地源热泵地下埋管形式及计算

合集下载

地埋管地源热泵系统

地埋管地源热泵系统
环保与舒适性
室内采用水系统,舒适性最好;氟利昂不进房间,不存在氟利昂泄漏引起的窒息等问题;室外机采用水冷,没有冷热风扰民等问题;
室内采用氟系统,舒适性一般;氟利昂进房间,存在氟利昂泄漏引起的窒息等问题;室外机采用风冷,存在冷热风扰民等问题;
安装位置
主机体积小,不用考虑排气顺畅等问题,主机安装有利于环境美观设计,但需考虑埋管的空间
同方技术
系统设计
地埋管地源热泵系统设计
阅读勘察报告,了解地质情况:岩土层结构、岩土体的热物性、岩土体初始温度、冻土层厚度、地下水的情况等
了解和估算建筑物的最大冷负荷、最大热负荷、生活热水需求量、运行时间等
根据以往的经验数据对能否采用地埋管地源热泵进行可行性分析
方案设计阶段需要了解的内容
系统设计
系统散(吸)热量计算:
循环泵
盘管
环路集管
地 表 水 体
机组
用户
机组
用户
板换
系统介绍
开式地表水地源热泵系统
水处理
换热器
用户
回水口
地表水体
取水口
热泵
热泵
地埋管地源热泵系统
地埋管地源热泵系统
垂直地埋管地源热泵系统
水平地埋管地源热泵系统
系统拓展性
可以和地板采暖系统、生活热水做成一个系统,实现初投资和运行费用的最有利化
可以和地板采暖系统、生活热水做成一个系统
系统配电
由于系统EER比较高,故建筑配电小
和地源热泵配电相当,但需要额外增加天然气
环保与舒适性
室内采用水系统,舒适性好;室外机采用水冷,没有冷热风扰民等问题;
室内采用水系统,舒适性好;主机采用水冷,存在冷却塔飘水和噪音扰民,还需要另设排烟气管道等问题

地源热泵埋管方案

地源热泵埋管方案

地源热泵埋管方案1. 概述地源热泵是一种利用地热能量进行空调供暖的绿色能源技术。

而地源热泵埋管方案是地源热泵系统的重要组成部分。

本文将介绍地源热泵埋管方案的设计原理、材料选择、施工方法以及相关应用案例。

2. 设计原理地源热泵埋管方案的设计原理是将地下的热能转移至地源热泵系统中供暖或制冷使用。

该方案主要通过埋设地源热泵系统中的地暖管道,将地热能源吸收到管道中,再通过地源热泵的工作原理,将地热能转移为供暖或制冷的能量。

因此,地源热泵埋管方案的设计需要考虑地下地质条件、土壤温度变化以及管道布置方式等因素。

3. 材料选择在地源热泵埋管方案中,选择适合的材料是至关重要的。

通常使用的地暖管材料有塑料管材(如PE管、PP-R管等)和金属管材(如铜管、钢管等)。

不同的材料具有不同的导热性能和耐腐蚀性能,选择合适的材料能够确保地源热泵系统的运行效果和使用寿命。

4. 施工方法地源热泵埋管方案的施工方法包括以下几个步骤: 1. 地质勘测:根据需要进行地下地质勘测,确定地下土壤的特性、温度变化等因素,为后续的设计和施工提供数据支持。

2. 设计方案制定:根据地质勘测结果,制定地源热泵埋管方案的设计方案,确定地暖管道的布置方式、管道材料选择等。

3. 施工准备:准备好所需的施工工具和材料,对施工场地进行清理和准备工作。

4. 管道铺设:根据设计方案,开始进行地暖管道的铺设工作。

需要注意管道的坡度、固定方式和连接方法等细节。

5. 测试和调试:在管道铺设完成后,进行系统测试和调试,确保地源热泵系统的正常运行。

6. 防腐处理:根据需要对地暖管道进行防腐处理,延长使用寿命。

7. 工程验收:完成施工工作后,进行工程验收,确保地源热泵埋管方案的质量和性能达到设计要求。

5. 应用案例以下是几个地源热泵埋管方案的应用案例: 1. 住宅小区供暖系统:在住宅小区中,通过地暖管道将地热能源送入各个住户使用,实现集中供暖的效果。

2. 商业建筑空调系统:在商业建筑中,利用地源热泵埋管方案进行空调供暖,实现节能减排的目标。

南方地区地源热泵双U型垂直埋管施工工法

南方地区地源热泵双U型垂直埋管施工工法

南方地区地源热泵双U型垂直埋管施工工法南方地区地源热泵双U型垂直埋管施工工法一、前言南方地区气候湿热,冷热季差较小,传统的取暖、供冷方式对于节能和环保需求难以满足。

为了解决这一问题,南方地区开始使用地源热泵系统。

地源热泵双U型垂直埋管施工工法是一种适用于南方地区的地源热泵系统施工技术,具有优良的热泵系统性能和实施可行性。

二、工法特点地源热泵双U型垂直埋管施工工法有以下特点:1. 土建量小,不占用地面空间,对环境影响小;2. 双U型垂直埋管布置紧凑,利用土壤温度稳定性高,提高了能量利用效率;3. 双U型埋管系统可以进行传热、传质和换能三位一体的热交换;4. 该工法具有施工周期短、施工质量易于控制的优点;5. 地源热泵双U型垂直埋管施工工法可应用于地埋式地源热泵系统中,为南方地区提供节能、环保的供暖、供冷方式。

