2013年中考数学专题三 数形结合思想复习题及答案

合集下载

2013年中考复习分层训练 专题:数形结合思想(含答案)

2013年中考复习分层训练 专题:数形结合思想(含答案)

专题 数形结合思想1.(2012年四川自贡)伟伟从学校匀速回家,刚到家发现当晚要完成的试卷忘记在学校,于是马上以更快的速度匀速沿原路返回学校.在这一情景中,速度v 和时间t 的函数图象(不考虑图象端点情况)大致是( )A B C D2.文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米3.已知实数a ,b 在数轴上的对应点依次在原点的右边和左边,那么( )A .ab <bB .ab >bC .a +b >0D .a -b >04.已知函数y =x 和y =x +2的图象如图Z3-3,则不等式x +2>x 的解集为( )A .-2≤x <2B .-2≤x ≤2C .x <2D .x >2图Z3-3 图Z3-4 图Z3-55.如图Z3-4,直线l 1∥l 2,⊙O 与直线l 1和直线l 2分别相切于点A 和点B .点M 和点N 分别是直线l 1和直线l 2上的动点,MN 沿l 1和l 2平移.⊙O 的半径为1,∠1=60°.下列结论错误的是( )A .MN =4 33B .若MN 与⊙O 相切,则AM =32C .若∠MON =90°,则MN 与⊙O 相切D .直线l 1和直线l 2的距离为26.如图Z3-5,已知四边形OABC为正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA上,且点D的坐标为(2,0),点P是OB上的一个动点,则PD+PA的最小值是()A.210 B.10C.4 D.67.(2012年天津)某电视台“走基层”栏目的一位记者乘汽车赴360 km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图Z3-6,则下列结论正确的是()A.汽车在高速公路上的行驶速度为100 km/h;B.乡村公路总长为90 kmC.汽车在乡村公路上的行驶速度为60 km/h D.该记者在出发后4.5 h到达采访地图Z3-6 图Z3-78.(2012年山东日照)二次函数y=ax2+bx+c(a≠0)的图象如图Z3-7,给出下列结论:①b2-4ac>0;②2a+b<0;③4a-2b+c=0;④a∶b∶c=-1∶2∶3.其中正确的是() A.①②B.②③C.③④D.①④9.(2010年广东茂名)张师傅驾车运送荔枝到某地出售,汽车出发前油箱有50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y(单位:升)与行驶时间t(单位:时)之间的关系如图Z3-8.请根据图象回答下列问题:(1)汽车行驶________小时后加油,中途加油________升;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70千米/时的速度匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由?图Z3-810.(2011年湖南邵阳)如图Z3-9,在平面直角坐标系xOy 中,已知点A ⎝⎛⎭⎫-94,0,点C (0,3),点B 是x 轴上的一点(位于点A 右侧),以AB 为直径的圆恰好经过点C .(1)求∠ACB 的度数;(2)已知抛物线y =ax 2+bx +3经过A ,B 两点,求抛物线的解析式;(3)线段BC 上是否存在点D ,使△BOD 为等腰三角形?若存在,则求出所有符合条件的点D 的坐标;若不存在,请说明理由.图Z3-911.(2012年四川宜宾)如图Z3-10,抛物线y =x 2-2x +c 的顶点A 在直线l ∶y =x -5上.(1)求抛物线顶点A 的坐标;(2)设抛物线与y 轴交于点B ,与x 轴交于点C ,D (点C 在点D 的左侧),试判断△ABD 的形状;(3)在直线l 上是否存在一点P ,使以点P ,A ,B ,D 为顶点的四边形是平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.图Z3-10参考答案1.A 2.B 3.D 4.A 5.B 6.A 7.C8.D9.解:(1)3 31(2)设y 与t 的函数关系式是y =kt +b (k ≠0),根据题意,得⎩⎨⎧ 50=b ,14=3k +b ,解得k =-12,b =50.因此,加油前油箱剩余油量y 与行驶时间t 的函数关系式是y =-12t +50.(3)由图可知:汽车每小时用油(50-14)÷3=12(升),所以汽车要准备油(210÷70)×12=36(升). 因为45升>36升,所以油箱中的油够用.10.解:(1)如图D60,∠ACB =90°.(2)∵△AOC ∽△COB ,图D60∴AO CO =CO OB. 又∵A ⎝⎛⎭⎫-94,0,C (0,3),∴ AO =94,OC =3. ∴解得OB =4.∴B (4,0).把 A ,B 两点坐标代入解得:y =-13x 2+712x +3. (3)存在.直线BC 的方程为3x +4y =12,设点D (x ,y ).①若BD =OD ,则点D 在OB 的中垂线上,点D 的横坐标为2,纵坐标为32,即点D 1(2,32)为所求.②若OB =BD =4,则y CO =BD BC ,x BO =CD BC ,得y =125,x =45,点D 2(45,125)为所求. 11.解:(1)∵顶点A 的横坐标为x =--22=1,且顶点A 在y =x -5上, ∴当x =1时,y =1-5=-4.∴A (1,-4).(2)△ABD 是直角三角形.将A (1,-4)代入y =x 2-2x +c ,可得1-2+c =-4,∴c =-3.∴y =x 2-2x -3.∴B (0,-3).当y =0时,x 2-2x -3=0,x 1=-1,x 2=3,∴C (-1,0),D (3,0).∵BD 2=OB 2+OD 2=18,AB 2=(4-3)2+12=2,AD 2=(3-1)2+42=20,∴BD 2+AB 2=AD 2.∴∠ABD =90°,即△ABD 是直角三角形.(3)存在.由题意知:直线y =x -5交y 轴于点E (0,-5),交x 轴于点F (5,0).∴OE =OF =5.又∵OB =OD =3,∴△OEF 与△OBD 都是等腰直角三角形.∴BD ∥l ,即PA ∥BD .则构成平行四边形只能是PADB 或PABD ,如图D61,图D61过点P 作y 轴的垂线,过点A 作x 轴的垂线交过P 且平行于x 轴的直线于点G .设P (x 1,x 1-5),则G (1,x 1-5).则PG =||1-x 1,AG =||5-x 1-4=||1-x 1.PA =BD =3 2,由勾股定理,得:(1-x 1)2+(1-x 1)2=18,x21-2x1-8=0,x1=-2或4.∴P(-2,-7)或P(4,-1).存在点P(-2,-7)或P(4,-1)使以点A,B,D,P为顶点的四边形是平行四边形.。

