二恶英生成温度

合集下载

二恶英类物质的生成机理

二恶英类物质的生成机理

二恶英类物质的生成机理:二恶英在垃圾焚烧过程中的生成机理相当复杂,迄今为止国内外的研究成果还不足以完全解释此问题,已知的生成机理可能有前驱物的异相催化反应、重新合成(De Nove)反应、高温生成机理等。

据研究,有机物在不完全燃烧的情况下(700℃左右)可生成芳烃,若同时还有少量氯化物和催化剂存在,它们就会在300—700℃左右相互反应而生成微量的二恶英。

不仅工业废弃物如此,就连生活垃圾,也含有有机物,食盐以及少量的铜和铁等,所以也能生成二恶英。

在焚烧过程和化学反应中二恶英是由苯环与氧、氯等组成的芳香族化合物产生的。

起初人们曾认为二恶英不是天然产物,纯属人工合成物质。

1990年日本从海底和湖底的沉积物中,检测出有二恶英存在,推断是8000年前生成的,于是提出了在火山爆发过程中,通过上述反应也会自然生成二恶英的说法。

但是人为来源仍然是目前研究的主要对象。

二恶英的主要来源:目前已知来源的95%以上是废弃物(含城市生活垃圾、工业废弃物和医疗废弃物)焚烧时所产生。

除此以外,金属制造业、农药生产、一些造纸工业的副产品及某些特定化学工业中也产生一定量二恶英,其主要来源分布见表。

二恶英产生机理:钢铁生产离不开燃烧过程。

而物质燃烧所产生的二恶英是环境中二恶英污染的主要来源,现就物质燃烧形成二恶英的机理予以介绍。

有些有机物如聚氯乙烯、氯苯、氯酚、纸张草木等含有有机氯,有些无机物中含有无机氯,这些化合物在一定温度、水分和金属催化剂条件下可转化为二恶英。

二恶英的形成机理有以下几种形式:(1)一些物质本身就含有微量的二恶英,尽管大部分在高温燃烧时得以分解,但仍会有一部分在燃烧后释放出来;(2)物质中本身含有或在燃烧过程中生成的氯代苯、无氯苯酚等前驱体物质,在一定的温度以及重金属的催化作用下,转化为二恶英类;(3)聚苯乙烯、纤维素、木质素、聚氯乙烯(PVC)或其它的氯代物等小分子有机化合物通过聚合和环化形成多环烃化合物,与氯素供与体反应,形成二恶英;(4)在燃烧过程中被高温分解的二恶英类前驱体物质,在烟气中的氯化铁、氯化铜等飞灰颗粒催化作用下,与氯素供与体在300~C附近发生多种表面反应及缩合反应,又会迅速重新组合生成二恶英类物质。

二恶英的控制技术

二恶英的控制技术

a.氨与氯的结合能力比 前驱物强。
b.氨使铜等金属催化剂 失去催化作用。
分解或催化还原二恶英 。
飞灰收集输送系统
固化
安全填满
锅炉炉膛 喷嘴
喷氨风机 氨水溶液罐
半干式吸收塔
袋式除尘器
引风机
烟囱
活性炭喷嘴
饮料器
压缩空气
体积计量螺旋给料器
活性炭储仓
活性炭罐车
浅析李坑生活垃圾焚烧厂关于二恶 英控制技术
• 严格控制流程,无缝隙的全方位监管。 • 在余热锅炉后加装尾气急冷反应塔,减少烟气在温
主要工艺流程
装满垃圾车辆
李坑垃圾发电厂
地磅垃圾卸车平台源自垃圾贮存坑污水收集池
焚烧炉
炉排
破碎处理
进料漏斗
灰渣贮存坑
炉渣处理
吊车抓斗
余热锅炉
汽轮发电机
产产生生电电能能后后1155%%自用,85%%供供电电网网使使用用
烟气净化
排放
1)原料控制:原料破碎 避免含PCDDs/PCDFs物质和去除废物中含氯组分
(1)加强垃圾的分类回收非常必要,目前我国需要完善 垃圾分类制度,制定生活垃圾分类的实施细则和各种配套 法规;
(2)严格控制流程,无缝隙的全方位监管;
(3)当前二恶英的降解方法较多,但大多都处于实验室 研究阶段,如光降解、生物降解、电子束降解法。相对于 二恶英的其他降解方法来说,多相催化加氢脱氯法具有连 续、快速、低废物排出和低成本等特点,被誉为消除有机 卤代物对环境污染的最有效和最具有前景的治理技术 ;
• 电子束分解
能耗太大,效率不够高,只适用于低浓度的二恶英污染物的治理,研究方向主要 集中于如何利用催化剂与添加剂降低能耗,提高分解效率。

恶英产生条件、控制方法以及相关设备

恶英产生条件、控制方法以及相关设备

二恶英二恶英(Dioxin),又称二氧杂芑(qǐ),是一种无色无味、毒性严重的脂溶性物质,二恶英实际上是二恶英类(Dioxins)一个简称,它指的并不是一种单一物质,而是结构和性质都很相似的包含众多同类物或异构体的两大类有机化合物。

