氧化还原滴定法

合集下载

氧化还原滴定法

氧化还原滴定法

2Mn2+ + 10CO2↑+ 8H2O
n = 5 n Na2C2O4 2 2024/10/11
KMnO4
45
二、 滴定液旳配制与标定
❖ 2.指示剂:
本身指示剂
❖ 3.条件:
a.酸度 :0.5~1mol/LH+ b.温度 :65℃ c.滴定速度 :慢-快-慢 d.滴定终点 :无色-微红
2024/10/11
2024/10/11
36
四、 应用实例
❖ 例1 维生素C旳含量测定 ❖ 例2 焦亚硫酸钠旳含量测定
2024/10/11
37
四、 应用实例
❖ 例1 维生素C旳含量测定
1.原理
O
H OH
C- C= C- C- C- CH + I2
O OH OH H OH H
O
H OH
C- C- C- C- C- CH2 + 2HI
碘量法 高锰酸钾法 重铬酸钾法 亚硝酸钠法 溴量法 铈量法
2024/10/11
10
第二节 指示剂
❖ 一、 本身指示剂 ❖ 二、 特殊指示剂 ❖ 三、 氧化还原指示剂
2024/10/11
11
一、 本身指示剂
❖ 有些滴定剂或被测物有颜色,滴定产物 无色或颜色很浅,则滴定时不必再滴加 指示剂,本身旳颜色变化起着指示剂旳 作用,称本身指示剂。
❖3.条件
为使碘氧化亚砷酸钠旳反应能定量 进行,一般加入碳酸氢钠,使溶液呈 弱碱性(pH8~9);
淀粉指示剂在滴定前加入。
2024/10/11
31
(一)碘滴定液
❖4.浓度计算
cI2
=
2mAs2O3 1000 M V As2O3 I2

氧化还原滴定常见方法

氧化还原滴定常见方法

氧化还原滴定常见方法一:高锰酸钾法强酸性条件:MnO4-+8H++5e-=Mn2++4H2O弱酸性、中性或弱碱性:MnO4-+2H2O+3e-=MnO2+4OH-在NaOH浓度大于2mol/L的溶液中:MnO4-+e-=MnO42-用高锰酸钾测定MnO2含量:第一步:加入一定量过量的标准酸化的Na2C2O4溶液:MnO2+C2O42-+4H+=Mn2++2CO2+2H2O第二部:用KMnO4溶液标定剩余C2O42-:2MnO4-+5C2O42-+16H+=2Mn2++10CO2+8H2O二:重铬酸钾法由于K2Cr2O7的还原产物Cr3+为绿色,终点时无法判断出过量的K2Cr2O7的黄色,所以常用二苯胺磺酸钠作指示剂(溶液显紫红色为终点): Cr2O72-+14H++6e-=2Cr3++7H2O三:碘量法I2溶液的储存:由于固体I2在水中溶解度很小,通常将I2溶解在KI溶液中形成I3-(为方便起见,一般简写为I2)。

滴定时的基本反应为:I3-+2e-=3I-I2溶液的标定:使用As2O3进行标定。

As2O3难溶于水,可溶于碱溶液中:As2O3+6OH-=2AsO33-+3H2O在pH≈8的溶液中,平衡定向向右移动:AsO33-+I2+H2O=AsO43-+2I-+2H+直接碘量法:还原性强的物质,可以用I2溶液直接标定。

如钢铁中硫的测定:I2+SO2+2H2O=2I-+SO42-+4H+还可测定As2O3、Sb(III)、Sn(II)等。

不能在碱性溶液中进行,会发生歧化。

间接碘量法:氧化性强的物质,可用I-还原,然后用Na2S2O3的标准溶液滴定析出的I2:I2+2S2O32-=2I-+S4O62-必须在中性或者弱酸性环境中。

碱性下I2会歧化,强酸性下Na2S2O3会分解:S2O32-+2H+=SO2+S+H2O。

氧化还原滴定法

氧化还原滴定法
• (一) 增大反应物的浓度 • (二) 升高温度
• (三) 通过催化作用
氧化还原滴定法终点的判断
• (一)自身指示剂 如 KMnO4 滴定H2C2O4时, KMnO4 既是标准溶液又是 指示剂。 • (二)特殊指示剂 如用于碘量法中的淀粉溶液,本身不参与氧化还而可 指示终点。 • (三)氧化还原指示剂
(二)间接碘量法(或滴定碘法)
• 对氧化性物质,可在一定条件下,用I-还原, 产生I2,然后用Na2S2O3标准溶液滴定释放出的 I2 。这种方法就叫做间接碘量法或滴定碘法。 • 间接碘量法也是使用淀粉溶液作指示剂,溶液 由蓝色变无色为终点。
间接碘量法的反应条件和滴定 条件:
• 1. 酸度的影响:I2 与Na2S2O3应在中性、弱 酸性溶液中进行反应。 • 2. 防止 I2 挥发的方法:在滴定前,加入过 量KI(比理论值大2~3倍),减少 I2挥发。 • 3. 防止I- 被氧化
三、分类
• 氧化还原滴定法根据使用的标准溶液不同可分 为 • • • • 高锰酸钾法、 重铬酸钾法、 碘量法、 溴酸钾法等。
• 主要介绍:高锰酸钾法以及碘量法
二、高锰酸钾法
• (一)基本原理和条件
• (二)测定方法 • (三)标准溶液的配臵与标定
(一)基本原理和条件
• 高锰酸钾法是以具有强氧化能力的高锰酸钾做 标准溶液,利用其氧化还原滴定原理来测定其 他物质的滴定分析方法。
标准溶液的配制和标定
• (一)碘标准溶液(0.05mol/L)的配制和标 定 • 1. 配制 • 由于碘具有挥发性和腐蚀性,通常情况下,碘 标准溶液是采用间接法配制。 • 配制0.05mol/L时,可取碘13g,加碘化钾36g 与水50ml溶解后,加稀盐酸3滴与水适量稀释 至1000ml,摇匀,贮存于棕色试剂瓶中备用。 • 2. 标定: • 用三氧化二砷(As2O3)为基准物质,甲基橙 为指示剂,用待标定的碘标准溶液滴定至终点。