中考数学专题复习之数形结合思想 练习题及答案

中考数学专题复习之数形结合思想 练习题及答案

数形结合思想1.已知直线y 1=2x -1和y 2=-x -1的图象如图X5-1所示,根据图象填空. (1)当x ______时,y 1>y 2;当x ______时,y 1=y 2;当x ______时,y 1<y 2;(2)方程组的解集是____________.图X5-1图X5-22.已知二次函数y 1=ax 2+bx +c (a ≠0)与一次函数y 2=kx +m (k ≠0)的图象相交于点A (-2,4),B (8,2)(如图X5-2所示),则能使y 1>y 2成立的x 的取值范围是____________. 3.(2012年四川内江)如图X5-3,正三角形ABC 的边长为3 cm ,动点P 从点A 出发,以每秒1 cm 的速度,沿A →B →C 的方向运动,到达点C 时停止.设运动时间为x (单位:秒),y =PC 2,则y 关于x 的函数的图象大致为( )ABCD图X5-3图X5-421,1y x y x =-⎧⎨=--⎩4.(2011年四川泸州)如图X5-4,半径为2的圆内接等腰梯形ABCD,它的下底AB是圆的直径,上底CD的端点在圆周上,则该梯形周长的最大值是______.5.(2012年广东湛江)某市实施“农业立市,工业强市,旅游兴市”计划后,2009年全市荔枝种植面积为24万亩.调查分析结果显示,从2009年开始,该市荔枝种植面积y(单位:万亩)随着时间x(单位:年)逐年成直线上升,y与x之间的函数关系如图X5-5.(1)求y与x之间的函数关系式(不必注明自变量x的取值范围);(2)该市2012年荔枝种植面积为多少万亩?图X5-56.某公司推销一种产品,设x(单位:件)是推销产品的数量,y(单位:元)是推销费,图X5-6表示该公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)如果你是推销员,应如何选择付费方案?图X5-67.(2011年山东菏泽)如图X5-7,抛物线y =12x 2+bx -2与x 轴交于A ,B 两点,与y轴交于C 点,且A (-1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M (m,0)是x 轴上的一个动点,当MC +MD 的值最小时,求m 的值.图X5-78.(2012年广东节选)如图X5-8,抛物线y =12x 2-32x -9与x 轴交于A ,B 两点,与y轴交于点C ,连接BC ,AC .(1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A ,B 不重合),过点E 作直线l 平行BC ,交AC 于点D .设AE 的长为m ,△ADE 的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围.图X5-89.(2012年山东临沂)如图X5-9,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.(1)求点B 的坐标;(2)求经过点A ,O ,B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P ,O ,B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,说明理由.图X5-910.(2012年广东广州模拟)在平面直角坐标系中,平行四边形ABOC如图X5-10放置,点A,C的坐标分别为(0,3),(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C,A,A′,求此抛物线的解析式;(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△OC′D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时△AMA′的面积最大?最大面积是多少?并求出此时点M的坐标.图X5-10数形结合思想1.(1)x >0 x =0 x <0 (2)⎩⎪⎨⎪⎧x =0,y =-12.x 1<-2或x >8 3.C 4.105.解:(1)设函数的解析式为y =kx +b ,由图形可知,其经过点(2 009,24)和(2 011,26), 则⎩⎪⎨⎪⎧ 2 009k +b =24,2 011k +b =26,解得⎩⎪⎨⎪⎧k =1,b =-1 985. ∴y 与x 之间的关系式为y =x -1 985.(2)令x =2 012,得y =2 012-1 985=27(万亩). ∴该市2012年荔技种植面积为27万亩. 6.解:(1)y 1=20x ,y 2=10x +300.(2)y 1是不推销产品时,没有推销费,且每推销10件产品得推销费200元,y 2是保底工资300元,每推销10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择y 1的付费方案;否则,选择y 2的付费方案.7.解:(1)把点A (-1,0)的坐标代入抛物线的解析式 y =12x 2+bx -2,整理后,解得b =-32. 所以抛物线的解析式为y =12x 2-32x -2.顶点D ⎝⎛⎭⎫32,-258. (2)∵AB =5,AC 2=OA 2+OC 2=5,BC 2=OC 2+OB 2=20, ∴AC 2+BC 2=AB 2.∴△ABC 是直角三角形.(3)作出点C 关于x 轴的对称点C ′,则C ′(0,2),OC ′=2.连接C ′D 交x 轴于点M .根据轴对称性及两点之间线段最短可知,此时,MC +MD 的值最小.设抛物线的对称轴交x 轴于点E . 显然有△C ′OM ∽△DEM . ∴OM EM =OC ′ED .∴m 32-m =2258.∴m =2441. 8.解:(1)在y =12x 2-32x -9中,令x =0,得y =-9,∴C (0,-9).令y =0,即12x 2-32x -9=0,解得x 1=-3,x 2=6,∴A (-3,0),B (6,0). ∴AB =9,OC =9.(2)∵ED ∥BC ,∴△AED ∽△ABC . ∴S △AED S △ABC=⎝⎛⎭⎫AE AB 2,即s 12·9·9=⎝⎛⎭⎫m 92. ∴s =12m 2(0<m <9).9.解:(1)如图D94,过点B 作BC ⊥x 轴,垂足为点C ,图D94∵OA =4,将线段OA 绕点O 顺时针旋转120°至OB 位置,∴∠BOC =60°,OB =4. ∴BC =4×sin60°=2 3,OC =4×cos60°=2. ∵点B 在第三象限,∴点B (-2,-2 3).(2) 由函数图象,得抛物线通过(-2,-2 3),(0,0),(4,0)三点.设抛物线的解析式为y =ax 2+bx ,由待定系数法,得⎩⎨⎧4a -2b =-2 3,16a +4b =0,解得⎩⎨⎧a =-36,b =2 33.∴此抛物线的解析式为y =-36x 2+2 33x . (3)存在.理由:如图D ,抛物线的对称轴是x =-b2a,解得x =2.设直线x =2与x 轴的交点为D ,设点P (2,y ).①若OP =OB ,则22+|y |2=42,解得y =±2 3. 即点P 坐标为(2,2 3)或(2,-2 3).又点B (-2,-2 3),∴当点P 为(2,2 3)时,点P ,O ,B 共线,不合题意,舍去.故点P 坐标为(2,-2 3).②若BO =BP ,则42+|y +2 3|2=42,解得y =-2 3,点P 的坐标为(2,-2 3). ③若PO =PB ,则22+|y |2=42+|y +2 3|2,解得y =-2 3,点P 坐标为(2,-2 3). 综上所述,符合条件的点P 只有一个,其坐标为(2,-2 3).10.解:(1)∵▱A ′B ′OC ′由▱ABOC 旋转得到,且点A 的坐标为(0,3),点A ′的坐标为(3,0).∴抛物线过点C (-1,0),A (0,3),A ′(3,0). 设抛物线的解析式为y =ax 2+bx +c (a ≠0),代入,可得⎩⎪⎨⎪⎧ a -b +c =0,c =3,9a +3b +c =0.解得⎩⎪⎨⎪⎧a =-1,b =2,c =3.∴此抛物线的解析式为y =-x 2+2x +3.(2)∵AB ∥CO ,∴∠OAB =∠AOC =90°. ∴OB =OA 2+AB 2=10.又∠OC ′D =∠OCA =∠B ,∠C ′OD =∠BOA , ∴△C ′OD ∽△BOA 又OC ′=OC =1. ∴△C ′OD 的周长△BOA 的周长=OC ′OB =110.又△ABO 的周长为4+10,∴△C ′OD 的周长为4+1010=1+2105.(3)连接OM ,设点M 的坐标为(m ,n ), ∵点M 在抛物线上,∴n =-m 2+2m +3. ∴S △AMA ′=S △AMO +S △OMA ′-S △AOA ′=12OA ·m +12OA ′·n -12OA ·OA ′ =32(m +n )-92=32(m +n -3) =-32(m 2-3m )=-32(m -32)2+278.∵0<m <3,∴当m =32,n =154时,△AMA ′的面积有最大值.∴当点M 的坐标为⎝⎛⎭⎫32,154时,△AMA ′的面积有最大值,且最大值为278.。

2013数学中考试题汇编答案与解析

2013数学中考试题汇编答案与解析

2013中考全国100份试卷分类汇编答案与解析——圆的垂径定理1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.54答案:D .考点:垂径定理与勾股定理.点评:连接圆的半径,构造直角三角形,再利用勾股定理与垂径定理解决.2、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠=,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为A. 95B. 245C. 185D. 52答案:C解析:由勾股定理得AB =5,则sinA =45,作CE ⊥AD 于E ,则AE =DE ,在Rt △AEC 中,sinA =CE AC ,即453CE =,所以,CE =125,AE =95,所以,AD =1853、(2013河南省)如图,CD 是☉O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与点D ,则下列结论中不一定正确的是【】(A )AG BG = (B )AB ∥EF(C )AD ∥BC (D )ABC ADC ∠=∠【解析】由垂径定理可知:(A )一定正确。

由题可知:EF CD ⊥,又因为AB CD ⊥,所以AB ∥EF ,即(B )一定正确。

因为ABC ADC ∠∠和所对的弧是劣弧AC ,根据同弧所对的圆周角相等可知(D )一定正确。

【答案】C4、(2013•泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( )Bcm B cm cm或cm D cm或cm==3cm==4==25、(2013•广安)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为()cm BcmAB=4cmAB=4cmx=故半径为6、(2013•绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()求出==4m7、(2013•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()BABABOB==8、(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O 的半径为()==59、(2013浙江丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5 C 6 D. 810、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()B、,正确,故本选项错误;11、(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径()OB===12、(2013年佛山)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.7分析:过点O作OD⊥AB于点D,由垂径定理可求出BD的长,在Rt△BOD中,利用勾股定理即可得出OD的长.解:如图所示:过点O作OD⊥AB于点D,∵OB=3,AB=3,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD===.故选C.点评:本题考查的是垂径定理,根据题意画出图形,利用勾股定理求出OD的长是解答此题的关键13、(2013甘肃兰州4分、12)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm考点:垂径定理的应用;勾股定理.分析:过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求r的值.解答:解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.14、(2013•内江)在平面直角坐标系中,以原点O为圆心的圆过点A(13,0),直线y=kx ﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为24.15、(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为2cm.==cmcm16、(2013•株洲)如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是48度.17、(2013•黄冈)如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.CD=2x=∴所在圆的半径为:故答案为:.18、(2013•绥化)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为2.OC=1AB=2AD=2=2=2.19、(2013年广州市)如图7,在平面直角坐标系中,点O为坐标原点,点P在第一象限,Θ与x轴交于O,A两点,点A的坐标为(6,0),PΘ的半径为P13,则点P的坐标为____________.分析:过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,∴PD===2,∴P(3,2).故答案为:(3,2).点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键20、(2013年深圳市)如图5所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在图的半径的活动。

