×0.1×2=3.6843×2=7.3686A×25型速算技巧:A×25=100A÷4;例:7234×25=7234×100÷4=723400÷4=180850A÷25型速算技巧:A÷25=0.01A×4;例:3714÷25=3714×0.01×4=37.14×4=148.56A×125型速算技巧:A×5=1000A÷8;例:8736×125=8736×1000÷8=8736000÷8=1092000A÷125型速算技巧:A÷1255=0.001A×8;例:4115÷125=4115×0.001×8=4.115×8=32.92减半相加:A×1.5型速算技巧:A×1.5=A+A÷2;例:3406×1.5=3406+3406÷2=3406+1703=5109“首数相同尾数互补”型两数乘积速算技巧:积的头=头×(头+1);积的尾=尾×尾例:23×27=首数均为2,尾数3与7的和是10,互补所以乘积的首数为2×(2+1)=6,尾数为3×7=21,即23×27=621本方法适合11~99 所有平方的计算。
常见地分数、小数及百分数地互化,常用平方数、立方数及各种计算方法
1、C列分数化小数的记法:分子乘5,小数点向左移动两位。
2、D、E两列分数化小数的记法:分子乘4,小数点向左移动两位常见分数、小数互化表常见的分数、小数及百分数的互化或无限循错位相加/减A X9型速算技巧:A X9= A X10-A ;例:743 X9=743 X 10-743=7430-743=6687A X9.9 型速算技巧:A X9.9= A X10+A -10 ;例:743 X9.9=743 X10-743 -10=7430-74.3=7355.7A X11型速算技巧:A X1仁A X10+A ;例:743 X1仁743 X10+743=7430+743=8173A X101 型速算技巧:A X101= A X100+A ;例:743 X10仁743 X100+743=75043乘/除以5、25、125的速算技巧:A X5型速算技巧:A X5=10A -2;例:8739.45 X5=8739.45 X10 十2=87394.5 十2=43697.25A廿型速算技巧:A-5=0.1A X2 ;例:36.843 廿=36.843 X0.1 X2=3.6843 X2=7.3686A X25 型速算技巧:A X25=100A -4 ;例:7234 X25=7234 X100 -4=723400 -4=180850A -25 型速算技巧:A -25=0.01A X4;例:3714 -25=3714 X0.01 X4=37.14 X4=148.56A X125 型速算技巧:A X5=1000A -8;例:8736 X125=8736 X1000 十8=8736000 十8=1092000 A -125 型速算技巧:A -1255=0.001A X8 ;例:4115 -125=4115 X0.001 X8=4.115 X8=32.92减半相加:A X1.5型速算技巧:A X1.5=A+A 十2 ;例:3406 X1.5=3406+3406 十2=3406+1703=5109“首数相同尾数互补”型两数乘积速算技巧:积的头=头X(头+1);积的尾=尾X尾例:23 X27=首数均为2,尾数3与7的和是10,互补所以乘积的首数为2 X(2+1 )=6,尾数为3X7=21 ,即23 X27=621本方法适合11~99所有平方的计算11X11=121 21X21=4141 31X31=961 41X4仁168112X12=148 22X22=484 32X32=1024 42X42=1764 52X52=2704 从上面的计算我们可以得出公式:个位=个位X个位所得数的个位,如果满几十就向前进几,十位=个位X(十位上的数字X2)+进位所得数的末位,如果满几十就向前进几,百位=两个十位上的数字相乘+进位。
常见分数、小数及百分数互化-常用平方数、立方数及各种计算方法
1、C列分数化小数的记法:分子乘5,小数点向左移动两位。
2、D、E两列分数化小数的记法:分子乘4,小数点向左移动两位常见分数、小数互化表常见的分数、小数及百分数的互化错位相加/减A×9型速算技巧:A×9= A×10-A;例:743×9=743×10-743=7430-743=6687A×9.9型速算技巧:A×9.9= A×10+A÷10;例:743×9.9=743×10-743÷10=7430-74.3=7355.7A×11型速算技巧:A×11= A×10+A;例:743×11=743×10+743=7430+743=8173A×101型速算技巧:A×101= A×100+A;例:743×101=743×100+743=75043乘/除以5、25、125的速算技巧:A×5型速算技巧:A×5=10A÷2;例:8739.45×5=8739.45×10÷2=87394.5÷2=43697.25A÷5型速