第3章 控制系统的分析方法

合集下载

第3章控制系统的时域分析法[3.1-3.3]

第3章控制系统的时域分析法[3.1-3.3]

第3章 控制系统的时域分析法 章
3.2.2 一阶系统的单位阶跃响应
1 R(s) = s
1 1 C (s) = Φ(s) R(s) = Ts + 1 s
1 1 1 1 1 1 c(t ) = L =L Ts + 1 s s s+ 1 T
稳态分量 瞬态分量
c (t ) = 1 e
峰值时间t p:c ( t ) 达到第一个峰值的时间
大连民族学院机电信息工程学院
自动控制原理
第3章 控制系统的时域分析法 章
动态性能指标
最大超调量 σ %: c max c ( ∞ ) σ% = × 100% c (∞ )
调 节 时 间 t s: 响 应 达 到 允 许 误 差 并 维 持 在 此 范 围 内 所 需 的 时 间 . = 2% 或 = 5%
特点: 特点:
可用时间常数T去度量系统输出量的数值.如当 可用时间常数 去度量系统输出量的数值.如当t=T时, 去度量系统输出量的数值 时 h(T)=0.632;而当 0.632; 分别等于终值的86.5%, 0.632 而当t=2T,3T和4T时, h(.) 分别等于终值的 , 和 时 %, 95%和98.2%.根据这一特点,可用实验方法测定一阶系统的时间常 %.根据这一特点 % %.根据这一特点, 或判定系统是否属于一阶系统. 数,或判定系统是否属于一阶系统.
大连民族学院机电信息工程学院
自动控制原理
第3章 控制系统的时域分析法 章
3.2.1 一阶系统的数学模型
dc (t ) RC + c (t ) = r (t ) dt
d c (t ) T + c (t ) = r (t ) dt dt
C ( s) 1 G ( s) = = R( s ) 1 + Ts

自动控制原理第3章

自动控制原理第3章
间常数“T”。
12
一阶系统分析
3、单位抛物线响应
y(t)的特点:
y(t)1t2T tT2(1eT t) t0 2
输入与输出之间存在误差为无穷大,这意味着一阶系
统是不能跟踪单位抛物线输入信号的。
4、单位脉冲响应
t
y(t)TeT t0
当 t时, y()0
13
一阶系统分析
对一阶系统典型输入响应的两点说明: 1、输入信号为单位抛物线信号时,输出无法跟踪输入 2、三种响应之间的关系:
38
稳定性分析及代数判据
劳斯判据:
系统稳定的必要条件:特征方程所有系数均为正。
系统稳定的充分条件:特征方程所有系数组成劳斯表,其第 一列元素必须为正。
具体步骤:
1、先求出系统的特征方程
a n S n a n 1 S n 1 a 1 S a n0
注意:
(1) s要降阶排列 (2) 所有系数必须大于0
阶跃响应:
p 2 j1 2 n
Y sss22 n2 n s n2A s1s2 A 2 2 s n s A 3 n
yt 11 12e n t sin 1 2n t
y(t)
ξ=0.3
1
ξ=0.5
20
0
t
二阶系统分析
3、临界阻尼( =1 )
特征根
p1,2 n
阶跃响应:
yt 1 e n t1 n t
42
稳定性分析及代数判据
解:系统闭环特征方程为 s36s25sK0
列劳斯表
s3
1
5
s2
6
K
s 30 K 0
6
s0
K
稳定必须满足
30 K 0 6

《自动控制原理》第三章自动控制系统的时域分析和性能指标

《自动控制原理》第三章自动控制系统的时域分析和性能指标

i1 n
]
epjt
j
(spj)
j1
j1
limc(t) 0的充要条件是 p j具有负实部
t
二.劳斯(Routh)稳定判据
闭环特征方程
a nsn a n 1 sn 1 a 1 s a 0 0
必要条件
ai0. ai0
劳斯表
sn s n1 s n2
| | |
a a n
n2
a a n 1
n3
b1 b2
或:系统的全部闭环极点都在复数平面的虚轴上左半部。
m
设闭环的传递函数:
(s)
c(s) R(s)
k (s zi )
i 1 n
(s p j )
P j 称为闭环特征方程的根或极点 j1
n
(s pj ) 0 称为闭环特征方程
j1
若R(s)=1,则C(s)= s m
k (szi)
n
c(t)L1[c(s)]L1[
t 3、峰值时间 p
误差带
4 、最大超调量
%
C C ( )
% max
100 %
C ( )
ts
5 、调节时间
ts
(
0 . 05
0
.
02
)
6、振荡次N数
e e 7、稳态误差 ss
1C()(对单位阶跃) 输入
ss
第三节 一阶系统的动态性能指标
一.一阶系统的瞬态响应
R(s) -
K0 T 0S 1
s5 | 1 3 2
s4 | 1 3 2
s3 | 4 6
s2
|
3 2
2
s1
|
2 3
s0 | 2

