离散控制系统分析方法
离散控制系统分析方法
离散控制系统分析方法离散控制系统分析方法指的是对离散控制系统进行建模、分析和设计的方法。
离散控制系统是一种基于离散时间的系统,其输入、输出和状态都是离散的。
离散控制系统广泛应用于工业自动化、通信网络、数字信号处理等领域,因此对其进行有效的分析和设计具有重要意义。
下面将介绍几种常用的离散控制系统分析方法。
1.差分方程法差分方程法是离散控制系统分析的基本方法之一、它通过建立系统的差分方程来描述系统的动态行为。
差分方程的形式类似于连续时间系统的微分方程,但系统状态的变化是以离散时间为单位进行的。
通过求解差分方程,可以得到离散时间下的系统响应。
2.离散频域分析方法离散频域分析方法是一种基于频域的分析方法,主要用于对离散时间系统的频率特性进行分析。
离散频域分析方法常用的工具包括离散傅里叶变换(DFT)、离散余弦变换(DCT)等。
通过对系统的输入和输出信号进行频域分析,可以确定系统的频率响应、幅频特性、相频特性等。
3.状态空间法状态空间法是一种用于描述离散控制系统的方法。
它通过引入状态变量,将系统的动态行为用一组状态方程来表示。
状态方程可以通过差分方程、差分方程组等形式来表示。
状态空间法可以方便地进行系统分析和控制器设计,并且可以应用于线性和非线性离散控制系统。
4.频域折叠法频域折叠法是一种基于频域的系统分析方法,主要用于对离散时间系统的稳定性和性能进行分析。
频域折叠法的基本思想是通过对系统的幅频特性进行折叠,将连续时间系统的频域特性转化为离散时间系统的频域特性。
通过对折叠后的频域特性进行分析,可以得到系统的稳定域、稳定裕度等性能指标。
5.传函数法传函数法是一种常用的线性离散控制系统分析方法。
它通过将离散时间系统表示为输入信号和输出信号之间的比值,建立系统的传函数模型。
传函数法可以方便地进行系统分析和控制器设计,并且可以应用于多输入多输出(MIMO)离散控制系统。
总结起来,离散控制系统分析方法包括差分方程法、离散频域分析方法、状态空间法、频域折叠法和传函数法等。
第7章 线性离散控制系统分析
f * (t )
7. 3 Z 变换
7.3.1 Z变换的定义
连续信号 f (t ) 经过采样后的离散信号 f * (t ) 为
f * (t ) f (nT ) (t nT )
其拉普拉斯变换为 令
z e Ts
F (s) L[ f (t )] f (nT )e nTs
* * n 0
的根都位于[W] 的左半部。
7. 5 线性离散系统的稳定性与稳态误差
7.5.1 线性定常离散系统稳定的充要条件
7. 5 线性离散系统的稳定性与稳态误差
7.5.2开环增益和采样周期对离散系统稳定性的影响
开环增益与采样周期对离散系统稳定性的影响: (1)采样周期一定时,增大开环增益会使离散系统的稳 定性变差,甚至使系统不稳定; (2)开环增益一定时,采样周期越长,丢失的信息越 多,离散系统的稳定性及动态性能变差,甚至使系
7. 6 线性离散系统的动态性能分析
7.6.1 线性离散系统的单位阶跃响应
离散系统的闭环脉冲传递函数为 式中,
R( z ) z /( z 1)
。系统输出的变换式为
将上式按幂级数展开,进行Z反变换,可求出输出信号的 脉冲序列 c* (t ) ,绘制单位阶跃响应曲线 c* (t ) ,从而分析 离散系统的动态性能。若不能求出离散系统的闭环脉冲传 递函数 ( z ) ,而R( z) 是已知的,可直接写出 C ( z ) 的表达式。
在线性采样系统理论中,把初始条件为零情况下,系统的离 散输出信号的变换与离散输入信号的变换之比,定义为脉冲 C ( z) 传递函数,记为 G(z)
R( z)
系统输出采样的脉冲序列为 c* (t ) z 1[C ( z)] z 1[G( z) R( z)]
离散系统的时域分析法
第五章离散系统的时域分析法目录5.1 引言5.2 离散时间信号5.3 离散系统的数学模型-差分方程 5.4 线性常系数差分方程的求解5.5 单位样值响应5.6 卷积和§5.1引言连续时间信号、连续时间系统连续时间信号:f(t)是连续变化的t的函数,除若干不连续点之外对于任意时间值都可以给出确定的函数值。
函数的波形都是具有平滑曲线的形状,一般也称模拟信号。
模拟信号抽样信号量化信号连续时间系统:系统的输入、输出都是连续的时间信号。
离散时间信号、离散时间系统离散时间信号:时间变量是离散的,函数只在某些规定的时刻有确定的值,在其他时间没有定义。
离散时间系统:系统的输入、输出都是离散的时间信号。
如数字计算机。
o k t ()k t f 2t 1−t 1t 3t 2−t 离散信号可以由模拟信号抽样而得,也可以由实际系统生成。
量化幅值量化——幅值只能分级变化。
采样过程就是对模拟信号的时间取离散的量化值过程——得到离散信号。
数字信号:离散信号在各离散点的幅值被量化的信号。
ot ()t f T T 2T 31.32.45.19.0o T T 2T 3()t f q t3421离散时间系统的优点•便于实现大规模集成,从而在重量和体积方面显示其优越性;•容易作到精度高,模拟元件精度低,而数字系统的精度取决于位数;•可靠性好;•存储器的合理运用使系统具有灵活的功能;•易消除噪声干扰;•数字系统容易利用可编程技术,借助于软件控制,大大改善了系统的灵活性和通用性;•易处理速率很低的信号。
离散时间系统的困难和缺点高速时实现困难,设备复杂,成本高,通信系统由模拟转化为数字要牺牲带宽。
应用前景由于数字系统的优点,使许多模拟系统逐步被淘汰,被数字(更多是模/数混合)系统所代替;人们提出了“数字地球”、“数字化世界”、“数字化生存”等概念,数字化技术逐步渗透到人类工作与生活的每个角落。