二恶英包括210种化合物,这类物质非常稳定,熔点较高,极难溶于水,可以溶于大部分有机溶剂,是无色无味的脂溶性物质,所以非常容易在生物体内积累,对人体危害严重。

自然界的微生物和水解作用对二恶英的分子结构影响较小,因此,环境中的二恶英很难自然降解消除。

它的毒性以LD50表示,专业术语叫“半数致死量”。

它的毒性十分大,是氰化物的130倍、砒霜的900倍,有“世纪之毒”之称。

国际癌症研究中心已将其列为人类一级致癌物。

环保专家称,二恶英常以微小的颗粒存在于大气、土壤和水中,主要的污染源是化工冶金工业、垃圾焚烧、造纸以及生产杀虫剂等产业。

日常生活所用的胶袋,PVC(聚氯乙烯)软胶等物都含有氯,燃烧这些物品时便会释放出二恶英,悬浮于空气中。

二恶英的产生条件1.环保专家称,“二恶英”,常以微小的颗粒存在于大气、土壤和水中,主要的污染源是化工冶金工业、垃圾焚烧、造纸以及生产杀虫剂等产业。

日常生活所用的胶袋,PVC(聚氯乙烯)软胶等物都含有氯,燃烧这些物品时便会释放出二恶英,悬浮于空气中。

大气环境中的二恶英90%来源于城市和工业垃圾焚烧。

含铅汽油、煤、防腐处理过的木材以及石油产品、各种废弃物特别是医疗废弃物在燃烧温度低于300-400℃时容易产生二恶英。

聚氯乙烯塑料、纸张、氯气以及某些农药的生产环节、钢铁冶炼、催化剂高温氯气活化等过程都可向环境中释放二恶英。

二恶英还作为杂质存在于一些农药产品如五氯酚、2,4,5-T 等中。

城市工业垃圾焚烧过程中二恶英的形成机制仍在研究之中。

目前认为主要有三种途径:1.在对氯乙烯等含氯塑料的焚烧过程中,焚烧温度低于800℃,含氯垃圾不完全燃烧,极易生成二恶英。

二恶英产生条件、控制方法以及相关设备

二恶英产生条件、控制方法以及相关设备

二恶英二恶英(Dioxin),又称二氧杂芑(qǐ),是一种无色无味、毒性严重的脂溶性物质,二恶英实际上是二恶英类(Dioxins)一个简称,它指的并不是一种单一物质,而是结构和性质都很相似的包含众多同类物或异构体的两大类有机化合物。

二恶英包括210种化合物,这类物质非常稳定,熔点较高,极难溶于水,可以溶于大部分有机溶剂,是无色无味的脂溶性物质,所以非常容易在生物体内积累,对人体危害严重。

自然界的微生物和水解作用对二恶英的分子结构影响较小,因此,环境中的二恶英很难自然降解消除。

它的毒性以LD50表示,专业术语叫“半数致死量”。

它的毒性十分大,是氰化物的130倍、砒霜的900倍,有“世纪之毒”之称。

国际癌症研究中心已将其列为人类一级致癌物。

环保专家称,二恶英常以微小的颗粒存在于大气、土壤和水中,主要的污染源是化工冶金工业、垃圾焚烧、造纸以及生产杀虫剂等产业。

日常生活所用的胶袋,PVC(聚氯乙烯)软胶等物都含有氯,燃烧这些物品时便会释放出二恶英,悬浮于空气中。

二恶英的产生条件1.环保专家称,“二恶英”,常以微小的颗粒存在于大气、土壤和水中,主要的污染源是化工冶金工业、垃圾焚烧、造纸以及生产杀虫剂等产业。

日常生活所用的胶袋,PVC(聚氯乙烯)软胶等物都含有氯,燃烧这些物品时便会释放出二恶英,悬浮于空气中。

大气环境中的二恶英90%来源于城市和工业垃圾焚烧。

含铅汽油、煤、防腐处理过的木材以及石油产品、各种废弃物特别是医疗废弃物在燃烧温度低于300-400℃时容易产生二恶英。

聚氯乙烯塑料、纸张、氯气以及某些农药的生产环节、钢铁冶炼、催化剂高温氯气活化等过程都可向环境中释放二恶英。

二恶英还作为杂质存在于一些农药产品如五氯酚、2,4,5-T等中。

城市工业垃圾焚烧过程中二恶英的形成机制仍在研究之中。

目前认为主要有三种途径:1.在对氯乙烯等含氯塑料的焚烧过程中,焚烧温度低于800℃,含氯垃圾不完全燃烧,极易生成二恶英。

垃圾焚烧中二恶英的产生及控制

垃圾焚烧中二恶英的产生及控制

垃圾焚烧与二恶英的产生及控制摘要:本文阐述了二恶英的毒性、结构、性质、来源。

二恶英的生成主要有二条途径,第一条途径是从与二恶英结构关系不紧密的,碳水化合物开始而生成的,第二条途径是从具有与二恶英结构相近的氯化苯酚等而生成的。

垃圾焚烧中影响二恶英生成的因素有粒子状物质、催化剂(如铜、铁、镍、锌等具有催化剂的作用)、氯、碳、焚烧炉中温度(250-70012)。

控制垃圾焚烧中二恶英生成的对策有垃圾焚烧前的分类处理、二恶英生成抑制、二恶英排放抑制。

关键词:垃圾焚烧;二恶英;控制技术1 二恶英的性质、结构及来源二恶英主要是由于人类的活动而产生的一种最毒的物质,其毒性是氰化钾的1000倍,1g二恶英可使10000人致死,此外还具有致癌性、致奇性、生殖毒性等慢性毒性。

二恶英是多氯代二苯二恶英(PCDDs)和多氯代二苯呋喃(PCDFs)的总称,根据其所含氯原子的数量和取代位置的不同,PCDDs有75种同系物,PCDFs有135种同系物,其毒性亦有极大的差异。