自动控制原理-第3章-时域分析法

自动控制原理-第3章-时域分析法
系统响应达到峰值所需要的时间。
调节时间
系统响应从峰值回到稳态值所需的时间。
振荡频率
系统阻尼振荡的频率,反映系统的动态性能。
系统的阶跃响应与脉冲响应
阶跃响应
系统对阶跃输入信号的响应,反映系 统的动态性能和稳态性能。
脉冲响应
系统对脉冲输入信号的响应,用于衡 量系统的冲激响应能力和动态性能。
03
一阶系统时域分析
01
单位阶跃响应是指系统在单位阶跃函数作为输入时的
输出响应。
计算方法
02 通过将单位阶跃函数作为输入,代入一阶系统的传递
函数中,求出系统的输出。
特点
03
一阶系统的单位阶跃响应是等值振荡的,其最大值为1,
达到最大值的时间为T,且在时间T后逐渐趋于0。
一阶系统的单位脉冲响应
定义
单位脉冲响应是指系统在单 位脉冲函数作为输入时的输
无法揭示系统结构特性
时域分析法主要关注系统的动态行为和响应,难以揭示系统的结构特 性和稳定性。
对初值条件敏感
时域分析法的结果对系统的初值条件较为敏感,初值条件的微小变化 可能导致计算结果的较大偏差。
感谢您的观看
THANKS
计算简便
时域分析法通常采用数值积分方法进 行计算,计算过程相对简单,易于实 现。
时域分析法的缺点
数值稳定性问题
对于某些系统,时域分析法可能存在数值稳定性问题,例如数值积分 方法的误差累积可能导致计算结果失真。
计算量大
对于高阶系统和复杂系统,时域分析法需要进行大量的数值积分计算, 计算量较大,效率较低。
自动控制原理-第3章-时域 分析法
目录
• 时域分析法概述 • 时域分析的基本概念 • 一阶系统时域分析 • 二阶系统时域分析 • 高阶系统时域分析 • 时域分析法的优缺点

自动控制原理及应用课件(第三章)

自动控制原理及应用课件(第三章)

即 s1,2=- n 临界阻尼情况的单位阶跃响应为
C(s) n2 1 (s n )2 s
设部分分式为
C(s) A1 A2 A3
s s n (s n )2
式中,待定系数分别为A1=1,A2=-1,A3=-n
于是有
C(s) 1 1 n s s n (s n )2
取C(s)的拉普拉斯逆变换,则有
R(s) A0 s2
3.抛物线信号 抛物线信号的数学表达式为
0
r(t)
1 2
A0t
2
(t 0) (t ≥ 0)
式中,A0为常数。
当A0=1时,称为单位抛物线信 号,也称为单位加速度信号。
抛物线信号如图所示,它表示
随时间以等加速度增长的信号。
图3-3 抛物线信号
抛物线信号在零初始条件下的拉普拉斯变换为
R(s) A0 s3
4.脉冲信号 脉冲信号是一个脉宽极短的信号,其数学表达式为
0 t < 0;t >
r
(t
)
A0
0<t <
脉冲信号如图3-4(a)所示,
当A0=1时,若令脉宽 →0,则
称为单位理想脉冲函数,记作
(t),单位脉冲函数如图3-4(
b)所示, (t)函数满足
(t)
0
(t 0) (t 0)
闭环传递函数为 系统特征根为
(s) n2 s2 n2
s1,2 jn
无阻尼情况的单位阶跃响应为
C(s) n2 1 1 s s2 n2 s s s2 n2
取C(s)的拉普拉斯逆变换,则有
c(t) 1 cosnt (t ≥ 0)
系统阶跃响应曲线为等幅振荡,超调量为100%,振荡频率为 自然振荡角频率 n 。由于曲线不收敛,系统处于临界稳定状 态。

