《化工热力学》通用型第二、三章答案1

合集下载

2020年化工热力学课后答案

2020年化工热力学课后答案

作者:旧在几作品编号:2254487796631145587263GF24000022 时间:2020.12.13化工热力学课后答案(填空、判断、画图)第1章 绪言一、是否题1. 封闭体系的体积为一常数。

(错)2. 封闭体系中有两个相βα,。

在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。

(对) 3. 理想气体的焓和热容仅是温度的函数。

(对)4. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。

3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。

B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,U = 0 ,H = 0 。

第2章P-V-T关系和状态方程一、是否题1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。

《化工热力学》(第二、三版_陈新志)课后习题答案

《化工热力学》(第二、三版_陈新志)课后习题答案

《化⼯热⼒学》(第⼆、三版_陈新志)课后习题答案第1章绪⾔⼀、是否题3. 封闭体系中有两个相。

在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。

(对)4. 理想⽓体的焓和热容仅是温度的函数。

(对)5. 理想⽓体的熵和吉⽒函数仅是温度的函数。

(错。

还与压⼒或摩尔体积有关。

)第2章P-V-T关系和状态⽅程⼀、是否题2. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。

(错。

可以通过超临界流体区。

)3. 当压⼒⼤于临界压⼒时,纯物质就以液态存在。

(错。

若温度也⼤于临界温度时,则是超临界流体。

)4. 由于分⼦间相互作⽤⼒的存在,实际⽓体的摩尔体积⼀定⼩于同温同压下的理想⽓体的摩尔体积,所以,理想⽓体的压缩因⼦Z=1,实际⽓体的压缩因⼦Z<1。

(错。

如温度⼤于Boyle温度时,Z>1。

)7. 纯物质的三相点随着所处的压⼒或温度的不同⽽改变。

(错。

纯物质的三相平衡时,体系⾃由度是零,体系的状态已经确定。

)8. 在同⼀温度下,纯物质的饱和液体与饱和蒸汽的热⼒学能相等。

(错。

它们相差⼀个汽化热⼒学能,当在临界状态时,两者相等,但此时已是汽液不分)9. 在同⼀温度下,纯物质的饱和液体与饱和蒸汽的吉⽒函数相等。

(对。

这是纯物质的汽液平衡准则。

)10. 若⼀个状态⽅程能给出纯流体正确的临界压缩因⼦,那么它就是⼀个优秀的状态⽅程。

(错。

)11. 纯物质的平衡汽化过程,摩尔体积、焓、热⼒学能、吉⽒函数的变化值均⼤于零。

(错。

只有吉⽒函数的变化是零。

)12. ⽓体混合物的virial系数,如B,C…,是温度和组成的函数。

(对。

)13. 三参数的对应态原理较两参数优秀,因为前者适合于任何流体。

(错。

三对数对应态原理不能适⽤于任何流体,⼀般能⽤于正常流体normal fluid)14. 在压⼒趋于零的极限条件下,所有的流体将成为简单流体。

(错。

简单流体系指⼀类⾮极性的球形流,如Ar等,与所处的状态⽆关。

化工热力学第一,二三章完整!!!答案.

化工热力学第一,二三章完整!!!答案.

第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。

(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。

其中B 用Pitzer 的普遍化关联法计算。

[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ (2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ (E1)其中2 2.50.427480.08664c c c cR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.152.9846104.05310V -⨯=+⨯⨯ 350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅ 第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。

化工热力学(第三版)课后答案完整版_朱自强

化工热力学(第三版)课后答案完整版_朱自强

化工热力学(第三版)课后答案完整版_朱自强第二章流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。

(1)理想气体方程;(2)RK 方程;(3)PR 方程;(4)维里截断式(2-7)。

其中B 用Pitzer 的普遍化关联法计算。

[解] (1)根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --?+=== (2)用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ (E1)其中2 2.50.427480.08664c c c cR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ??== 53160.086648.314190.6 2.9846104.6010b m mol --??== 以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.152.9846104.05310V -?=+?? 350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----??-?-+? 3553311.381102.984610 2.1246101.389610m mol -----=?+?-?=?? 第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------??-?=?+?-+?=?+?-?=??1V 和2V 已经相差很小,可终止迭代。

《化工热力学》详细课后习题答案解析(陈新志)

《化工热力学》详细课后习题答案解析(陈新志)

2习题第1章 绪言一、是否题1. 孤立体系的热力学能和熵都是一定值。

(错。

和,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T ,P 的理想气体,右侧是T 温度的真空。

当隔板抽去后,由于Q =W =0,,,,故体系将在T ,2V ,0.5P 状态下达到平衡,,,)2. 封闭体系的体积为一常数。

(错)3. 封闭体系中有两个相。

在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。

(对)4. 理想气体的焓和热容仅是温度的函数。

(对)5. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T ,V )的自变量中只有一个强度性质,所以,这与相律有矛盾。