氧化还原滴定法(共52张PPT)

氧化还原滴定法(共52张PPT)

lgK(1 2)n1n2n
0.059
差值越大, 反应越完全
一般认为: º或 f 应有0.4V以上
影响 K 值的因素:
① n1 n2
② 1º~ 2º
注意:
① n1 n2 最小公倍数
② K ~ º K ~ f
五、滴定反应对平衡常数的要求
①当n1=n2=1时,两电对条件电势差大于
②当n1=n2=2时,两电对条件电势差大于 ③当n1≠n2时,
1
n [R]ed n [R] ed 酸度: H2SO4介质,控制~1mol/L
1
1
0 .0592
2
2
2
这些关于 Ep的讨论都是指对称电对
低—反应慢, 高—H2C2O4分解
邻二氮菲 - 亚铁
[O]x n [O]x n 0 .059 10 Cl- + 2 MnO4- + 16 H+ == 5 Cl2 + 2 Mn2+ + 8 H2O
O/R xe d O/R xe+d0n .0l5 ga a9 R Oexd
O/xRedO/xRed+0n .05lg9[[R Oexd]]
gg aa Ox/Red
Ox/Red
+ 0.059 lg( n
Ox Red
c Red Ox ) c Ox Red
三、条件电极电势
gg a a O /R xe d O /R xe + 0 dn .l0g5 R O (e 9 x R O d c c e R O xd e )xd
二苯胺磺酸钠
0.84V 如何选择?
另:
指示剂校正
第五节 氧化还原滴定前的预处理
目的:将被测物预先处理成便于滴定的形式

氧化还原滴定法

氧化还原滴定法

氧化还原滴定中测定结果的计算方法
氧化还原滴定结果的计算主要依据氧化还 原反应方程式中的化学计量关系。
标定条件:
温度: 75~85℃[低—反应慢, 高—H2C2O4分解] 酸度: c(H+)=1mol· H2SO4介质。 L–1 [低—分解为MnO2, 高—H2C2O4分解] 速度: 先慢后快(Mn2+催化)。 [快—KMnO4来不及反应而分解]
高锰酸钾法
高锰酸钾法是以高锰酸钾作滴定剂的氧化还原滴 定法。它的特点有: ①高锰酸钾是一种强氧化剂,可以氧化多种还原 性物质。 ②KMnO4可做自身指示剂,终点为粉红色。 ③根据待测物质性质的不同,可采用直接滴定法、 间接滴定法或返滴定法。 ④由于试剂KMnO4中常含有MnO2,不能直接称量 配其标准液。配制高锰酸钾溶液要经过溶解、煮 沸、放置、 砂芯漏斗过滤、标定、贮存于棕色瓶 中等步骤。 ⑤高锰酸钾与还原型物质作用反应一般进行的都 很完全,但反应速率较慢,有时要加热或加催化 剂以加速反应。
滴定曲线的计算
氧化还原指示剂
1.氧化还原指示剂 2.自身指示剂 ቤተ መጻሕፍቲ ባይዱ.专属指示剂
1、氧化还原指示剂
氧化还原指示剂本身就是一种氧化剂或还 原剂,其氧化态和还原态具有不同的颜色,且 色差明显。滴定中,化学计量点附近的电势突 跃使指示剂由一种形态转变成另一种形态,根 据颜色的突变来指示终点。
2、自身指示剂
利用标准溶液或被滴定物质本身颜色指 示滴定终点,称为自身指示剂。 例如: 高锰酸钾本身显紫红色,而其还原产物 Mn2+则几乎无色,所以用高锰酸钾滴定无色 或浅色的还原剂时,一般不用另加指示剂。
3、特殊指示剂
能与滴定剂或反应生成物形成特殊的有色化 合物,从而指示滴定的终点,这种指示剂称为 特殊指示剂(或专用指示剂)。

氧化还原滴定法

氧化还原滴定法

例1 计算1mol/LHCl溶液,cCe(IV)=1.00×10-2 mol/L, cCe(III)=1.00×10-3mol/L 时Ce(IV)/Ce(III) 电对的电极电位。 解:查附录,半反应Ce(IV)+e = Ce(III) 在1mol/LHCl介质中的条件电位=1.28V,则
E = 1.28V+0.059lg1.00×10-2/1.00×10-3
二、 条件电位
0.059 aOX EE lg n aRed