第三章 控制系统的时域分析—2二阶系统时域分析

第三章 控制系统的时域分析—2二阶系统时域分析
s
2 n
1
s
L1
A0 s
s
A1 s1
s
A2 s2
s2 s1
其 中A0 s C(s) s0 1A1 , A2自 己 求
8
c t
1
A1e s1t
A2e s2t
1
s2
1 s1
s1e s2t s2e s1t
❖单调过程,无超调, 大,内耗大,无法维持能量交换,即
二阶系统的时域响应



动态性能分析 tr,td,tp,ts,s%
稳定性分析 稳态性能分析
Routh判据
ess
二阶系统的基本性质及结论
2
3-3 二阶系统的时域分析
二阶系统:以二阶微分方程作为运动方程的控制系统。 1 二阶系统的数学模型
一伺服系统,系统框图如下:
R(s) E(s)
K
C(s)
- sTms 1
振荡角频率”
10
(s)
s2
1 2 01s
1
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
0
2
4
6
8 10 12 14 16 18 20
11
❖临界阻尼下单位阶跃响应 1 1
r(t) 1(t) , R(s) 1 s
s1 s2 n
s1 s2
C(s) n2 1 1 n 1
K Tm
n-自然频率(或无阻尼振荡频率)
2
n
1 Tm
1
2 Tm K
-阻尼比(相对阻尼系数)
二阶系统的闭环特征方程为:
s2 2ns n2 0

自动控制原理第3章

自动控制原理第3章

arctan 9 3
1.25rad
则响应为 y(t) 1 2 e 3t 0.95e j1.25e (1 j)t 0.95e j1.25e (1 j)t 5
1 2 e 3t 0.95e t e j(t1.25) e j(t1.25) 5 1 2 e 3t 1.9e t cos(t 1.25)
平衡位置:力学系统中,当系统外的作 D
用力为零时,位移保持不变的位置。
此时位移对时间的各阶导数为零。 A点和D点是平衡位置, B点和C点不是平衡位置。
O
B
C
A
稳定的平衡位置:若在外力作用下,系统偏离了平衡位置,但 当外力去掉后,系统仍能回到原来的平衡位置,则称这一个平 衡位置是稳定的平衡位置。
所以A点是稳定的平衡位置,而D点不是稳定的平衡位置。
注意:输入信号为非单位阶跃信号时,依齐次性,响应 只是沿纵轴拉伸或压缩,基本形状不变。所以ts 、 tr、 tp 、 σ并不发生变化。
当t < ts时,称系统处于动态;当t > ts时,称系统处于稳态。
3.2 一阶系统的单位阶跃响应
一阶系统(惯性环节)
G(s) 1 Ts 1
单位阶跃响应为
t
y(t) 1 e T
设零初始状态,y(0)=0 r (t)=1(t)时,y(t)的响应曲线为
y(t)
1.05 y(∞)
ym
y(∞)
0.95 y(∞)
tr tp
ts
ym:单位阶跃响应的最大偏离量。 y(∞):单位阶跃响应的稳态值。并非期望值。 ts:调节时间。y(t)进入0.5*y(∞)或0.2* y(∞)构成的误差带 后不再超出的时间。 tr:上升时间。 y(t) 第一次达到 y(∞)的时间。

自动控制原理第三章

自动控制原理第三章

对方程两边求拉氏变换:

Td Tm Td
s2n(s 0,
)则有Tm:n(s)
n(s)
U
d
(s)
/
Ce
n(s) 1/ Ce
U d (s) 1 Tms
(5)转角的转换环节
设 传动比为 ,电动机转角为m
m , c
c
1
m
又 n dm (t)
dt
n(s) sm (s) c(s) m / 1
1- 2
具体步骤如下:
求阶跃输入下的暂态响应
查表: F (s) s a0
(s a)2 2

f (t) L1[F (s)] 1
(a0 a)2 2
1
2 eat sin( t )
arctg
a0 a

s2
s 2n 2ns n2
s 2n (s n )2 (n
1 )2
2
1.8
1.6
1.4
1.2
1
0.8
0.6 0.4 0.2
0 0
246
nt
8 10 12
⒊ 当 1时,特征方程有一对相等的负实根,称为临界阻尼
系统,系统的阶跃响应为非振荡过程。
➢当 1 时,
阶跃响应曲线为:
xc
(s)
1 s
s2
n2 2n s
n2
n2 s(s n )2
1 1 n s s n (s n )2
1 )( s
T1
1 T2
)
式中
T1
1 a
n (
1
2
1)
T2
1 b
n (
1
2
1)