(错。

V 也是强度性质)7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压力相等的过程有。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)8. 描述封闭体系中理想气体绝热可逆途径的方程是(其中),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。

(错。

) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。

(错。

有时可能不一致)10. 自变量与独立变量是不可能相同的。

(错。

有时可以一致)三、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。

3. 封闭体系中,温度是T 的1mol 理想气体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V 表示)或 (以P 表示)。

4. 封闭体系中的1mol 理想气体(已知),按下列途径由T 1、P 1和V 1可逆地变化至P,则mol ,温度为 和水 。

化工热力学课后答案完整版

化工热力学课后答案完整版

.第二章流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400 ℃、 4.053MPa 下甲烷气体的摩尔体积。

( 1 )理想气体方程;( 2 ) RK 方程;( 3)PR 方程;( 4 )维里截断式( 2-7)。

其中 B 用 Pitzer 的普遍化关联法计算。

[解 ] ( 1 )根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积V id为V id RT8.314(400273.15) 1.381 103m3mol 1p 4.053106(2)用 RK 方程求摩尔体积将RK 方程稍加变形,可写为V RT a(V b)b(E1)p T 0.5 pV (V b)其中0.42748R2T c2.5ap c0.08664 RT cbp c从附表 1 查得甲烷的临界温度和压力分别为T c=190.6K,p c=4.60MPa,将它们代入a, b 表达式得a0.42748 8.3142 190.62.5 3.2217m 6 Pa mol -2 K 0.54.60106b0.086648.314190.6 2.9846 10 5 m3 mol 14.60106以理想气体状态方程求得的V id为初值,代入式( E1)中迭代求解,第一次迭代得到V1值为V18.314673.15 2.984610 54.053106.3.2217 (1.381 100.56673.15 4.053 10 1.381 103 2.9846 10 5 )3(1.381 10 3 2.984610 5 )1.38110 32.984610 5 2.124610 51.3896331 10m mol第二次迭代得 V2为V2 1.381103 2.98461053.2217(1.389610 3 2.984610 5)673.15 0.5 4.05310 61.389610 3(1.389610 3 2.984610 5)1.38110 32.984610 5 2.112010 51.389710 3 m3 mol1V1和 V2已经相差很小,可终止迭代。

化工热力学(第三版)课后答案完整版_朱自强

化工热力学(第三版)课后答案完整版_朱自强

第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。

(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。

其中B 用Pitzer 的普遍化关联法计算。

[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ (2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ (E1)其中2 2.50.427480.08664c c c cR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.152.9846104.05310V -⨯=+⨯⨯ 350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅ 第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。

化工热力学标准答案

化工热力学标准答案

化工热力学第二章作业解答2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式解 (1)用理想气体方程(2-4)V =RT P =68.3146734.05310⨯⨯=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6)从附录二查的甲烷的临界参数和偏心因子为Tc =190.6K ,Pc =4.600Mpa ,ω=0.008将Tc ,Pc 值代入式(2-7a )式(2-7b )2 2.50.42748c cR T a p ==2 2.560.42748(8.314)(190.6)4.610⨯⨯⨯=3.224Pa ·m 6·K 0.5·mol -2 0.0867c cRT b p ==60.08678.314190.64.610⨯⨯⨯=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6)4.053×106= 58.3146732.98710V -⨯-⨯-0.553.224(673)( 2.98710)V V -+⨯ 迭代解得V =1.390×10-3 m 3·mol -1(注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可)(3)用普遍化关系式673 3.53190.6r T T Tc === 664.053100.8814.610r P P Pc ⨯===⨯ 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。

由式(2-44a )、式(2-44b )求出B 0和B 1B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138代入式(2-43)010.02690.0080.1380.0281BPc B B RTcω=+=+⨯= 由式(2-42)得Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ⎛⎫⎛⎫=+=+⨯= ⎪⎪⎝⎭⎝⎭V =1.390×10-3 m 3·mol -12.2试分别用(1)Van der Waals,(2)R-K ,(3)S-R-K 方程计算273.15K 时将CO 2压缩到比体积为550.1cm 3·mol -1所需要的压力。

化工热力学第二章第三章习题答案

化工热力学第二章第三章习题答案

思考题3-1气体热容,热力学能和焓与哪些因素有关?由热力学能和温度两个状态参数能否确定气体的状态?答:气体热容,热力学能和焓与温度压力有关,由热力学能和温度两个状态参数能够确定气体的状态。

3-2 理想气体的内能的基准点是以压力还是温度或是两者同时为基准规定的? 答:理想气体的内能的基准点是以温度为基准规定的。

3-3 理想气体热容差R p v c c -=是否也适用于理想气体混合物?答:理想气体热容差R p v c c -=不适用于理想气体混合物,因为混合物的组成对此有关。