毒性最强的是2,3,7,8一四氯二苯二恶英(2,3,7,8T4CDD),其毒性当量系数(Toxic EquivalencyFactor:11、F)为1。

此外的二恶英同系物的毒性当量系数均小于1。

因此,计算二恶英的毒性常以二恶英类同系物总的毒性当量(2,3,7,8一T4CDD Equiva—lent Quantity:11、Q)表示,11、Q=Σ二恶英同系物浓二恶英为白色结晶体,强氧化剂,耐酸、耐碱,化学性质极其稳定,其分解需800"C以上的温度(高速分解需1300"(2以上),易溶于有机溶剂难溶于水(对水的溶解度为0.2ng/L)。

自然界中,二恶英来源如下,一是垃圾焚烧过程中产生的,二是有机氯化学物质(如2,4一_D)合成时的副产物,三是造纸工厂在纸浆的氯气漂白过程中产生的和炼钢过程中产生的,四是自然产生的,如森林火灾。

其中,垃圾焚烧是最主要的来源,而自然产生的二恶英,浓度极低,不会影响人的健康。

“二恶英”来源

“二恶英”来源

“二恶英”来源
环保专家称,“二恶英”,常以微小的颗粒存在于大气、土壤和水中,主要的污染源是化工冶金工业、垃圾焚烧、造纸以及生产杀虫剂等产业。

日常生活所用的胶袋,PVC(聚氯乙烯)软胶等物都含有氯,燃烧这些物品时便会释放出二恶英,悬浮于空气中。

大气环境中的二恶英90%来源于城市和工业垃圾焚烧。

含铅汽油、煤、防腐处理过的木材以及石油产品、各种废弃物特别是医疗废弃物在燃烧温度低于300-400℃时容易产生二恶英。

聚氯乙烯塑料、纸张、氯气以及某些农药的生产环节、钢铁冶炼、催化剂高温氯气活化等过程都可向环境中释放二恶英。

二恶英还作为杂质存在于一些农药产品如五氯酚、2,4,5-T等中。

城市工业垃圾焚烧过程中二恶英的形成机制仍在研究之中。

目前认为主要有三种途径:1.在对氯乙烯等含氯塑料的焚烧过程中,焚烧温度低于800℃,含氯垃圾不完全燃烧,极易生成二恶英。

燃烧后形成氯苯,后者成为二恶英合成的前体;2.其他含氯、含碳物质如纸张、木制品、食物残渣等经过铜、钴等金属离子的催化作用不经氯苯生成二恶英。

3.在制造包括农药在内的化学物质,尤其是氯系化学物质,象杀虫剂、除草剂、木材防腐剂、落叶剂(美军用于越战)、多氯联苯等产品的过程中派生。

另外,电视机不及时清理,电视机内堆积起来的灰尘中,通常也会检测出溴化二恶英。

而且含量较高,平均每克灰尘中,就能检测出4.1微克溴化二恶英。

二恶英的生成机理及其控制技术

二恶英的生成机理及其控制技术

二恶英的生成机理及其控制技术城市生活垃圾是人类活动的伴随产物。

随着城市人口增加和城市生活水平的提高,城市生活垃圾产量日益增长。

日益增加的城市生活垃圾严重污染人类生活环境。

如何实现城市生活垃圾无害化、减容化和资源化的“三化”处理已成为全世界关注的焦点。

在常见的垃圾处理方法中,垃圾焚烧由于处理垃圾的无害化彻底,减容化程度深以及可能源化利用等优点而成为当今城市生活垃圾处理的主流。

但是,垃圾焚烧容易产生二次污染,特别是产生的二恶英类剧毒物质对环境造成很大的危害,如何有效控制二恶英类物质的产生与扩散成为目前垃圾焚烧理论研究和技术开发的热点。

固体废弃物焚烧处理已有非常悠久的历史。

在经济发达国家已获得了广泛的应用。

日本、瑞士、丹麦、荷兰等国家50%一80%的城市生活垃圾均已采用了焚烧的方法进行处理、而对于有毒有害的可燃工业垃圾。

更是已广泛采用焚烧的办法进行处理。

九十年代初期。

焚烧过程中所产生二恶英污染逐渐引起了各国政府的重视.尤其是1990年8月日本放送协会(NHK)多次就二恶英的污染问题进行了报道。

引起了政府和民众的严重关注,甚至有些地方的居民因担心二恶英的危害而要求政府关闭了废物焚烧厂。

近十年来。

工业发达国家对二恶英的形成原因及控制机理进行了深入地研究和探索。

而在我国.固体废弃物焚烧处理才刚刚起步.二恶英的污染问题却由于前些时候的,,比利时污染鸡事件”为广大民众所熟知*因此。

进一步加强二恶英形成及控制机理的研究已成为我国废物焚烧行业加速发展的重要课题。

二恶英二恶英。

英文名称为Dioxin,台湾译为戴奥辛.是指由一个或两个氧键连接两个苯环的有机氯化物。

二恶英—般可分为两类:一类为多氯代二苯并一对一二恶英(PCDDs);另一类为多氯代二笨并呋喃(PCDFs).分子结构通式如下:二恶英物质共有210种化台物。

其中毒性明显的有l7种(PCDDs有75种异构体,毒性明显的异构体7种;PCDFs有135种异构体,毒性强的有l0种).是世界上已知毒性最强的化合物,其致癌性超过黄曲霉素,目前被列为一级致癌物。