0.059 OX [OX] E lg n Red [Red]

如果考虑有副反应发生,还需引进相应的副反应系 数Ox,Red: Ox=cOx/[Ox] Red=cRed /[Red] 副反应系数是分布系数的倒数。
1mol/LH2SO4 中 , 以 0.1000mol/LCe(SO4)2 标 准溶液滴定20.00ml0.1000mol/LFe2+溶液。 Fe3++e = Fe2+ E0’ Fe3+/Fe2+=0.68V Ce4++e = Ce3+ E0’ Ce4+/Ce3+=1.44V 滴定反应: Ce4++Fe2+ = Ce3++Fe3+ 滴定过程中电位的变化可计算如下:
其反应过程可能是: Mn(Ⅶ)+Mn(Ⅱ)→Mn(Ⅵ)+Mn(Ⅲ) ↓Mn(Ⅱ) 2Mn(Ⅳ) ↓Mn(Ⅱ) 2Mn(Ⅲ)(中间产物) Mn(Ⅲ)与C2O42—反应生成一系列配合物, 如MnC2O4+(红)、Mn(C2O4)2-(黄)、Mn(C2O4)32- (红) 等。 随后,它们慢慢分解为Mn(Ⅱ)和CO2: MnC2O4+→ Mn2++ CO2↑+·COO- (自由基) Mn(Ⅲ)+·COO-→ Mn2++ CO2↑

氧化还原滴定法

氧化还原滴定法

应该指出, 只有当两电对的标准电极电位E 应该指出 , 只有当两电对的标准电极电位 Θ (或条件电位 o’)相差很小时,才能比较容易地通过 或条件电位E 相差很小时 相差很小时, 或条件电位 改变氧化剂或还原剂的浓度来改变反应的方向。在 改变氧化剂或还原剂的浓度来改变反应的方向。 上述氧化还原反应中,两电对的E 之差仅有0.01伏, 上述氧化还原反应中,两电对的 0之差仅有 伏 所以只要使Pb 的浓度降低10倍 所以只要使 2+的浓度降低 倍,即可引起反应方 向的改变。如果两个电对的E 或 相差较大时。 向的改变。如果两个电对的 0(或Eo’)相差较大时。 相差较大时 则难以通过改变物质的浓度来改变反应的方向。 则难以通过改变物质的浓度来改变反应的方向。
如果反应条件( 主要是离子浓度和酸度) 如果反应条件 ( 主要是离子浓度和酸度 ) 改变 电位就会发生相应的变化, 时 , 电位就会发生相应的变化 , 对于下述氧化还原 半电池反应: 半电池反应: Ox + ne- = Red 其电极电位E可用能斯特方程式表示 可用能斯特方程式表示: 其电极电位 可用能斯特方程式表示: E = E0 OX/Red + (0.059/n)lg[OX]/[Red] (1) 1) 当[Ox]=[Red]=1mol/L时,lg[OX]/[Red] =0,在 时 , 此情况下, 因此, 此情况下 , E=E0 , 因此 , 标准电极电位是氧化型和 还原型的浓度相等,相对于标准氢电极的电位。 还原型的浓度相等,相对于标准氢电极的电位。
第七章 氧化还原滴定法
氧化还原滴定法( 氧化还原滴定法 ( Redox Titration) 是滴定分析 ) 中应用最广泛的方法之一。 中应用最广泛的方法之一 。 它是以溶液中氧化剂与还 原则之间的电子转移为基础的一种滴定分析方法。 原则之间的电子转移为基础的一种滴定分析方法。 可以用来进行氧化还原滴定的反应很多。 可以用来进行氧化还原滴定的反应很多 。 根据所 应用的氧化剂和还原剂,可将氧化还原滴定法分为: 应用的氧化剂和还原剂 , 可将氧化还原滴定法分为 : 高锰酸钾法、重铬酸钾法、碘量法、铈量法、 高锰酸钾法 、 重铬酸钾法 、 碘量法 、 铈量法 、 溴酸盐 钒酸盐法等。 法、钒酸盐法等。 利用氧化还原法, 利用氧化还原法 , 不仅可以测定具有氧化性或还 原性的物质, 原性的物质 , 而且还可以测定能与氧化剂或还原剂定 量反应形成沉淀的物质。因此, 量反应形成沉淀的物质 。 因此 , 氧化还原法的应用范 围很广泛。 围很广泛。

氧化还原滴定法

氧化还原滴定法
② 淀粉指示剂一般选构造无分枝(即直链),不然,有分枝旳 淀粉与I2旳吸附络合物呈紫色或紫红色,Na2S2O3原则溶液 滴定时,终点不敏锐。
③ 最佳用新鲜配制旳淀粉溶液,切勿放置过久 (若需要长时 间放置,应加入少许碘化汞) 。
④ 指示剂应在接近终点前加入,以预防淀粉吸附、包藏溶液 中旳碘。
2.溶解氧及其测定
③最终再用KMnO4原则溶液回滴剩余旳Na2C2O4至粉红色出现,并 在0.5~1min内不消失为止,消耗KMnO4原则溶液(V’1mL )。
5C2O4- + 2MnO4-+ 16H+
2Mn2++ 10CO2↑+ 8H2O
70 85o C
计算公式:
8
高锰酸盐指数(mgO2 —氧旳摩尔质量(1/2
3I2 + 6OH- = IO3- + 5I- + 3H2O
所以,直接碘量法应用不广泛。
(2)间接碘量法(利用I-旳较强还原性)
在被测旳氧化性物质中加入KI,使I-被氧化为I2,利 用具有还原性旳Na2S2O3原则溶液来滴定定量析出旳I2,间 接求得氧化性物质含量旳措施。
基本反应为: 2 I- - 2e- = I2 ;
/ L) (V1 V1' O,g/mol);
)C1 V水
V2C2 (ml)
81000
C1 — KMnO4原则溶液浓度(1/5 KMnO4 , mol/L); C2 — Na2C2O4原则溶液浓度(1/2 Na2C2O4 , mol/L). 1mmol/L(1/5 KMnO4 ) = 8O2mg/L; 1mmol/L(1/5 KMnO4 ) =5 mmol/L(KMnO4 )
进行,在碱性和强酸性溶液中易发生副反应。