2013年中考数学真题试题(解析版)

2013年中考数学真题试题(解析版)

2013年中考数学试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.=9 =﹣2(2.(3分)(2013•济南)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称3.(3分)(2013•济南)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.34.(3分)(2013•济南)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()5.(3分)(2013•济南)图中三视图所对应的直观图是()6.(3分)(2013•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是(),9.(3分)(2013•济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过n次抛掷所出现的点数之和大于n=.10.(3分)(2013•济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()=,=×(OB×OA=,=11.(3分)(2013•济南)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()12.(3分)(2013•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(2013•济南)cos30°的值是.cos30°==.故答案为:14.(4分)(2013•济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.15.(4分)(2013•济南)甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:经计算,=10,=10,试根据这组数据估计甲中水稻品种的产量比较稳定.=)﹣)的平均数为[﹣﹣16.(4分)(2013•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2 .先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到然后变形+得=xy=+==17.(4分)(2013•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F 分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).∴CE=CF=﹣a==2+=2+三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(2013•济南)先化简,再求值:÷,其中a=﹣1.﹣••﹣19.(8分)(2013•济南)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5正正11192(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?1913220.(8分)(2013•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.AD=121.(10分)(2013•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?y=y=(2≤x≤3)22.(10分)(2013•济南)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表1和与每列的各数之和均为非负整数,求整数a的值表2.列≤a23.(10分)(2013•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD 和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.∴BD=100BD=100=100米.24.(12分)(2013•济南)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.=3.=,,y=,t+1t+1+2 =PM•CM+PN•OM﹣(),﹣的最大值为。

2013年中考数学复习专题讲座五:数学思想方法(一)(含详细参考答案)

2013年中考数学复习专题讲座五:数学思想方法(一)(含详细参考答案)

2013年中考数学复习专题讲座五:数学思想方法(一)一、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。

二、中考考点精讲考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。

整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。

例1 10.(2012•德州)已知,则a+b等于()A.3 B.C.2 D.1考点:解二元一次方程组。

点评:本题考查了解二元一次方程组的应用,关键是检查学生能否运用整体思想求出答案,题目比较典型,是一道比较好的题目.考点二:转化思想转化思想是解决数学问题的一种最基本的数学思想。

在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。

转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。

例2 (2012•内江)已知A(1,5),B(3,﹣1)两点,在x轴上取一点M,使AM﹣BM 取得最大值时,则M的坐标为.考点:一次函数综合题;三角形三边关系;关于x轴、y轴对称的点的坐标。

点评:本题可能感觉无从下手,主要原因是平时习惯了线段之和最小的问题,突然碰到线段之差最大的问题感觉一筹莫展.其实两类问题本质上是相通的,前者是通过对称转化为“两点之间线段最短”问题,而后者(本题)是通过对称转化为“三角形两边之差小于第三边”问题.可见学习知识要活学活用,灵活变通.考点三:分类讨论思想在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。

山东省济宁市2013年中考数学专项复习 专题三 双动点问题

山东省济宁市2013年中考数学专项复习 专题三 双动点问题

专题三双动点问题点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读者欣赏.1 以双动点为载体,探求函数图象问题例1 (2007年杭州市)在直角梯形ABCD中,∠C=90°,高CD=6cm(如图1). 动点P,Q 同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿B C运动到点C停止,两点运动时的速度都是1cm/s. 而当点P到达点A时,点Q正好到达点C. 设P,Q同时从点B出发,经过的时间为t(s)时,△BPQ的面积为y(cm)2(如图2). 分别以t,y为横、纵坐标建立直角坐标系,已知点P在AD边上从A到D运动时,y与t的函数图象是图3中的线段MN.(1)分别求出梯形中BA,AD的长度;(2)写出图3中M,N两点的坐标;(3)分别写出点P在B A边上和DC边上运动时,y与t的函数关系式(注明自变量的取值范围),并在图3中补全整个运动中y关于x的函数关系的大致图象.评析本题将点的运动过程中形成的函数解析式与其相应的函数图象有机的结合在一起,二者相辅相成,给人以清新、淡雅之感. 本题彰显数形结合、分类讨论、函数建模与参数思想在解题过程中的灵活运用. 解决本题的关键是从函数图象中确定线段AB、梯形的高与t的函数关系式,建立起y与t的函数关系式,进而根据函数关系式补充函数图象.2 以双动点为载体,探求结论开放性问题例2 (2007年泰州市)如图5,Rt△ABC中,∠B=90°,∠CAB=30°.它的顶点A的坐标为(10,0),顶点B的坐标为(5,53),AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.(1)求∠BAO的度数.(2)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图6),求点P的运动速度.(3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标.(4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P 沿这两边运动时,使∠OPQ=90°的点P有几个?请说明理由.解(1)∠BAO=60°.(2)点P的运动速度为2个单位/秒.评析本题是以双点运动构建的集函数、开放、最值问题于一体的综合题. 试题有难度、有梯度也有区分度,是一道具有很好的选拔功能的好题. 解决本题的关键是从图象中获取P 的速度为2,然后建立S与t的函数关系式,利用函数的性质解得问题(3).本题的难点是题(4),考生要从题目的信息中确定建立以B为直角顶点的三角形,以B为临界点进行分类讨论,进而确定点的个数问题.3 以双动点为载体,探求存在性问题例3 (2007年扬州市)如图8,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N 同时从B点出发,分别沿B→A,B→C运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒.(1)若a=4厘米,t=1秒,则PM=厘米;(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由.评析本题是以双动点为载体,矩形为背景创设的存在性问题.试题由浅入深、层层递进,将几何与代数知识完美的综合为一题,侧重对相似和梯形面积等知识点的考查,本题的难点主要是题(3),解决此题的关键是运用相似三角形的性质用t的代数式表示P M,进而利用梯形面积相等列等式求出t与a的函数关系式,再利用t的范围确定的a取值范围. 第(4)小题是题(3)结论的拓展应用,在解决此问题的过程中,要有全局观念以及对问题的整体把握.4 以双动点为载体,探求函数最值问题例4 (2007年吉林省)如图9,在边长为82cm的正方形ABCD中,E、F是对角线AC上的两个动点,它们分别从点A、C同时出发,沿对角线以1cm/s的相同速度运动,过E作EH垂直AC交Rt△A CD的直角边于H;过F作FG垂直AC交Rt△ACD的直角边于G,连结HG、EB.设HE、EF、FG、GH围成的图形面积为S 1,AE、EB、BA围成的图形面积为S 2(这里规定:线段的面积为0).E到达C,F到达A停止.若E的运动时间为x(s),解答下列问题:(1)当0<X(2)①若y是S 1与S 2的和,求y与x之间的函数关系式;(图10为备用图)②求y的最大值.解(1)以E、F、G、H为顶点的四边形是矩形,因为正方形ABCD的边长为82,所以AC=16,过B作BO⊥AC于O,则OB=89,因为AE=x,所以S 2=4x,因为HE=AE=x,EF=16-2x,所以S 1=x(16-2x),当S 1=S 2时,4x=x(16-2x),解得x1=0(舍去),x2=6,所以当x=6时,S 1=S 2.(2)①当0≤x<8时,y=x(16-2x)+4x=-2x2+20x,当8≤x≤16时,AE=x,CE=HE=16-x,EF=16-2(16-x)=2x-16,所以S 1=(16-x)(2x-16),所以y=(16-x)(2x-16)+4x=-2x2+52x-256.②当0≤x<8时,y=-2x2+20x=-2(x-5)2+50,所以当x=5时,y的最大值为50.当8≤x≤16时,y=-2x2+52x-256=-2(x-13)2+82,所以当x=13时,y的最大值为82.。

中考数学复习专题 数形结合思想(含答案)

中考数学复习专题 数形结合思想(含答案)