三、适应范围地源热泵双U型垂直埋管施工工法适用于南方地区,包括广东、广西、福建等湿热地区。

尤其适用于高层建筑、居民小区和商业综合体等场所。

四、工艺原理该工法通过埋设地源热泵双U型垂直埋管,在地下进行热交换,利用地下钻井方式向地下注入导热剂和碎石,形成双U型密封管道。

通过地表换热器与地源热泵机组之间的连接,实现地下热能的采集和利用。

五、施工工艺1. 前期准备:确定施工地点,进行地段勘测和设计,制定施工方案和安全计划。

2. 钻井施工:使用钻机进行钻孔,形成垂直井孔。

3. 管道安装:根据设计要求,将导热剂管和回水管穿过井孔,进行连接和固定。

4. 导热剂注入:通过注入导热剂和碎石,形成双U型垂直埋管,提高热交换效率。

5. 接口连接:安装地表换热器和地源热泵机组,将管道与机组连接起来。

6. 系统测试:进行系统的压力测试、泄漏测试和性能测试,确保施工质量和系统稳定工作。

六、劳动组织施工过程需要有熟练的土建施工工人、钻井施工工人、管道安装工人以及电气安装工人等,需要有项目经理进行施工组织和协调。

七、机具设备地源热泵双U型垂直埋管施工过程中需要使用钻机、导热剂注入机、碎石输送机、电动葫芦、泵站和地源热泵机组等设备。

地源热泵系统工程技术规范及埋管计算方法

地源热泵系统工程技术规范及埋管计算方法
3
主要内容
1 总则 2 术语 3 工程勘察 4 地埋管换热系统 5 地下水换热系统 6 地表水换热系统 7 建筑物内系统 8 整体运转、调试与验收 9 附录
地源热泵系统工程技术规范
2 术语
2.0.1 地源热泵系统 groud-source heat pump system 以岩土体、地下水或地表水为低温热源,由水源热泵
分为直接地下水换热系统和间接地下水换热系 统。
2.0.11 直接地下水换热系统 由抽水井取出的地下水,经处理后直接流
经水源热泵机组热交换后返回地下同一含水层 的地下水换热系统。
8
地源热泵系统工程技术规范
2 术语
2.0.12 间接地下水换热系统 由抽水井取出的地下水经中间换热器热交换
后返回地下同一含水层的地下水换热系统。 2.0.13 地表水换热系统
14
地源热泵系统工程技术规范
3.1 一般规定
3.1.4 工程场地状况调查应包括下列内容: 1 场地规划面积、形状及坡度;(是否满足打井或埋管面
积和位置要求) 2 场地内已有建筑物和规划建筑物的占地面积及其分布; 3 场地内树木植被、池塘、排水沟及架空输电线、电信电
缆的分布; 4 场地内已有的、计划修建的地下管线和地下构筑物的分
蕴藏在浅层岩土体、地下水或地表水中的热能资源。 2.0.5 传热介质 heat-transfer fluid
地源热泵系统中,通过换热管与岩土体、地下水或地 表水进行热交换的一种液体。一般为水或添加防冻剂的水 溶液。
6
地源热泵系统工程技术规范
2 术语
2.0.6 地埋管换热系统 ground heat exchanger system 传热介质通过竖直或水平地埋管换热器与岩土体进行热交

地源热泵室外地埋管系统冷热不均衡问题解决方案

地源热泵室外地埋管系统冷热不均衡问题解决方案

地源热泵室外地埋管系统冷热不均衡问题解决方案一、冬夏季地下换热量计算:夏季向土壤中排放的热量Q1·= 597KW×(1+1÷5.15) -597KW×(1-1÷3.98)=713-378=335KW冬季从土壤中吸收的热量Q2·= 505KW×(1-1÷3.98)×2=756KW二、埋管孔数计算:冬季地埋管打孔数,口N2=756÷(40×0.045)=420口三、占地面积估算地埋管间距按四米计算,S=420×42=6720m2四、全年冷热不平衡校核计算整个制冷期向土壤排放的总热量:φ1=335KW×18×0.8小时×120×0.9天=整个制热期从土壤吸收的总热量:φ2=756KW×18×0.8小时×120×0.9天=冷热不平衡率U=φ1/φ2=0.443冷热不平衡率取值在0.8—1.15之间,则无需对地埋管系统进行地下温度场的冷热不平衡处理。

冷热不平衡率U<0.8或>1.15,则需对地埋管系统进行地下温度场的冷热不平衡处理。

说明:(以机组夏季运行120天、夏季运行120天、每天运行18个小时),空调全负荷使用系数见计算公式,我们按中原地区的气候条件,夏季制冷期为120天(6月1日—9月30日),冬季采暖期为120天(11月15日—3月15日),开动系数(制冷或采暖期内系统的开动天数比率)估算为0.90,主机使用系数为0.8[每天18小时运行,其计算依据是1/(0.17/A+0.39/B+0.33/C+0.11/D),其中A、B、C、D分别是在100%、75%、50%、25%负荷下运转的耗能量。

五、地埋管系统地下温度场的冷热不平衡处理1、冬季采用一台风冷热泵机组供应泳池热水;U=φ1/φ2=0.8862、夏季采用一台风冷热泵机组供应泳池热水;U=φ1/φ2=0.9433、冬季采用一台风冷热泵机组供应游泳馆空调;U=φ1/φ2=0.8864、安装锅炉对地埋系统补充热量:;按需调节5、屋顶布置太阳能,利用太阳能来实现地埋管系统地下温度场的冷热不平衡处理。

地源热泵系统室外竖直地埋管施工工法

地源热泵系统室外竖直地埋管施工工法

地源热泵系统室外竖直地埋管施工工法地源热泵系统室外竖直地埋管施工工法一、前言地源热泵系统是一种利用地下温度稳定的能源进行供暖、制冷和热水使用的系统。

而竖直地埋管施工工法是地源热泵系统中最常见的一种施工方法。

本文将介绍该施工工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及工程实例。

二、工法特点竖直地埋管施工工法是将地埋管垂直埋入地下,利用地下稳定的温度来实现地源热泵的换热作用。

该工法具有以下特点:1.占地面积小:由于地埋管是垂直埋入地下,所以占地面积相对较小,能够在有限的场地中实现地源热泵系统的布置。

2.适应性强:竖直地埋管施工工法适用于各种地质条件,不受地下水位、土质和地下建筑物的影响。

3.能效高:地下温度相对稳定,竖直地埋管能够充分利用地源能源,实现高效能源利用。

4.维护方便:竖直地埋管通常采用聚乙烯管道,具有抗腐蚀性能好、使用寿命长的特点,维护方便经济。

三、适应范围竖直地埋管施工工法适用于各种建筑物的供暖、制冷和热水使用,包括住宅、商业建筑、办公楼等。

它在地下空间相对有限的场所中尤为适用,如高层建筑和城市密集区域。

四、工艺原理竖直地埋管施工工法的工艺原理是利用地下稳定的温度来实现地源热泵的换热作用。

施工工法与实际工程之间的联系包括以下几个方面的技术措施:1.选址与勘察:根据工程设计要求和场地条件,选择合适的地点进行竖直地埋管施工,进行地质勘察和地下管道布置规划。