3-4 热力学基本关系式d d d H T S V p =+是否只适用于可逆过程? 答:否。

热力学基本关系式d d d H T S V p =+不受过程是否可逆的限制3-5 有人说:“由于剩余函数是两个等温状态的性质之差,故不能用剩余函数来计算性质随着温度的变化”,这种说法是否正确?答:不正确。

剩余函数是针对于状态点而言的;性质变化是指一个过程的变化,对应有两个状态。

3-6 水蒸气定温过程中,热力学内能和焓的变化是否为零?答:不是。

只有理想气体在定温过程中的热力学内能和焓的变化为零。

3-7 用不同来源的某纯物质的蒸气表或图查得的焓值或熵值有时相差很多,为什么?能否交叉使用这些图表求解蒸气的热力过程?答:因为做表或图时选择的基准可能不一样,所以用不同来源的某纯物质的蒸气表或图查得的焓值或熵值有时相差很多。

不能够交叉使用这些图表求解蒸气的热力过程。

3-8 氨蒸气在进入绝热透平机前,压力为2.0 MPa ,温度为150℃,今要求绝热透平膨胀机出口液氨不得大于5%,某人提出只要控制出口压力就可以了。

你认为这意见对吗?为什么?请画出T -S 图示意说明。

答:可以。

因为出口状态是湿蒸汽,确定了出口的压力或温度,其状态点也就确定了。

3-9 很纯的液态水,在大气压力下,可以过冷到比0℃低得多的温度。

假设1kg 已被冷至-5℃的液体。

现在,把一很小的冰晶(质量可以忽略)投入此过冷液体内作为晶种。

《化工热力学》(第二、三版_陈新志)课后习题答案

《化工热力学》(第二、三版_陈新志)课后习题答案

第1章绪言一、是否题3. 封闭体系中有两个相。

在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。

(对)4. 理想气体的焓和热容仅是温度的函数。

(对)5. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)第2章P-V-T关系和状态方程一、是否题2. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。

(错。

可以通过超临界流体区。

)3. 当压力大于临界压力时,纯物质就以液态存在。

(错。

若温度也大于临界温度时,则是超临界流体。

)4. 由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1。

(错。

如温度大于Boyle温度时,Z>1。

)7. 纯物质的三相点随着所处的压力或温度的不同而改变。

(错。

纯物质的三相平衡时,体系自由度是零,体系的状态已经确定。

)8. 在同一温度下,纯物质的饱和液体与饱和蒸汽的热力学能相等。

(错。

它们相差一个汽化热力学能,当在临界状态时,两者相等,但此时已是汽液不分)9. 在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等。

(对。

这是纯物质的汽液平衡准则。

)10. 若一个状态方程能给出纯流体正确的临界压缩因子,那么它就是一个优秀的状态方程。

(错。

)11. 纯物质的平衡汽化过程,摩尔体积、焓、热力学能、吉氏函数的变化值均大于零。

(错。

只有吉氏函数的变化是零。

)12. 气体混合物的virial系数,如B,C…,是温度和组成的函数。

(对。

)13. 三参数的对应态原理较两参数优秀,因为前者适合于任何流体。

(错。

三对数对应态原理不能适用于任何流体,一般能用于正常流体normal fluid)14. 在压力趋于零的极限条件下,所有的流体将成为简单流体。

(错。

简单流体系指一类非极性的球形流,如A r等,与所处的状态无关。

)二、选择题1. 指定温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为(C。

化工热力学第三版课后习题答案

化工热力学第三版课后习题答案

《化工热力学》(第三版)习题参考答案58页第2章2-1 求温度673.15K 、压力4.053MPa 的甲烷气体摩尔体积。

解:(a )理想气体方程133610381.110053.415.673314.8--⋅⋅⋅=⋅⋅==⇒=molm p RT V RT pV(b )用R-K 方程① 查表求c T 、c p ;② 计算a 、b ;③ 利用迭代法计算V 。

()()()133113301103896.110381.1--+--+⋅⋅⋅=⋅⋅⋅⋅⋅⋅=+⋅⋅--+=+⋅⋅--=molm V molm V b V V T b V a b p RT V b V V T a b V RT p i i i i i(c )用PR 方程步骤同(b ),计算结果:1331103893.1--+⋅⋅⋅=molm V i 。

(d )利用维里截断式2.416.101172.0139.0422.0083.0111rrrr rr rr cc T B T BT p B T p B T p RT Bp RT Bp RTpV Z -=-=⋅⋅+⋅+=⋅+=+==ω查表可计算r p 、r T 、0B 、1B 和Z 由13310391.1--⋅⋅⋅==⇒=molm pZRT V RTpV Z2-2 V=0.5 m 3,耐压2.7 MPa 容器。

规定丙烷在T=400.15K 时,p<1.35MPa 。

求可充丙烷多少千克?解:(a )用理想气体方程 136948.815.400314.85.01035.10441.0--⋅⋅=⋅⋅⋅⋅==⇒=⇒=molm RTMpV m RT Mm pV nRT pV (b )用R-K 方程① 查表求c T 、c p ;② 计算a 、b ;③ 利用迭代法计算V 。