氧化还原滴定法

氧化还原滴定法

0.0592 γ Oxα Re d 0.0592 cOx lg + lg z γ Re d α Ox z cRe d
θ
特定条件下 E = E

0.0592 cOx + lg z cRe d
溶液中, 查条件电位表 1 mol/L HCl 溶液中, Eθ′′ =1.28 V
E = E
θ

+ 0 . 0592 lg
z 2Ox1 + z1 Red 2 = z 2 Red 1 + z1Ox 2
Ox1 + z1e = Red 1 Ox 2 + z 2 e = Red 2
0.0592 [Ox1 ] E1 = E1 + lg z1 [ Red 1 ]
θ'
0.0592 [Ox 2 ] E2 = E2 + lg z2 [ Red 2 ]
温度升高10℃ 速度增大 温度升高 ℃,速度增大2~3倍; 倍 碘量法,加热引起碘挥发; 碘量法,加热引起碘挥发; 某些还原性物质被氧氧化; 某些还原性物质被氧氧化;
催化剂; 催化剂;
14
三、氧化还原滴定原理
(一) 氧化还原指示剂 Redox indicator 一 分类
自身指示剂 电对自身颜色变化, 电对自身颜色变化, MnO4- / Mn2+ 吸附 淀粉吸附 I2
§17-4
一、概述
氧化还原滴定法
二、氧化还原平衡 三、氧化还原滴定原理 四、氧化还原预处理 五、氧化还原滴定法的分类及应用示例
1
一、概述
氧化还原滴定法: 氧化还原滴定法:
以氧化还原反应为基础的滴定分析方法。 以氧化还原反应为基础的滴定分析方法。
特点: 特点:

定量化学分析:氧化还原滴定法

定量化学分析:氧化还原滴定法

n1O2 + n2R1
应满足 CR1 103 或 CO2 103
CO1
CR 2
(2)对于1:2型反应
4.影响氧化还原反应速度的因素
氧化剂与还原剂的性质 反应物浓度:增加反应物的浓度就能加快反应的速度。 催化反应的影响:催化剂是提高反应速度的有效方法
温度的影响: 大多数反应升高温度可以加快反应速度,通常溶液温度每增高10℃, 反应速度可增大2-3倍。 诱导反应的影响
可逆电对
任一瞬间都能建立 平衡,电势可用能 斯特方程描述。 Fe3+ /Fe2+, I2/I等。
不可逆电对
对称电对
不对称电对
Cr2O72-/Cr3+ , MnO4-/Mn2+ 等, 达到平衡时也能用 能斯特方程描述电 势。
氧化态和还原态的 系数相同Fe3+ /Fe2+, MnO4-/Mn2+ 等。
Cr2O72-/Cr3+ , I2/I等。#43;
2.303RT nF
lg
aaOx abRed
E=E + 0.n059lg
OxRed Red Ox
=E (条件电势)
+ 0.n059lg
c c
Ox Red
2.氧化还原反应的特点
氧化还原反应的机理较复杂,副反应多,因此与化学计量有关的问题更复杂。 氧化还原反应比其它所有类型的反应速度都慢。
氧化还原滴定可以用氧化剂作滴定剂,也可用还原剂作滴定剂。因此有多种方法。 氧化还原滴定法主要用来测定氧化剂或还原剂,也可以用来测定不具有氧化性或还 原性的金属离子或阴离子,所以应用范围较广。
3.氧化还原反应进行的程度
n2O1 + n1R2

氧化还原滴定法

氧化还原滴定法

氧化还原滴定法氧化还原滴定法是一种定量分析方法,常用于测定含氧化还原反应的物质的浓度。

在氧化还原反应中,电子会从被氧化的化合物转移到还原的化合物上,因此被称为氧化还原反应。

该方法通过滴加一种称为滴定剂的溶液来确定待测物质的浓度。

滴定剂与待测物质发生氧化还原反应,当待测物质的化合价发生改变时,滴定剂就不再反应,此时滴定完成。

原理氧化还原滴定法的原理基于以下事实:在氧化还原反应中,电子会从一个原子或分子转移到另一个原子或分子上,这样产生了电子的转移和化学计量量的变化。

因此,滴定剂可以被用来测定待测物质的化学计量量。

氧化还原反应中,电子可以从还原剂转移到氧化剂。

还原剂是一种能够给予电子的物质,它通常是一种容易氧化的物质,其化合价低于其氧化态。

氧化剂则是一种吸收电子的物质,通常是一种含氧化合物,其化合价高于其还原态。

在氧化还原滴定法中,将待测物质溶于适当的溶剂中,加入过量的还原剂,然后再滴加氧化剂,滴定至反应终点。

滴定时应注意滴定剂的选择,其氧化还原电位应当介于待测物质和还原剂之间。

当滴定剂的量与待测物质的量恰好相等时,反应终点即可确定,此时滴定完成。

操作步骤1.准备待测物质溶液,加入适当的溶剂并充分溶解;2.加入过量的还原剂;3.将寻找合适的滴定剂并确定滴定方法;4.开始滴定,滴定至反应终点(反应终点可以通过颜色变化、电位变化、气体产生等特征来确定);5.通过滴定前后的重量差或溶液浓度计算待测物质的化学计量量。