算技巧:A÷5=0.1A×2;例:36.843÷5=36.843×0.1×2=3.6843×2=7.3686A×25型速算技巧:A×25=100A÷4;例:7234×25=7234×100÷4=723400÷4=180850A÷25型速算技巧:A÷25=0.01A×4;例:3714÷25=3714×0.01×4=37.14×4=148.56A×125型速算技巧:A×5=1000A÷8;例:8736×125=8736×1000÷8=8736000÷8=1092000A÷125型速算技巧:A÷1255=0.001A×8;例:4115÷125=4115×0.001×8=4.115×8=32.92减半相加:A×1.5型速算技巧:A×1.5=A+A÷2;例:3406×1.5=3406+3406÷2=3406+1703=5109“首数相同尾数互补”型两数乘积速算技巧:积的头=头×(头+1);积的尾=尾×尾例:23×27=首数均为2,尾数3与7的和是10,互补所以乘积的首数为2×(2+1)=6,尾数为3×7=21,即23×27=621本方法适合11~99 所有平方的计算。
常见的分数小数及百分数的互化常用平方数立方数及各种计算方法
常见的分数小数及百分数的互化常用平方数立方数及各种计算方法一、常见的分数、小数及百分数的互化1.分数转小数:分数转化为小数的方法是将分子除以分母。
例如,将2/3转化为小数:2÷3=0.6667(保留四位小数)。
2.小数转分数:小数转化为分数的方法是将小数点后的数字作为分子,分母为10的幂次方。
例如,将0.75转化为分数:小数点后有两位数字,所以分母为10的2次方,即100,故0.75=75/100。
3.分数转百分数:分数转化为百分数的方法是将分子除以分母后乘以100。
例如,将3/5转化为百分数:3÷5×100=60%。
4.百分数转分数:百分数转化为分数的方法是将百分数除以100。
例如,将80%转化为分数:80÷100=4/55.百分数转小数:百分数转化为小数的方法是将百分数除以100。
例如,将75%转化为小数:75÷100=0.756.小数转百分数:小数转化为百分数的方法是将小数乘以100。
例如,将0.6转化为百分数:0.6×100=60%。
1.平方数:平方数是一个数的平方,即将一个数自乘得到的结果。
例如,4是一个平方数,因为4×4=16、常见的平方数有1、4、9、16、25、36、49、64、81、100等。
2.立方数:立方数是一个数的立方,即将一个数自乘两次得到的结果。
例如,3是一个立方数,因为3×3×3=27、常见的立方数有1、8、27、64、125、216、343、512、729、1000等。
3.计算方法:常见的计算方法包括加减乘除四则运算、乘方、开方等。
-加法:将两个数相加得到和的结果。
例如,3+4=7-减法:将一个数减去另一个数得到差的结果。
例如,8-5=3-乘法:将两个数相乘得到积的结果。
例如,2×6=12-除法:将一个数除以另一个数得到商的结果。
例如,9÷3=3-乘方:将一个数自乘多次得到的结果。
常见的分数、小数及百分数的互化,常用平方数、立方数及各种计算方法
1、C 列分数化小数的记法:分子乘5,小数点向左移动两位。
2、D 、E 两列分数化小数的记法:分子乘4,小数点向左移动两位常见分数、小数互化表A 列B 列C 列D 列E 列5.021=125.081=05.0201=04.0251=52.02513=25.041=375.083=15.0203=08.0252=56.02514=75.043=625.085=35.0207=12.0253=64.02516=875.087=45.0209=16.0254=68.02517=2.051=1.0101=55.02011=24.0256=72.02518=4.052=3.0103=65.02013=28.0257=76.02519=6.053=7.0107=85.02017=32.0258=84.02521=8.054=9.0109=95.02019=36.0259=88.02522=02.0501=0625.0161=44.02511=92.02523=01.01001=48.02512=96.02524=常见的分数、小数及百分数的互化除法除不尽(按四舍五入计算)除法比分数小数百分除法比分数小数百分1÷21:21/20.550%1÷31:31/30.3333% 1÷41:41/40.2525%2÷32:32/30.6767% 1÷51:51/50.220%1÷61:61/60.1717% 2÷52:52/50.440%5÷65:65/60.8383% 3÷53:53/50.660%1÷71:71/70.1414% 4÷54:54/50.880%2÷72:72/70.2929% 1÷81:81/80.12512.5%3÷73:73/70.4343% 