数字信号处理技术正在使人类生产和生活质量提高到前所未有的新境界。
第七节 离散系统的稳定性分析
离散系统如上图所示,则
E(z) R(z) 1 Go (z)
若闭环系统稳定,则由终值定理
ess
lim e(k)
k
lim (z
z 1
1) E ( z )
lim (z
z 1
1) R(z) 1 Go (z)
将离散系统仿照连续系统分为0、1、2型:
若系统开环脉冲传递函数G0 (z)中含有 i(i=0,1,2)个|z|=1的极点,则系统称为i型
第七节 离散系统的稳定性分析
如上节所讲,采样会破坏系统的稳定性,所 以在设计采样系统时最先考虑的是稳定性。 对采样系统稳定性分析主要建立在Z变换的 基础上。
连续系统的稳定性
连续系统稳定
所有特征根均具有负实部
方法:劳斯判据,Hurwitz判据及奈氏判据。
在分析采样系统时,可以利用Z变换与拉氏变 换数学上的关系,找到Z平面与S平面之间的周 期映射关系,从而利用原有的各种判据来分析
0
2型
0
2 r(t)=t*1(t)时
静态速度误差系数
R(z)
Tz (z 1)2
, ess
lim [(z
z1
1) 1 1 Go(z)
Tz (z 1)2
]
T
lim z1 (z
1 1)Go ( z)
若定义KV
1 T
lim (z 1)Go (z)
z 1
,则ess
1 Kv
Kv
ess
0型
0
1型 2型
Bode Diagrams
50 40 30 20 10
Phase (deg); Magnitude (dB)
-100 -120 -140 -160
自动控制原理(第三版)第七章线性离散系统分析与设计
要点二
离散系统稳态误差的计算方法
离散系统稳态误差的计算方法包括解析法和仿真法,其中 解析法是通过求解差分方程得到稳态误差,仿真法则是通 过模拟系统的动态过程得到稳态误差。
05
线性离散系统的控制器设计
离散系统的状态反馈控制
01
状态反馈控制
通过测量系统的状态变量,并利 用这些信息来产生控制输入,以 实现系统的期望性能。
THANKS
感谢观看
01
离散系统响应的分类
离散系统的响应可以根据不同的标准进行分类,如根据时间响应可以分
为瞬态响应和稳态响应,根据系统参数可分为超调和调节时间等。
02
离散系统响应的数学模型
离散系统的数学模型通常采用差分方程或状态方程表示,通过求解这些
方程可以得到系统的响应。
03
离散系统响应的分析方法
离散系统响应的分析方法包括时域分析和频域分析,其中时域分析主要
基于系统的输出方程和性能指标,通过设计适当的观测器来估计状 态变量,并利用这些估计值来设计输出反馈控制器。
输出反馈控制的局限性
对于非线性系统和不确定性可能存在较大的误差,并且对于状态变 量的测量可能存在噪声和延迟。
离散系统的最优控制
最优控制
01
通过优化性能指标来选择控制策略,以实现系统性能的最优化。
自动控制原理(第三版)第七章 线性离散系统分析与设计
• 线性离散系统概述 • 线性离散系统的数学模型 • 线性离散系统的稳定性分析 • 线性离散系统的动态性能分析
• 线性离散系统的控制器设计 • 线性离散系统设计案例分析
01
线性离散系统概述
定义与特点
自动控制原理第7章2
2020/12/3
上述变换关系的正确性证明如下: (a)在w平面的虚轴上,Re[w]=0,则有
w1 w1 即 z w1 1 w 1
2020/12/3
9
(b)w平面的左半平面,Re[w]<0,则有
w1 w1 即 z w1 1 w 1
(c)w平面的右半平面,Re[w]>0,则有
w1 w1 即
z w1 1 w 1
列出劳斯表,根据劳斯-赫尔维茨判据可以判定, 系统是稳定的。
2020/12/3
11
(4) z平面上的根轨迹 通常,离散时间系统的闭环特征方程为
1 G(z) 0
其中G(z)为开环脉冲传递函数。离散系统的闭环特征方程式在 形式上,与连续系统的完全相同,因此,z平面上的根轨迹作 图方法与s平面的作图方法相同。需注意:在连续时间系统中, 稳定边界是虚轴,而在离散系统中,稳定边界是单位圆。
根据pj在单位圆内的位置不同,所对应的瞬态分量的形式 也不同,如图7.30所示。只要闭环极点在单位圆内,则对应
的瞬态分量总是衰减的;极点越靠近原点,衰减越快。不过,
当极点为正时为指数衰减;极点为负或为共轭复数,对应为
振荡衰减。
Im
z平面
o
t
o
t
1
0
o
t
o
t
o
t
1 Re
不同闭环极点的瞬态分量
离散时间系统频域分析
离散时间系统频域分析离散时间系统的频域分析是研究离散时间信号在频域上的性质和行为的方法。
在离散时间系统频域分析中,使用离散时间傅里叶变换(Discrete Fourier Transform,DFT),来将离散时间信号从时域转换到频域。
通过分析信号在频域上的频谱分布和频谱特性,可以得到离散时间系统的频率响应和频域特性,对信号的频域分布和频率区间进行评估和分析。
离散时间傅里叶变换是时域信号分析的重要工具,它可以将离散时间信号从时域转换到频域。
离散时间傅里叶变换的定义可以表示为:X(k) = Σ[x(n) * exp(-j*2πkn/N)]其中,X(k)是离散时间信号在频域的频谱,x(n)是离散时间信号,N是信号的长度,k是频谱的索引。
离散时间傅里叶变换将时域信号分解成多个频率成分,通过频谱的幅度和相位信息,可以得到信号在频域上的分布情况。
通过离散时间傅里叶变换可以得到离散时间信号的频谱,进而分析信号在频域上的频率响应和频域特性。