应用氧化还原滴定法广泛应用于分析化学、药学、食品工业、环境检测等领域。

例如,在药学中,可以用过氧化氢作为氧化剂来测定药物中的铁含量,氯亚铁作为还原剂来测定汞含量。

在环境检测中,可以使用铁离子和硫酸根离子来测定自然水样中的硫酸盐含量。

氧化还原滴定法是一种定量分析方法,可以通过滴加滴定剂来确定待测物质的浓度。

该方法基于化学计量量的变化,将还原剂加入待测物质溶液中,并滴加氧化剂,滴定至反应终点。

氧化还原滴定法在分析化学、药学、食品工业和环境检测等领域发挥着重要作用。

氧化还原滴定法

氧化还原滴定法

b.专属指示剂:能与氧化剂或还原剂产生特殊颜色以确定滴定终点的试剂。 eg:淀粉+I3- 深蓝色(吸附化合物) 特效灵敏
c.本身发生氧化还原反应的指示剂(氧化还原型指示剂) 本身是一个氧化还原电对,具有特定的条件电位 常见指示剂配制方法P141 In(Ox)+ neIn(Red) 甲色 乙色 使用要求:氧化还原滴定的突跃范围一般要求大于0.4V
22
3. KMnO4标准滴定溶液的配制和标定:间接法
间接法/标定法一般步骤:1)估算质量,托盘天平称质量,量筒量体积,配 大致浓度 2)用移液管移取标液或用分析天平称取基准物 3)滴定 4)计算 出待测标准溶液准确浓度 1)~ 4)过程称为标定 1)配制过程: P146 估算:配制c(1/5 KMnO4)= 0.1mol/L的高锰酸钾标准溶液500mL,理论上应称 取固体KMnO4的质量是多少克?(M( KMnO4)=158g/mol) 解:m(KMnO4)= c(1/5KMnO4) × V(KMnO4) × M(1/5KMnO4)×10-3 = 1.58 g
第二节 氧化还原滴定法
一、概述 1. 定义:是以氧化还原反应为基础的滴定分析方法。 (是以氧化剂或还原剂为标准溶液来测定还原性或氧化性物质含量)
失2e-
eg:2Fe3++2I- → I2+2Fe2+
得 2e-
2I- -2e- → I2 2 Fe3+ +2 e- → 2Fe2+ 氧化还原反应实质:电子转移 2. 特点: 电子传递过程; 分步反应,过程复杂; 有些速度较慢,有副反应; 应用广泛 爆炸和燃烧都是剧烈的氧化还原反应 食物腐烂和钢铁生锈都是缓慢氧化还原反应 注意:滴定速度和反应速度相适应

氧化还原滴定法

氧化还原滴定法

通过分离方法将干扰离子从溶 液中除去,如萃取、离子交换 等。
提高测定的准确度
01
02
03
04
准确称量样品和滴定剂, 确保测量精度。
严格控制实验条件,如 温度、搅拌速度等。
进行空白实验和对照实 验,减小实验误差。
多次测量求平均值,提 高测定结果的可靠性。
05
氧化还原滴定法的注意事项
安全注意事项
01
硫酸铈滴定法
总结词
硫酸铈是一种强氧化剂,可用于滴定多 种还原性物质,如亚铁离子、硫化物等 。
VS
详细描述
硫酸铈滴定法通常在酸性环境中进行,通 过加入适量的还原剂使硫酸铈还原为铈离 子,通过滴定消耗的硫酸铈量来计算被测 物的含量。该方法具有较高的准确度和精 密度,是常用的氧化还原滴定法之一。
03
氧化还原滴定法的操作步骤
滴定前的准备
试剂和标准溶液的准备
01
根据实验要求,准确称量所需的试剂和标准溶液,确保其质量
和浓度符合要求。
仪器设备的检查
02
确保使用的滴定管、容量瓶、移液管等仪器设备干净、准确,
并进行必要的校正。
实验环境的控制
03
保持实验室内温度、湿度等环境因素稳定,以减小误差。
滴定操作
01
02
03
溶液的混合与搅拌
根据实验数据计算待测溶液的浓 度、体积等参数,并进行误差分 析。
整理实验数据和结果,撰写实验 报告,并按照要求进行结果分析。
04
氧化还原滴定法的实验技巧
选择合适的指示剂
指示剂应具有高灵敏 度,能够准确指示滴 定终点。
指示剂的变色点应与 被测离子的等当点相 近。
指示剂的颜色变化应 明显,以便观察。

氧化还原滴定法

氧化还原滴定法

分析化学课件


氧化还原反应
氧化还原滴定


2.5. 氧化还原反应的速率 — 反应进行的快慢 影响反应速率的主要因素有: ⑴ 氧化剂和还原剂的性质 ⑵ 反应物的浓度(增加反应物浓度可以加速反应的进行) ⑶ 温度(通常,温度每升高10度,反应速度可提高2~3倍)
反应机理复杂, 需要综合考虑各种因素。
Ce + Fe
3+
3+
Ce Fe
3+
4 /Ce 3 1.44 V Ce
Fe3 /Fe2 0.68 V
2+
氧化还原滴定过程中存在着两个电对:滴定剂电对和被滴定 物电对。 随着滴定剂的加入,两个电对的电极电位不断发生变化,并 处于动态平衡中。 可由任意一个电对计算出溶液的电位值,对应加入的滴定剂 体积绘制出滴定曲线。
n1 1 n2 2 nsp n1 n2
滴定突跃范围(化学计量点±0.1%)
0.059 3 0.059 3 (V) 2 (V) ~ 1 n1 n2
由于 n1 ≠ n2,化学计量点偏向转移电子数多的电对一方
分析化学课件
⑷ 催化剂(改变反应过程,降低反应的活化能)
2MnO 5C2O2 16H 4 4