自动控制理论_哈尔滨工业大学_3 第3章控制系统的时域分析_(3.6.1) 3.6控制系统的稳态性能

自动控制理论_哈尔滨工业大学_3  第3章控制系统的时域分析_(3.6.1)  3.6控制系统的稳态性能

误差:e(t) c0 (t) c(t)
稳态误差: es

lim e(t)
t
如果H(s)的放大系数为Kf,则有 es K f es
稳态误差分为给定稳态误差及扰动稳态误差。
1. 给定信号的误差传递函数
R(s)+ Er(s)
C(s)
不考虑扰动量
- B(s)
Gc(s)
Go(s)
Er (s) R(s) B(s)
控制系统的稳态性能
一、稳态误差的定义
稳态响应:
h(t)
时间趋于无穷大时,系 统对某一输入信号的固定响 应(不一定为定值)。
稳态误差:
经过足够长的时间暂
暂态
态响应衰减得很小,稳态
响应的期望值与实际值之
间的误差。
稳态 t
稳态误差是某一特定输入作用于系统后,达到稳态时系统精 度的量度。
这里只讨论由于系统的结构和参数、以及输入信号的不同所 引起的稳态误差。
K2sv K1K2K3

K2
1 K

1
, ,
K1K3
0 0
不同系统的扰动稳态误差的终值
扰动输入
Gc(s)v=0型
Gc(s)v=Ⅰ型 Gc(s)v=Ⅱ型
1(t)
K2 ( 0) 1 ( 0)
0
0
1 K
K1K3
t

1
K1K3
0
t2/2

1

K1K3
当存在稳态误差时,其大小和控制环节与反馈环节传递系数的乘积成反比。 增大这两个传递系数,可以减小稳态误差。 增加扰动作用点之前的积分环节的数目,可以提高消除扰动误差的阶数。
(s)

第三章 自动控制系统的时域分析(1)《自动控制原理与系统》

第三章 自动控制系统的时域分析(1)《自动控制原理与系统》

第二节 一阶系统的动态响应
凡是以一阶微分方程作为运动方程的控制系统,成为一阶系统
一、一阶系统的数学模型
一阶系统的时域微分方程为
T dc (t ) c(t ) r (t ) dt
式中c(t)和r(t)分别为系统的输出、输入量;T为时间 常数,具有时间“秒”的量纲,此外时间常数T也是表征系 统惯性的一个主要参数,所以一阶系统也称为惯性环节 在初始条件为零时两边取拉氏变换,可得其闭环传递函数为
)] T
这里,输入信号t是输出量的期望值。上式还表明,一阶系统在 跟踪单位斜波输入信号时,输出量与输入量存在跟踪误差,其 稳态误差值与系统的“T”的值相等。一阶系统在跟踪斜波输入 信号,所带来的原理上的位置误差,只能通过减小时间常数T来 降低,而不能最终消除它
第三章 自动控制系统的时域分析
4.单位冲激响应 单位脉冲函数是单位阶跃函数的一阶 导数。因此其单位脉冲响应是单位阶 跃响应的一阶导数
r(t)=A sinωt
周期性输入信号
第三章 自动控制系统的时域分析
二、动态过程与稳态过程
在典型输入信号作用下,任何一个控制系统的时间响应都是由 动态过程和稳态过程组成 1.动态过程
又称为过渡过程或暂态过程,是指系统从初始状态到接近最终 状态的响应过程。 2.稳态过程
稳态过程是指时间t趋于无穷时的系统输出状态。
第三章 自动控制系统的时域分析
第三节 二阶系统的动态响应
凡是由二阶微分方程描述的系统,称为二阶系统。在控制工程 中的许多系统都是二阶系统,如电学系统、力学系统等。即使 是高阶系统,在简化系统分析的情况下有许多也可以近似成二 阶系统。因此,二阶系统的性能分析在自动控制系统分析中有 非常重要的地位。
一、二阶系统的数学模型