()()()13311330110241.210464.2--+--+⋅⋅⋅=⋅⋅⋅⋅⋅⋅=+⋅⋅--+=+⋅⋅--=molm V molm V b V V T b V a b pRT V b V V T a b V RT p i i i i i则可充丙烷质量计算如下:kg M V V M n m i ⋅=⋅⋅=⋅=⋅=-+838.910241.25.00441.031(c )利用维里截断式:2.416.101172.0139.0422.0083.0111rrrr rr rr cc m T B T BT p B T p B T p RT Bp RTBp RTpV Z -=-=⋅⋅+⋅+=⋅+=+==ω查表可计算r p 、r T 、0B 、1B 和Z 由133610257.21035.115.400314.8916.0--⋅⋅⋅=⋅⋅⋅=⇒=molm V RTpV Z m m则可充丙烷质量计算如下:kg M V V M n m i ⋅=⋅⋅=⋅=⋅=-+77.910257.25.00441.0312-4 V=1.213 m 3,乙醇45.40 kg ,T=500.15K ,求压力。

完整版化工热力学答案-冯新-宣爱国-课后总习题答案详解1

完整版化工热力学答案-冯新-宣爱国-课后总习题答案详解1
你作为企业的工程师将采用何种方案,请比较两种方案各自的优缺点,必要时采用定量的方法。
解:⑴查附录2知:Tc=369.8K,Pc=4.246MPa,ω=0.152
=4.746Mpa
答:由于钢瓶的实际压力大于其安全工作压力,因此会发生爆炸。
2-17.作为汽车发动机的燃料,如果15℃、0.1013MPa的甲烷气体40 m3与3.7854升汽油相当,那么要多大容积的容器来承载20MPa、15℃的甲烷才能与37.854升的汽油相当?
解:查表得:甲烷Tc=190.6K , Pc=4.60MPa
解:(1) 12kg丙烷的摩尔总数:
按照安全要求,液化气充装量最多为液化气罐的97%,则
液化气罐允许的总丙烷摩尔数为:
显然装载的12kg丙烷已超出液化气罐允许量,此时液化气罐是不安全的。(2)只有将丙烷量减至 以下,才能安全。
(3)用SRK方程(免费软件:/~pjb10/thermo/pure.html)计算得:此时液化气罐的操作压力为3.026bar,因此,液化气罐的设计压力为6.052 bar。
【参考答案】:不同。真实气体偏离理想气体程度不仅与T、p有关,而且与每个气体的临界特性有关,即最本质的因素是对比温度、对比压力以及偏心因子 , 和 。
2-5偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?
【参考答案】:偏心因子ω为两个分子间的相互作用力偏离分子中心之间的作用力的程度。其物理意义为:一般流体与球形非极性简单流体(氩,氪、氙)在形状和极性方面的偏心度。为了提高计算复杂分子压缩因子的准确度。
一、问答题:
2-1为什么要研究流体的pVT关系?
【参考答案】:流体p-V-T关系是化工热力学的基石,是化工过程开发和设计、安全操作和科学研究必不可少的基础数据。(1)流体的PVT关系可以直接用于设计。(2)利用可测的热力学性质(T,P,V等)计算不可测的热力学性质(H,S,G,等)。只要有了p-V-T关系加上理想气体的 ,可以解决化工热力学的大多数问题。

沈阳化工大学化工热力学第二三章习题课--答案

沈阳化工大学化工热力学第二三章习题课--答案

第二、三章习题课答案一、填空题(1)处于单相区的纯物质,可以独立改变的参数为 2 。

(2)Pitzer 三参数普遍化方法以 偏心因子 为第三参数,其定义式为00.1)log(7.0T r--==S r p ω。

(3)纯物质的维里系数是 物质和温度 的函数,混合物的维里系数是 物质、温度和组成 的函数。

(4)纯物质的临界等温线在临界点的斜率和曲率均为零,数学上可以表示为 0=⎪⎭⎫⎝⎛∂∂=TcT v p022=⎪⎪⎭⎫ ⎝⎛∂∂=TcT v p 。

(5)由热力学基本关系式p V T S G d d d +-=,写出对应的Maxwell 关系式为p TT V p S ⎪⎭⎫⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂ 。

(6)理想气体等温过程的焓变为 0 ,等压过程的焓变为TC H T T ig p ig p d 21⎰=∆ 。

(7)剩余性质的定义式为 ()()p T M p T M M igR ,-,= 。

(8)某物质符合状态方程RT b V p =-)(,对应的剩余焓为 bp ;若理想气体的热容为ig p C ,则该真实气体的焓变()()1122,,p T H p T H -为TC p p b T T ig p d )(2112⎰+-。