数形结合思想一、选择题1、已知点M(1-a ,a+2)在第二象限,则a 的取值范围是( )(A )a>-2 (B)-2<a<1 (C)a<-2 (D)a>1 2、在频率分布直方图中,小长方形的面积等于( )(A )相应各组的频数 (B )组数 (C )相应各组的频率 (D )组距 3、已知一次函数y kx b =+的图象如图所示,当y <0时,x 的取值范围是( )A .x >0B .x <0C .-2<x <0D .x <1 4、过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm . 则OM 的长为( )A.3cmB .5cmC .2cmD .3cm5、一个圆锥的侧面积是底面积的2倍,则这个圆锥的侧面展开图(扇形)的圆心角的度数为( ) A .600B .1800C .300D .9006、若用(a)、(b)、(c)、(d)四幅图像分别表示变量之间的关系,请按图像所给顺序,将下面的①、②、③、④对应顺序。

① 小车从光滑的斜面上滑下(小车的速度与时间的关系)② 一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物的重量的关系) ③ 运动员推出去的铅球(铅球的高度与时间的关系)④ 小杨从A 到B 后,停留一段时间,然后按原速度返回(路程与时间的关系) 正确的顺序是A .③④②①B .①②③④C .②③①④D .④①③②7、小圆圈是网络的结点,结点之间的边线表示它们之间的网线相联,边线标注的数字表示该网线单位时间内可以通过的最大信息量,现在的结O 1-2点A向结点B传递信息,可以分开沿不同的路线同时传递,单位时间内传递的最大信息量为:A.19B.20C.24D.268、如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图像是( )9、如图,周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD面积为()(A)98 (B)196 (C)280 (D) 28410、如图,在□ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,则图中面积相等的平行四边形有()(A)0对(B)1对(C)2对(D)3对二、填空题:1、把正方形ABCD沿着对角线AC的方向移动到正方形A'B'C'D'的位置,它们的重叠部分(图中的阴影部分)的面积是正方形ABCD面积的一半,若AC=2,则正方形移动的距离AA'是2、如图,在直角坐标系中,矩形ABCD的顶点B的坐标为(4,2),直线12y x b=+恰好将矩形OACB分成面积相等的两部分,则b= 。

中考数学专题特训第十八讲:等腰三角形与直角三角形(含详细参考答案)

中考数学专题特训第十八讲:等腰三角形与直角三角形(含详细参考答案)

2013年中考数学专题复习第十八讲等腰三角形与直角三角形【基础知识回顾】一、等腰三角形1、定义:有两边的三角形叫做等腰三角形,其中的三角形叫做等边三角形2、等腰三角形的性质:⑴等腰三角形的两腰等腰三角形的两个底角简称为⑵等腰三角形的顶角平分线、互相重合,简称为⑶等腰三角形是轴对称图形,它有条对称轴,是3、等腰三角形的判定:⑴定义法:有两边相等的三角形是等腰三角形⑵有两相等的三角形是等腰三角形,简称【赵老师提醒:1、等腰三角形的性质还有:等腰三角形两腰上的相等,两腰上的相等,两底角的平分线也相等2、同为等腰三角形腰和底角的特殊性,所以在题目中往常出现对边和角的讨论问题,讨论边时应注意保证讨论角时应主要底角只被围角】4、等边三角形的性质:⑴等边三角形的每个内角都都等于⑵等边三角形也是对称图形,它有条对称轴1、等边三角形的判定:⑴有三个角相等的三角形是等边三角形⑵有一个角是度的三角形是等边三角形【赵老师提醒:1、等边三角形具备等腰三角形的所有性质2、有一个角是直角的等腰三角形是三角形】二、线段的垂直平分线和角的平分线1、线段垂直平分线定义:一条线段且这条线段的直线叫做线段的垂直平分线2、性质:线段垂直平分线上的点到得距离相等3、判定:到一条线段两端点距离相等的点在角的平分线:1、性质:角平分线上的点到得距离相等2、判定:到角两边距离相等的【赵老师提醒:1、线段的垂直平分可以看作是的点的集合,角平分线可以看作是的点的2、要移用作一条已知线段的垂直平分线和已知角的角平分线】三、直角三角形:1、勾股定理和它的逆定理:勾股定理:若一个直角三角形的两直角边为a、b斜边为c则a、b、c满足逆定理:若一个三角形的三边a、b、c满足则这个三角形是直角三角形【赵老师提醒:1、勾股定理在几何证明和计算中应用非常广泛,要注意和二次根式的结合2、勾股定理的逆定理是判断一个三角形是直角三角形或证明线段垂直的主要依据,3、勾股数,列举常见的勾股数三组、、】2、直角三角形的性质:除勾股定理外,直角三角形还有如下性质:⑴直角三角形两锐角⑵直角三角形斜边的中线等于⑶在直角三角形中如果有一个锐角是300,那么它就对边是边的一半3、直角三角形的判定:除勾股定理的逆定理外,直角三角形还有如下判定方法:定义法:⑴有一个角是的三角形是直角三角形⑵有两个角是的三角形是直角三角形⑶如果一个三角形一边上的中线等于这边的这个三角形是直角三角形【赵老师提醒:直角三角形的有关性质在边形,中均有广泛应用,要注意这几条性质的熟练掌握和灵活运用】【重点考点例析】考点一:等腰三角形性质的运用例 1 (2012•襄阳)在等腰△ABC中,∠A=30°,AB=8,则AB边上的高CD的长是.分析:此题需先根据题意画出当AB=AC时,当AB=BC时,当AC=BC时的图象,然后根据等腰三角形的性质和解直角三角形,分别进行计算即可.解:(1)当AB=AC时,∵∠A=30°,∴CD=12AC=12×8=4;(2)当AB=BC时,则∠A=∠ACB=30°,∴∠ACD=60°,∴∠BCD=30°,∴CD=cos∠BCD•BC=cos30°×8=43;(3)当AC=BC时,则AD=4,∴CD=tan∠A•AD=tan30°•4=433;故答案为:433或43或4。

中考数学复习 数形结合思想 方法技巧训练导学案(含答案)

中考数学复习 数形结合思想 方法技巧训练导学案(含答案)