计算机控制技术第3章 计算机控制系统分析

计算机控制技术第3章 计算机控制系统分析

第3章 计算机控制系统分析 y(t) 1.6 1.4
a b
1.2
1 0.8 0.6 0.4 0.2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 t
第3章 计算机控制系统分析
(2) 现将图中的保持器去掉,k=1,T=τ=1;则
G (z)
W (z)
0 . 632 z (1 z
由此可见,离散系统的时间响应是它各个 极点时间响应的线性叠加。
第3章 计算机控制系统分析
设系统有一个位于zi的单极点,则在单位脉冲 作用下,当zi位于Z平面不同位置时,它所对应的 脉冲响应序列如图所示。
jIm j -1 0 -j 1 Re
第3章 计算机控制系统分析
极点在单位圆外的正实轴上,对应的暂态响应 分量y(kT)单调发散。 极点在单位圆与正实轴的交点,对应的暂态响 应y(kT)是等幅的。
第3章 计算机控制系统分析
离散系统的稳定性分析
jω [S] 0
1 对应关系
jIm j -1 0 [Z]
1
Re
2 直接稳定判断
δ
j
3 W变换,Routh稳定性判断
j
ω
0
[W]
δ
第3章 计算机控制系统分析
离散系统的过渡响应分析
一个控制系统在外信号作用下从原有稳定 状态变化到新的稳定状态的整个动态过程称之为 控制系统的过渡过程。 一般认为被控变量进入新稳态值附近±5% 或±3%的范围内就可以表明过渡过程已经结束。 通常,线性离散系统的动态特征是系统在单 位阶跃信号输入下的过渡过程特性(或者说系统 的动态响应特性)。如果已知线性离散系统在阶 跃输入下输出的Z变换Y(z),那么,对Y(z)进行Z 反变换,就可获得动态响应y*(t)。将y*(t)连成光 滑曲线,就可得到系统的动态性能指标(即超调 量σ%与过渡过程时间ts)。

朱玉华自动控制原理第3章 时域分析3-1,2,3

朱玉华自动控制原理第3章 时域分析3-1,2,3

1
1
ቤተ መጻሕፍቲ ባይዱ
s4 3s3 s2 3s 1 0 s3 3 3
试判别该系统的稳定性。 s2 0 1
当 0时,3 3 0,
s1 3 3 0
s0
1
有2个特征根在s平面第右3章边控. 制系系统统的是时域不分析稳定的
10 0 0
(2) 劳斯表中某一行的元素全为零。
——这时系统在s平面上存在一些大小相等符号相反的
61
s0 6
劳斯表中第一列元素大于零,所以该系统是稳定的。 这时,系统所有的特征根均处于s平面的左半平面。
第3章 控制系统的时域分析
课程回顾(1)
1、 稳态性能指标 2、 动态性能指标
ess
lim[r(t)
t
cr (t)]
(1)延迟时间td (2)上升时间tr
(3)峰值时间tp
(4)调整时间ts
负可化为全为正) (2)劳斯表中第一列所有元素均大于零。
第3章 控制系统的时域分析
例3-1 已知三阶系统特征方程为 a0s3 a1s2 a2s a3 0
试写出系统稳定的充要条件
解:列写劳斯表 s3
a0
a2
0
s2
a1
a3
0
s1 a1a2 a0a3 0
a1
s0
a3
0
故得出三阶系统稳定的充要条件为:
0
9
s0 5
s1 32
0
s0 5
所得结论不变
第3章 控制系统的时域分析
2、劳斯稳定判据的特殊情况
(1) 劳斯表中某一行的第一个元素(系数)为零,而该 行其它元不为零。
——计算下一行第一个元素时将出现无穷大,以至劳斯 表的计算无法进行。

自动控制理论_哈尔滨工业大学_3 第3章控制系统的时域分析_(3.7.1) 3.7稳态误差计算及减小的方法

自动控制理论_哈尔滨工业大学_3  第3章控制系统的时域分析_(3.7.1)  3.7稳态误差计算及减小的方法


0
e ( )d

lim
s0


0
e
(
)e
s
d

lim
s0
e
(s)
C1


0 e ( )d
lim d s0 ds

0 e
(
)e
s
d

lim
s0
d ds

e
(s)
……
Cn

lim
s0
dn ds n
e
(s)
误差系数也可以由

e
(
s)

1

1 G(s)
C(s)
s(T2s+1)
按输入的全补偿
令N(s)=0, Er(s)=
s (T1s+1)(T2s+1) - k2 (T1s+1)Gr(s) R(s) s (T1s+1)(T2s+1) + k1k2
令分子=0,得Gr(s)= s (T2s+1)/ k2
按输入的稳态补偿
essr=
lism→0sEr(s)=
例:设单位反馈系统的开环传递函数为 G(s) 100 s(0.1s 1)
若输入信号为 r(t) sin(5t) 试求该系统的稳态误差。
解1:输入为正弦,无法采用静态误差系数,所以采用动态误差系数法。
e (s)