2.孔钻施工:使用钻探机进行孔钻施工,钻孔深度一般为50-100米,孔径直径根据地埋管的规格而定。

3.钻孔清理:钻孔施工完成后,需对孔内的碎石、水泥皮进行清理,以确保地埋管的顺利安装。

4.地埋管安装:将预先制作好的聚乙烯地埋管通过低速旋转方式安装到钻孔中,并进行牢固固定。

5.回填材料:将钻孔中的空隙部分通过灌浆方式进行回填,以提高地埋管的散热效果和稳定性。

6.水泥浆封孔:对钻孔顶部进行水泥浆封孔处理,以避免泥浆外溢和污染地下水。

地源热泵桩间埋管布置原则及施工做法

地源热泵桩间埋管布置原则及施工做法

地源热泵桩间埋管布置原则及施工做法引言随着世界能源危机日益严重,绿色可再生能源越来越多的被人们所认知,地源热泵空调系统,地源热泵空调系统因其节能效果显著、绿色环保等优势,在工程中得到广泛应用。

地源热泵空调系统是利用浅层地能进行供热制冷的新型能源技术。

根据地热交换系统不同,地源热泵空调系统分为两种形式,一种采用地下水的方式;另一种是埋管式。

抽取地下水地源热泵,由于技术限制,全部回灌不易做到会影响地基下沉,对地下水和地质有不好的影响,保护不好会污染地下水。

目前大面积推广使用的是埋管式地源热泵技术,但由于地埋管热交换器是在地下进行的,其使用受到场地限制。

对于蓝钻项目建筑物以外场地面积不能满足设计需要的竖直地埋管换热器使用,因此采用在建筑的基础桩间埋设竖直地埋管换热器,其布置原则、施工做法及分析将作为本文论述的重点。

1. 工程概况1.1工程概述本工程位于天津市滨海新区,距天津中心城区45公里,距北京150公里。

本项目位于中新天津生态城南部片区核心位置,是整个城市的次中心,用地性质为商业金融业用地。

项目用地北起和韵路,南至生态谷,西到规划混合用地,东达和旭路。

总建筑面积 109863.8 m2,其中地上建筑面积78701 m2,地下建筑面积 31162.8 m2,占地面积7973.75 m2。

1.2 暖通系统概述本工程空调冷负荷:9560kW,空调热负荷:6230kW夏季冷源由地源热泵系统、电制冷水冷离心式冷水机组联合提供。

冬季热源由地源热泵系统、电锅炉联合蓄热系统共同提供。

由于本项目用地范围有限,地基基础复杂,地埋管数量受到限制。

最终确定采用桩间钻孔方式。

实际布置钻凿换热孔数量约为418眼,换热孔深度为120米,夏季负荷不足部分由电制冷冷水机组提供空调冷水,并设有水蓄冷设施;冬季负荷不足部分由水蓄热设施提供,蓄热负荷首先由地源热泵提供,超出地源热泵供热能力时,采用地源热泵机组和电热水锅炉联合蓄热。

本工程地下二层设置了冷冻热力站。

地源热泵地埋管的施工及要求简介

地源热泵地埋管的施工及要求简介

GSHP系统是以大地为冷源(或热源),通过中间介质(通常是水或防冻液)作为热载体,并使中间介质在封闭环路(通常是塑料管组成)中循环流动,从而实现与大地进行热量交换的目的,并进而通过热泵实现对建筑物的空调。

GSHP空调系统主要包括三个回路:用户回路、制冷回路和地下换热器回路。

根据需要也可以增加第四个回路-生活热水回路。

地源热泵是一种新型的高效、节能、环保的空调系统, 是我国调整能源利用结构, 发展利用可再生能源策略的重点推广项目之一。

有蓄能作用!!!水平埋管就是将塑料管水平敷设在离地面1~2m的地沟内. 水平埋管的地热换热器受地表气候变化的影响, 效率较低, 而且占地的面积比较大, 在国内建筑物比较密集的情况下, 它的使用受到一定的限制. 水平埋管的地热换热器有以下几种形式: (1) 水平单管; (2) 水平双管; (3) 水平四管; (4) 水平六管(5)新开发的水平螺旋状和扁平曲线状。

实践证明, 水平换热器的寿命较长。

竖直埋管就是在地层中垂直钻孔, 孔的深度一般在30~150 米. 在竖直埋管方式中,由于地下深层土壤温度比较恒定, 占地面积小, 因此在地源热泵工程中得到了广泛的应用. 竖直埋管的地热换热器的形式有以下几种: (1) 单U型管; (2) 双U型管(或W型管); (3) 小直径螺旋盘管; (4) 大直径的螺旋盘管; (5) 立式柱状; (6) 蜘蛛状. 在竖直埋管换热器中, 目前应用最为广泛的是单U型管。

确定地热换热器的长度有两种方法: 一是估算法; 二是计算机模拟法. 所谓估算法就是首先根据建筑物的峰值冷负荷或热负荷确定出地热换热器的放热量或吸热量, 然后确定地热换热器的布置方式, 再根据手册中给定的单位管长或单位埋管深度的放热量即可求出所需地热换热器的长度. 这种方法简单, 比较适合工程设计, 但是系统的负荷大部分时间是处于部分负荷状态, 因此按照峰值负荷确定的地热换热器的长度往往过于保守, 这也增加了地热换热器的投资. 另外由于国内对地源热泵方面所做的研究工作多数仍处于实验研究阶段, 有关地热换热器在不同土壤温度和不同类型土壤的传热特性的数据比较缺乏, 因此目前还无法利用该方法准确确定换热器的长度.计算机模拟法是根据建立的地热换热器的传热模型编制出相应的计算软件, 通过输入土壤的热物性参数和建筑物的负荷来确定地热换热器的长度.钻孔间距的大小是由钻孔的传热半径决定的, 而钻孔单位长度的换热量、连续运行时间及土壤的热物性决定了钻孔的传热半径的大小. 理想情况是钻孔间距应大于连续运行时间内钻孔的传热半径. 钻孔的传热半径可通过模拟软件计算.竖直埋管地热换热器的传热模型对于地热换热器,其整个传热过程是一个复杂的非稳态的传热过程,诸如土壤的热物性、含水量、土壤温度、埋管材料、管子直径、管内流体的物性、流速等都对地热换热器的传热产生影响。