3÷83:83/80.37537.5%4÷74:74/70.5757% 5÷85:85/80.62562.5%5÷75:75/70.7171% 7÷87:87/80.87587.5%6÷76:76/70.8686% 1÷101:101/100.110%1÷91:91/90.1111% 3÷103:103/100.330%2÷92:92/90.2222% 7÷107:107/100.770%4÷94:94/90.4444% 9÷109:109/100.990%5÷95:95/90.5656% 3÷23:23/2 1.5150%7÷97:97/90.7878% 5÷45:45/4 1.25125%8÷98:98/90.8989% 7÷57:57/5 1.4140%4÷34:34/3 1.33133%备注除尽是指除数(前项、分子)除以除数(后项、分母)得商不出现循环(或无限循环)小数;除不尽与除尽相反,是无限循环小数。
常见分数、小数及百分数互化-常用平方数、立方数及各种计算方法
1、C列分数化小数的记法:分子乘5,小数点向左移动两位。
2、D、E两列分数化小数的记法:分子乘4,小数点向左移动两位常见分数、小数互化表A 列B列C列D列E列1 21 43 40.50.250.75183858780.1250.3750.6250.8751203207209200.050.150.350.451252253254250.040.080.120.1613251425162517250.520.560.640.681 52 53 54 50.20.40.60.81103107109100.10.30.70.911201320172019200.550.650.850.956257258259250.240.280.320.3618251925212522250.720.760.840.881 500.021160.062511250.4423250.921 1000.0112250.4824250.96除法常见的分数、小数及百分数的互化除不尽(按四舍五入计算)除法1÷2 1÷4 1÷5 2÷5 3÷5 4÷5比1:21:41:52:53:54:5分数1/21/41/52/53/54/5小数0.50.250.20.40.60.8百分50%25%20%40%60%80%除法1÷32÷31÷65÷61÷72÷7比1:32:31:65:61:72:7分数1/32/31/65/61/72/7小数0.330.670.170.830.140.29百分33%67%17%83%14%29%1÷8 3÷8 5÷8 7÷81:83:85:87:81/83/85/87/80.1250.3750.6250.87512.5% 3÷737.5% 4÷762.5% 5÷787.5% 6÷73:74:75:76:73/74/75/76/70.430.570.710.8643%57%71%86%1÷10 3÷10 7÷10 9÷10 3÷2 5÷4 7÷51:103:107:109:103:25:47:51/103/107/109/103/25/47/50.10.30.70.91.51.251.410%30%70%90%150%125%140%1÷92÷94÷95÷97÷98÷94÷31:92:94:95:97:98:94:31/92/94/95/97/98/94/30.110.220.440.560.780.891.3311%22%44%56%78%89%133%备注除尽是指除数(前项、分子)除以除数(后项、分母)得商不出现循环(或无限循环)小数;除不尽与除尽相反,是无限循环小数。
最新常见的分数、小数及百分数的互化,常用平方数、立方数及各种计算方法资料
1、C列分数化小数的记法:分子乘5,小数点向左移动两位。
2、D、E两列分数化小数的记法:分子乘4,小数点向左移动两位常见分数、小数互化表常见的分数、小数及百分数的互化错位相加/减A×9型速算技巧:A×9= A×10-A;例:743×9=743×10-743=7430-743=6687A×9.9型速算技巧:A×9.9= A×10+A÷10;例:743×9.9=743×10-743÷10=7430-74.3=7355.7A×11型速算技巧:A×11= A×10+A;例:743×11=743×10+743=7430+743=8173A×101型速算技巧:A×101= A×100+A;例:743×101=743×100+743=75043乘/除以5、25、125的速算技巧:A×5型速算技巧:A×5=10A÷2;例:8739.45×5=8739.45×10÷2=87394.5÷2=43697.25A÷5型速算技巧:A÷5=0.1A×2;例:36.843÷5=36.843×0.1×2=3.6843×2=7.3686A×25型速算技巧:A×25=100A÷4;例:7234×25=7234×100÷4=723400÷4=180850A÷25