1
1 G(s)

s(0.1s 1) 0.1s2 s 100
c0 0, c1 10-2, c2 910-4, c3 -1.910-5,
Er
(s)

1

第三章 控制系统的时域分析—1引言及一阶系统时域分析

第三章 控制系统的时域分析—1引言及一阶系统时域分析
时,系统的输出状态。研究系统的稳态特性,以确定输出信 号对输入信号跟踪(伺服、复现)能力。稳态过程又称稳态 响应,其稳态性能用稳态误差描述。
稳定性指标(收敛、发散)
稳定是控制系统能够工作的首要条件,只有动态过程收 敛 (响应衰减),研究动态性能与稳态性能才有意义。
收敛是指系统从一个状态运动到另一个状态,在其动态响应过 程中,振荡逐渐减弱并稳定在某一状态。反之则称为发散。
T
量衰减为零。在整个工作时间内,系统的响应都
不会超过其稳态值。由于该响应曲线具有非振荡
特征,故也称为非周期响应。
1 斜率 1
T 0.632
C(t) 0.95
T
3T
图中响应曲线的初始斜率(t=0时)为 1/T。如果系统保 持初始响应的变化速度不变,则当t=T时,输出量就能达 到稳态值。实际上,响应曲线的斜率是不断下降的,经
过T时间后,输出量c(t)从0上升到稳态值的63.2%。经过 3T-4T时, c(t)将分别达到稳态值的95%-98%。可见,时 间常数T反应了系统的响应速度,T越小,输出响应上升 越快,响应过程的快速性也越好。
c(t) 1 exp( t ) T
由上式可知,只有当t趋于无穷大时,响应的瞬 态过程才能结束,在实际应用中,常以输出量达到 稳态值的95%或98%的时间作为系统的响应时间 (即调节时间),这时输出量与稳态值之间的偏差 为5%或2%。
t
c(t)
c(t) 1 e T
ess
lim
t
e(t)
0
1
1 T
0.632
动态性能指标:
63.2% 86.5% 95% 98.2% 99.3%
td 0.69T tr 2.20T
t

自动控制原理课后答案第3章

自动控制原理课后答案第3章

第3章 控制系统的时域分析【基本要求】1. 掌握时域响应的基本概念,正确理解系统时域响应的五种主要性能指标;2. 掌握一阶系统的数学模型和典型时域响应的特点,并能熟练计算其性能指标和结构参数;3. 掌握二阶系统的数学模型和典型时域响应的特点,并能熟练计算其欠阻尼情况下的性能指标和结构参数;4. 掌握稳定性的定义以及线性定常系统稳定的充要条件,熟练应用劳斯判据判定系统稳定性;5. 正确理解稳态误差的定义,并掌握系统稳态误差、扰动稳态误差的计算方法。

微分方程和传递函数是控制系统的常用数学模型,在确定了控制系统的数学模型后,就可以对已知的控制系统进行性能分析,从而得出改进系统性能的方法。

对于线性定常系统,常用的分析方法有时域分析法、根轨迹分析法和频域分析法。

本章研究时域分析方法,包括简单系统的动态性能和稳态性能分析、稳定性分析、稳态误差分析以及高阶系统运动特性的近似分析等。

根轨迹分析法和频域分析法将分别在本书的第四章和第五章进行学习。

这里先引入时域分析法的基本概念。

所谓控制系统时域分析方法,就是给控制系统施加一个特定的输入信号,通过分析控制系统的输出响应对系统的性能进行分析。

由于系统的输出变量一般是时间t 的函数,故称这种响应为时域响应,这种分析方法被称为时域分析法。

当然,不同的方法有不同的特点和适用范围,但比较而言,时域分析法是一种直接在时间域中对系统进行分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。