2Mn2 10CO2 8H2O
分析化学课件


氧化还原反应
氧化还原滴定


如KMnO4与Na2C2O4在稀硫酸中的反应为:
2MnO 5C2O2 16H 4 4

2Mn2 10CO2 8H2O
分析化学课件


氧化还原反应
氧化还原滴定

氧化还原滴定法

氧化还原滴定法

氧化还原滴定法第一节 概述氧化还原滴定法:是以氧化还原反应为基础的一种滴定方法有些反应除了氧化剂和还原剂外还氧化还原反应的两个特性:反应速度慢,常伴有副反应氧化还原滴定法的应用范围:1 测定本身具有氧化还原性质的物质2 能间接地测定本身不具有氧化还原性质,但能与某种氧化剂或还原剂发生其他类型有计量关系的化学反应的物质3 既能测定无机物,又能测定有机物第二节 氧化还原反应一 条件电位生成新的还原形和氧化形物质活度与浓度的关系式为:αA =f A [A] (f 为活度系数,[A]为平衡浓度)φº’称条件电位,条件电位在数值上等于Cox=Cred 时的电对电位值,条件电位值φº’与标准电位φº不同,它不是一种热力学常数,它的数值与溶液中电解质的组成和浓度,特别是能与电对发生副反应物质的组成和浓度有关。

只有在实验条件不变的情况下,φº’才会有固定不变的数值二 影响条件电位的因素0.059 foxCox αred 0.059 Coxφ Ox/Red=φº+ n lg f redCred αox =φº’+ n lg Cred0.059 fox αredφº’=φº+ n lg f red αox(一) 盐效应电解质浓度的变化会改变溶液中的离子强度,从而改变电对氧化形和还原形的活度系数在一般情况,副反应对条件电位的影响作用比盐效应大得多,此时,在估算条件电位时可忽略盐效应的作用(即假定离子的活度系数f=1)忽略盐效应时电对的电位和条件电位:0.059 [Ox]φ Ox/Red=φº+ n lg [Red]0.059 αredφº’=φº+ n lg αox(二)生成沉淀在溶液体系中,若有与电对氧化形或还原形形成难溶沉淀的沉淀剂存在,将会改变电对的条件电位(三)生成配合物生成配合物副反应对条件电位的影响规律是:(四)酸效应12 H+或OH-的浓度,在这种场合下,当电对发生副反应时,氧化形和还原形的副反应系数可以相差几个甚至几十个数量级,远比活度系数的影响大得多,在这种情况下,电对的条件电位主要由副反应的影响决定,盐效应可以忽略在通常只知道反应物分析浓度的情况下,要讨论滴定体系,尤其是存在明显副反应滴定体系的氧化还而绝对不能把分析浓度近似地当做活度或平衡浓度进行计算三氧化还原反应进行的程度氧化还原反应的进行程度可用反应平衡常数衡量,平衡常数越大,反应进行得越完全n(φoxº’-φredº’)反应平衡常数用下式计算:lgK’= 0.059n代表氧化还原反应式中转移的电子数K’称为条件平衡常数,是以反应物分析浓度表示的平衡常数如果1:1型反应的电子转移数n=1,反应定量完成的条件是∆φ≥0.36V,如果n=2,∆φ≥0.18V如果1:2型反应的电子转移数n=2.,反应定量完成的条件是∆φ≥0.27V,如果n=2,∆φ≥0.13V四氧化还原反应的速度氧化还原反应方程式指标是反应的最初状态和最终状态以及它们之间的数量关系,并不说明反应过程的真实情况。

第六章氧化还原滴定法

第六章氧化还原滴定法
根据反应类型的不同,又可分为如 下两种:
2)反应温度与滴定速度 温度应在15℃以下。 温度高:
HNO2分解与逸失。可采用“快速滴定法”
3)苯环上取代基团的影响
在苯胺环上:有吸电子基团取代 如: -NO2、-SO3H、-COOH等 使反应加速;
有斥电子基团(-OH、 -OR)使反应 减慢。
三、亚硝酸钠法的指示剂
•高锰酸钾法
标准溶液:高锰酸钾。 指示剂:自身指示剂。 测定条件:控制在1~2mol/L H2SO4溶液测定
还原性物质。
•亚硝酸钠法
(1)重氮化滴定法:在酸性介质中,用亚硝酸 钠标准溶液滴定芳伯胺化合物,发生重氮化反 应; (2)亚硝化滴定法:用亚硝酸钠标准溶液滴定
芳仲胺化合物,发生亚硝基化反应。
氧化还原反应的程度也是用平衡常数 的大小来衡量。氧化还原反应的平衡常数 与有关电对的电极电位有关。
(二)氧化还原反应进行的速度
氧化还原反应平衡常数的大小,可以 表示反应进行的程度,但不能说明反应的 速度。有许多氧化还原反应,虽然从理论 上看可以进行完全,但实际上由于反应速 度太慢而几乎觉察不出反应的进行。例如, 水溶液中的溶解氧:
2、书写Nernst方程式时注意几点:
(1)固体、溶剂的活度为1mol/L (2)气体以大气压为单位 (3)半反应中有其它组分参加,其它组分的
活度应包括在Nernst方程式中
3、条件电极电位 为了讨论方便,我们以下式为例来
进行讨论:
Ox + n e Red
• 二、氧化还原反应进行的程度和速度 (一)氧化还原反应进行的程度
101.0 110.0 150.0 200.0
100.0 95.0 90.0 80.0 60.0 50.0 40.0 10.0 1.0 0.1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氧化还原滴定法思考题7-1 解释下列现象。