频谱可以反映信号在不同频率上的能量分布情况,通过观察频谱的幅度和相位,可以得到信号的频率成分、频带宽度和频率特性等信息。
在离散时间系统频域分析中,常用的分析工具有频谱图、功率谱密度、频率响应等。
频谱图可以将信号的频谱以图形形式展示出来,通过观察频谱图的形状和分布,可以得到信号在频域上的特点。
功率谱密度是指信号在不同频率上的功率分布情况,可以评估信号在不同频率上的能量分布情况。
频率响应是指系统对不同频率信号的响应情况,可以评估系统对不同频率信号的滤波和增益特性。
离散时间系统频域分析的应用包括信号处理、通信系统、控制系统等领域。
在信号处理中,通过频域分析可以对信号进行滤波、去噪、频域变换等操作,提高信号的质量和分析能力。
在通信系统中,通过频域分析可以评估信号传输和接收的性能,并对系统进行优化和改进。
在控制系统中,通过频域分析可以评估系统的稳定性和控制特性,提高系统的响应速度和稳定性。
差分方程离散系统的z域分析法稳定性
A/D:模拟信号→数字信号,图中还包括 连续信号→离散信号的采样过程
D/A:数字信号→模拟信号,图中还包括 离散信号→连续信号的保持过程 计算机
r
e
数字
控制器
u(t) 执行
D/A
机构
受控 y(t)对象A/D Nhomakorabea测量
计算机控制系统原理图
4
计算机控制系统的主要特点
修改控制器结构及参数很方便(改变控制程序); 便于实现各种先进控制,能完成复杂的控制任务; 控制精度高,抗干扰能力强,能有效抑制噪声; 有显示、报警等多种功能。 有利于实现“智能化”、“网络化”、“管控一体 化”、多级分布式控制等;
表示为为便于数学处理将2t2t实际上被保持器抵消了该系数在有保持器的系统中率特性系统的传递函不影响离散信号的频系数相差一个变换的角度看两者只脉冲为时刻的单位幅值时刻的单位幅值脉冲表示ntsst二采样信号的数学表达式变换即得到z变换是离散信号拉氏变换的有理式表达形式个采样时刻的取值的系数为信号在第n10仿真实验
z-n的系数为信号在第n个采样时刻的取值
Z变换只表达了连续函数在采样时刻的特性,不包含采样 时刻之间的信息。
对f(t) 采样后的 f (t) 是唯一的,但 f (t) 所对应的 f(t) 不 唯一; f (t) 与 F(z) 之间的变换是唯一的。
19
S平面与Z平面的对应关系:
根据Z变换定义,有 z eTs
而 uh( t ) 1( t ) - 1( t - T )
U( s ) ,
Uh(
s
)
1
- e-Ts s
零阶保持器实际的传递函数为
Gh (
s
)
《自动控制原理》离散系统的动态性能分析
7-6 离散系统的动态性能分析线性定常离散系统的动态性能分析方法:时域法 ,根轨迹法, 频域法本节主要内容(1)在时域中求取离散系统的时间响应,指出采样器和保持器对系统动态性能的影响。
(2)在z平面上离散系统闭环极点与其动态性能之间的关系。
(3)离散系统的根轨迹分析(讲义没有,增加的)一.离散系统的时间响应及性能指标● 分析系统动态性能时,通常假定外作用输入为单位阶跃函数)(1t 。
● 如果可以求出离散系统的闭环脉冲传递函数由)(/)()(z R z C z =φ, 输入为单位阶跃函数)1/()(-=z z z R ,则系统输出的z 变换函数)(1)(z z z z C φ-= ● 通过z 反变换,可以求出输出信号的脉冲序列)(*t c。
● )(*t c 代表线性定常离散系统在单位阶跃输入作用下的响应过程。
● 离散系统时域指标的定义与连续系统相同。
● 根据单位阶跃响应)(*t c 可以方便地分析离散系统的动态性能。
例7-28 设有零阶保持器的离散系统如图7-41所示,其中)(1)(t t r =,s T 1=,1=K 。
试分析该系统的动态性能。
(注Word 与PPT 中编号不同) 解 先求开环脉冲传递函数)(z G 。
因为)1()1(1)(2s e s s s G --+= 对上式z 变换,可得 ])1(1[)1()(21+-=-s s Z z Z G查z 变换表,求出 )368.0)(1(264.0368.0)(--+=z z z Z G 再求闭环脉冲传递函数632.0264.0368.0)(1)()(2+-+=+=z z z z G z G z φ 单位阶跃输入时:321632.0632.121264.0368.0)()()(----+-+==zz z z z R z z C φ 展开得:+++++++++=---------887654321868.0868.0802.0895.0147.14.14.1368.0)(z z z z zz z z z z C 由上式求得系统在单位阶跃作用下的输出序列)(nT c 为:单位阶跃响应曲线:根据,...)2,1,0)((=n nT c 数值,绘图所示。
实验二 离散控制系统的性能分析1
实验二离散控制系统的性能分析(时域/频域)一、实验目的1.掌握离散闭环系统的动态性能时域参数的分析与计算方法;2.掌握离散系统稳定性的频域典型参数分析与计算方法。
二、实验工具1.MATLAB 软件(6.5 以上版本);2.每人计算机一台。
三、实验内容1.在 Matlab 语言平台上,通过给定的闭环离散系统,深刻理解时域参数的物理意义与计算方法,内容包括如下:●阻尼比参数分析:Z 平面与 S 平面的极点相互转换编程实现;分析 S/Z 两个平面域特殊特性(水平线、垂直线、斜线、圆周等)的极点轨迹相互映射方法;系统阶跃响应参数:上升时间和超调量等。
2.采用频域分析方法,通过编程计算,进一步理解离散系统的稳定性参数,包括如下:●通过幅频图,进行增益裕度分析;●通过相频图,进行相位裕度分析。