二恶英的产生及危害

二恶英的产生及危害

PCDD/Fs已被列入斯德哥尔摩公约首批受控 清单,各缔约方都必须采取法律和行政技术措施 对其严格控制。一些发达国家已经走在了前面,P CDD/Fs排放总量已经有了大幅度削减。但迄今为 止,人们对PCDD/Fs的认识仍然是初步的,国内 在这方面的研究才刚刚起步,其研究水平远落后 于发达国家,许多方面目前仍为空白、尤其是钢 铁等行业。我国新的钢铁行业污染物排放标准目 前正在制订过程中,已经将PCDD/Fs排放限值列 入其中,不久将会出台。
二恶英类化合物在环境中并不自然存在,但由于 人类工业活动而使其无处不在。目前已知来源的95% 以上是废弃物(含城市生活垃圾、工业废弃物和医疗废 弃物)焚烧时所产生。除此以外,金属制造业、农药生 产、一些造纸工业的副产品及某些特定化学工业中也 产生一定量二恶英,其主要来源分布见表1。
二恶英的形成机理
(2)严格控制焚烧过程
根据二恶英的特性,要求燃烧室温度保持800 ℃ 以上,滞留2秒钟以上,使完全燃烧,冷却设 备基准要求在200℃以下,这样,可大幅度减少二 恶英的生成与排出。
(3)利用植物清毒
二恶英在水中的溶解度极低,具有高度的脂溶 性,所以容易积存在人体内脂肪多的部位。日本 专家研究认为,富含纤维素和叶绿素的食物如菠 菜、萝卜叶等有助于消除体内富积的二恶英。其 原理是反利用肠肝循环,在二恶英被小肠吸收前, 使其附着在食物纤维上,然后排出体外而解毒。
PCDDs由2个氧原子联结2个被氯原子取代的苯 环,PCDFs由i个氧原子联结2个被氯原子取代的苯 环(见图1和图2)。每个苯环上的氢原子都可以被 i~4个氯原子取代,由于取代的位置和数量的不 同可形成210种异构体(PCDDs有75种、PCDFs有135 种), 见表1。
理化特性
二恶英有两种形态:挥发性的气体二恶英和颗粒 状的固态二恶英。它们在环境中都能长时间存在,且 随着氯化程度的增强,PCDD/Fs的溶解度和挥发性减 小。 二恶英仅在有机溶媒溶解,水几乎不能溶解。 容易生成的温度是180—400℃,分解温度在700℃以上。 在人与动物体内及受3lOnm左右紫外线照射时缓慢分解, 在脂肪中高度分解。对酸、碱稳定,土壤吸着性高, 挥发性低。自然环境中的微生物降解、水解及光分解 作用对二恶英分子结构的影响均很小。例如,TCDD(四 氯二苯异二恶英,共有22个异构体)具有很低的蒸发压, 25℃时仅为2.3×10-4Pa,熔点3O5℃,在水中的溶解 度仅为0.2g/L,且热稳定性好,即使温度高达700℃ 也不会分解。

二恶英的物性、来源、机理及解决方法

二恶英的物性、来源、机理及解决方法

二恶英的物性、来源、机理及解决方法目录1. 二恶英的物性、来源、机理及解决方法 (3)1.1 二恶英物性分析 (3)名称 (3)结构 (3)物性 (3)1.2 二恶英的污染源 (4)1.3 二恶英的生成机理及影响因素 (4)1.3.1二恶英的“de novo”反应机理及模型 (5)1.3.2二恶英的低温前驱物催化反应机理(200~500℃) (5)1.3.3二恶英的高温气相反应机理(500~800℃) (7)1.3.4影响二恶英生成的因素 (8)1.3 PCDD /Fs控制措施 (9)1. 二恶英的物性、来源、机理及解决方法1.1 二恶英物性分析名称二恶英是多氯二苯并对二恶英PCDDs及多氯二苯并呋喃PCDFs这两类化合物的统称。

狭义的二恶英是指2,3,7,8-四氯二苯并对二恶英(TCDD),因其在二恶英类物质中毒性最强,所以有时国内学术界所指的二恶英特指该物质。

结构二恶英为含有2个或1个氧键连结2个苯环的含氯有机化合物。

由2个氧原子联结2个被氯原子取代的苯环为PCDDs;由1个氧原子联结2个被氯原子取代的苯环为PCDFs。

每个苯环上都可以取代1~4个氯原子,形成众多的异构体,其中PCDDs有75种异构体,PCDFs有135种异构体。

其分子结构如下图所示:物性1、分子量321.96。

2、白色结晶体。

3、熔点为302~305℃,705℃开始分解,800℃时21s完全分解。

4、极难溶于水,可溶于大部分有机溶剂,有极强脂溶性。

常温下在水中的溶解度为7.2×10-6 mg/ L,在二氯苯的溶解度为1400mg/ L。

5、性质稳定。

土壤中的半衰期为12a,气态二恶英在空气中光化学分解的半衰期为8.3d,体内的半衰期估计为7至11年。

1.2 二恶英的污染源20世纪90年代初世界范围大气中二恶英的来源(kg TEQ /a)Sources ofPCDD /Fs in air in the world1.3 二恶英的生成机理及影响因素目前几种被接受的PCDD /Fs生成机理主要有:1、从头合成(De nove)反应机理2、前驱物合成机理3、高温气相反应机理4、直接释放机理从头合成反应机理被广大学者认为是PCDD /Fs的主要生成途径,其次为前驱物合成机理,而直接释放则是最为次要的生成途径。