二、判断题(1)恒温下的任何气体,当压力趋于零时,pV 乘积也趋于零。

( × ) (2)对给定的化合物来说,其临界性质Tc 、Vc 、Pc 和Zc 是常数。

( √ ) (3)压缩因子Z 总是小于或等于1。

( × )(4)纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。

( × ) (5)纯物质的三相点随着所处的压力或温度的不同而改变。

( × )(6)RK 方程中,常数的混合规则分别为 ∑∑==i i m i i m b y b a y a 。

( × ) (7)热力学基本关系式d H=T d S+V d p 只适用于可逆过程。

化工热力学第三版(完全版)课后习题答案

化工热力学第三版(完全版)课后习题答案
解:用Antoine方程A=6.8635,B=1892.47,C=-24.33
(a)由软件计算可知
(b)
3.试由饱和液体水的性质估算(a)100℃,2.5MPa和(b)100℃,20MPa下水的焓和熵,已知100℃下水的有关性质如下
MPa, Jg-1, J g-1K-1, cm3g-1,
cm3g-1K-1
化工热力学课后答案
第1章 绪言
一、是否题
1.封闭体系的体积为一常数。(错)
2.封闭体系中有两个相 。在尚未达到平衡时, 两个相都是均相敞开体系;达到平衡时,则 两个相都等价于均相封闭体系。(对)
3.理想气体的焓和热容仅是温度的函数。(对)
4.理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。)
2.对于混合物体系,偏离函数中参考态是与研究态同温.同组成的理想气体混合物。
四、计算题
1.试计算液态水从2.5MPa和20℃变化到30MPa和300℃的焓变化和熵变化,既可查水的性质表,也可以用状态方程计算。
解:用PR方程计算。查附录A-1得水的临界参数Tc=647.30K;Pc=22.064MPa;ω=0.344
A.
B.0
C.
D.
3. 等于(D。因为 )
A.
B.
C.
D.
4.吉氏函数变化与P-V-T关系为 ,则 的状态应该为(C。因为 )
A.T和P下纯理想气体
B.T和零压的纯理想气体
C.T和单位压力的纯理想气体
三、填空题
1.状态方程 的偏离焓和偏离熵分别是 和 ;若要计算 和 还需要什么性质? ;其计算式分别是 和 。
四、计算题
1.某一服从P(V-b)=RT状态方程(b是正常数)的气体,在从1000b等温可逆膨胀至2000b,所做的功应是理想气体经过相同过程所做功的多少倍?

化工热力学课后习题答案

化工热力学课后习题答案

化⼯热⼒学课后习题答案习题第1章绪⾔⼀、是否题1. 孤⽴体系的热⼒学能和熵都是⼀定值。

(错。

和,如⼀体积等于2V 的绝热刚性容器,被⼀理想的隔板⼀分为⼆,左侧状态是T ,P 的理想⽓体,右侧是T 温度的真空。

当隔板抽去后,由于Q =W =0,,,,故体系将在T ,2V ,状态下达到平衡,,,)2. 封闭体系的体积为⼀常数。

(错)3. 封闭体系中有两个相。

在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。

(对)4. 理想⽓体的焓和热容仅是温度的函数。

(对)5. 理想⽓体的熵和吉⽒函数仅是温度的函数。

(错。

还与压⼒或摩尔体积有关。

)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态⽅程 P =P (T ,V )的⾃变量中只有⼀个强度性质,所以,这与相律有⽭盾。

(错。

V 也是强度性质)7. 封闭体系的1mol ⽓体进⾏了某⼀过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压⼒相等的过程有。

(对。

状态函数的变化仅决定于初、终态与途径⽆关。

)8. 描述封闭体系中理想⽓体绝热可逆途径的⽅程是(其中),⽽⼀位学⽣认为这是状态函数间的关系,与途径⽆关,所以不需要可逆的条件。

(错。

) 9. ⾃变量与独⽴变量是⼀致的,从属变量与函数是⼀致的。

(错。

有时可能不⼀致)10. ⾃变量与独⽴变量是不可能相同的。

(错。

有时可以⼀致)三、填空题1. 状态函数的特点是:状态函数的变化与途径⽆关,仅决定于初、终态。

22. 单相区的纯物质和定组成混合物的⾃由度数⽬分别是 2 和 2 。

3. 封闭体系中,温度是T 的1mol 理想⽓体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V 表⽰)或(以P 表⽰)。

4. 封闭体系中的1mol 理想⽓体(已知),按下列途径由T 1、P 1和V 1可逆地变化⾄P ,则mol,温度为和⽔。

化工热力学答案课后总习题答案详解

化工热力学答案课后总习题答案详解

化工热力学答案—课后总习题答案详解第二章习题解答一.问答题:2-1为什么要研究流体的"VT关系?【参考答案】:流体P-V-T关系是化工热力学的基石,是化工过程开发和设讣、安全操作和科学研究必不可少的基础数据。