四、实验步骤1.阻尼比计算注释:Example 1 Damping ratio computationts=0.1;gp=tf(1,[1 1 0])gz=c2d(gp,ts,'zoh')kz=tf(5*[1,-0.9],[1 -0.7],ts);sys_ta=feedback(gz*kz,1,-1)p=pole(sys_ta)- 2 -radii=abs(p);angl=angle(p)damp(sys_ta)real_s=log(radii)/tsimg_s=angl/tszeta=cos(atan(-img_s./real_s))wn=sqrt(real_s.^2+img_s.^2)运行结果:2.水平 S 平面线到 z 平面的映射注释:Example 2 Mapping of horizontal s-plane line to z-planexx=[0:0.05:1]'N=length(xx)s0=-xx*35;s=s0*[1 1 1 1 1]+j*ones(N,1)*[0,0.25,0.5,0.75,1]*pi/tsplot(real(s(:,1)),imag(s(:,1)),'-o',real(s(:,2)),imag(s(:,2)),'-s',... real(s(:,3)),imag(s(:,3)),'-^',real(s(:,4)),imag(s(:,4)),'-*',...real(s(:,5)),imag(s(:,5)),'-v'),sgridz=exp(s*ts)plot(real(z(:,1)),imag(z(:,1)),'-o',real(z(:,2)),imag(z(:,2)),'-s',... real(z(:,3)),imag(z(:,3)),'-^',real(z(:,4)),imag(z(:,4)),'-*',...real(z(:,5)),imag(z(:,5)),'-v'),zgrid3.垂直 S 平面线到 z 平面的映射注释:Example 3 Mapping of vertical s-plane line to z-planes0=j*xx*pi/ts;s=ones(N,1)*[0,-5,-10,-20,-30]+s0*[1 1 1 1 1]plot(real(s(:,1)),imag(s(:,1)),'-o',real(s(:,2)),imag(s(:,2)),'-s',...real(s(:,3)),imag(s(:,3)),'-^',real(s(:,4)),imag(s(:,4)),'-*',...real(s(:,5)),imag(s(:,5)),'-v'),sgridz=exp(s*ts)plot(real(z(:,1)),imag(z(:,1)),'-o',real(z(:,2)),imag(z(:,2)),'-s',...real(z(:,3)),imag(z(:,3)),'-^',real(z(:,4)),imag(z(:,4)),'-*',...real(z(:,5)),imag(z(:,5)),'-v'),zgrid4.恒定阻尼比 S 平面线映射到 z 平面注释:Example 4 Mapping of constant damping ratio s-plane lines into z-plane s=s0*[1 1 1 1]-imag(s0)*[0,1/tan(67.5*pi/180),...1/tan(45*pi/180),1/tan(22.5*pi/180)]s=[s,real(s(:,4))];plot(real(s(:,1)),imag(s(:,1)),'-o',real(s(:,2)),imag(s(:,2)),'-s',...real(s(:,3)),imag(s(:,3)),'-^',real(s(:,4)),imag(s(:,4)),'-*',...real(s(:,5)),imag(s(:,5)),'-v'),sgridz=exp(s*ts)plot(real(z(:,1)),imag(z(:,1)),'-o',real(z(:,2)),imag(z(:,2)),'-s',...real(z(:,3)),imag(z(:,3)),'-^',real(z(:,4)),imag(z(:,4)),'-*',...real(z(:,5)),imag(z(:,5)),'-v'),zgrid5.将圆 s 平面线映射到 z 平面注释:Example 5 Mapping of circle s-plane line to z-planephi=xx*pi/2s0=(pi/ts)*(-cos(phi)+j*sin(phi))s=s0*[1,0.75,0.5,0.25,0]plot(real(s(:,1)),imag(s(:,1)),'-o',real(s(:,2)),imag(s(:,2)),'-s',... real(s(:,3)),imag(s(:,3)),'-^',real(s(:,4)),imag(s(:,4)),'-*',...real(s(:,5)),imag(s(:,5)),'-v'),sgridz=exp(s*ts)plot(real(z(:,1)),imag(z(:,1)),'-o',real(z(:,2)),imag(z(:,2)),'-s',... real(z(:,3)),imag(z(:,3)),'-^',real(z(:,4)),imag(z(:,4)),'-*',...real(z(:,5)),imag(z(:,5)),'-v'),zgrid6.