方法技巧专题一 数形结合思想训练数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质解决几何问题(以数助形)的一种数学思想.一、选择题1.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是( )A .演绎B .数形结合C .抽象D .公理化2.若实数a ,b ,c 在数轴上对应的点如图F 1-1所示,则下列式子中正确的是( )图F 1-1A .ac >bcB .|a -b |=a -bC .-a <-b <-cD .-a -c >-b -c3.一次函数y =-2x +m 的图象经过点P (-2,3),且与x 轴、y 轴分别交于点A 、B ,则△AOB 的面积是( ) A .12 B.14C .4D .8 4. 端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队500米的赛道上,所划行的路程y (m )与时间x (min)之间的函数关系式如图F 1-2所示,下列说法错误的是( )图F 1-2A .乙队比甲队提前0.25 min 到达终点B .当乙队划行110 m 时,落后甲队15 mC .0.5 min 后,乙队比甲队每分钟快40 mD .自1.5 min 开始,甲队若要与乙队同时到达终点,甲队的速度需提高到255 m /min5.已知二次函数y =(x -h )2+1(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或-5B .-1或5C .1或-3D .1或36.如图F 1-3,抛物线y =ax 2+bx +c 的图象交x 轴于A (-2,0)和点B ,交y 轴负半轴于点C ,且OB =O C.下列结论:①2b -c =2;②a =12;③ac =b -1;④a +bc>0.其中正确的个数有( )图F 1-3A .1个B .2个C .3个D .4个 二、填空题7.如图F 1-4是由四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a ,b 的恒等式:________.图F 1-48. 如图F 1-5,直线y =kx 和y =ax +4交于A (1,k ),则不等式kx -6<ax +4<kx 的解集为________.图F 1-59.《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图F 1-6所示.由图易得:12+122+123+…+12n =________.图F 1-610.当x =m 或x =n (m ≠n )时,代数式x 2-2x +3的值相等,则x =m +n 时,代数式x 2-2x +3的值为________. 11.已知实数a 、b 满足:a 2+1=1a ,b 2+1=1b ,则2018|a -b |=________.12.观察下列图形:图F 1-7它们是按一定规律排列的,依照此规律,第9个图形中共有________个点. 13.(1)观察下列图形与等式的关系,并填空:图F 1-8(2)观察图F 1-9,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:图F 1-91+3+5+…+(2n -1)+(________)+(2n -1)+…+5+3+1=__________. 三、解答题14. 如图F 1-10,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +2过B (-2,6),C (2,2)两点. (1)试求抛物线的解析式;(2)记抛物线顶点为D ,求△BCD 的面积;(3)若直线y =-12x 向上平移b 个单位所得的直线与抛物线段BDC (包括端点B 、C )部分有两个交点,求b 的取值范围.【例l 】设1342222+-+++=x x x x y ,则y 的最小值为___________.(罗马尼亚竞赛试题)解题思路:若想求出被开方式的最小值,则顾此失彼.()()921122+-+++=x x y =()()()()2222302101-+-+-++x x ,于是问题转化为:在x 轴上求一点C (x ,0),使它到两点A (-1,1)和B (2,3)的距离之和(即CA +CB )最小.【例2】直角三角形的两条直角边之长为整数,它的周长是x 厘米,面积是x 平方厘米,这样的直角三角形 ( ) A .不存在 B .至多1个 C .有4个 D .有2个(黄冈市竞赛试题)解题思路:由题意可得若干关系式,若此关系式无解,则可推知满足题设要求的直角三角形不存在;若此关系式有解,则可推知这样的直角三角形存在,且根据解的个数,可确定此直角三角形的个数.【例3】如图,在△ABC 中,∠A =090,∠B =2∠C ,∠B 的平分线交AC 于D ,AE ⊥BC 于E ,DF ⊥BC 于F . 求证:BEAE BF AE DF BD ⋅+⋅=⋅111. (湖北省竞赛试题)解题思路:图形中含多个重要的基本图形,待证结论中的代数迹象十分明显.可依据题设条件,分别计算出各个线段,利用代数法证明.FEDBAC【例4】 当a 在什么范围内取值时,方程a x x =-52有且只有相异的两实数根? (四川省联赛试题) 解题思路:从函数的观点看,问题可转化为函数x x y 52-=与函数a y =(a ≥0)图象有且只有相异两个交点.作出函数图象,由图象可直观地得a 的取值范围.【例5】 设△ABC 三边上的三个内接正方形(有两个顶点在三角形的一边上,另两个顶点分别在三角形另两边上)的面积都相等,证明:△ABC 为正三角形. (江苏省竞赛试题)解题思路:设△ABC 三边长分别为a ,b ,c ,对应边上的高分别为a h ,b h ,c h ,△ABC 的面积为S ,则易得三个内接正方形边长分别为a h a S +2,b h b S +2,ch c S+2,由题意得c b a h c h b h a +=+=+,即L cSc b S b a S a =+=+=+222.则a ,b ,c 适合方程L x S x =+2.【例6】设正数x ,y ,z 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++1693253222222x zx z z y y xy x ,求zx yz xy 32++的值. 参考答案1.B 2.D 3.B 4.D5.B [解析] (1)如图①,当x =3,y 取得最小值时,⎩⎪⎨⎪⎧h >3,(3-h )2+1=5,解得h =5(h =1舍去);(2)如图②,当x =1,y 取得最小值时,⎩⎪⎨⎪⎧h <1,(1-h )2+1=5,解得h =-1(h =3舍去). 6.C [解析] 在y =ax 2+bx +c 中,当x =0时,y =c ,∴C (0,c ),∴OC =-c .∵OB =OC ,∴B (-c ,0).∵A (-2,0),∴-c 、-2是一元二次方程ax 2+bx +c =0的两个不相等的实数根,∴-c ·(-2)=c a ,∵c ≠0,∴a =12,②正确;∵a =12,-c 、-2是一元二次方程12x 2+bx +c =0的两个不相等的实数根,∴-c +(-2)=-b12,即2b -c =2,①正确;把B (-c ,0)代入y =ax 2+bx +c ,得0=a (-c )2+b ·(-c )+c ,即ac 2-bc +c =0.∵c ≠0,∴ac -b +1=0,∴ac =b -1,③正确;∵抛物线开口向上,∴a >0.∵抛物线的对称轴在y 轴左侧,∴-b2a <0,∴b >0.∴a +b >0.∵抛物线与y 轴负半轴交于点C ,∴c <0.∴a +bc<0,④不正确. 7.(a -b )2=(a +b )2-4ab8.1<x <52 [解析] 将A (1,k )代入y =ax +4得a +4=k ,将a +4=k 代入不等式kx -6<ax +4<kx 中得(a +4)x -6<ax +4<(a +4)x ,解不等式(a +4)x -6<ax +4得x <52,解不等式ax +4<(a +4)x 得x >1,所以不等式的解集是1<x <52.9.1-12n (或2n -12n )10.3 11.112.135 [解析] 第1个图形有3=3×1=3个点; 第2个图形有3+6=3×(1+2)=9个点; 第3个图形有3+6+9=3×(1+2+3)=18个点; …第n 个图形有3+6+9+…+3n =3×(1+2+3+…+n )=3n (n +1)2个点.当n =9时, =135个点. 13.解:(1)1+3+5+7=16=42.观察,发现规律,第一个图形:1+3=22,第二个图形:1+3+5=32,第三个图形:1+3+5+7=42,…, 第(n -1)个图形:1+3+5+…+(2n -1)=n 2. 故答案为:42;n 2. (2)观察图形发现:图中黑球可分三部分,1到n 行,第(n +1)行,(n +2)行到(2n +1)行, 即1+3+5+…+(2n -1)+[2(n +1)-1]+(2n -1)+…+5+3+1 =[1+3+5+…+(2n -1)]+(2n +1)+[(2n -1)+…+5+3+1] =n 2+2n +1+n 2 =2n 2+2n +1.故答案为:2n +1;2n 2+2n +1.14.解:(1)由题意,得⎩⎪⎨⎪⎧4a -2b +2=6,4a +2b +2=2,解得⎩⎪⎨⎪⎧a =12,b =-1.∴抛物线的解析式为y =12x 2-x +2.(2)如图,∵y =12x 2-x +2=12(x -1)2+32,∴抛物线的顶点坐标是(1,32).由B (-2,6)和C (2,2)求得直线BC 的解析式为y =-x +4.∴对称轴与直线BC 的交点是H (1,3). ∴DH =32.∴S △BDC =S △BDH +S △CDH =12×32×3+12×32×1=3.(3)如图.①由⎩⎪⎨⎪⎧y =-12x +b ,y =12x 2-x +2消去y ,得x 2-x +4-2b =0.当Δ=0时,直线与抛物线只有一个公共点,∴(-1)2-4(4-2b )=0,解得b =158.②当直线y =-12x +b 经过点C 时,b =3.③当直线y =-12x +b 经过点B 时,b =5.综上,可知158<b ≤3.。

中考数学专题特训第十九讲:解直角三角形(含详细参考答案)

中考数学专题特训第十九讲:解直角三角形(含详细参考答案)

2013年中考数学专题复习第十九讲解直角三角形【基础知识回顾】一、锐角三角函数定义:在RE△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为CBA= ∠A的正切:tanA= ,它们弦称为∠A的锐角三角函数【赵老师提醒:1、sinA、∠cosA、tanA表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】二、特殊角的三角函数值:要在理解的基础上结合表格进行记忆2、当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而3、几个特殊关系:⑴sinA+cos2A= ,tanA=sin A⑵若∠A+∠B=900,则sinA= 】三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形的依据:RT∠ABC中,∠C900 三边分别为a、b、c⑴三边关系:⑵两锐角关系⑶边角之间的关系:sinA cosA tanAsinB cosB tanB【赵老师提醒:解直角三角形中已知的两个元素应至少有一个是当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在用上标上仰角和俯角⑵坡度坡角:如图:斜坡AB的垂直度H和水平宽度L的比叫做坡度,用i表示,即i=坡面与水平面得夹角为用字母α表示,则i=h l=⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA表示OB表示OC表示(也可称西南方向)3、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数字问题(画出平面图形,转化为解直角三角形的问题)⑵根据条件特点选取合适的锐角三角函数去解直角三角形⑶解数学问题答案,从而得到实际问题的答案【赵老师提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】【重点考点例析】考点一:锐角三角函数的概念对应训练点评:本题考查了正弦的定义:在直角三角形中,一个锐角的正弦等于这个角的对边与斜边的比值.也考查了点的坐标与勾股定理.考点二:特殊角的三角函数值对应训练点评:本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比较好的题目.对应训练考点四:解直角三角形的应用例 4 (2012•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=米,请据此解答如下问题:(1)求该岛的周长和面积;)(2)求∠ACD的余弦值.考点:解直角三角形的应用.分析:(1)连接AC,根据AB=BC=15千米,∠B=90°得到∠BAC=∠ACB=45°千米,再根据∠D=90°利用勾股定理求得AD的长后即可求周长和面积;(2)直接利用余弦的定义求解即可.解:(1)连接AC∵AB=BC=15千米,∠B=90°∴∠BAC=∠ACB=45°又∵∠D=90°∴=∴周长面积=S △ABC+18 6 ≈157(平方千米)(2)cos ∠ACD=CD 1AC 5点评:本题考查了解直角三角形的应用,与时事相结合提高了同学们解题的兴趣,解题的关键是从实际问题中整理出直角三角形并求解. 对应训练 6.(2012•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC=75°.(1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:,,60千米/小时米/秒)考点:解直角三角形的应用.专题:计算题. 分析:(1)由于A 到BC 的距离为30米,可见∠C=90°,根据75°角的三角函数值求出BC 的距离;(2)根据速度=路程÷时间即可得到汽车的速度,与60千米/小时进行比较即可. 解答:解:(1)法一:在Rt △ABC 中,∠ACB=90°,∠BAC=75°,AC=30, ∴BC=AC•tan ∠(米).法二:在BC 上取一点D ,连接AD ,使∠DAB=∠B ,则AD=BD , ∵∠BAC=75°,∴∠DAB=∠B=15°,∠CDA=30°, 在Rt △ACD 中,∠ACD=90°,AC=30,∠CDA=30°,∴AD=60,(米)(2)∵此车速度=112÷8=14(米/秒)<(米/秒)=60(千米/小时) ∴此车没有超过限制速度.点评:本题考查了解直角三角形的应用,理解正切函数的意义是解题的关键. 【聚焦山东中考】A.不变B.缩小为原来的1C.扩大为原来的3倍D.不能确定5.(2012•潍坊)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D 的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到米,参考数据:;(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.5.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD=CD21=tan30,在Rt△BDC中,BD=CD21=tan303,则(米)。