垃圾焚烧处理二恶英的产生及控制

垃圾焚烧处理二恶英的产生及控制
表1 焚烧控制条件
项目 烟气出口温度(℃) 烟气停留时间(s) 测点烟气温度(℃) 测点烟气含氧量(%) 烟囱高度(m) 大气压(kPa) 参数值 850~900 2.2 46~101 12~14 25 96.8~98.5 备注 仪表显示值 设计指标 测定值 小时均值 设计指标 测定值
蒸发吸热、中和反应同时瞬间完成,总时间<1s,以防 止再合成二恶英。 一般资料介绍,大多采用喷活性炭粉的措施来吸附 二恶英,由于是喷入活性炭粉,粉粒间有较大的间隙, 因而吸附二恶英的效果并不理想。该公司采用质量细密 的特种毡状活性炭(性能参数见表2),大大增加了对 二恶英的吸附效率。
CHINA ENVIRONMENTAL PROTECTION INDUSTRY 2008.7
万方数据
48
研 究 进 展
Research Progress
过渡金属;减少含氯有机物的量,从源头减少垃圾焚烧 二恶英生成的氯来源。 (2)焚烧过程控制:抑制二恶英生成 在燃烧过程中,可通过控制燃烧条件控制二恶英在 炉内的生成。该公司通过试验,在焚烧炉的结构上采 取了保温措施,将原先500℃~600℃的炉温提高到了 1000℃。垃圾在达到热解所需的温度时,其中长链的有 机化合物成分在缺氧的环境中开始热解成短链的可燃 气体,热解的气体进入二燃室和过量空气充分混合进 行高温过氧充分燃烧,烟气里的有毒有害物质的分子 结构被彻底破坏。实验时焚烧对象为工业废物(90%) 和生活垃圾(10%)组成的混合垃圾,平均低位热值约 为2×104kJ/kg。焚烧炉出口烟气温度控制在850℃~ 900℃,焚烧控制条件见表1。
成PCDD/Fs,例如多氯代二酚的不完全氧化。 二恶英的生成需要一定变质石墨结构的碳形态。 燃烧系统中二恶英的形成过程分为两个阶段: (1)碳形成:燃烧带中变质石墨结构的碳粒子 的形成;(2)碳氧化:未燃烧碳在低温燃烧带被继 续氧化及PCDD/Fs作为石墨结构碳粒氧化降解产物 的副产品而形成。碳形成中至少含有三步:核子作 用、粒子增长及团聚过程;碳氧化中至少有四步:氧 化剂吸附、与金属离子结合的复杂中间产物的形成、 同石墨结构碳的相互作用及产物解吸。其过程中含有 极其复杂的多相化学反应,影响二恶英从头合成的因 素主要有气相物质、固相物质、温度、反应时间、产 物分配等方面。

简述二恶英产生原因、防控措施。

简述二恶英产生原因、防控措施。

问题:废旧塑料焚烧过程、防控措施不到位,易产生二噁英有毒物质。

简述二噁英产生原因、防控措施。

是什么:二噁英通常指具有相似结构和理化特性的一组多氯取代的平面芳烃类化合物,属氯代含氧三环芳烃类化合物,包括75种多氯代二苯并一对一二噁英和135种多氯代二苯并呋哺,缩写为PCDD/Fs。

来源:目前,由于木材防腐和防止血吸虫使用氯酚类造成的蒸发、焚烧工业的排放、落叶剂的使用、杀虫剂的制备、纸张的漂白和汽车尾气的排放等是环境中二噁英的主要来源。

一、焚烧炉中二恶英废气的产生原因垃圾焚烧炉中二恶英有两种成因:一是二恶英类物质混入垃圾,二是焚烧炉在燃烧垃圾过程中产生二恶英,其机理相当复杂。

有关研究认为,焚烧垃圾时,二恶英的形成机理如下:1.1高温合成即高温气相生成PCDD。

在垃圾进入焚烧炉内初期干燥阶段,除水分外含碳氢成份的低沸点有机物挥发后与空气中的氧反应生成水和二氧化碳,形成暂时缺氧状况,使部分有机物同氯化氢(HC1)反应,生成PCDD。

1.2从头合成在低温(250℃~350℃)条件下大分子碳(残碳)与飞灰基质中的有机或无机氯生成PCDD。

残碳氧化时,有65%~75%转变为一氧化碳,约1%转变为氯苯再转变为PCDD,飞灰中碳的气化率越高,PCDD的生成量也越大。

1.3前驱物合成不完全燃烧及飞灰表面的不均匀催化反应可形成多种有机气相前驱物,如多氯苯酚和二苯醚,再由这些前驱物生成PCDD。

因不完全燃烧产生的剩余部分前驱物及未燃烬的环烃物质在烟气所含金属(尤其是Cu)的催化作用下与氯化物和02 反应,生成二恶英类物质,反应温度在300℃左右。

如果采用静电除尘,当烟气在流过静电除尘器时,由于静电干燥器含有较多的Cu、Ni、Fe等金属微粒,且烟气入口温度为300℃左右,因而很容易生成二恶英类物质,所以近年来优先采用袋式除尘器。

二恶英在焚烧炉中产生,致于哪一种机理起主导作用则取决于炉型、工作状态和燃烧条件。

二、焚烧炉中二恶英废气的控制方法二恶英类物质是在垃圾焚烧过程中产生的,不可能仅用单一的洗气、除尘、净化装置就可以除去,必须在焚烧固体废物时进行全过程控制。

二恶英生成机理

二恶英生成机理

二恶英生成机理二恶英生成机理:1、直接释放机理:燃烧含有微量二恶英的固体废物,在未充分完全燃烧的条件下,其排出的烟气中必然含有残余的二噁英。

2、重新合成:反应载体为大分子的碳结构,包括:活性炭,碳,焦炭,残留碳,飞灰等,这些反应载体在催化剂(主要为铜族化合物)作用下反应,生成二噁英。

①大分子的碳结构的边缘,以并列方式进行氯化反应,产生领位氯化基的碳结构。

②氧化破坏碳结构,进行重组生成二噁英。

③在活性炭表面进行氧化降解(氧化铜为主要催化剂),产生芳香族氯化物(二噁英的中间产物)3、前驱物的异相催化反应机理,发生在灰飞表面的异相催化反应,反应物质为有机小分子。