型速算技巧:A÷25=0.01A×4;例:3714÷25=3714×0.01×4=37.14×4=148.56A×125型速算技巧:A×5=1000A÷8;例:8736×125=8736×1000÷8=8736000÷8=1092000A÷125型速算技巧:A÷1255=0.001A×8;例:4115÷125=4115×0.001×8=4.115×8=32.92减半相加:A×1.5型速算技巧:A×1.5=A+A÷2;例:3406×1.5=3406+3406÷2=3406+1703=5109“首数相同尾数互补”型两数乘积速算技巧:积的头=头×(头+1);积的尾=尾×尾例:23×27=首数均为2,尾数3与7的和是10,互补所以乘积的首数为2×(2+1)=6,尾数为3×7=21,即23×27=621本方法适合11~99 所有平方的计算。
常见分数小数及百分数互化常用平方数立方数及各种计算方法
1、C列分数化小数的记法:分子乘5,小数点向左移动两位。
2、D、E两列分数化小数的记法:分子乘4,小数点向左移动两位常见分数、小数互化表1/12常见的分数、小数及百分数的互化减错位相加/ ;9=AX10-AX9 型速算技巧:AXA10-743=7430-743=6687 X743 X 9=743 例:;4-1OAX 9.9= A X 10+AAX 9.9 型速算技巧:10=7430-74.3=7355.7 4-X 10-743 例:743X9.9=74310+A; 11=A 型速算技巧:AX XAX1110+743=7430+743=8173 11=743X例:743 X100+A; X101=AXAAX101 型速算技巧:100+743=75043 101=743X例:743X的速算技巧:25、125除以乘/5、;5=10A4-2X5型速算技巧:AXA2=43697.25 一十2=87394.58739.45 X 5=8739.45 X 10 例:2: A4-5=0.1AX5A4-型速算技巧:2=7.3686 X2=3.6843 X0.1 X例:36.843三5=36.843;4-4AX25 型速算技巧:X25=100AA4=l80850 4=72340025=7234X 1004- 7234 例:X4: 25=0.01 A254-型速算技巧:AFXA4=148.564=37.140.0125=37143714 例:4-X X X3/12AX125 型速算技巧:AX5=1000A4-8;例:8736X 125=8736X 10004-8=87360004-8= 1092000A4-125 型速算技巧:A-rl255=0.001AX8;例:41154-125=4115X0.001X8=4.115X8=32.92减半相加:AX1.5 型速算技巧:AX1.5=A+A4-2;例:3406 X 1.5=3406+3406 4- 2=3406+1703=5109“首数相同尾数互补”型两数乘积速算技巧:X (头+1);积的尾=尾乂尾头=积的头例:23X27=首数均为2,尾数3与7的和是10,互补所以乘积的首数为2X (2+1) =6,尾数为3X7=21,即23X27=621本方法适合11〜99所有平方的计算。
常见的分数、小数及百分数的互化,常用平方数、立方数及各种计算方法
常见的分数、小数及百分数的互化,常用平方数、立方数及各种计算方法(总12页)-本页仅作为文档封面,使用时请直接删除即可-“内页可以根据需求调整合适字体及大小-K C列分数化小数的记法:分子乘5,小数点向左移动两位。
2、D、E两列分数化小数的记法:分子乘4,小数点向左移动两位常见分数、小数互化表常见的分数、小数及百分数的互化备注除尽是指除数(前项、分子)除以除数(后项、分母)得商不出现循环(或无限循环)小数;除不尽与除尽相反,是无限循环小数。
常见立方数常见特殊数的乘积错位相加/减AX9型速算技巧:AX9= AX10-A;例:743 X 9=743 X 10-743=7430-743=6687AX型速算技巧:AX= AX10+A4-10;例:743 X =743 X10-743 一10=AX11 型速算技巧:AX11= AX10+A;例:743 X11 =743 X10+743=7430+743=8173AX101 型速算技巧:AX101= AX100+A;例:743 X 101 =743 X 100+743=75043乘/除以5、25、125的速算技巧:AX5型速算技巧:AX5=10A4-2;例:X5=X104-2=4-2=A25型速算技巧:AF5二X2;例:4-5=X X2=X2=AX25 型速算技巧:AX25二100AF4;例:7234 X 25=7234 X1004-4二723400 4-4二180850AF25型速算技巧:AF25二X4;例:3714-? 