地源热泵地埋管计算方法

地源热泵地埋管计算方法

•地源热泵地埋管计算方法地埋部分设计(一)管材选择及流体介质一、管材一般来讲,一旦将地下埋管系统换热器埋入地下后,基本不可能进行维修或更换,因此地下的管材应首先要保证其具有良好的化学稳定性、耐腐性。

1、聚乙烯(PE)和聚丁烯(PB)在国外地源热泵系统中得到了广泛应用。

2、PVC(聚氯乙烯)管的导热性差和可塑性不好,不易弯曲,接头处耐压能力差,容易导致泄漏,因此在地源热泵系统中不推荐用PVC 管。

3、为了强化地下埋管的换热,国外有的提出采用薄壁(0.5mm)的不锈钢钢管,但目前实际应用不多。

4、管件公称压力不得小于1.0Mpa,工作温度应在-20℃~50℃范围内。

5、地埋管壁厚宜按外径与壁厚之比为11倍选择。

6、地埋管应能按设计要求长度成捆供应,中间不得有机械接口及金属接头。

二、连接1、热熔联接(承接联接和对接联接,对于小管径常采用)2、电熔联结三、流体介质及回填料流体介质南方地区:由于地温高,冬季地下埋管进水温度在0℃以上,因此多采用水作为工作流体;北方地区:冬季地温低,地下埋管进水温度一般均低于0℃,因此一般均需使用防冻液。

(①盐类溶液--氯化钙和氯化钠水溶液;②乙二醇水溶液;③酒精水溶液等)。

埋管水温:1、热泵机组夏季向末端系统供冷水,设计供回水温度为7-12℃,与普通冷水机组相同。

地埋管中循环水进入U管的最高温度应 <37℃,与冷却塔进水温度相同。

2、热泵机组冬季向末端系统供水温度与常规空调不同,在满足供热条件下,应尽量减低供热水温度,这样可改善热泵机组运行工况、减小压缩比、提高cop值,并降低能耗。

地埋管中循环水冬季进水温度,以水不冻结并留安全余地为好,可取3-4℃。

当然为了使地埋管换热器获得更多热量,可加大循环水与大地间温差传热,然而大地的温度是不变的,因此只有将循环水温降至0℃以下,为此循环水必须使用防冻液,如乙二醇溶液或食盐水。

但这样会提高工程造价、增加对设备的腐蚀。

在严寒地区不得不这样做,而在华北地区的工程中用水就可满足要求,不一定要加防冻液。

地源热泵系统地埋管施工工法

地源热泵系统地埋管施工工法

地源热泵系统地埋管施工工法一、前言地源热泵系统作为一种新型绿色能源替代方案,已经在建筑领域得到了广泛的应用。

地埋管施工是地源热泵系统中流体地热换热器的重要组成部分,在其施工过程中需要注意的问题较多。

本文将介绍地源热泵系统地埋管施工工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例等方面内容,以期为工程实际应用提供参考。

二、工法特点地源热泵系统地埋管施工工法具有如下几个特点:1. 可在严寒季节施工,不受气候影响。

2. 地埋管施工不占用建筑内部空间,不影响建筑美观。

3. 施工过程简单、快捷、低成本,可快速完成,并减少影响周边环境。

4. 通过地源热泵系统,在任何季节都可以提供舒适的室内温度和热水。

5. 地源热泵系统地埋管的使用寿命长,可达20~50年,维修保养费用低。

三、适应范围地源热泵系统地埋管施工工法适用于以下场所:1. 公共建筑、商业建筑、高档别墅、宾馆、餐厅等。

2. 工业厂房、物流中心、农业养殖场、温室大棚等。

3. 与冷却塔、水源热泵系统相比,地源热泵系统在小型建筑市场和夏季高温地区有更广泛的应用。

四、工艺原理地源热泵系统通过在地下埋置U型地埋管,在地下40~200米深度将温度相对恒定的地下水或土壤作为换热介质,从而调节室内温度。

为了保证地源热泵系统的换热效率和施工质量,需要采用一系列的技术措施:1. 在设计过程中,需根据建筑物的使用用途、临近建筑物的状况、地下水位、地下埋管长度、布局方式等因素进行合理的规划和设计。

2. 在施工前,需要进行地质勘察和地下管道排查,以保证地下水、地下管道和地下设施不受侵害。

3. 施工过程中需要掌握合理的施工工艺和技能,调整施工过程中的参数和机器操作。

4. 应进行周全的质量控制,包括地下管道的密封控制、管内水压测试和泄漏监测。

5. 需要严格遵守安全规范、操作规程,做好安全保障工作。

五、施工工艺地源热泵系统地埋管施工工艺包括以下几个主要步骤。

地源热泵系统工程技术规范及埋管计算方法

地源热泵系统工程技术规范及埋管计算方法

管径与长度的计算
管径选择
根据系统的流量和压力损失来选择合 适的管径,以确保系统的正常运行。
长度计算
根据土壤的热性能和系统的设计要求 来计算埋管的长度,以达到最佳的换 热效果。
埋管换热能力的评估
土壤热性能
土壤的热传导率、比热容等参数对埋管的换热能力有 重要影响。
系统运行参数
系统的流量、水温等参数也会影响埋管的换热能力。
总结
施工要求与验收规范是地源热泵系统工程技 术规范的重要环节,为系统的施工和验收提 供了指导和依据。
PART 03
地源热泵系统埋管计算方 法
埋管形式与选择
垂直埋管
适用于较小的场地,如家庭或小型商业场所。
水平埋管
适用于较大的场地,如大型商业或工业场所。
混合埋管
结合垂直和水平埋管的特点,适用于各种规 模的场所。
PART 01
引言
背景介绍
随着社会经济的发展和能源结构的转型,地源热泵作为一种 高效、环保的能源利用方式,在建筑领域得到了广泛应用。
地源热泵系统工程技术规范及埋管计算方法的制定,旨在规 范地源热泵系统的设计、施工和运行管理,提高系统的能效 和稳定性,促进该技术的可持续发展。
目的和意义
01
规范地源热泵系统的设计、施工和验收,确保系统的安全、 可靠和高效运行。
加强地源热泵系统的智能化和自动化研 究,提高系统的智能化水平和远程监控 能力。
未来研究应进一步优化埋管计算方法, 提高地源热泵系统的能效和稳定性,降 低运行成本。
针对不同地区的地质条件和气候特点, 开展地源热泵系统的适应性研究,拓展 其应用范围。
https://
2023 WORK SUMMARY
总结