阶跃响应注释:Example 6 Step response measurek=[0:1:60];step(sys_ta,k*ts);7.根轨迹注释:Example 7 Root-locus analysisrlocus(gz*kz)Amplitude;注释:Example 8 Root-locus analysis in page 56 numg=[1 0.5];deng=conv([1 -0.5 0],[1 -1 0.5]);sys_z=tf(numg,deng,-1)rlocus(sys_z)注释:Example 9 Root-locus analysis in page 57numg=[1];deng=[1 4 0];ts=0.25sys_s2=tf(numg,deng)sys_z2=c2d(sys_s2,ts,'imp')rlocus(sys_z2)8.频率响应注释:Example 10 Analysis of frequency response and roots locus in page 59 a=1.583e-7;k=[1e7,6.32e6,1.65e6];w1=-1;w2=1;ts=0.1;v=logspace(w1,w2,100);deng=[1.638 1 0];numg1=k(1,1)*a*[-1 1]numg2=k(1,2)*a*[-1 1]numg3=k(1,3)*a*[-1 1]sys_s1=tf(numg1,deng)sys_s2=tf(numg2,deng)sys_s3=tf(numg3,deng)bode(sys_s1,sys_s2,sys_s3,v),grid onnumg=1.2e-7*[1 1]deng=conv([1 -1],[1 -0.242]);sys_z2=tf(numg,deng,ts)rlocus(sys_z2),grid on五、实验思考1. S 平面与 Z 平面不同位置的映射关系分析s平面虚轴的映射s平面整个虚轴映射为z平面单位圆,左半平面任一点映射在z平面单位圆内,右半平面任一点映射在单位圆外。
自动控制原理 胡寿松 第七章 线性离散系统的分析与校正
2.数字控制系统(也称计算机控制系统,时间和幅值上都是离散的)
被控对象中包含了 放大器,执行器等
计算机控制系统典型原理图
严格讲,此图不一定对。
再看一例计算机控制系统: P9,图1-12
1)A / D 转换器是把连续的模拟信号转换为离散数字信号的装置。它的转换包括两个过程: 一是采样过程;二是量化过程,计算机中任何数值的离散信号必须表示成二进制 数才能进行运算。 2)D / A 转换器是把离散的数字信号转换为连续的模拟信号的装置。它的转换也经历两个 过程:一是解码过程,把离散数字信号转换为离散的模拟信号;二是复现过程, 经过保持器将离散的模拟信号复现为连续的模拟信号。
7-1 .信号的采样和保持
离散系统的特点是,系统中一处或数处的信号是脉冲序列或数字序列。为 了把连续信号变换为脉冲信号,需要使用采样器;另一方面,为了控制连续式 元部件,又需要使用保持器将脉冲信号变换为连续信号。因此,为了定量研究 离散系统,必须对信号的采样过程和保持过程用数学的方法加以描述。
本节内容
3)数字控制系统的典型结构图
e
e
数字控制统典型结构图
此图将数字控制器的控制律用线性连续系统传递函数来代替了。
3.离散控制系统的特点
采样和数控技术,在自动控制领域中得到了广泛的应用,其主要原因是采样 系统,特别是数字控制系统较之相应的连续系统具有一系列的特点: 1)由数字计算机构成的数字校正装置,效果比连续式校正装置好,且由软件实现 的控制律易于改变,控制灵活。 2)采样信号,特别是数字信号的传递可以有效的抑制噪声,从而提高了系统的抗 扰能力。 3)允许采用高灵敏度的控制元件,以提高系统的控制精度(有些高灵敏度的检测 元件提供的检测信号就是离散的)。 4)可用一台计算机分时控制若干个系统,提高了设备的利用率,经济性好。 5)对于具有传输延迟,特别是大延迟的控制系统,可以引入采样的方式稳定。
离散控制系统的稳定性分析与设计方法
离散控制系统的稳定性分析与设计方法离散控制系统的稳定性是控制工程中一个非常重要的概念,它涉及到系统的可靠性和性能。
本文将介绍离散控制系统的稳定性分析与设计方法,并讨论如何确保系统的稳定性。
一、稳定性分析离散控制系统的稳定性分析是通过对系统传递函数进行分析来确定系统是否稳定。
常用的稳定性判据有两种:时域方法和频域方法。
1. 时域方法时域方法是通过分析系统的时域响应来确定系统的稳定性。
具体方法有零极点判据和步响应法。
零极点判据是通过确定系统传递函数的零点和极点位置来判断系统的稳定性。
一般来说,当系统的所有极点都位于单位圆内部时,系统是稳定的。
步响应法通过观察系统的步响应图来判断系统的稳定性。
当系统的步响应图趋于稳定状态并在有限时间内收敛到稳定值时,系统是稳定的。
2. 频域方法频域方法是通过分析系统的频率特性来确定系统的稳定性。
常用的频域方法有Nyquist判据和Bode图法。
Nyquist判据是通过绘制系统的Nyquist图来判断系统的稳定性。
当系统的Nyquist图不通过虚轴右半平面时,系统是稳定的。
Bode图法是通过绘制系统的Bode图来判断系统的稳定性。
当系统的幅频特性曲线和相频特性曲线满足一定条件时,系统是稳定的。
二、稳定性设计稳定性设计是通过设计控制器的参数来确保系统的稳定性。
通常有两种常见的设计方法:根轨迹法和PID控制器。
1. 根轨迹法根轨迹法是通过绘制根轨迹图来设计控制器的参数。
根轨迹图可以直观地显示系统的稳定性和性能。