①主要碳结构的降解作用,形成小分子物质,然后反应产生二噁英。

②凝结两个前驱物形成中间产物,再进行分子间的环化作用,形成二噁英。

影响二噁英生成的因素:①碳源:不论是在重新合成反应中,还是在前驱物异相催化反应中,都需要提供一定数量的碳源。

②氯源:二噁英在形成过程中需要含氯物质提供一定数量的氯原子。

③温度:温度是影响二噁英形成的重要因素之一。

④催化剂:在重新合成反应和前驱物异相催化反应中,即使有足够的碳源和氮源且有适宜的反应温度。

如果没有催化剂的存在,也不会有太多二噁英的生成。

⑤氧:实验观察到在缺氧条件下,二噁英的生成浓度开始下降。

在重新合成反应中氧的存在是必须的,固体废物焚烧过程中,随氧浓度的升高,二噁英生成浓度一般也随之升高。

⑥水:固体废物中所以含的水份在二噁英生成过程中具有一定作用。

(1)作为附加氧源,氢原子的存在降低了二噁英的氧化程度。

(2)提供氢氧自由基。

⑦反应时间:大量实验表明,在适宜温度下,经过5—30min,二噁英的生成率急剧增大,并在2~4h完成。

防治措施1.控制燃烧温度:二噁英的最佳生成温度为300,但在400以上时。

仍然有二噁英生成的可能,当温度达到900~1000时,二噁英将无法生成,因此维持燃烧温度高于1000是防止生成的首要条件。

废弃物焚烧产生二恶英的机理

废弃物焚烧产生二恶英的机理

废弃物焚烧过程中二噁英生成的机理相当复杂,虽然到目前为止尚未完全了解其形成的详细化学反应,但一般认为,二噁英类是在废弃物焚烧炉低温区域烟气和飞灰中,通过一些多相反应产生的,主要有以下3种形成机理。

高温气相合成机理在废弃物燃烧过程中,有机物分子通过重排、自由基缩合、成环化、氯化和其他反应过程会产生少量的PCDD/Fs。

从头合成机理二噁英类从头合成过程发生在250~350℃低温区,经过催化,大分子碳(残碳)与氧、氯、氢通过基元反应生成二恶英类。

为什么废弃物焚烧过程那个中会产生二噁英?前驱物合成机理二噁英类前驱物可以是氯苯、氯酚等化学结构与二恶英类相似的物质,也可以是分子结构与二噁英类不相似的不含氯有机物,如脂肪族化合物、芳香族化合物、乙炔和丙烯等。

上述前驱物在350℃左右下最易合成二噁英类。

不完全燃烧及飞灰表面的不均匀催化反应可形成多种有机气相前驱物,如多氯苯酚和二苯醚,再由这些前驱物生成PCDD/Fs。

高温燃烧产生含铝硅酸盐的原始飞灰中含有不挥发过渡金属和残碳。

飞灰颗粒形成了大的吸附表面。

飞灰颗粒在出炉膛冷却的同时,颗粒表面上的不完全燃烧产物之间,不完全燃烧产物与其它前驱物之间发生多种表面反应,另一方面与不挥发金属及其盐发生多种缩合反应,生成表面活性氯化物,再经过多种复杂的有机反应生成吸附在飞灰颗粒表面上的PCDD/Fs。

一般认为,根据燃烧条件,二噁英类的3种生成机理的相对重要性可以排列为:前驱物合成>从头合成>高温气相合成。

有人认为,焚烧炉的运行状况决定是从头合成更重要,还是前驱物合成更重要。

二噁英,处理,中·持。

在较高的温度条件下,前驱物合成占主导地位;在较低温度条件下,从头合成占主导地位。

具体哪一种过程起主导作用取决于炉型、工作状态和燃烧条件。

生成PCDD/Fs的前提可以概括为:存在有机或无机氯,存在氧,存在作为催化剂的过渡金属。

垃圾焚烧厂二恶英的产生和排放

垃圾焚烧厂二恶英的产生和排放

垃圾焚烧厂二恶英的产生和排放4. 1 二恶英的产生生活垃圾在焚烧过程中,二恶英的生成机理相当复杂,至今为止国内外的研究成果还不足以完全说明问题,已知的生成途径可能有:(1) 生活垃圾中本身含有一定微量的二恶英,由于二恶英具有热稳定性,虽然大部分二恶英会在高温燃烧时得以分解,但仍会有一小部分的二恶英在燃烧以后排放出来。

(2) 在燃烧过程中由含氯前体物生成二恶英,前体物包括聚氯乙烯、氯代苯、五氯苯酚等,在燃烧中前体物分子通过重排、自由基缩合、脱氯或其它分子反应等过程会生成二恶英,这部分二恶英在高温燃烧条件下大部分也会被分解;(3) 当因燃烧不充分而在烟气中产生过多的未燃烬物质,并遇适量的触媒物质(主要为重金属,特别是铜等) 及300~500 ℃的温度环境,则在高温燃烧中已经分解的二恶英有可能会重新生成。