(a )将氯水慢慢加入到含有 Br -和I -的酸性溶液中,以CCl 4萃取,CCl 4层变为紫色。

答:酸性条件下氯水中HClO 可将Br -和I -氧化为单质Br 2 和 I 2。

由于 323I e I --+=3/0.545I I E V θ--=222Br e Br -+= 2/ 1.05Br Br E V θ-= 1222HClO H e Cl H O +++=+ 2/ 1.63HClO Cl E V θ= 所以 I -更易被氧化为I 2,I 2被CCl 4所萃取,使CCl 4层变为紫色。

(b )θ-I/I2E ( 0.534V ) >θ++Cu /Cu 2E (0.159V),但是Cu 2+却能将I -氧化为I 2。

(已知:pK sp (CuI)=11.96)答:这是由于生成了溶解度很小的 CuI 沉淀,溶液中[Cu 2+]极小,Cu 2+/Cu + 电对的电势显著增高,Cu 2+成为较强的氧化剂。

222///1()0.059lg 0.1590.05911.960.865(0.534)sp Cu CuI Cu Cu II K CuI E E V E V θθθ+++-=+=+⨯=>所以,Cu 2+能将I -氧化为I 2。

(c )间接碘量法测定铜时,Fe 3+和AsO 43-都能氧化I -析出I 2,因而干扰铜的测定,加入NH 4HF 2两者的干扰均可消除。

答:424NH HF NH HF F +-−−→++←−−,组成HF-F - 缓冲体系,pH ≈3.2。

因为3343222AsO H e AsO H O -+-++=+,[H +]< 1 mol·L -1,3343/0.559AsO AsOE V θ--= 所以,33243//I I AsO AsO E E θθ---<。

而F -能与Fe 3+形成络合物,溶液中[Fe 3+]大大减小,3232//Fe Fe Fe Fe E E θ++++<。

因此,Fe 3+和AsO 43-的氧化能力均下降,不干扰测定(具体计算见习题14)。

(d )Fe 2+的存在加速 KMnO 4氧化Cl -的反应。

答:这是由于诱导反应所致。

KMnO 4氧化 Fe 2+的过程中形成了一系列的Mn 的中间产物:Mn(VI),Mn(V),Mn(IV),Mn(III),它们均能氧化Cl -,因而出现了诱导反应。

(e )以KMnO 4 滴定 C 2O 42-时,滴入KMnO 4的红色消失速度由慢到快。

答:KMnO 4 与 C 2O 42-的反应速度很慢,但Mn(II)可催化该反应。

KMnO 4与C 2O 42-反应开始时,没有或极少量,故反应速度很慢,KMnO 4的红色消失得很慢。

随着反应的进行,不断产生,反应将越来越快,所以KMnO 4的红色消失速度由慢到快,此现象即为自动催化反应。

(f )于 K 2Cr 2O 7标准溶液中,加入过量 KI ,以淀粉为指示剂,用 Na 2S 2O 3溶液滴定至终点时,溶液由蓝变为绿。

答:K 2Cr 2O 7与过量 KI 反应,生成I 2 和Cr 3+(绿色)。

加入淀粉,溶液即成蓝色,掩盖了 Cr 3+ 的绿色。

用 Na 2S 2O 3滴定至终点,I 2完全反应,蓝色消失,呈现出Cr 3+的绿色。

(g )以纯铜标定 Na 2S 2O 3溶液时,滴定到达终点后(蓝色消失)又返回到蓝色。

答:以纯铜标定 Na 2S 2O 3溶液是基于Cu 2+与过量KI 反应定量析出I 2,然后用Na 2S 2O 3溶液滴定I 2。

由于CuI 沉淀表面会吸附少量I 2,当滴定到达终点后(蓝色消失),吸附在CuI 表面上的 I 2 又会与淀粉结合,溶液返回到蓝色。

解决的方法是在接近终点时,加入KSCN 使CuI 沉淀转化为溶解度更小、吸附I 2的倾向较小的CuSCN 。

7-2 增加溶液的离子强度,Fe 3+/Fe 2+电对的条件电势是升高还是降低?加入PO 43-,F -或1,10-邻二氮菲后,情况又如何? 答:3223'0.059lgFe FeFe FeE E θθγαγα++++⋅=+⋅当增加溶液的离子强度时,对高价离子而言,Fe 3+下降的幅度更大,即32Fe Feγγ++降低,所以条件电势降低。

若加入PO 43-,F -,由于Fe 3+与PO 43-,F -形成络合物,32Fe Fe αα++>>,所以条件电势降低。

若加入1,10-邻二氮菲,它与Fe 2+能形成更稳定的络合物,23Fe Fe αα++>,所以条件电势升高。

7-3 已知在1mol·L -1 H 2SO 4介质中,32'/Fe Fe E θ++= 0.68V 。

1,10-邻二氮菲与Fe 3+,Fe 2+均能形成络合物,加入1,10-邻二氯菲后,体系的条件电势变为 1.06 V 。

试问 Fe 3+,Fe 2+和1,10-邻二氮菲形成的络合物中,哪一种更稳定?答:23232323'//0.059lg 1.060.680.059lg Fe FeFe Fe Fe Fe Fe Fe E E αθθααα++++++++=+=+因此:231Fe Feαα++>,即Fe 2+的副反应系数更大,也就是Fe 2+形成的络合物更稳定。

7-4 已知在酸性介质中,24'/MnO Mn E θ-+=1.45 V ,MnO 4-被还原至一半时,体系的电势(半还原电位)为多少?试推出对称电对的半还原电势与它的条件电势间的关系。