设计过程中,可以根据系统的要求来调整控制器的参数,使得系统的根轨迹满足要求。
2. PID控制器PID控制器是一种常用的控制器,它包括比例、积分和微分三个部分。
PID控制器的设计可以根据系统的特性和需求来确定各个参数的取值。
比例部分可以控制系统的静态误差,积分部分可以消除系统的稳态误差,微分部分可以提高系统的动态响应。
通过合理地调整PID控制器的参数,可以实现系统的快速响应和稳定性。
自动控制原理胡寿松--第7章
采样周期的选取: 原则上采样周期的选取应该保证能够复现系统所能通过 的最高频率的信号,一般需要经过实验确定。对于伺服
系统一般认为频率超过c的信号将被滤除,因而一般选 择采样周期s 10c
信号的复现D/A转换
x (t)
T 2T 3T
解码,将数字信号折算成对应的电压或电流值 x(KT )
1- e-aT a(z - e-aT )
二.线性离散系统的闭环传函
• 在分析离散系统脉冲传递函数时,应注意在 闭环的各个通道以及环节之间是否有采样开关, 因为有、无采样开关所得的闭环脉冲传递函数是 不相同的。
试求右图所示系统的闭环传函
R(s) (s)
-
Y(s)
G1(s)
G2(s)
C* (s)
f () lim f (t) lim(z 1)F(z)
t
z1
(7) 卷积定理
若:Z[ f1(t)] F1(z), Z[ f2 (t)] F2 (z),
则 F1(z) F2 (z) Z[ f1(mT ) f2(kT mT )] m0
4. Z反变换
(1) 幂级数展开法
第七章 线性离散控制系统分析初步
•学习重点
了解线性离散系统的基本概念和基本定理,把握线性连 续系统与线性离散系统的区别与联系;
熟练掌握Z变换、Z变换的性质和Z反变换方法
了解脉冲传递函数的定义,熟练掌握开环与闭环系统脉 冲传递函数的计算方法;
掌握线性离散系统的时域分析方法
7.1 线性离散系统的基本概念
(2) 延迟定理 设t<0时f(t)=0,令Z[f(t)]=F(z),则
Z f (t nT) znF(z)
离散控制系统的稳定性分析
离散控制系统的稳定性分析离散控制系统是一种由离散时间事件驱动的系统,它在控制工程中起着重要的作用。
稳定性分析是离散控制系统设计中的关键步骤,它可以帮助我们确定系统是否能够保持在稳定状态,并达到预期的控制效果。
本文将讨论离散控制系统的稳定性分析方法和应用。
1. 离散控制系统概述离散控制系统是一种以时序离散的方式进行操作和控制的系统。
它由输入、输出和状态三个主要部分组成。
其中,输入是指系统接收来自外部的信号或信息,输出是指系统作为响应产生的结果,状态是指系统在运行过程中的内在特征。
2. 稳定性的概念和分类稳定性是指系统在输入变化或干扰下是否能够保持有限范围内的响应。
离散控制系统的稳定性可以分为绝对稳定性和相对稳定性两种情况。
绝对稳定性:系统在任何情况下都能保持有限范围内的响应,不会出现不受控制或不可预测的振荡或失控现象。
相对稳定性:系统在特定条件下能够保持有限范围内的响应,但可能受到输入变化或干扰的影响而出现逐渐增大的响应。
3. 稳定性分析方法离散控制系统的稳定性分析可以使用多种方法,以下是几种常用的方法:3.1 传递函数法传递函数是离散控制系统中描述输入输出关系的数学模型。
通过将系统表示为传递函数的形式,可以使用极点、零点、阶跃响应等特征来分析系统的稳定性。
例如,当系统的所有极点都位于单位圆内时,系统是稳定的。
3.2 极坐标法极坐标法是一种绘制离散控制系统零极点的图形方法。
通过绘制零极点在单位圆上的位置,可以直观地判断系统的稳定性。
如果所有极点都位于单位圆内,系统是稳定的。
3.3 稳定性判据法稳定性判据法是一种通过计算系统的稳定性判据来判断系统的稳定性的方法。
常用的稳定性判据包括李雅普诺夫稳定性判据、M行列稳定性判据等。
这些判据可以通过计算系统的特征值或特征向量来得到。
4. 稳定性分析的应用稳定性分析在离散控制系统设计和调试过程中有着广泛的应用。
它可以帮助工程师确定系统参数,设计合适的控制策略,并提供有效的故障诊断方法。
基于MATLAB的离散系统分析与校正
2. 离散设计法
(1)根据期望性能指标要求,在z平面中确定校正后闭环系统φ(z)的零、极点期望 区域。
(2)在z平面中绘出原系统的开环零、极点分布图,根据其与期望区域的相对位置 选择合适的校正环节。
(3)通过MATLAB反复试探,确定合适的校正参数,将φ(z)的零、极点调整至期 望区域内。
自动控制工程基础与应用
基于MATLAB的离散系统分析与校正
1.1 离散系统的性能分析
在MATLAB中,可利用c2d函数将连续信号离散化处理,其调用格式为 sysd=c2d(sys,Ts,method)
利用feedback函数可根据离散系统的开环脉冲传递函数建立闭环离散系统的数学模 型,调用格式为
sysCLz=feedback(Dz,1)
(4)用离散系统的分析方法,通过仿真或实验来验证所设计的离散系统的基本性 能。
自Hale Waihona Puke 控制工程基础与应用基于MATLAB的离散系统分析与校正
1.2 离散系统的校正设计
1. 仿真设计法
仿真设计法的基本思路是:首先设计连续控制器;然后根据设计要求确定合适的采 样周期,将所设计的连续控制器离散化处理;最后用离散系统的分析方法,通过仿真或 实验来验证所设计的离散系统的基本性能。
基于MATLAB的离散系统分析与校正
离散控制系统的时域和频域分析方法
离散控制系统的时域和频域分析方法离散控制系统是一种常见的控制系统形式,它在许多工程领域都有广泛的应用。