初中数学专题复习数形结合(含答案)

初中数学专题复习数形结合(含答案)

专题复习三数形结合Ⅰ、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离”.几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.Ⅱ、典型例题剖析【例1】(2005,嘉峪关,10分)某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,图3-3-1已表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)果你是推销员,应如何选择付费方案?解:(1)y1=20x,y2=10x+300.(2)y1是不推销产品没有推销费,每推销10件产品得推销费200元,y2是保底工资300元,每推销 10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择y1的付费方案;否则,选择y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.【例2】(2005,某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图3-3-2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1)2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3)l月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10 月、3月与11 月,2月与12 月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.【例3】(2005,江西课改,8分)某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3l 司所示的条形统计图:⑴请写出从条形统计图中获得的一条信息;⑵请根据条形统计图中的数据补全如图3-3-3所示的扇形统计图(要求:第二版与第三版相邻人并说明这两幅统计图各有什么特点?⑶请你根据上述数据,对该报社提出一条合理的建议。

中考数学高频考点《数形结合思想》专项测试卷-附答案

中考数学高频考点《数形结合思想》专项测试卷-附答案

中考数学高频考点《数形结合思想》专项测试卷-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题:本题共8小题每小题3分共24分。

1.若实数k,m,n满足k+m+n=0且k<n<m则函数y=kx+m的图象可能是( )A. B. C. D.2.通过计算比较图1图2中阴影部分的面积可以验证的式子是( )A. a(b−x)=ab−axB. b(a−x)=ab−bxC. (a−x)(b−x)=ab−ax−bxD. (a−x)(b−x)=ab−ax−bx+x23.一次函数y=−ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是( )A. B. C. D.4.点O、A、B、C在数轴上的位置如图所示点O为原点AO=1CO=2AB若点B所表示的数为b则点C 所表示的数为( )A. −2b+2B. −2b−2C. 2b−2D. 2b+25.如图OA是北偏东30°方向的一条射线若∠AOB=90°则OB的方向角是( )A. 北偏西30°B. 北偏西60°C. 东偏北30°D. 东偏北60°6.y关于x函数关系如图所示当−3≤x≤3时函数值y的取值范围是( )A. 0≤y≤3B. 0≤y≤2C. 1≤y≤3D. −3≤y≤37.我们知道对于一个图形通过两种不同的方法计算它的面积可以得到一个数学等式.例如由图1可以得到a2+3ab+2b2=(a+2b)(a+b).若已知a2+b2+c2=45ab+bc+ac=38由图2所表示的数学等式则a+b+c的值为( )A. 12B. 11C. 10D. 98.数形结合是解决数学问题常用的思想方法.如图一次函数y=kx+b(k,b为常数且k<0)的图像与直线y=13x都经过点A(3,1)当kx+b<13x时x的取值范围是 ( )A. x>3B. x<3C. x<1D. x>1二填空题:本题共5小题每小题3分共15分。

2013年中考数学复习课件:第四部分 专题三 数形结合思想

2013年中考数学复习课件:第四部分 专题三 数形结合思想

解:(1)140<x≤230 (2)54
x>230
(3)设第二档每月电费 y 与用电量 x 之间的函数关系式为:y =ax+c,将(140,63),(230,108)代入,得:
140a+c=63, 230a+c=108.
1 a= , 2 解得 c=-7.
1 则第二档每月电费 y 与用电量 x 之间的函数关系式为 y=2x -7(140<x≤0 度,需要付费 108 元,用电 140度,需要付费63元,故108-63=45(元),230-140=90(度),
45÷90=0.5(元),则第二档电费为 0.5 元/度.
∵小刚家某月用电 290 度,交电费 153 元,
∴290-230=60(度),153-108=45(元).
实际问题的数形结合 例 1:(2012 年贵州遵义)为了促进节能减排,倡导节约用电,
某市将实行居民生活用电阶梯电价方案,图 Z3-1 中的折线反
映了每户每月用电电费 y(单位:元)与用电量 x(单位:度)间的函 数关系式. (1)根据图象,阶梯电价方案分为三个档次,填写下表: 档 次 每月用电量 x(度) 第一档 0<x≤140 第二档 __________ 第三档 __________

60- 2x 2× cm. 2
60- 由题意,得 2 2x 2 × 2 =1 250.
解得 x1=5
2,x2=55
2(不符合题意舍去). 2 cm. 2x.
答:长方体包装盒的高为 5
60- 2x (2)由题意,得 S=4× 2× ×x=-4x2+120 2 ∵a=-4<0, ∴当 x=15 2时,S 有最大值.
(2)设剪掉的等腰直角三角形的直角边长为 x(单位:cm),长

2013年中考数学 专题复习三 函数及其图象

2013年中考数学   专题复习三 函数及其图象

知识结构
典例精选
专题训练
首页
按ESC退出
【解析】B
2 2 设 A a,a,Bb, b,且 0<a<b.根据解析法可得直线 l 的解析式为:y




2a+b 2 =- x+ .当 y=0 时,x=a+b,故 C 点坐标为(a+b,0).所以△OBC 的面积为:S1 ab ab 1 2 a+b 1 2 a+b = (a+b) = .又△OAC 的面积为:S 2= (a+b) = .因为 AB∶BC=(m-1)∶1,则 2 2 b b a a a+b a+b a+b BC∶AC=1∶m,所以 S 1∶S2=1∶m,即 ∶ =1∶m,所以 b=am.所以 S1= = b a b m+1 m+1 m2-1 ,S2=m+1,所以△OAB 的面积为 m+1- = .故选 B. m m m
知识结构
典例精选
专题训练
首页
按ESC退出
知识结构
典例精选
专题训练
首页
按ESC退出
(2012· 深圳)已知点 P(a+1,2a-3)关于 x 轴的对称点在第一象限,则 a 的取值范围 是( ) A.a<-1 3 C.- <a<1 2 3 B.-1<a< 2 3 D.a> 2
点P关于x轴的对 a+1>0 【思路点拨】 → 点P在第四象限 → 称点在第一象限 2a-3<0
【解析】D 观察图象可知抛物线对称轴为 x=2,且与 x 轴交于点(5,0),依据对称性可 求出抛物线与 x 轴另一交点的坐标为(-1,0).二次函数 y=ax2+bx+c 的部分图象的开口向 下,所以不等式 ax 2+bx+c<0 的解集是 x<-1 或 x>5.故选 D.
知识结构
典例精选
专题训练

