常见分数、小数及百分数互化-常用平方数、立方数及各种计算方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、C列分数化小数的记法:分子乘5,小数点向左移动两位。

2、D、E两列分数化小数的记法:分子乘4,小数点向左移动两位

常见分数、小数互化表

常见的分数、小数及百分数的互化

常用平方数

常见立方数

常见特殊数的乘积

错位相加/减

A×9型速算技巧:A×9= A×10-A;

例:743×9=743×10-743=7430-743=6687

A×9.9型速算技巧:A×9.9= A×10+A÷10;

例:743×9.9=743×10-743÷10=7430-74.3=7355.7

A×11型速算技巧:A×11= A×10+A;

例:743×11=743×10+743=7430+743=8173

A×101型速算技巧:A×101= A×100+A;

例:743×101=743×100+743=75043

乘/除以5、25、125的速算技巧:

A×5型速算技巧:A×5=10A÷2;

例:8739.45×5=8739.45×10÷2=87394.5÷2=43697.25

A÷5型速算技巧:A÷5=0.1A×2;

例:36.843÷5=36.843×0.1×2=3.6843×2=7.3686

A×25型速算技巧:A×25=100A÷4;

例:7234×25=7234×100÷4=723400÷4=180850

A÷25型速算技巧:A÷25=0.01A×4;

例:3714÷25=3714×0.01×4=37.14×4=148.56

A×125型速算技巧:A×5=1000A÷8;

例:8736×125=8736×1000÷8=8736000÷8=1092000

A÷125型速算技巧:A÷1255=0.001A×8;

例:4115÷125=4115×0.001×8=4.115×8=32.92

减半相加:

A×1.5型速算技巧:A×1.5=A+A÷2;

例:3406×1.5=3406+3406÷2=3406+1703=5109

“首数相同尾数互补”型两数乘积速算技巧:

积的头=头×(头+1);积的尾=尾×尾

例:23×27=首数均为2,尾数3与7的和是10,互补

所以乘积的首数为2×(2+1)=6,尾数为3×7=21,即23×27=621

本方法适合11~99 所有平方的计算。

11X11=121 21X21=4141 31X31=961 41X41=1681

12X12=148 22X22=484 32X32=1024 42X42=1764 52X52=2704从上面的计算我们可以得出公式:

个位=个位×个位所得数的个位,如果满几十就向前进几,

十位=个位×(十位上的数字×2)+进位所得数的末位,如果满几十就向前进几,百位=两个十位上的数字相乘+进位。

例:26×26=

个位=6×6=36,满30 向前进3;

十位=6×(2×2)+3=27,满20 向前=进2;

百位=2×2+2=6

由此可见26×26=676

23×23

个位=3×3=9

十位=3×(2×2)=12,写2 进1

百位=2×2+进1=5

所以23×23=529

46×46 个位=6×6= 36,写6进3

十位=6×(4×2)+进3= 5 1,写1 进5

百位=4×4+进5= 21,写1 进2

所以46×46=2116

如果没有满十就不用进位,计算更简便。

例:13×13

个位=3×3=9 十位=3×(1×2)=6 百位=1×1 所以13×13=169

规律:

(1)完全平方数的个位数字只能是0,1,4,5,6,9.(没有2,3,7,8)两个整数的个位数字之和为10,则它们的平方数的个位数字相同。

(2)奇数的平方的个位数字是奇数,十位数字是偶数。

(3)如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数。

(4)偶数的平方是4 的倍数;奇数的平方是4 的倍数加1。

(5)奇数的平方是8n+1 型;偶数的平方为8n 或8n+4 型。

(6)完全平方数的形式必为下列两种之一:3n,3n+1。

(7)不能被5 整除的数的平方为5n±1 型,能被5 整除的数的平方为5n 型。

(8)平方数的形式具有下列形式16n,16n+1,16n+4,16n+9。

(9)完全平方数的各位数字之和的个位数字只能是0,1,3,4,6,7,9.(没有2,5,8)

(10)如果质数p 能整除a,但p 的平方不能整除a,则a 不是完全平方数。

(11)在两个相邻的整数的平方数之间的所有整数都不是完全平方数。

(12)一个正整数n 是完全平方数的充分必要条件是n 有奇数个因数(包括1 和n)。

一个数如果是另一个整数的完全立方(即一个整数的三次方,或整数乘以它本身乘以它本身),那么我们就称这个数为完全立方数,也叫做立方数,

如0,1,8,27,64,125,216,343,512,729,1000 等。

如果正整数x,y,z 满足不定方程x2+y2=z2 ,就称x,y,z 为一组勾股数。

x,y 必然是一个为奇数另一个为偶数,不可能同时为奇数或同时为偶数。z 和z²必定都是奇数。

五组常见的勾股数:

3²+4²=5²;5²+12²=13²;7²+24²=25²;8²+15²=17²;20²+21²=29²

9+16=25;25+144=169;49+576=625;64+225=289;400+441=841记忆技巧:

(a+b)²= a²+ b²+ 2ab (a-b)²=a²+ b²-2ab

| | | | | |

a×a b×b 2×a×b a×a b×b 2×a×b

例:13²=(10+3) ²=10²+3²+2×10×3=100+9+60=169

88²=(90-2)²=90²+2²-2×90×2=8100+4-360=7744

用处:

①训练计算能力,使计算更快更准确;

②估计某数的平方根所处的范围,在判定某个较大的数n 是不是质数时可以缩小其可能因

子的筛选范围,只需检查3 到n 之间的所有质数是不是n 的因子即可,超过n 的都不必检查了

例如:判定2431是否为质数,因为49²=2401<2431<2500=50²,

所以49<2431 .<50, 2+4+3+1=10不能被3整除, 2341的个位既非0又非5,故只需检查7到47之间的所有质数能否整除2431即可,而53,59,61,67……等更大的质数都不用检查了,实际上2431=11×13×17

③增加对数字的熟悉程度,比如16²=256=28,32²=1024=210,64²=4096=212,另外

一些特殊结构的数字应该牢记,如88²=7744, 11²=121,22²=484,(121 和484 从左到右与从右到左看是一样的) 12²=144,21²=441,13²=169,31²=961,(a 左右颠倒后a²也左右颠倒)。

相关文档
最新文档