4. 2 二恶英的控制国内外的研究和实践均表明,减少生活垃圾焚烧厂烟气中二恶英浓度的主要方法是采取有效措施控制二恶英的生成。

这些控制措施主要包括:(1) 选用合适的炉膛和炉排结构。

使垃圾在焚烧炉得以充分燃烧,烟气中CO的浓度是衡量垃圾是否充分燃烧的重要指标之一,CO的浓度越低说明燃烧越充分,烟气中比较理想的CO浓度指标是低于60mg/ m3;(2) 控制炉膛及二次燃烧室内,或在进入余热锅炉前烟道内的烟气温度不低于850℃,烟气在炉膛及二次燃烧室内的停留时间不小于2s,余热锅炉出口O2浓度控制在6%-10%之间,并合理控制助燃空气的风量、温度和注入位置;(3) 缩短烟气在处理和排放过程中处于300~500℃温度域的时间,控制余热锅炉的排烟温度不超过250℃左右;(4)在减温塔出口处喷射吸附能力极强的活性炭,吸附烟气中的二恶英。

(5) 选用高效袋式除尘器,提高除尘器效率,进一步去除二恶英;(6) 根据需要适当投加碱性物质、含硫含氮化合物等抑制剂。

(7) 在生活垃圾焚烧厂中设置先进、完善和可靠的全套自动控制系统,使焚烧和净化工艺得以良好执行;(8) 通过分类收集或预分拣控制生活垃圾中氯和重金属含量高的物质进入垃圾焚烧厂;(9) 由于二恶英可以在飞灰上被吸附或生成,所以对飞灰应按照相关标准要求进行稳定化和无害化处理。

二恶英

二恶英

1、物质的理化常数国标编号:CAS:1746-01-6中文名称:二恶英英文名称:Dibenzo-p-Dioxin;Dioxin 别名: TCDD分子式: C12H4Cl4O2分子量:321.96熔点: 302~305℃密度:蒸汽压:溶解性:稳定性:外观与性状:危险标记:白色结晶体用途: 在制造氯酚的过程中会产生二恶英2.对环境的影响一、健康危害动物试验:对胎儿有毒性,胎儿发育异常,胎儿死亡。

对胎儿和胚胎有影响,对胎儿血液和淋巴系统有影响,对新生儿生长有影响。

对胎儿泌尿、生殖系统有影响,对成活分娩指数(可存活数/出生总数),断奶和授乳指数(断奶尚存活数/第四天存活数)有影响。

按RTECS标准为致癌物,肝及甲状腺肿瘤,皮肤肿瘤。

二、毒理学资料及环境行为急性毒性:LD5022500ng/kg(大鼠经口);114μg/kg(小鼠经口);500μg/kg(豚鼠经口)刺激性:兔经眼:2mg,中等刺激致突变:微生物突变-鼠伤寒沙门氏菌,3mg/L ;微生物突变-大肠杆菌,2mg/L 致癌性判定:动物和人皆为不肯定性反应。

二恶英在500℃开始分解,800℃时,21秒内完全分解。

二恶英在土壤内残留时间为10年。

来源:在制造氯酚的过程中会产生二恶英,生成的量取决于过程的压力和温度。

生产除草剂2,4,5-三氯苯酚时,1,2,4,5-四氯苯碱解时,会产生二恶英。

农药2,4,5-涕中含有二恶英杂质。

3.现场应急监测方法4.实验室监测方法色谱/质谱法《固体废弃物试验分析评价手册》中国环境监测总站等译测量大型堆料场净化工段附近环境空气中2,3,7,8-四氯二苯并-P-二恶英用的方法[刊,英]/Fairless B.J.;Bates D.I.,HudsonJ.…//Environ.Sci.Technol.-1987,21(6).-550~5555.环境标准6.应急处理处置方法。

二恶英的产生与控制

二恶英的产生与控制
@WPS官方微博 @kingsoftwps
另外,在烟气处理过程中,尽 量缩短250~800℃温度域的停留时间, 降低除尘器前的烟气温度,避免二噁 英再次产生。对已产生的二噁英可采 取如下处理措施: • 喷入粉末活性材料吸收二噁英; 设置触媒装置(分解器)分解二噁英; 设置活性炭塔吸收二噁英。 •
Байду номын сангаас
谢谢观赏
WPS Office
Make Presentation much more fun
二噁英的产生与控制
环工10901 邹艳丽
1、二噁英的产生
• 垃圾焚烧产生二噁英的主要原因:垃圾 本身含有一定量的二噁英;垃圾中塑料、橡 胶以及氯苯酚、氯苯、PCB等结构相似的 物质(成为前驱体)在焚烧炉内进行反应 而生成二噁英;在废弃冷却过程中,前驱 体等有机物变成二噁英,特别是在 250~400℃容易产生,称为denovo合成过程。 传统的静电除尘器烟气温度正好在此温度 范围。
2、二噁英的排放标准
• 城市生活垃圾焚烧厂烟气中二恶英排放当量(根据Eadon 的计算方法,以毒性当量表示,简称TEQ或I-TEQ)限定 值,各国标准不一致。对于新建的垃圾焚烧厂,最严格的 标准是限制在0.1ng-TEQ /Nm3以下,如欧盟、德国、 奥地利、瑞典、荷兰、日本等。以日本为例,处理规模不 同的焚烧厂,烟气排放要求是有明显区别的,如处理规模 小于2t/h的垃圾焚烧炉,二恶英控制标准为5ng-TEQ /Nm3。实际上对二恶英排放控制标准无论日本还是欧洲 都有一个逐步提高标准的过程,以挪威为例,1983年垃圾 焚烧控制指标还没有二恶英,1990年为2ng-TEQ /Nm3,2002年提高为0.1ng-TEQ /Nm3,满足欧盟标 准要求。
3、二噁英的危害