为了实现对离散控制系统的性能评估和优化设计,需要对其进行时域和频域分析。
本文将介绍离散控制系统的时域和频域分析方法。
一、时域分析方法时域分析是通过观察离散时间系统的时间响应来研究系统的动态特性。
常用的时域分析方法有以下几种:1. 单位脉冲响应(Unit Pulse Response)分析法单位脉冲响应分析法是通过在离散控制系统输入单位脉冲信号,观察系统的输出响应来研究系统的特性。
该方法可以获取系统的脉冲响应序列,从而了解系统的时域特性,如系统的阶数、稳定性等。
2. 阶跃响应(Step Response)分析法阶跃响应分析法是通过在离散控制系统输入阶跃信号,观察系统的输出响应来研究系统的特性。
通过分析系统的阶跃响应曲线,可以获得系统的响应时间、超调量等重要参数,从而评估系统的性能。
3. 差分方程分析法差分方程分析法是通过建立离散时间系统的差分方程,利用数学方法求解系统的时间响应。
通过分析差分方程的解析解或数值解,可以获取系统的时域响应,进一步研究系统的动态行为。
二、频域分析方法频域分析是通过研究离散控制系统在频域上的特性,如频率响应、幅频特性等,来评估系统的稳定性和性能。
以下是常用的频域分析方法:1. Z变换法Z变换是一种广泛应用于离散时间系统的频域分析方法。
通过对系统的差分方程进行Z变换,可以获得系统的传递函数,进而分析系统的稳定性、幅频特性等。
2. 频谱分析法频谱分析法是通过对离散信号的频谱进行分析,了解系统在频率域上的特性。
常用的频谱分析方法有傅里叶变换、快速傅里叶变换等,通过分析系统的频谱图,可以获取系统的频率响应、主要频率成分等信息。
3. Bode图法Bode图法是一种常用的频域分析方法,用于分析系统的幅频特性和相频特性。
通过绘制系统的幅频特性曲线和相频特性曲线,可以直观地评估系统的频率响应和稳定性。
自动控制原理 第七章 第三讲 离散系统的动态性能分析
4 不同典型输入作用下, D(z)的确定 不同典型输入作用下, 的确定
a. 单位阶跃 (m=1, A(z)=1)
−1
R(z) =
1 1 − z −1
z −1 [1 − Φ ( z )] = (1 − z ) D ( z ) = (1 − z −1 )G ( z ) 1 误差的Z变换 变换: 误差的 变换: E ( z ) = [1 − Φ ( z )] =1 −1 (1 − z )
输输输输
1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 2 4 6 10 12 时时(sec) 8 14 16 18
den=[1 [
-0.104 0.368] ]
dstep(num, den)
MATLAB绘制的阶跃响应曲线
二、闭环极点与动态响应的关系 (1)闭环实数极点分布与相应的动态响应形式 )
z=
w=
z +1 z −1
w +1 w −1
代入特征方程中,应用 代入特征方程中,应用Routh判据判稳 判据判稳
离散系统的稳态误差计算
1. 终值定理法
R(s) + E(s) T E *(s) C(s)
G(s)
-
系统的误差
E (z) =
1 R( z) 1 + G( z )
设闭环系统稳定, 根据终值定理 终值定理可以求出在输入信号作用下采样 设闭环系统稳定 根据终值定理可以求出在输入信号作用下采样 系统的稳态误差终值 系统的稳态误差终值: 稳态误差终值
t →∞ z →1 z →1
(*)
b.
当典型输入信号分别为单位阶跃 、 单位斜坡和 单位加速度信号时 当典型输入信号分别为 单位阶跃、 单位斜坡 和 单位加速度信号 时 , 单位阶跃 变换分别如下所示 其Z变换分别如下所示 变换分别如下所示: 1 Tz − 1 T 2 z − 1 (1 + z − 1 ) R(z) = , R(z) = , R(z) = 1 − z −1 (1 − z − 1 ) 2 2 (1 − z − 1 ) 3
离散控制系统的稳定性分析方法
离散控制系统的稳定性分析方法离散控制系统是指系统状态的变化是以离散的方式进行的控制系统。
在实际工程中,我们经常需要对离散控制系统进行稳定性分析,以确保系统的可靠性和正常工作。
本文将介绍几种常用的离散控制系统的稳定性分析方法。
一、特征方程法特征方程法是离散控制系统稳定性分析中使用最广泛的方法之一。
特征方程反映了离散系统的稳态响应特性。
对于一个线性离散控制系统,其特征方程可以通过以下公式表示:G(z) = N(z)/D(z)其中,N(z)和D(z)分别是分子和分母多项式。
为了分析系统的稳定性,我们需要求解特征方程的根。
通常情况下,离散系统稳定的充要条件是特征方程的所有根的模都小于1。
二、相位平面法相位平面法是另一种常用的离散控制系统稳定性分析方法。
通过绘制系统的相位平面图,我们可以直观地了解系统的稳定性。
相位平面图以根轨迹的形式表示,根轨迹是特征方程的根随着参数的改变而移动的轨迹。
相位平面图的绘制过程可以通过以下步骤完成:1. 根据特征方程,将根轨迹的初始点和终点确定在单位圆上;2. 根据特征方程的根的个数,确定根轨迹的曲线走向;3. 绘制根轨迹,并观察根轨迹与单位圆的交点。
通过相位平面法,我们可以直观地判断系统的稳定性。
当根轨迹上的点都位于单位圆内部时,系统为稳定。
而当根轨迹上的点位于单位圆外部时,系统为不稳定。
三、频域法频域法是利用频率响应函数来分析系统稳定性的方法。
频率响应函数是指在系统输入为正弦信号时,输出的幅值和相位与输入频率之间的关系。
常用的频域法包括傅里叶变换法、拉普拉斯变换法等。
在频域法中,我们可以通过绘制系统的频率响应曲线来分析系统的稳定性。