25=3714 X X4=X4=AX125 型速算技巧:AX5=1000A4-8;例:8736 X125=8736 X10004- 8=8736000 4- 8=1092000AF125 型速算技巧:AF1255二X8;例:41154-125=4115XX8=X8=减半相加:AX型速算技巧:AX二A+AV2;例:3406 X 二3406+3406W 2二3406+1703=5109“首数相同尾数互补”型两数乘积速算技巧:积的头二头X (头+1);积的尾二尾X尾例:23X27=首数均为2,尾数3与7的和是10,互补所以乘积的首数为2X (2+1)二6,尾数为3X7=21,即23X27=621本方法适合1C99所有平方的计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、C列分数化小数的记法:分子乘5,小数点向左移动两位。
2、D、E两列分数化小数的记法:分子乘4,小数点向左移动两位常见分数、小数互化表常见的分数、小数及百分数的互化常用平方数常见立方数常见特殊数的乘积错位相加/减A×9型速算技巧:A×9= A×10-A;例:743×9=743×10-743=7430-743=6687A×9.9型速算技巧:A×9.9= A×10+A÷10;例:743×9.9=743×10-743÷10=7430-74.3=7355.7A×11型速算技巧:A×11= A×10+A;例:743×11=743×10+743=7430+743=8173A×101型速算技巧:A×101= A×100+A;例:743×101=743×100+743=75043乘/除以5、25、125的速算技巧:A×5型速算技巧:A×5=10A÷2;例:8739.45×5=8739.45×10÷2=87394.5÷2=43697.25A÷5型速算技巧:A÷5=0.1A×2;例:36.843÷5=36.843×0.1×2=3.6843×2=7.3686A×25型速算技巧:A×25=100A÷4;例:7234×25=7234×100÷4=723400÷4=180850A÷25型速算技巧:A÷25=0.01A×4;例:3714÷25=3714×0.01×4=37.14×4=148.56A×125型速算技巧:A×5=1000A÷8;例:8736×125=8736×1000÷8=8736000÷8=1092000A÷125型速算技巧:A÷1255=0.001A×8;例:4115÷125=4115×0.001×8=4.115×8=32.92减半相加:A×1.5型速算技巧:A×1.5=A+A÷2;例:3406×1.5=3406+3406÷2=3406+1703=5109“首数相同尾数互补”型两数乘积速算技巧:积的头=头×(头+1);积的尾=尾×尾例:23×27=首数均为2,尾数3与7的和是10,互补所以乘积的首数为2×(2+1)=6,尾数为3×7=21,即23×27=621本方法适合11~99 所有平方的计算。
11X11=121 21X21=4141 31X31=961 41X41=168112X12=148 22X22=484 32X32=1024 42X42=1764 52X52=2704从上面的计算我们可以得出公式:个位=个位×个位所得数的个位,如果满几十就向前进几,十位=个位×(十位上的数字×2)+进位所得数的末位,如果满几十就向前进几,百位=两个十位上的数字相乘+进位。
例:26×26=个位=6×6=36,满30 向前进3;十位=6×(2×2)+3=27,满20 向前=进2;百位=2×2+2=6由此可见26×26=67623×23个位=3×3=9十位=3×(2×2)=12,写2 进1百位=2×2+进1=5所以23×23=52946×46 个位=6×6= 36,写6进3十位=6×(4×2)+进3= 5 1,写1 进5百位=4×4+进5= 21,写1 进2所以46×46=2116如果没有满十就不用进位,计算更简便。
例:13×13个位=3×3=9 十位=3×(1×2)=6 百位=1×1 所以13×13=169规律:(1)完全平方数的个位数字只能是0,1,4,5,6,9.(没有2,3,7,8)两个整数的个位数字之和为10,则它们的平方数的个位数字相同。
(2)奇数的平方的个位数字是奇数,十位数字是偶数。
(3)如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数。
(4)偶数的平方是4 的倍数;奇数的平方是4 的倍数加1。
(5)奇数的平方是8n+1 型;偶数的平方为8n 或8n+4 型。
(6)完全平方数的形式必为下列两种之一:3n,3n+1。
(7)不能被5 整除的数的平方为5n±1 型,能被5 整除的数的平方为5n 型。
(8)平方数的形式具有下列形式16n,16n+1,16n+4,16n+9。
(9)完全平方数的各位数字之和的个位数字只能是0,1,3,4,6,7,9.(没有2,5,8)(10)如果质数p 能整除a,但p 的平方不能整除a,则a 不是完全平方数。