答:MnO 4-+ 8H + + 5e = Mn 2+ + 4H 2O248'42/[][]0.059lg 5[]MnO Mn MnO H E E Mn θ-+-++=+令半还原电位为12E ,此时[MnO 4-]=[Mn 2+],1442'8'0.059lg[]0.09445MnO MnO E E H E pH θθ--+=+=- 对称电对的半还原电势:'12lg[]0.059m H E E nθ+=+若无H +参加反应,则12'E E θ=。

7-5 碘量法中的主要误差来源有哪些?配制、标定和保存I 2及As 2O 3标准溶液时,应注意哪些事项?答:主要误差来源有两个方面:一是I 2易挥发,在强碱性溶液中会发生歧化反应;二是在酸性溶液中,I -易被空气中的O 2氧化。

配制、标定和保存I 2及As 2O 3标准溶液时的注意事项:配制I 2溶液时,先在托盘天平上称取一定量碘,加入过量KI ,置于研钵中,加少量水研磨,使I 2全部溶解,然后将溶液稀释,倾入棕色瓶于暗处保存。

保存 I 2 溶液时应避免与橡皮等有机物接触,也要防止I 2溶液见光遇热,否则浓度将发生变化。

标定I 2溶液的浓度时,可用已标定好的Na 2S 2O 3 标准溶液来标定,也可用As 2O 3来标定。

As 2O 3难溶于水,但可溶于碱溶液中:32332623As O OH AsO H O --+=+33AsO -与I 2的反应是可逆的。

在中性或微碱性溶液中(pH ≈8),反应能定量向右进行。

因此标定时先酸化溶液,再加NaHCO 3,调节pH ≈8。

7-6 以K 2Cr 2O 7标定Na 2S 2O 3浓度时,是使用间接碘量法,能否采用K 2Cr 2O 7直接滴定Na 2S 2O 3为什么?答:不能。

因为K 2Cr 2O 7氧化 Na 2S 2O 3的反应没有确定的化学计量关系,因此该反应不能用于滴定分析。

7-7 怎样分别滴定混合液中的Cr 3+及 Fe 3+?答:Cr 3+ SnCl 2 – TiCl 3预还原 Cr 3+ K 2Cr 2O 7 滴定 Cr 3+Fe 3+ Na 2WO 4 指示剂 Fe 2+ 二苯胺磺酸钠指示剂 Fe 3+ 测得Fe 3+含量 Cr 3+ (NH 4)2S 2O 8预氧化 Cr 2O 72- Fe 2+标准溶液滴定 Cr 3+ 测得Cr 3+含量 Fe 3+Fe 3+ Fe 3+7-8 用碘量法滴定含Fe 3+的H 2O 2试液,应注意哪些问题?答:碘量法滴定H 2O 2系采用间接法,即先加入过量KI 溶液,H 2O 2氧化 KI 生成I 2,再用Na 2S 2O 3标准溶液滴定生成的I 2。

但 Fe 3+ 存在下,Fe 3+也能氧化KI ,对测定有干扰,所以,测定时应加入NH 4HF 2掩蔽Fe 3+。

7-9 用(NH 4)2S 2O 8(以Ag +催化)或 KMnO 4等为预氧化剂,Fe 2+或 NaAsO 2-NaNO 2等为滴定剂,试简述滴定混合液中Mn 2+,Cr 3+,VO 2+的方法原理。

答:用(NH 4)2S 2O 8(以Ag +催化)为预氧化剂,可使Mn 2+,Cr 3+,VO 2+三者均氧化为高价态。

过量氧化剂可煮沸使之分解。

用 NaAsO 2-NaNO 2混合溶液滴定测得三者总量。

用KMnO 4为预氧化剂,Mn 2+不干扰,可分别测定Cr 3+,VO 2+两者含量,Fe 2+为滴定剂。

方法见思考题第8题。

7-10 在1.0 mol·L -1 H 2SO 4介质中用Ce 4+滴定Fe 2+时,使用二苯胺磺酸钠为指示剂,误差超过0.l %,而加入0.5 mol·L -1 H 3PO 4后,滴定的终点误差小于0.1%,试说明原因。

答:在1.0 mol ·L -1介质中, 43'/ 1.44Ce Ce E V θ++=,32'/0.68Fe Fe E V θ++=,'0.84In E V θ=,12(1.440.68) 1.06sp E V =+=,与'0.84In E V θ=相差较大,误差超过0.1%。

而加入H 3PO 4后,由于与Fe 3+形成络合物,使32'/Fe Fe E θ++降低,sp E 相应也降低,与'In E θ 更接近些,故减少了滴定误差。

7-11 以电位滴定法确定氧化还原滴定终点时,什么情况下与计量点吻合较好?什么情况下有较大误差?答:电位滴定法是以滴定曲线中突跃部分的中点作为滴定的终点,这与化学计量点不一定相符。

当滴定体系的两电对的电子转移数相等时,终点与化学计量点吻合较好;而两电对的电子转移数不相等时,E sp 不在突跃范部分的中点,误差较大。

习题【7-1】计算在1,10-邻二氮菲存在下,溶液含H 2SO 4浓度为1 mol·L -1时,Fe 3+/ Fe 2+电对的条件电势。

(忽略离子强度的影响。

已知在1 mol·L -1 H 2SO 4中,亚铁络合物FeR 32+与高铁络合物FeR 33+的稳定常数之比K Ⅱ/K Ⅲ = 2.8106)解:由于β 3>β 2 >β 1,故忽略β 1及β 2。

相关文档
最新文档