土壤源热泵地埋管形式探讨

土壤源热泵地埋管形式探讨

土壤源热泵地埋管形式探讨作者:杨标等来源:《价值工程》2013年第11期摘要:依据土壤源热泵系统中地下耦合方式对地埋管的形式进行分类,列举了一些新的地埋管的埋管方式,并对其换热进行分析;通过对U型管和套管的特点进行对比,为土壤源热泵地埋管换热的进一步研究提供参考。

Abstract: The paper classifies the forms of buried tube according to the underground coupling mode of ground source heat pump system, lists some new burying methods of buried pipe, and does some analysis on heat transfer, compares the characteristics of the U-tube and sleeve,providing a reference for further study of ground source heat pump heat exchange.关键词:土壤源热泵;U型管;套管Key words: ground source heat pump;U-tube;sleeve中图分类号:TU111 文献标识码:A 文章编号:1006-4311(2013)11-0045-020 引言能源是我们人类社会生存发展的物质基础,而能源危机使我们对能源利用有了新的认识,为了国家经济能够持续快速的发展,因此加强节能、提高能源利用率和改善能量利用中的环境保护成为了一个很重要的课题。

随着空调产业的快速发展,空调制冷制热的方式开始多元化。

由于地表浅层是一个巨大的太阳能集热器,收集了47%的太阳能,相当于人类每年利用能量的500倍,而且不受地域、资源等的限制,为一种可再生、清洁能源[1]。

因此,近年来地下土壤作为一种空调系统理想的冷热源,受到国内外学者的重视,进而促进了土壤源热泵技术的发展。

地源热泵系统工程技术规范及埋管计算方法

地源热泵系统工程技术规范及埋管计算方法

1 岩土层的结构;
2 岩土体热物性; 3 岩土体温度;
4 地下水静水位、水温、水质及分布;
5 地下水径流方向、速度; 6 冻土层厚度。
3.2.2A 当地埋管地源热泵系统的应用建筑面积在3000 m2~5000 m2 时,宜进行岩土热响应试验;当应用建筑面积大于等于 5000 m2时, 应进行热响应试验。11地源热泵系统工 Nhomakorabea技术规范
2 术语
2.0.25 土热响应试验 rock-soil thermal response test 通过测试仪器,对项目所在场区的测试孔进行一定时间的连续加热, 获得岩土综合热物性参数及岩土初始平均温度的试验。
2.0.26 岩土综合热物性参数 parameter of the rock-soil thermal properties 是指不含回填材料在内的,地埋管换热器深度范围内,岩土的综合 导热系数、综合比热容。
2.0.7 地埋管换热器 ground heat exchanger 供传热介质与岩土体换热用的,由埋于地下的密闭循环管 组构成的换热器,又称土壤热交换器。根据管路埋置方式不同, 分为水平地埋管换热器和竖直地埋管换热器。 2.0.8 水平地埋管换热器 horizontal ground heat exchanger 换热管路埋置在水平管沟内的地埋管换热器,又称水平土 壤热交换器。
3.1.3 工程勘察应由具有勘察资质的专业队伍承 担。工程勘察完成后,应编写工程勘察报告,并 对资源可利用情况提出建议。
14
地源热泵系统工程技术规范
3.1 一般规定
3.1.4 工程场地状况调查应包括下列内容:
1 场地规划面积、形状及坡度;(是否满足打井或埋管面
积和位置要求) 2 场地内已有建筑物和规划建筑物的占地面积及其分布;

地源热泵地埋管计算方法(知识浅析)

地源热泵地埋管计算方法(知识浅析)

•地源热泵地埋管计算方法地埋部分设计(一)管材选择及流体介质一、管材一般来讲,一旦将地下埋管系统换热器埋入地下后,基本不可能进行维修或更换,因此地下的管材应首先要保证其具有良好的化学稳定性、耐腐性。

1、聚乙烯(PE)和聚丁烯(PB)在国外地源热泵系统中得到了广泛应用。

2、PVC(聚氯乙烯)管的导热性差和可塑性不好,不易弯曲,接头处耐压能力差,容易导致泄漏,因此在地源热泵系统中不推荐用PVC 管。

3、为了强化地下埋管的换热,国外有的提出采用薄壁(0.5mm)的不锈钢钢管,但目前实际应用不多。

4、管件公称压力不得小于1.0Mpa,工作温度应在-20℃~50℃范围内。

5、地埋管壁厚宜按外径与壁厚之比为11倍选择。

6、地埋管应能按设计要求长度成捆供应,中间不得有机械接口及金属接头。

二、连接1、热熔联接(承接联接和对接联接,对于小管径常采用)2、电熔联结三、流体介质及回填料流体介质南方地区:由于地温高,冬季地下埋管进水温度在0℃以上,因此多采用水作为工作流体;北方地区:冬季地温低,地下埋管进水温度一般均低于0℃,因此一般均需使用防冻液。

(①盐类溶液--氯化钙和氯化钠水溶液;②乙二醇水溶液;③酒精水溶液等)。

埋管水温:1、热泵机组夏季向末端系统供冷水,设计供回水温度为7-12℃,与普通冷水机组相同。

地埋管中循环水进入U管的最高温度应<37℃,与冷却塔进水温度相同。

2、热泵机组冬季向末端系统供水温度与常规空调不同,在满足供热条件下,应尽量减低供热水温度,这样可改善热泵机组运行工况、减小压缩比、提高cop值,并降低能耗。

地埋管中循环水冬季进水温度,以水不冻结并留安全余地为好,可取3-4℃。

当然为了使地埋管换热器获得更多热量,可加大循环水与大地间温差传热,然而大地的温度是不变的,因此只有将循环水温降至0℃以下,为此循环水必须使用防冻液,如乙二醇溶液或食盐水。

但这样会提高工程造价、增加对设备的腐蚀。

在严寒地区不得不这样做,而在华北地区的工程中用水就可满足要求,不一定要加防冻液。

地源热泵埋管方式及埋管深度常见问题

地源热泵埋管方式及埋管深度常见问题

地源热泵埋管方式及埋管深度常见问题地源热泵地埋管在整个系统中起着集热散热的重要作用,地埋管要是安装不好就会直接对整个系统的效果造成影响。

现在随着人们生活的不断提高,人们对自己家庭的生活质量也有了新的要求。

现在人们普遍使用地源热泵,可是对于地源热泵埋管的方式却很少有人知道。

地源热泵埋管-地源热泵埋管的注意事项1、若建筑物周围可利用地表面积充足,应首先考虑采用比较经济的水平埋管方式;相反,若建筑物周围可利用地表面积有限,应采用竖直U型埋管方式。