(I)流体的PVT关系可以直接用于设汁。

(2)利用可测的热力学性质(T, P, V等)计算不可测的热力学性质(H, S, G.等)。

只要有了旷/T关系加上理想气体的C;;, 可以解决化工热力学的大多数问题匚以及该区域的特征:同时指岀其它重要的点、2- 2 ⅛ P-V图上指出超临界萃取技术所处的区域,而以及它们的特征。

【参考答案】:1)超临界流体区的特征是:环、P>Pco2)临界点C的数学特征:(^PM Z)/ =° (在C点)($2p/刃2)・0 (在C点)3)饱和液相线是不同压力下产生第一个气泡的那个点的连线:4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。

5)过冷液体区的特征:给左压力下液体的温度低于该压力下的泡点温度。

6)过热蒸气区的特征:给左压力下蒸气的温度髙于该压力下的露点温度。

7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。

2-3要满足什么条件,气体才能液化?【参考答案】:气体只有在低于7;条件下才能被液化。

2-4不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决左偏离理想气体程度的最本质因素?【参考答案】:不同。

真实气体偏离理想气体程度不仅与7∖ P有关,而且与每个气体的临界特性有关,即最本质的因素是对比温度、对比压力以及偏心因子7;, /和Q。

2-5偏心因子的概念是什么?为什么要提出这个槪念?它可以直接测呈:吗?【参考答案】:偏心因子。

为两个分子间的相互作用力偏离分子中心之间的作用力的程度。

其物理意义为:一般流体与球形非极性简单流体(氮,氟、毎)在形状和极性方而的偏心度。

为了提高计算复杂分子压缩因子的准确度。

化工热力学答案_冯新_宣爱国_课后总习题答案详解 全

化工热力学答案_冯新_宣爱国_课后总习题答案详解 全

第二章习题解答一、问答题:2-1为什么要研究流体的pVT 关系?【参考答案】:流体p-V-T 关系是化工热力学的基石,是化工过程开发和设计、安全操作和科学研究必不可少的基础数据。

(1)流体的PVT 关系可以直接用于设计。

(2)利用可测的热力学性质(T ,P ,V 等)计算不可测的热力学性质(H ,S ,G ,等)。

只要有了p-V-T 关系加上理想气体的idp C ,可以解决化工热力学的大多数问题。

2-2在p -V 图上指出超临界萃取技术所处的区域,以及该区域的特征;同时指出其它重要的点、线、面以及它们的特征。

【参考答案】:1)超临界流体区的特征是:T >T c 、p >p c 。

2)临界点C 的数学特征:3)饱和液相线是不同压力下产生第一个气泡的那个点的连线;4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。

5)过冷液体区的特征:给定压力下液体的温度低于该压力下的泡点温度。

6)过热蒸气区的特征:给定压力下蒸气的温度高于该压力下的露点温度。

7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。

2-3 要满足什么条件,气体才能液化?【参考答案】:气体只有在低于T c 条件下才能被液化。

2-4 不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决定偏离理想气体程度的最本质因素?【参考答案】:不同。

真实气体偏离理想气体程度不仅与T 、p 有关,而且与每个气体的临界特性有关,即最本质的因素是对比温度、对比压力以及偏心因子r T ,r P 和ω。

2-5 偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?()()()()点在点在C V PC V PT T 0022==∂∂∂∂【参考答案】:偏心因子ω为两个分子间的相互作用力偏离分子中心之间的作用力的程度。

其物理意义为:一般流体与球形非极性简单流体(氩,氪、氙)在形状和极性方面的偏心度。

为了提高计算复杂分子压缩因子的准确度。

化工热力学通用型第二三章答案

化工热力学通用型第二三章答案

习题:2-1.为什么要研究流体的pVT 关系?答:在化工过程的分析、研究与设计中,流体的压力p 、体积V 和温度T 是流体最基本的性质之一,并且是可以通过实验直接测量的。

而许多其它的热力学性质如内能U 、熵S 、Gibbs 自由能G 等都不方便直接测量,它们需要利用流体的p –V –T 数据和热力学基本关系式进行推算;此外,还有一些概念如逸度等也通过p –V –T 数据和热力学基本关系式进行计算。

因此,流体的p –V –T 关系的研究是一项重要的基础工作。

2-2.理想气体的特征是什么?答:假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。

严格地说,理想气体是不存在的,在极低的压力下,真实气体是非常接近理想气体的,可以当作理想气体处理,以便简化问题。

理想气体状态方程是最简单的状态方程:RT pV =2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。

实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r sr Tp 11log α 其中,cs s r p p p = 对于不同的流体,α具有不同的值。

但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=sr p 这一点。

对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的sr p log 值之差来表征。

Pitzer 把这一差值定义为偏心因子ω,即)7.0(00.1log =--=r s r T p ω任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。