中考总复习数学专题优化训练: 数形结合思想

中考总复习数学专题优化训练: 数形结合思想

专题训练五 数形结合思想一、选择题1.已知在第二象限内,点P 到x 轴的距离是2,到y 轴的距离是3,则P 点的坐标是A.(2,3)B.(-2,3)C.(-3,2)D.(3,2)2.把不等式组⎩⎨⎧≤->+01,01x x 的解集表示在数轴上,正确的是图2-33.若M(-21,y 1)、N(-41,y 2)、P(21,y 3)三点都在函数y=xk (k <0)的图象上,则y 1、y 2、y 3的大小关系为A.y 2>y 3>y 1B.y 2>y 1>y 3C.y 3>y 1>y 2D.y 3>y 2>y 14.已知二次函数y=ax 2+bx+c 的图象如图2-4所示,则a 、b 、c 满足图2-4A.a <0,b <0,c >0B.a <0,b <0,c <0C.a <0,b >0,c >0D.a >0,b <0,c >05.已知二次函数y=x 2-2x-3,当_______________时,y 随x 的增大而增大;当_______________时,y 的值小于0A.x <1;-1<x <3B.x >1;x <-1或x >3C.x >1;-1<x <3D.x <-1;x <-1或x >3二、填空题6.实数a 、b 在数轴上的位置如图2-5所示,化简2a +∣a-b ∣=__________________.图2-57.若不等式组⎩⎨⎧->+<12,1m x m x 无解,则m 的取值范围是________________.8.青岛市是严重缺水地区,自来水公司为了鼓励市民节约用水,采取分段收费标准,若某户居民每月应交水费是用水量的函数,其图象如图2-6所示:观察函数图象,回答自来水公司采取的收费标准______________________________________ _______________________________________________________________________________ .图2-69.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;图2-7(2)通过猜想写出与第n个点阵相对应的等式为___________________.10.如图2-8,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于A(-1,0)、B(3,0)和C(0,-3),一次函数的图象与抛物线交于B、C两点.图2-8(1)二次函数的解析式为_______________________.(2)当自变量x_______________时,两函数的函数值都随x增大而增大.(3)当自变量_______________时,一次函数值大于二次函数值.(4)当自变量x_______________时,两函数的函数值的积小于0.三、解答题11.某广电局与长江证券公司联合推出广电宽带网业务,用户通过宽带网可以享受新闻点播、影视欣赏、股市大户室等项服务,用户交纳上网费的方式有:方式一,每月80元包干;方式二,每月上网时间x(小时)与上网费y(元)的函数关系用图2-9中的折线表示;方式三,以0小时为起点,每小时收费1.6元,月收费不超过120元.若设一用户每月上网x小时,月上网费为y元.图2-9(1)根据图2-9,写出方式二中y与x的函数关系式;(2)试写出方式三中y与x的函数关系式;(3)若此用户每月上网60小时,选用哪种方式上网费用最少?最少费用是多少?12.如图2-10,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.图2-10(1)建立如图所示的直角坐标系,求抛物线的解析式.(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,它跳离地面的高度是多少?一、选择题1答案:C提示:点P到x轴的距离是2,所以y=2;到y轴的距离是3,所以x=3.2答案:B提示:不等式组的解集在数轴上表示,要注意实心点和空心点的区别.3答案:B提示:由k<0,反比例函数的图象过第二、四象限,由此可知y1、y2为正值,y3为负值;然后再根据增减性确定y1、y2的大小.4答案:A提示:二次函数y=ax 2+bx+c 图象中,a 决定抛物线的开口方向,c 决定抛物线与y 轴交于正半轴或负半轴,a 、b 同号对称轴为负,a 、b 异号对称轴为正.5答案:C提示:求出抛物线的对称轴,以及抛物线和x 轴的交点坐标,通过数形结合,得出答案.二、填空题6答案:b-2a提示:根据绝对值意义和二次根式化简.7答案:m ≥2提示:不等式组⎩⎨⎧->+<12,1m x m x 无解,即2m-1≥m+1.8答案:用水量不超过5吨时,每吨0.72元;当用水量超过5吨时,超过5吨的部分,每吨0.9元提示:5吨水花费3.6元,便可求出单价.超过5吨水后,每用3吨花费2.7元,便可求出水的单价.9答案:(1)1+3+5+7=42 1+3+5+7+9=52 (2)1+3+5+7+…+(2n-1)=n 2提示:点阵中点的总数实际上可以看作正方形的面积.10答案:(1)y=x 2-2x-3 (2)x >1 (3)0<x <3 (4)<-1提示:用待定系数法求出函数解析式,再由图象判断.11答案:(1)y=⎩⎨⎧>-≤≤.50,22.1,500,58x x x (2)y=⎩⎨⎧>≤≤.75,120,750,6.1x x x (3)第二种费用最少,最少费用为70元.提示:运用待定系数法求直线解析式.12答案:(1)y=-51x 2+3.5;(2)0.2米. 提示:把实际问题转化为数学问题:求抛物线上点的坐标.。