生活垃圾焚烧厂中二恶英的产生和控制

生活垃圾焚烧厂中二恶英的产生和控制

生活垃圾焚烧厂中二噁英的产生和控制1。

前言生活垃圾焚烧厂烟气中的二恶英是近几年来世界各国所普遍关心的问题,自1999年比利时发生动物饲料二恶英污染事件后,二恶英更是倍受世人所关注,一时成为全球范围的热点.经过这一事件,二恶英在我国也是家喻户晓,闻毒色变.可以这样说,在今天研究生活垃圾焚烧厂烟气中二恶英的产生机理和控制措施,比以往任何时候都显得必要和重要。

要建设生活垃圾焚烧厂,我们就不能也无法回避二恶英。

2.二恶英的结构和特性2.1二恶英的分子结构二恶英(DIOXIN,简称为DXN)即PolyChlorinatedDibenzo-P—Dioxins,略写为PCDDs。

简单地说PCDDs是两个苯核由两个氧原子结合,而苯核中的一部分氢原子被氯原子取代后所产生,根据氯原子的数量和位置而异,共有75种物质,其中毒性最大的为2,3,7,8—四氯二苯并二恶英TCDDs(2,3,7,8—TCDDs),计有22种,;另外,和PCDDs一起产生的二苯呋喃PCDFs,共有135种物质。

通常将上述两类物质统称为二恶英(或称戴奥辛),所以二恶英不是一种物质,而是多达210种物质(异构体)的统称。

2.2二恶英的特性二恶英在标准状态下呈固态,熔点约为303~305℃。

二恶英极难解溶于水,在常温情况下其溶解度在水中仅为7。

2×10-6mg/L。

而同样在常温情况下,其在二氯苯中的溶解度高达1400mg/L,这说明二恶英很容易溶解于脂肪,所以它容易在生物体内积累,并难以被排出。

二恶英在705℃以下时是相当稳定的,高于此温度即开始分解。

另外,二恶英的蒸汽压很低,在标准状态下低于1.33×10—8Pa,这么低的蒸汽压说明二恶英在一般环境温度下不易从表面挥发。

这一特性加上热稳定性和在水中的低溶解度,是决定二恶英在环境中去向的重要特性。

3.二恶英的毒性和评价据报导,二恶英是目前发现的无意识合成的副产品中毒性最强的化合物,它的毒性相当于氰化钾(KCN)的1000倍以上。

垃圾焚烧发电厂除二恶英活性炭

垃圾焚烧发电厂除二恶英活性炭

垃圾焚烧发电厂除二恶英活性炭【1 】
一:垃圾焚烧中二恶英是如何产生的?
2.焚烧炉内燃烧不完整,低于750-800度,碳氢化合物与氯化物联合生成!
3.烟气中吸附的氯苯及氯酚等,在某一特定温度(250-400),受金属氯化物的催化而生成!二:垃圾焚烧发电厂产生的二恶英若何治理?
1.掌握起源控氯和重金属含量高的物资
2.采取3T1E办法克制二恶英的产生.即
温度掌握在800度以上!
包管烟气的高温逗留时光在2秒以上!
涡流,充分混杂和搅拌烟气使其充分完整燃烧!
多余空气,供给足够的助燃空气可削减二恶英的产生!
3.削减炉内形成掌握温度及逗留时光!
防止烟气冷至200度,在烟气处理进程中尽量缩短250-400度温度域的逗留时光,可以削减二恶英的合成!
4:除尘行止
配套活性炭过滤装备,添加活性炭.
三:垃圾电厂焚烧除二恶英该应用那类活性炭?
为了防止活性炭废渣燃烧处理加大污染源,需应用果壳粉末活性炭会达到最佳值,如应用煤质粉末活性炭,会二次污染产生二氧化硫等物资排放在空气中.椰壳活性炭采取以下尺度
第1页,共1页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二噁英生成温度
二噁英是一种有毒的有机化合物,它是一种多环芳香烃,由苯并[c,d]芘环和邻苯二甲酸酐环组成。

二噁英在自然界中很少存在,但是
在燃烧有机物时,会产生二噁英。

它是一种强致癌物质,对人体和动
物都有严重的危害。

二噁英的生成温度主要取决于物质的物理化学性质和反应条件。

在热分解条件下,多环芳香烃可以在高温下分解形成二噁英。

通常情
况下,一般认为二噁英的生成温度在250℃左右。

但是实际上,二噁英的生成温度受到许多因素的影响,如反应压力、反应时间、反应介质、反应物浓度等。

以下是一些影响二噁英生成温度的因素:
1.反应压力:在高压下,热分解反应会增加,并且二噁英的生成
温度也会降低。

这是由于高压会促进反应物之间的相互作用,从而加
速反应过程。

2.反应时间:当反应时间延长时,热分解反应会逐渐增加,二噁英的生成温度相应地也会降低。

这是因为反应时间的延长会使热分解反应达到一个热平衡状态,从而获得更多的二噁英产物。

3.反应介质:不同的反应介质对二噁英的生成温度具有不同的影响。

在氧气存在的情况下,二噁英的生成温度会降低,而在惰性气体如氮气存在的情况下,二噁英的生成温度会升高。

4.反应物浓度:反应物浓度的增加会增加热分解反应的速率,从而降低二噁英的生成温度。

总的来说,二噁英的生成温度是一个较为复杂的问题,它受到许多因素的影响。

想要避免二噁英的生成需要从多个方面着手,如选择合适的反应条件、控制燃烧温度、降低热分解反应的速率等。

只有这样才能保证在有机物燃烧的过程中不会产生二噁英,保障人类和动物的健康。

相关文档
最新文档