2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题:2-1.为什么要研究流体的pVT 关系?答:在化工过程的分析、研究与设计中,流体的压力p 、体积V 和温度T 是流体最基本的性质之一,并且是可以通过实验直接测量的。

而许多其它的热力学性质如内能U 、熵S 、Gibbs 自由能G 等都不方便直接测量,它们需要利用流体的p –V –T 数据和热力学基本关系式进行推算;此外,还有一些概念如逸度等也通过p –V –T 数据和热力学基本关系式进行计算。

因此,流体的p –V –T 关系的研究是一项重要的基础工作。

2-2.理想气体的特征是什么?答:假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。

严格地说,理想气体是不存在的,在极低的压力下,真实气体是非常接近理想气体的,可以当作理想气体处理,以便简化问题。

理想气体状态方程是最简单的状态方程:RT pV =2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。

实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r sr Tp 11log α 其中,cs s r p p p = 对于不同的流体,α具有不同的值。

但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=sr p 这一点。

对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的sr p log 值之差来表征。

Pitzer 把这一差值定义为偏心因子ω,即)7.0(00.1log =--=r s r T p ω任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。

2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。

由纯物质的p –V 图上的饱和蒸气和饱和液体曲线可知。

2-5.同一温度下,纯物质的饱和液体与饱和蒸气的热力学性质均不同吗?答:同一温度下,纯物质的饱和液体与饱和蒸气的Gibbs 自由能是相同的,这是纯物质气液平衡准则。

气他的热力学性质均不同。

2-6.常用的三参数的对应状态原理有哪几种?答:常用的三参数对比态原理有两种,一种是以临界压缩因子Zc 为第三参数;另外一种是以Pitzer 提出的以偏心因子ω作为第三参数的对应状态原理。

2-7.总结纯气体和纯液体pVT 计算的异同。

答:许多p –V -T 关系如RKS 方程、PR 方程及BWR 方程既可以用于计算气体的p –V –T ,又都可以用到液相区,由这些方程解出的最小体积根即为液体的摩尔体积。

当然,还有许多状态方程只能较好地说明气体的p –V -T 关系,不适用于液体,当应用到液相区时会产生较大的误差。

与气体相比,液体的摩尔体积容易测定。

除临界区外,温度(特别是压力)对液体容积性质的影响不大。

除状态方程外,工程上还常常选用经验关系式和普遍化关系式等方法来估算。

2-8.简述对应状态原理。

答:对比态原理认为,在相同的对比状态下,所有的物质表现出相同的性质。

对比态原理是从适用于p –V -T 关系两参数对比态原理开始的,后来又发展了适用于许多热力学性质和传递性质的三参数和更多参数的对比态原理。

2-9.如何理解混合规则?为什么要提出这个概念?有哪些类型的混合规则?答:对于真实流体,由于组分的非理想性及由于混合引起的非理想性,使得理想的分压定律和分体积定律无法准确地描述流体混合物的p –V -T 关系。

如何将适用于纯物质的状态方程扩展到真实流体混合物是化工热力学中的一个热点问题。

目前广泛采用的方法是将状态方程中的常数项,表示成组成x 以及纯物质参数项的函数,这种函数关系称作为混合规则。

对于不同的状态方程,有不同的混合规则。

寻找适当的混合规则,计算状态方程中的常数项,使其能准确地描述真实流体混合物的p –V -T 关系,常常是计算混合热力学性质的关键。

常用的混合规则包括适用于压缩因子图的虚拟临界性质的混合规则、维里系数的混合规则以及适用于立方型状态方程的混合规则。

2-10.在一个刚性的容器中,装入了1mol 的某一纯物质,容器的体积正好等于该物质的摩尔临界体积V c 。

如果使其加热,并沿着习题图2-1的p –T 图中的1→C →2的途径变化(C 是临界点)。

请将该变化过程表示在p –V 图上,并描述在加热过程中各点的状态和现象。

解:由于加热过程是等容过程,1→C →2是一条C V V =的等容线,所以在p –V 图可以表示为如图的形式。

点1表示容器中所装的是该物质的汽液混合物(由饱和蒸汽和饱和液体组成)。

沿1-2线,是表示等容加热过程。

随着过程的进行,容器中的饱和液体体积与饱和蒸汽体积的相对比例有所变化,但由图可知变化不是很大。

到了临界点C 点时,汽液相界面逐渐消失。

继续加热,容器中一直是均相的超临界流体。

在整个过程中,容器内的压力是不断增加的。

2-11.已知SO 2在431K 下,第二、第三Virial 系数分别为:13kmol m 159.0-⋅-=B ,263kmol m 100.9--⋅⨯=C ,试计算:(1) SO 2在431K 、10×105Pa 下的摩尔体积;(2) 在封闭系统内,将1kmolSO 2由10×105Pa 恒温(431K )可逆压缩到75×105Pa时所作的功。