3.1 系统的时域响应及其性能指标为了对控制系统的性能进行评价,需要首先研究系统在典型输入信号作用下的时域响应过程及其性能指标。

下面先介绍常用的典型输入信号。

3.1.1 典型输入信号由于系统的动态响应既取决于系统本身的结构和参数,又与其输入信号的形式和大小有关,而控制系统的实际输入信号往往是未知的。

为了便于对系统进行分析和设计,同时也为了便于对各种控制系统的性能进行评价和比较,需要假定一些基本的输入函数形式,称之为典型输入信号。

自动控制原理与系统第3章 自动控制系统的时域分析法

自动控制原理与系统第3章 自动控制系统的时域分析法

【例3-2】 求典型一阶系统的单位斜坡响应。 典型一阶系统惯性环节的微分方程为
T dc(T) c(t) r(t) dt
上式的拉氏式为 TsC(s) C(s) R(s)
由于为单位斜坡输入,即r(t)=t,因此,R(s) 1 , s2
代入上式有
TsC(s)

C(s)

1 s2
由上式有
【例3-1】 设典型一阶系统的微分方程为:
T dc(t(t) 为输入信号;c(t) 为输出信号;T称为间
常数,其初始条件为零。 解 1) 对微分方程两边进行拉氏变换有:
TsC(s)+C(s)=R(s)
由题意可知,系统的输入信号为单位阶跃信号,
即r(t)=1(t),则 R(s) 1 ,代入上式有:
(3 9)
由式(3-9)可画出如图3-3中ξ =1所示的曲线。此曲
4) 当ξ >1(过阻尼)时:
特征方程的根 s1,2 n n 2 1
是两个不相等的负实根。 过阻尼时的阶跃响应也为单调上升曲线。不过其上 升的斜率较临界阻尼更慢。 由以上的分析可见,典型二阶系统在不同的阻尼比 的情况下,它们的阶跃响应输出特性的差异是很大 的。若阻尼比过小,则系统的振荡加剧,超调量大 幅度增加;若阻尼比过大,则系统的响应过慢,又 大大增加了调整时间。因此,怎样选择适中的阻尼 比,以兼顾系统的稳定性和快速性,便成了研究自 动控制系统的一个重要的课题。
由上式可知,响应曲线在起点的斜率m为时间常数T
的倒数,T愈大,m愈小,上升过程愈慢。
② 过渡过程时间。由图2-3可见,在t经历T、2T、3T、 4T和5T的时间后,其响应的输出分别为稳态值的 63.2%、86.5%、95%、98.2%和99.3%。由此可见,对 典型一阶系统,它的过渡过程时间大约为(3~5)T, 到达稳态值的95%~99.3%。