2、尽管可以采用串联、并联方式连接埋管,但并联方式采用小管径,初投资及运行费用均较低,所以在实际工程中常用,且为了保持各并联环路之间阻力平衡,最好设计成同程式。

3、选择管径时,除考虑安装成本外,一般把各管段压力损失控制在4mH2O/100m (当量长度)以下,同时应使管内流动处于紊流过渡区。

4、地源热泵地埋管换热系统在设计时应该首先对当地的地质实际情况进行计算,并根据条件作出准确的判断,完成整个换热量的计算。

5、地源热泵地埋管换热器最好要设泄漏警报和自动补水系统,需要防冻的地方还要设置防冻保护装置,避免后期系统运行时出现各种问题。

6、在换热系统上最好是采用变流量的设计,管内传热介质流速最好不要低于最低流速限值。

7、关于地源热泵地埋管的安装最好是要靠近机房或是以机房为中心设置,避免过远导致热量在管路中的散失。

8、地源热泵管路在没有安装之前尽量避免阳光直射,最好是避光存放,以防止管道受热发生热形变问题。

9、若是地源热泵的使用地冬夏对热量的取放不均,那么可以根据具体的实际情况通过采用辅助冷源或热源的方式实现调节目的。

地源热泵地下埋管的几种形式目前地源热泵地下埋管换热器主要有两种形式,即水平埋管和垂直埋管。

水平埋管主要有单沟单管、单沟双管、单沟二层双管、单沟二层四管、单沟二层六管等形式,由于多层埋管的下层管处于一个较稳定的温度场,换热效率好于单层,而且占地面积较少。

水平埋管主要有单沟单管、单沟双管、单沟二层双管、单沟二层四管、单沟二层六管等形式,由于多层埋管的下层管处于一个较稳定的温度场,换热效率好于单层,而且占地面积较少,因此应用多层管的较多。