解:(1)三项维里方程为:21VCV B RT pV Z ++==(A ) 将p =10×105Pa ,T =431K ,13kmol m 159.0-⋅-=B ,263kmol m 100.9--⋅⨯=C 代入式(A )并整理得:0109159.0279.0623=⨯-+--V V V迭代求解,初值为:13kmol m 5.3-⋅==pRTV 迭代结果为:13kmol m 39.3-⋅=V (2) 压缩功 V p W d =∂-由(A )式得:⎪⎭⎫⎝⎛++=321V C VB V RT p ,则:⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛---=⎪⎭⎫ ⎝⎛++-=⎰212212123211211ln d 121V V C V V B V V RT VV C V BV RT W V V (B )当p =75×105Pa 时,用(1)同样的方法解出:13kmol m 212.0-⋅=V将131km olm 39.3-⋅=V ,132km olm 212.0-⋅=V 代入式(B )解出:15kmol J 1077-⋅⨯=W2-12.试计算一个125cm 3的刚性容器,在50℃和18.745MPa 的条件下能贮存甲烷多少克(实验值为17g )?分别用理想气体方程和RK 方程计算(RK 方程可以用软件计算)。

解:由附录三查得甲烷的临界参数为:c T =190.56K ,c p =4.599MPa ,ω=0.011 (1)利用理想气体状态方程RT pV =得:()131346m ol cm 3.143m ol m 10433.110745.185015.273314.8---⋅=⋅⨯=⨯+⨯==p RT V g 95.133.14312516总=⨯=⋅=V V M m(2)RK 方程)(5.0b V V T a b V RT p +--=式中:()()2-0.5665.225.22mol K m Pa 2207.310599.456.190314.842748.0/42748.0⋅⋅⋅⨯⨯⨯===c cp TR a 1356mol m 10985.210599.456.190314.808664.0/08664.0--⋅⨯⨯⨯⨯===c c p RT b ()()4653.015.323314.810745.182207.35.2265.22==⨯⨯⨯=T R ap A 2083.015.323314.810745.1810985.265==⨯⨯⨯⨯=-RT bp B按照式(2-16a )⎪⎭⎫⎝⎛+--⎪⎭⎫ ⎝⎛+--=h h h h h B A h Z 12342.211111= 和式(2-16b ) ZZ B V b h 2083.0===迭代计算,取初值Z =1,迭代过程和结果见下表。

13346m ol 126.5cm /m ol m 10265.110745.1815.323314.88823.0--⋅⨯=⨯⨯⨯===p ZRT V g 81.155.12612516总=⨯=⋅=V V M m 可见,用RK 方程计算更接近实验值。

2-13.欲在一个7810cm 3的钢瓶中装入1kg 的丙烷,且在253.2℃下工作,若钢瓶的安全工作压力为10MPa ,问是否安全?解:查得丙烷的临界性质为:c T =369.83K ,c p =4.248MPa ,ω=0.152mol 727.22441000===M m n 1366m ol m 1063.343727.22107810---⋅⨯=⨯==n V V 总使用RK 方程: )(5.0b V V T ab V RT p +--= 首先用下式计算a ,b :()2-0.5665.225.22mol K m Pa 296.1810248.483.369314.842748.0/42748.0⋅⋅⋅=⨯⨯⨯==c cp TR a 1356102771.610248.483.369314.808664.0/08664.0--⋅⨯=⨯⨯⨯==mol m p RT b c c 代入RK 方程得:MPa p 870.9=非常接近于10MPa ,故有一定危险。

2-14.试用RKS 方程计算异丁烷在300K ,3.704×105Pa 时的饱和蒸气的摩尔体积。

已知实验值为133mol m 10081.6--⋅⨯=V 。

解:由附录三查得异丁烷的临界参数为:c T =407.8K ,c p =3.640MPa ,ω=0.1777357.08.407/300/===c r T T T7531.0177.0176.0177.0574.1480.0176.0574.1480.022=⨯-⨯+=-+=ωωm[]()[]2258.17357.017531.01)1(1)(25.025.0=-+=-+=r T m T α()()()()()()2662222mol /m Pa 6548.12258.110640.38.407314.842748.0/4278.0⋅⨯⨯⨯⨯⋅=⋅===T p TR T a T a c cαα()/mol m 100700.810640.3/8.407314.808664.0/08664.0356-⨯=⨯⨯⨯==c c p RT b()()09853.0300314.810704.36548.122522==⨯⨯⨯=T R ap A 01198.0300314.810704.3100700.855==⨯⨯⨯⨯=-RT bp B按照式(2-16a )⎪⎭⎫⎝⎛+--⎪⎭⎫ ⎝⎛+--=h h h h h B A h Z 12245.811111= 和式(2-16b ) ZZ B V b h 01198.0===迭代计算,取初值Z =1,迭代过程和结果见下表。

相关文档
最新文档