中考数形结合题

中考数形结合题

【中考冲刺】数形结合的5个常考类型数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.1用数形结合的思想解题可分两类(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常常要建立方程(组)或建立函数关系式等. 22. 热点内容在初中教材中,“数”的常见表现形式为: 实数、代数式、函数和不等式等,而“形”的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数图象对应一条直线,二次函数的图像对应着一条抛物线,这些都是初中数学的重要内容.【典型例题】类型一、利用数形结合探究数字的变化规律1.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.【思路点拨】首先计算几个特殊图形,发现:数出每边上的个数,乘以边数,但各个顶点的重复了一次,应再减去.第1个图形是2×3-3,第2个图形是3×4-4,第3个图形是4×5-5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n2+2n.【答案与解析】第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋(2×3-3)个;第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子(3×4-4)个;第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子(4×5-5)个;按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n(n+2).故答案为n(n+2)=n2+2n.【总结升华】这样的试题从最简单的图形入手.找出图形中黑点的个数与第n个图形之间的关系,找规律需要列出算式,一律采用原题中的数据,不要用到计算出来的结果来找规律.举一反三:【变式】用棋子按下列方式摆图形,依照此规律,第n个图形比第(n-1)个图形多_____枚棋子.【答案】解:设第n个图形的棋子数为.第1个图形,S1=1;第2个图形,S2=1+4;第3个图形,S3=1+4+7;第n个图形,S n=1+4+…+3n-2;第(n-1)个图形,S n-1=1+4+…+[3(n-1)-2];则第n个图形比第(n-1)个图形多(3n-2)枚棋子.类型二、利用数形结合解决数与式的问题2.已知实数a、b、c在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是().A.a+cB.-a-2b+cC.a+2b-cD.-a-c【思路点拨】首先从数轴上a、b、c的位置关系可知:c<a<0;b>0且|b|>|a|,接着可得a+b>0,c-b<0,然后即可化简|a+b|-|c-b|可得结果.具体步骤为:①a,b,c的具体位置,在原点左边的小于0,原点右边的大于0.②比较绝对值的大小.|a|<|c|<|b|.③化简原式中的每一部分,看看绝对值内部(二次根式中的被开方数的底数)的性质,若大于零,直接提出来,若小于零,则取原数的相反数.④进行化简计算,得出最后结果.【答案与解析】解:从数轴上a、b、c的位置关系可知:c<a<0;b>0且|b|>|a|,故a+b>0,c-b<0,即有|a+b|-|c-b|=a+b+c-b=a+c.故选A.【总结升华】此题主要考查了利用数形结合的思想和方法来解决绝对值与数轴之间的关系,进而考察了非负数的运用.数轴的特点:从原点向右为正数,向左为负数,及实数与数轴上的点的对应关系.非负数在初中的范围内,有三种形式:绝对值(|a|),完全平方式(a±b)2,二次根式.性质:非负数有最小值是0;几个非负数的和等于0,那么每一个非负数都等于0.类型三、利用数形结合解决代数式的恒等变形问题3.图①是一个边长为的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是()A.B.C.D.【思路点拨】这是完全平方公式的几何背景,用几何图形来分析和理解完全平方公式的实质.是一个很典型的“数形结合”的例子,用图形的变换来帮助理解代数学中的枯燥无味的数学公式.根据图示可知,阴影部分的面积是边长为(m+n)的正方形的面积减去中间白色的小正方形的面积(m2+n2),即为对角线分别是2m,2n的菱形的面积.据此即可解答.【答案】B.【解析】(m+n)2-(m2+n2)=2mn.故选B.【总结升华】本题是利用几何图形的面积来验证(m+n)2-(m2+n2)=2mn,解题关键是利用图形的面积之间的相等关系列等式.举一反三【变式】如图1是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个空心正方形.(1)你认为图2中的阴影部分的正方形的边长是多少?(2)请用两种不同的方法求出图2中阴影部分的面积;(3)观察图2,你能写出下列三个代数式:(m+n)2、(m-n)2、mn之间的关系吗?【答案】解:(1)图②中阴影部分的正方形的边长等于(m-n);(2)(m-n)2;(m+n)2-4mn;(3)(m-n)2=(m+n)2-4mn.类型四、利用数形结合思想解决极值问题4.我们知道:根据二次函数的图象,可以直接确定二次函数的最大(小)值;根据“两点之间,线段最短”,并运用轴对称的性质,可以在一条直线上找到一点,使得此点到这条直线同侧两定点之间的距离之和最短.这种“数形结合”的思想方法,非常有利于解决一些实际问题中的最大(小)值问题.请你尝试解决一下问题:(1)在图1中,抛物线所对应的二次函数的最大值是_____.(2)在图2中,相距3km的A、B两镇位于河岸(近似看做直线CD)的同侧,且到河岸的距离AC=1千米,BD=2千米,现要在岸边建一座水塔,直接给两镇送水,为使所用水管的长度最短,请你:①作图确定水塔的位置;②求出所需水管的长度(结果用准确值表示).(3)已知x+y=6,求的最小值?此问题可以通过数形结合的方法加以解决,具体步骤如下:①如图3中,作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=____DB= ____.②在AB上取一点P,可设AP= _____,BP= _____.③的最小值即为线段___和线段_____长度之和的最小值,最小值为___.【思路点拨】(1)利用二次函数的顶点坐标就可得出函数的极值;(2)①延长AC到点E,使CE=AC,连接BE,交直线CD于点P,则点P即为所求;②过点A作AF⊥BD,垂足为F,过点E作EG⊥BD,交BD的延长线于点G,则有四边形ACDF、CEGD都是矩形,进而利用勾股定理求出即可;(3)①作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=3,BD=5,②在AB上取一点P,可设AP=x,BP=y;③的最小值即为线段PC和线段PD长度之和的最小值,最小值利用勾股定理求出即可.【答案与解析】解:(1)抛物线所对应的二次函数的最大值是4;(2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考专题突破专题三 数形结合思想
1.(2012年四川自贡)伟伟从学校匀速回家,刚到家发现当晚要完成的试卷忘记在学校,于是马上以更快的速度匀速沿原路返回学校.在这一情景中,速度v 和时间t 的函数图象(不考虑图象端点情况)大致是( )
A B C D
2.文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )
A .玩具店
B .文具店
C .文具店西边40米
D .玩具店东边-60米 3.已知实数a ,b 在数轴上的对应点依次在原点的右边和左边,那么( ) A .ab <b B .ab >b C .a +b >0 D .a -b >0
4.已知函数y =x 和y =x +2的图象如图3-3,则不等式x +2>x 的解集为( ) A .-2≤x <2 B .-2≤x ≤2 C .x <2 D .x >2
图3-3
5.如图3-4,直线l 1∥l 2,⊙O 与直线l 1和直线l 2分别相切于点A 和点B .点M 和点N 分别是直线l 1和直线l 2上的动点,MN 沿l 1和l 2平移.⊙O 的半径为1,∠1=60°.下列结论错误的是( )
图3-4
A .MN =4 33
B .若MN 与⊙O 相切,则AM =3
2
C .若∠MON =90°,则MN 与⊙O 相切
D .直线l 1和直线l 2的距离为2
6.如图3-5,已知四边形OABC为正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA上,且点D的坐标为(2,0),点P是OB上的一个动点,则PD+P A的最小值是()
图3-5
A.210 B.10 C.4 D.6
7.(2012年天津)某电视台“走基层”栏目的一位记者乘汽车赴360 km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图3-6,则下列结论正确的是()
A.汽车在高速公路上的行驶速度为100 km/h
B.乡村公路总长为90 km
C.汽车在乡村公路上的行驶速度为60 km/h
D.该记者在出发后4.5 h到达采访地
图3-6
8.(2012年山东日照)二次函数y=ax2+bx+c(a≠0)的图象如图3-7,给出下列结论:①b2-4ac>0;②2a+b<0;③4a-2b+c=0;④a∶b∶c=-1∶2∶3.其中正确的是()
图3-7
A.①②B.②③C.③④D.①④
9.(2010年广东茂名)张师傅驾车运送荔枝到某地出售,汽车出发前油箱有50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y(单位:升)与行驶时间t(单位:时)之间的关系如图3-8.
请根据图象回答下列问题:
(1)汽车行驶________小时后加油,中途加油________升; (2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式;
(3)已知加油前、后汽车都以70千米/时的速度匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由?
图3-8
10.(2011年湖南邵阳)如图3-9,在平面直角坐标系xOy 中,已知点A ⎝⎛⎭⎫-9
4,0,点C (0,3),点B 是x 轴上的一点(位于点A 右侧),以AB 为直径的圆恰好经过点C .
(1)求∠ACB 的度数;
(2)已知抛物线y =ax 2+bx +3经过A ,B 两点,求抛物线的解析式;
(3)线段BC 上是否存在点D ,使△BOD 为等腰三角形?若存在,则求出所有符合条件的点D 的坐标;若不存在,请说明理由.
图3-9
11.(2012年四川宜宾)如图3-10,抛物线y=x2-2x+c的顶点A在直线l∶y=x-5上.
(1)求抛物线顶点A的坐标;
(2)设抛物线与y轴交于点B,与x轴交于点C,D(点C在点D的左侧),试判断△ABD的形状;
(3)在直线l上是否存在一点P,使以点P,A,B,D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
图3-10
中考专题突破三 数形结合思想答案
【专题演练】
1.A 2.B 3.D 4.A 5.B 6.A 7.C 8.D
9.解:(1)3 31
(2)设y 与t 的函数关系式是y =kt +b (k ≠0),
根据题意,得⎩
⎪⎨⎪

50=b ,14=3k +b ,
解得k =-12,b =50.
因此,加油前油箱剩余油量y 与行驶时间t 的函数关系式是y =-12t +50. (3)由图可知:汽车每小时用油(50-14)÷3=12(升),所以汽车要准备油(210÷70)×12=36(升).
因为45升>36升,所以油箱中的油够用. 10.解:(1)如图,∠ACB =90°. (2)∵△AOC ∽△COB ,
∴AO CO =CO OB
. 又∵A ⎝⎛⎭⎫-9
4,0,C (0,3), ∴ AO =9
4
,OC =3.
∴解得OB =4.
∴B (4,0).把 A ,B 两点坐标代入解得:
y =-13x 2+7
12x +3.
(3)存在.
直线BC 的方程为3x +4y =12,设点D (x ,y ).
①若BD =OD ,则点D 在OB 的中垂线上,点D 的横坐标为2,纵坐标为3
2,即点D 1(2,
3
2
)为所求. ②若OB =BD =4,则y CO =BD BC ,x BO =CD BC ,得y =125,x =45,点D 2(45,12
5
)为所求.
11.解:(1)∵顶点A 的横坐标为x =--2
2
=1,且顶点A 在y =x -5上,
∴当x =1时,y =1-5=-4. ∴A (1,-4).
(2)△ABD 是直角三角形.
将A (1,-4)代入y =x 2-2x +c , 可得1-2+c =-4,∴c =-3. ∴y =x 2-2x -3.∴B (0,-3).
当y =0时,x 2-2x -3=0,x 1=-1,x 2=3, ∴C (-1,0),D (3,0).
∵BD 2=OB 2+OD 2=18,AB 2=(4-3)2+12=2,AD 2=(3-1)2+42=20, ∴BD 2+AB 2=AD 2. ∴∠ABD =90°,即△ABD 是直角三角形. (3)存在.
由题意知:直线y =x -5交y 轴于点E (0,-5),交x 轴于点F (5,0).∴OE =OF =5.又∵OB =OD =3,
∴△OEF 与△OBD 都是等腰直角三角形. ∴BD ∥l ,即P A ∥BD .
则构成平行四边形只能是P ADB 或P ABD ,如图,
过点P 作y 轴的垂线,过点A 作x 轴的垂线交过P 且平行于x 轴的直线于点G . 设P (x 1,x 1-5),则G (1,x 1-5).
则PG =||1-x 1,AG =||5-x 1-4=||1-x 1. P A =BD =3 2, 由勾股定理,得:
(1-x 1)2+(1-x 1)2=18, x 21-2x 1-8=0,x 1=-2或4. ∴P (-2,-7)或P (4,-1).
存在点P (-2,-7)或P (4,-1)使以点A ,B ,D ,P 为顶点的四边形是平行四边形.。

相关文档
最新文档