(11)在两个相邻的整数的平方数之间的所有整数都不是完全平方数。
(12)一个正整数n 是完全平方数的充分必要条件是n 有奇数个因数(包括1 和n)。
一个数如果是另一个整数的完全立方(即一个整数的三次方,或整数乘以它本身乘以它本身),那么我们就称这个数为完全立方数,也叫做立方数,如0,1,8,27,64,125,216,343,512,729,1000 等。
如果正整数x,y,z 满足不定方程x2+y2=z2 ,就称x,y,z 为一组勾股数。
x,y 必然是一个为奇数另一个为偶数,不可能同时为奇数或同时为偶数。
z 和z²必定都是奇数。
五组常见的勾股数:3²+4²=5²;5²+12²=13²;7²+24²=25²;8²+15²=17²;20²+21²=29²9+16=25;25+144=169;49+576=625;64+225=289;400+441=841记忆技巧:(a+b)²= a²+ b²+ 2ab (a-b)²=a²+ b²-2ab| | | | | |a×a b×b 2×a×b a×a b×b 2×a×b例:13²=(10+3) ²=10²+3²+2×10×3=100+9+60=16988²=(90-2)²=90²+2²-2×90×2=8100+4-360=7744用处:①训练计算能力,使计算更快更准确;②估计某数的平方根所处的范围,在判定某个较大的数n 是不是质数时可以缩小其可能因子的筛选范围,只需检查3 到n 之间的所有质数是不是n 的因子即可,超过n 的都不必检查了例如:判定2431是否为质数,因为49²=2401<2431<2500=50²,所以49<2431 .<50, 2+4+3+1=10不能被3整除, 2341的个位既非0又非5,故只需检查7到47之间的所有质数能否整除2431即可,而53,59,61,67……等更大的质数都不用检查了,实际上2431=11×13×17③增加对数字的熟悉程度,比如16²=256=28,32²=1024=210,64²=4096=212,另外一些特殊结构的数字应该牢记,如88²=7744, 11²=121,22²=484,(121 和484 从左到右与从右到左看是一样的) 12²=144,21²=441,13²=169,31²=961,(a 左右颠倒后a²也左右颠倒)。
小学单位换算一、长度(一) 什么是长度?长度是一维空间的度量。
(二) 长度常用单位* 公里(km) * 米(m) * 分米(dm) * 厘米(cm) * 毫米(mm) * 微米(um)(三) 单位之间的换算1 微米=1000 纳米 1 毫米=1000 微米 1 厘米=10 毫米1 分米=10 厘米 1 米=1000 毫米 1 千米=1000 米1 米=10 分米=100 厘米二、面积(一)什么是面积面积,就是物体所占平面的大小。
对立体物体的表面的多少的测量一般称表面积。
(二)常用的面积单位* 平方毫米* 平方厘米* 平方分米* 平方米* 平方千米(三)面积单位的换算1 平方厘米=100 平方毫米 1 平方分米=100 平方厘米 1 平方米=100 平方分米1 公倾=10000 平方米 1 平方公里=1 平方千米=100 公顷1 公顷=0.01 平方千米≈15 亩 1 平方千米=1000000 平方米1 平方米=100 平方分米=10000 平方厘米三、体积和容积(一)什么是体积、容积体积,就是物体所占空间的大小。
容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。
(二)常用单位1 体积单位* 立方米* 立方分米* 立方厘米2 容积单位* 升* 毫升(三)单位换算1 平方米=100 平方分米 1 平方分米=100 平方厘米 1 平方厘米=100 平方毫米1 立方米=1000 立方分米 1 立方分米=1000 立方厘米2 容积单位1 升=1 立方米 1 升=1000 毫升 1 毫升=1 立方厘米1 立方米=1000 升 1 立方分米=1 升 1 立方厘米=1 毫升四、质量(一)什么是质量质量,就是表示表示物体有多重。
(二)常用单位* 吨t * 千克kg * 克g(三)常用换算1 吨(t)=1000 千克(kg) 1 千克=1000 克(g)重量单位换算1 吨=1000 千克 1 千克=1000 克 1 千克=1 公斤五、时间(一)什么是时间是指有起点和终点的一段时间世纪、年、月、日、时、分、秒(三)单位换算* 1 世纪=100 年 1 年=12 月 1 年=365 天平年一年=366 天闰年. 一、三、五、七、八、十、十二是大月大月有31 天四、六、九、十一是小月小月有30 天平年2 月有28 天闰年2 月有29 天1 天= 24 小时 1 小时=60 分 1 分=60 秒1秒=1000毫秒(ms)1时=3600秒货币(一)什么是货币货币是充当一切商品的等价物的特殊商品。