地源热泵埋管方案

地源热泵埋管方案

地源热泵埋管方案地源热泵是一种利用地下热能进行加热和制冷的环保节能技术。

它通过地下管道中的工质循环,从地下提取热能,然后利用热泵技术将低温热能转化为高温热能,从而实现建筑物的采暖和制冷。

地源热泵技术是一种可持续利用地下能源的有效方式,可以大幅度降低建筑物的能耗和碳排放。

地源热泵系统主要由热水循环系统、热泵机组和地下埋管组成。

其中,地下埋管作为热交换器,起到了关键的作用。

埋管的选择和设计对地源热泵系统的性能和效果有着直接的影响。

地源热泵埋管方案首先需要进行地质勘察,以确定地下条件和热能储量。

常用的勘察方法包括地下钻探和地下水位监测。

根据地下情况,可以选择水平埋管或竖直埋管的方式。

水平埋管是将地源热泵系统的管道布置在浅地下的水平深度上,一般为1-2米深。

这种方式相对较简单,施工难度较低,适用于地下土层较好的地区。

水平埋管的取暖效果相对较好,在采暖季节可以充分利用地下热能。

竖直埋管是将地源热泵系统的管道布置在较深的地下,通过打井的方式将管道垂直埋入土壤中。

这种方式适用于土地有限的情况,可以节省空间。

竖直埋管的优点是稳定性更好,不受气候影响,可以长时间稳定供暖和制冷。

另外,地源热泵埋管方案还需要考虑埋管的材料选择。

常用的材料有聚乙烯管和钢管。

聚乙烯管具有良好的耐腐蚀性和导热性能,在地源热泵系统中得到了广泛应用。

钢管的优点是强度高,可以适应较高的工作压力,适用于大型地源热泵系统。

在地源热泵埋管方案的设计过程中,还需要考虑管道的布置方式和管道的间距。

一般来说,管道之间的间距应根据地下土壤的热传导性能确定,以最大限度地提高热交换效果。

除了埋管方案的设计,地源热泵系统还需要考虑其他因素,如水源问题、环境影响和运行维护等。

水源是地源热泵系统中重要的一环,需要保证水质的纯净和稳定,以保证系统的正常运行。

此外,地源热泵系统的运行维护也需要定期进行,包括清洗埋管、检查泵组和调整系统参数等。

总的来说,地源热泵埋管方案是地源热泵系统设计中的重要环节。

地源热泵打井计算及方案

地源热泵打井计算及方案

地源热泵打井计算及方案一、打井计算。

# (一)负荷计算。

1. 建筑物热负荷。

首先得知道这房子冬天有多“怕冷”。

要考虑房子的面积、朝向、保温情况啥的。

比如说,一个100平方米的房子,如果保温一般,每平方米大概需要80 100瓦的热量来保暖(这只是个大概数哦,不同地区差别可大了)。

那这个房子冬天的热负荷可能就是8000 10000瓦。

夏天呢,就是冷负荷啦。

同样的房子,考虑到太阳晒啊,人散热啊这些因素,每平方米可能需要100 120瓦的制冷量。

那这个房子夏天的冷负荷就是10000 12000瓦。

2. 地源热泵的能力。

地源热泵的能力得跟建筑物的冷热负荷匹配上。

一般来说,地源热泵的制热和制冷能力是有个范围的。

就像挑衣服得合身一样,热泵的能力得能满足房子的需求。

如果热泵能力太小,冬天不够暖,夏天不够凉;太大了呢,又浪费钱。

# (二)地埋管换热量计算。

1. 确定换热量。

地源热泵是靠地埋管和大地换热的。

这个换热量得根据建筑物的冷热负荷来算。

通常,我们要考虑一个安全系数,不能刚刚好,得稍微多算一点,就像吃饭得留个底,以防万一嘛。

一般安全系数取1.1 1.3左右。

比如说建筑物热负荷是10000瓦,那换热量可能就按11000 13000瓦来设计。

2. 根据换热量计算管长。

这里面有个公式,不过咱就简单说。

换热量和地埋管的长度、管材的导热性、地下土壤的温度啥的都有关系。

一般每米地埋管的换热量大概在30 50瓦/米(这也得看土壤情况,不同的土就像不同性格的人,换热能力不一样)。

如果换热量是12000瓦,按每米40瓦/米算,那大概就需要12000÷40 = 300米的地埋管。

# (三)井数计算。

1. 单井换热量。

每口井的换热量也不是个固定值,它和井的深度、直径、周围土壤情况都有关。

一般一口井的换热量在3 8千瓦左右。

比如说我们取5千瓦每口井。

2. 计算井数。

还是用前面算出来的总换热量来算井数。

如果总换热量是15千瓦,每口井换热量是5千瓦,那大概就需要15÷5 = 3口井。

地源热泵打井计算及方案

地源热泵打井计算及方案

地源热泵方案●项目概况项目共分三期;其中,二期办公楼建筑面积为3200㎡,空调面积约为3000㎡;二期厂房一层建筑面积为11218㎡,空调面积约为8918㎡,夹层建筑面积6880㎡,空调面积约为4780㎡;三期厂房建筑面积6648㎡,空调面积约为1600㎡。

二期和三期总建筑面积为27946㎡,总空调面积约为18298㎡。

根据甲方要求,现需为二期和三期的厂房及办公室配置空调系统。

●设计依据1、《民用建筑节能设计标准》2、《采暖通风与空气调节设计规范》(GB50019-2003)3、《公共建筑节能设计标准》 (GB50189-2005)4、《地源热泵系统工程技术规范》 (GB50366-2005)5、《埋地聚乙烯(PE)管材》(CJJ101-2004)6、《实用供暖空调设计手册》7、《空气调节设计手册》8、《通风与空调工程施工质量验收规范》(GB50243-2002)9、《地源热泵工程技术指南》,徐伟译10、国际热湿环境ISO7730《室内热湿环境的相关标准》11、世界卫生组织《室内空气品质WHO标准》12、甲方提供的建筑平面图●暖通专业范围本项目单位空调冷指标取120W/㎡,空调热指标取85W/㎡;则总冷负荷为2196KW,总热负荷为1555KW。

采用节能、环保的地源热泵系统为空调系统提供冷热源,夏天制冷、冬天采暖,选用两台制冷量为1100KW的地源热泵冷水机组。

二期办公区及厂房夹层空调末端主要采用风机盘管+新风的形式,二期、三期厂房部分空调末端主要采用组合式空气处理机组+新风的形式。

本项目室外地埋管采用垂直双U型埋管,共360口,有效埋管深度为100米,埋管井间距取4.5米;单位孔深排热量按56W/m,单位孔深吸热量按34W/m(根据北京威乐项目地质勘探报告);室外打井位置为三期厂房区域及室外绿化带。

除此之外,考虑到地源热泵地下热平衡性,需额外配置一台闭式辅助冷却塔,冷却塔水流量为110m3/h。

地源热泵地埋管长度计算

地源热泵地埋管长度计算

地源热泵地埋管长度计算1. 什么是地源热泵?嘿,朋友们!今天咱们聊聊地源热泵,听起来高大上吧?其实就是利用地下土壤或水体的恒温来为我们提供暖气和冷气的神奇装置。

简单说,它像是个“地下空调”,无论是夏天热得冒汗,还是冬天冷得直打哆嗦,它都能给你提供舒适的环境。

想想看,夏天开着它,凉爽透心;冬天暖暖的,简直就像抱着个大热水袋,舒服得不得了!那么,关键是要安装地埋管,而这些管子的长度该怎么计算呢?咱们今天就来聊聊这其中的门道。

2. 地埋管的作用2.1 地埋管的基本原理先来点干货,地埋管的作用是什么呢?它主要是把地下的热量(不管是冷还是热)输送到地源热泵中,再通过风机把空气送到你的小窝里。

你知道吗?地下温度通常比地面温度稳定得多,冬天暖、夏天凉,这就是地埋管的魔力所在。

它的“长处”就是能有效利用自然资源,环保又省钱,真是一举两得,何乐而不为呢?2.2 为什么长度重要?那么,管子的长度为什么那么重要呢?你想啊,长度决定了它能吸收和释放多少热量。

如果长度不够,那可就“量入为出”了,热量就会像水流一样,来得快去得也快,根本没法保持房间的舒适度。

而且,管子太长了,虽然可以增加热量的吸收,但也会增加成本和施工难度,真是“过犹不及”。

所以,找到一个合适的长度,就像做菜时的调料,恰到好处才是关键。

3. 如何计算地埋管的长度3.1 影响因素那么,如何计算这条神奇的地埋管长度呢?首先,我们要考虑几个关键因素。

比如,房子的大小、保温效果、周围土壤的热导率、甚至是你家附近的水位。

每个地方的情况都不一样,简直就像每个人的口味各有千秋。

房子大需要的管子长,房子小的话,管子就可以短一些。

3.2 计算方法接下来,我们来点实际的计算方法吧。

通常,我们会用“热负荷”来作为基础,计算出所需的热量。

然后根据每米管子可以交换的热量,再结合土壤的热导率来得出总的管子长度。

听起来复杂,其实就像是在做一道数学题,稍微努力点就能搞定。

你可以请教专业的工程师,他们会用一些专业的工具和软件来帮助你计算,简直就是“高人一筹”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地源热泵地下埋管形式及计算本文介绍了地源热泵地下埋管换热器系统形式及设计计算中的有关问题,其中包括埋管方式、埋管深度、地下埋管系统的环路形式、埋管材料、埋管间距、埋管系统的管径选择及水力和热力计算等问题。

0引言
地下埋管换热器是地源热泵系统的关键组成部分,其选择的形式是否合理,设计的是否正确,关系到整个地源热泵系统能否满足要求和正常使用,本文就这方面的有关问题作些讨论,供同行们参考。

1地源热泵地下埋管形式
目前地源热泵地下埋管换热器主要有两种形式,即水平埋管和垂直埋管。

1.1水平埋管
水平埋管主要有单沟单管、单沟双管、单沟二层双管、单沟二层四管、单沟二层六管等形式[1],由于多层埋管的下层管处于一个较稳定的温度场,换热效率好于单层,而且占地面积较少,因此应用多层管的较多。