通常情况下,稳定的离散控制系统的频率响应曲线在低频段有较大的增益,而在高频段有较小的增益。
综上所述,离散控制系统的稳定性分析方法包括特征方程法、相位平面法和频域法等。
不同的方法适用于不同的系统,我们可以根据实际需求选择合适的方法进行分析。
通过稳定性分析,我们可以确保离散控制系统的可靠性和正常运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二离散控制系统分析方法
一、实验目的
利用MATLAB对各种离散控制系统进行时域分析。
二、实验指导
1.控制系统的稳定性分析
由前面章节学习的内容可知,对线性系统而言,如果一个连续系统的所有极点都位于s平面的左半平面,则该系统是一个稳定系统。
对离散系统而言,如果一个系统的全部极点都位于z平面的单位圆内部,则该系统是一个稳定系统。
一个连续的稳定系统,如果所有的零点都位于s平面的左半平面,即所有零点的实部小于零,则该系统是一个最小相位系统。
一个离散的稳定系统,如果所有零点都位于z平面的单位圆内,则称该系统是一个最小相位系统。
由于Matlab提供了函数可以直接求出控制系统的零极点,所以使用Matlab判断一个系统是否为最小相位系统的工作就变得十分简单。
2.控制系统的时域分析
时域分析是直接在时间域对系统进行分析。
它是在一定输入作用下,求得输出量的时域表达式,从而分析系统的稳定性、动态性能和稳态误差。
这是一种既直观又准确的方法。
Matlab提供了大量对控制系统的时域特征进行分析的函数,适用于用传递函数表示的模型。
其中常用的函数列入表1,供学生参考。
例1.z z z H 5.05.1)(2+=
试绘出其单位阶跃响应及单位斜波输入响应。
解:为求其单位阶跃响应及单位斜波输入响应,编制程序如下: num=[1.5];
den=[1 0.5 0];sysd=tf(num,den,0.1) [y,t,x]=step(sysd); subplot(1,2,1) plot(t,y);
xlabel('Time-Sec'); ylabel('y(t)');
gtext('单位阶跃响应') grid;
u=0:0.1:1; subplot(1,2,2)
[y1,x]=dlsim(num,den,u); plot(u,y1)
xlabel('Time-Sec'); ylabel('y(t)');
gtext('单位速度响应') grid
二、 实验内容
1、MATLAB 在离散系统的分析应用
对于下图所示的计算机控制系统结构图1,已知系统采样周期为T=0.1s ,被
控对象的传递函数为
2
()
s(0.11)(0.05s1)
G s
s
=
++
,数字控制器
0.36
()
0.98
z
D z
z
-
=
+
,试
求该系统的闭环脉冲传递函数和单位阶跃响应。
图1 计算机控制系统结构图
实验步骤:
1).求解开环脉冲传递函数,运用下面的matlab语句实现:>> T=0.1;
>> sys=tf([2],[0.005 0.15 1 0]); %将传函分母展开
>> sys1=c2d(sys,T,'zoh');
>> sys2=tf([1 -0.36],[1 0.98],0.1);
>> sys3=series(sys2,sys1)
执行语句后,屏幕上显示系统的开环脉冲传递函数为:
sys3 =
0.03362 z^3 + 0.05605 z^2 - 0.01699 z - 0.002717
-------------------------------------------------- z^4 - 0.5232 z^3 - 0.9201 z^2 + 0.4922 z - 0.04879
Sample time: 0.1 seconds
2).求其闭环脉冲传递函数,可以输入下列matlab语句来实现:
>> sys4=tf([1]);
>> sys5=feedback(sys3,sys4,-1)
执行语句后,会显示系统的开环脉冲传递函数为:
sys5 =
0.03362 z^3 + 0.05605 z^2 - 0.01699 z - 0.002717
--------------------------------------------------
z^4 - 0.4896 z^3 - 0.8641 z^2 + 0.4752 z - 0.05151
Sample time: 0.1 seconds
3).最后可用下列命令绘制该离散系统的单位阶跃响应,其结果如图所示:>> step(sys5)
离散系统的单位阶跃响应曲线为:
4).还可以绘制该离散系统的单位脉冲响应,其结果如图所示:>> impulse(sys5)
实验结果:
2、SIMULINK在离散系统的分析应用
所给的离散系统的Simulink仿真模型如图2所示,在建立的仿真模型中,设置数字控制器和零阶保持器的采样时间为0.1s。
运行仿真模型就可以获得系统的单位阶跃响应,该离散系统的单位阶跃响应曲线,如图3。
图2 系统的单位阶跃响应Simulink仿真模型
图3 离散系统的单位阶跃响应曲线
图4 系统的单位脉冲响应Simulink仿真模型设置脉冲输入参数如下:
图5 离散系统的单位脉冲响应曲线实验结果:
问题分析:在实验的过程中,由于对matlab软件熟练度不足和对软件某些认识上的不足,使得程序在运行过程中出现了许多差错,而对专业知识理解的不到位,使得软件实践和理论知识之间产生了隔阂。
最后在老师和同学的帮助下,最终完成了实验,得到了满意的结果和正确的答案。
希望自己将来在matlab的学习与应用中取得进步,感谢老师的教导和帮助!。