近年来国外又新开发了两种水平埋管形式,一种是扁平曲线状管,另一种是螺旋状管。

它们的优点是使地沟长度缩短,而可埋设的管子长度增加。

管路的埋设视岩土情况,可采取挖沟或大面积开挖方法。

按文献[1]介绍,单层管最佳深度0.8~1.0m,双层管1.2~1.9m,但无论任何情况均应埋在当地冰冻线以下。

由于水平管埋深较浅,其埋管换热器性能不如垂直埋管,而且施工时,占用场地大,在实际使用中,往往是单层与多层互相搭配;螺旋管优于直管,但不易施工。

由于浅埋水平管受地面温度影响大,地下岩土冬夏热平衡好,因此适用于单季使用的情况(如欧洲只用于冬季供暖和生活热水供应),对冬夏冷暖联供系统使用者很少。

1.2垂直埋管
根据埋管形式的不同,一般有单U形管,双U形管,小直径螺旋盘管和大直径螺旋盘管,立式柱状管、蜘蛛状管、套管式管等形式;按埋设深度不同分为浅埋(≤30m)、中埋(31~80m)和深埋(&gt;80m)。

目前使用最多的是U形管、套管和单管式,下面作一简述。

1)U形管型是在钻孔的管井内安装U形管,一般管井直径为100~150mm,井深10~200m,U形管径一般在φ50mm以下(主要是流量不宜过大所限)。

由于其施工简单,换热性能较好,承压高,管路接头少,不易泄漏等原因,目前应用最多。

如美国加州斯托克斯大学供应了48万m2空调建筑的地源热泵系统,有390个深度超过120m的地下埋管,据介绍,采用这种地源热泵系统较常规空调每年可节约各种费用45.5万美元,其中能量费用33万美元,节电25%,节约燃料费70%。

国外有的工程把U形管捆扎在桩基的钢筋网架上,然后浇灌混凝土,不占用地面。

如瑞士某工厂地源热泵系统从600个桩基中吸收热量或冷量,用于2万平方米建筑物的供暖和制冷。

2)套管式换热器的外管直径一般为100~200mm,内管为φ15~φ25mm。

由于增大了管外壁与岩土的换热面积,因此其单位井深的换热量高,根据文献[2]的试验结果,其换热效率较U形管提高16.7%。

其缺点是套管直径及钻孔直径较大,下管比较困难,初投资比U形管高。

在套管端部与内管进、出水连接处不好处理,易泄漏,因此适用于深度≤30m的竖埋直管,对中埋采用此种形式宜慎重。

为防止漏水,套管端部封头部分宜由工厂加工制作,现场安装,以保
证严密性。

3)单管型在国外常称为“热井”,它主要用于地下水做热源的热泵系统,一般来讲该种型式投资较少。

其安装方法是地下水位以上用钢套管作为护套,直径和孔径一致,典型孔径为150mm。

地下水位以下为自然孔洞,不加任何设施。

孔洞中有一根出水管为热泵机组供水,回水自然排放或回到管井内。

这种方式受地下水资源、国家有关政策及法规限制大。

2地源热泵地下埋管深度
水平埋管埋设情况比较简单,前面已述。

关于竖直埋管的埋设深度应根据当地地质情况,工程及场地的大小,投资及使用的钻机性能等情况综合考虑。

结合国情,根据笔者的工程实践体会,其中有几点应注意到:①钻井深60m以内井深的钻机成本少,费用低,如果大于60m,其钻机成本会提高;②井深80m以内,可用国产普通型承压(承压1.0MPa)塑料管,如深度大于80m,需采用高承压塑料管,其成本大大增加;③据比较,井深50m的造价比100m的要低30%~50%。

上述是针对地面中央机房而言,如果采用分室型的水源热泵系统还要考虑建筑高度的影响。

一般来讲,浅埋管优点是:投资少,成本低,钻机要求不高,可使用普通承压(0.6~1.0MPa)的塑料管,由于受地面温度影响,一般地下岩土冬夏热平衡性较好。

其缺点是占用场地面积大,管路接头多,埋管换热效率较中深埋者低。

深埋管优点是:占用场地面积小,地下岩土温度稳定,换热效率高,单位管长换热量大,管路接头少。

其缺点是投资大,成本高,需采用高承压(1.6~2.0MPa)塑料管,钻机性能要求高;由于深层岩土温度场受地面温度影响很小,因此必须注意冬季吸热量和夏季排热量的平衡,否则将影响地源热泵的长期使用效果。

在国外,有的采用在系统中加装冷却塔和辅助加热的措施,帮助地下岩土实现热平衡。

中埋管介于浅、深埋两者之间,塑料管可用普通承压型的。

从统计的国内外工程实例看,中埋的地源热泵占多数。

在实际工程中采用水平式还是垂直式埋管、垂直式埋管深度多大,取决于场地大小、当地岩土类型及挖掘成本。

如场地足够大且无坚硬岩石,则水平式较经济,如果采用布管机进行多管布置还可减少场地占用面积。

当场地面积有限时则应采用垂直式埋管,很多情况下这是唯一选择,如果场地中有坚硬的岩石,用钻岩石的钻头可成功钻孔。

3地源热泵地下埋管系统环路方式
3.1串联方式和并联方式
在串联系统中,几个井(水平管为管沟)只有一个流通通路;并联方式是一个井(管沟)有一个流通通路,数个井有数个流通通路。

在同样埋管的换热量下,垂直埋管比水平埋管换热器占地面积少73%左右。

串联方式的优点是:①一个回路具有单一流通通路,管内积存的空气容易排出;②串联方式一般需采用较大直径的管子,因此对于单位长度埋管换热量来讲,串联方式换热性能略高于并联方式。

其缺点是:①串联方式需采用较大管径的管子,因而成本较高;②由于系统管径大,在冬季气温低地区,系统内需充注的防冻液(如乙醇水溶液)多;③安装劳动成本增大;④管路系统不能太长,否则系统阻力损失太大。

并联方式的优点是:①由于可用较小管径的管子,因此成本较串联方式低;
②所需防冻液少;③安装劳动成本低。

其缺点是:①设计安装中必须特别注意确
保管内流体流速较高,以充分排出空气;②各并联管道的长度尽量一致(偏差应≤10%),以保证每个并联回路有相同的流量;③确保每个并联回路的进口与出口有相同的压力,使用较大管径的管子做集箱,可达到此目的。

从国内外工程实践来看,中、深埋管采用并联方式者居多;浅埋管采用串联方式的多。

相关文档
最新文档