实验三控制系统的稳定性分析

实验三控制系统的稳定性分析

实验三控制系统的稳定性分析控制系统的稳定性是指系统在受到外部扰动或内部变化时,是否能保持原有的稳态或稳定的性能。

稳定性是控制系统设计和分析的重要指标之一,它直接影响系统的性能和可靠性。

本实验将介绍控制系统稳定性的分析方法和稳定性判据。

一.控制系统的稳定性分析方法1.传递函数法:传递函数是表示控制系统输入与输出之间关系的数学表达式,通过分析和求解传递函数的特征根,可以判断系统的稳定性。

在传递函数中,特征根的实部和虚部分别代表了系统的衰减和振荡性能,根据特征根的位置可以得到稳定、不稳定和临界稳定等几种情况。

2.极点分布法:极点分布是指控制系统的特征根在复平面上的位置分布。

通过绘制极点图可以直观地判断系统的稳定性。

一般来说,稳定系统的极点都位于左半复平面,而不稳定系统的极点则位于右半复平面。

3. Nyquist稳定性判据:Nyquist稳定性判据是通过绘制Nyquist曲线来判断系统的稳定性。

Nyquist曲线是将控制系统的特征根的位置映射到复平面上形成的闭合曲线,通过分析Nyquist曲线的形状和位置可以判断系统的稳定性。

4. Routh-Hurwitz稳定性判据:Routh-Hurwitz稳定性判据是基于特征多项式的系数和正负性进行判断的方法。

通过构造一个特征方程的判别矩阵,可以判断系统的稳定性。

如果判别矩阵的所有元素都大于0,则系统是稳定的。

二.控制系统的稳定性判据1.传递函数法:通过求解传递函数的特征根,判断特征根的实部和虚部是否满足系统稳定的条件。

特征根的实部必须小于0,而虚部可以等于0。

2.极点分布法:绘制控制系统的极点图,判断极点是否位于左半复平面。

如果所有极点都在左半平面,则系统是稳定的。

3. Nyquist稳定性判据:绘制Nyquist曲线,通过分析曲线的形状和位置来判断系统的稳定性。

如果曲线不经过原点或环绕原点的次数为0,则系统是稳定的。

4. Routh-Hurwitz稳定性判据:构造特征方程的判别矩阵,通过判别矩阵的元素是否都大于0来判断系统的稳定性。

第三章 控制系统的时域分析—3高阶系统时域分析

第三章 控制系统的时域分析—3高阶系统时域分析

(s
5(s 2)(s 3) 4)(s2 2s 2)
s3 4
s1,2 1 j
c(t) 1 15 e4t 10 2et cos(t 3520 )
4
结论: 高阶系统的响应,是由一阶系统和二阶系统的
时间响应函数项叠加而成。只有所有闭环极点都具有负
实部,即所有极点均位于左半S平面,系统才是稳定的。 闭环极点负实部的绝对值越大,其对应的响应分量衰减
i 5 0
且s1,
远离零点
2
zk
,
衰减慢。
C(s) (s)R(s) N (s) 1 (首1) D(s) s
s1,2 0 j0
二阶主导极点
1 s
N (s)

D(s)
1 s
s
s1
1 s s1
N (s)

D(s)
1 s
s
s2
1 s s2
16
C(s)
1 s
N (s)

首先讨论典型三阶系统的瞬态响应,然后进行更具一般形式 的高阶系统的瞬态响应分析。从下面的讨论中,可以看到:
高阶系统的瞬态响应是由若干个一阶系统和二阶系 统的瞬态响应线性叠加而成。
1
1.三阶系统的单位阶跃响应
典型三阶系统的闭环传函可表示成:
(s)
C(s) R(s)
(s
P)(s2
Pn 2 2ns
n2 )
15 4 1 4 1 4(7 j) 1 4(7 j)
s s 4 s 1 j
s 1 j
c(t ) L1[C(s)] 1 [15 e4t (7 j)e(1 j)t (7 j)e(1 j)t )] 4
1 15 e4t 10 2et cos(t 3520 ) 4 14
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般来说,先不指定仿真时间,由MATLAB自己确定, 然后根据结果,最后确定合适的仿真时间。 在指定仿真时间时,步长的不同会影响到输出曲线的光滑 程度,一般不易取太大。 例exp4_6_.m
二、常用时域分析函数
时间响应探究系统对输入和扰动在时域内的瞬态行 为,系统特征如:上升时间、调节时间、超调量和稳态误 差都能从时间响应上反映出来。MATLAB除了提供前面介 绍的对系统阶跃响应、冲激响应等进行仿真的函数外,还 提供了大量对控制系统进行时域分析的函数,如: covar:连续系统对白噪声的方差响应
如果对具体的响应值不感兴趣,而只想绘制系统的阶 跃响应曲线,可调用以下的格式: step(num,den);step(num,den,t);step(A,B,C,D,iu,t); step(A,B,C,D,iu); 线性系统的稳态值可以通过函数dcgain()来求取,其调用 格式为:dc=dcgain(num,den)或dc=dcgain(a,b,c,d)
d s(s 1)
C(s)
由图可得闭环传递函数为:G ( s) s
c
2
d ( d e 1) s d

其为典型二阶系统。 由 典 型 二 阶 系 统 特 征 参 数 计 算 公 式
e
ln
1 2
100 , t p ( wn 1 2 ) 得:
求取系统单位阶跃响应:step()
求取系统的冲激响应:impulse()
1、step()函数的用法
exp4_3_.m
y=step(num,den,t):其中num和den分别为系统传递函数描 述中的分子和分母多项式系数,t为选定的仿真时间向量, 一般可以由t=0:step:end等步长地产生出来。该函数返回值y 为系统在仿真时刻各个输出所组成的矩阵。 [y,x,t]=step(num,den):此时时间向量t由系统模型的特 性自动生成, 状态变量x返回为空矩阵。 [y,x,t]=step(A,B,C,D,iu):其中A,B,C,D为系统的状态 空间描述矩阵,iu用来指明输入变量的序号。x为系统 返回的状态轨迹。
1 2.5 1.22 x x 2 1.22 0 3 1 x 1.14 4 0 0 x
x1 4 x 2 2 3.2 2.56 x3 2 2.56 0 x4 0 0 0 0 0
例exp4_3.m 已知系统的开环传递函数为:
20 Go ( s) 4 3 2 s 8s 36 s 40 s
求系统在单位负反馈下的阶跃响应曲线。
2、impulse()函数的用法
求取脉冲激励响应的调用方法与step()函数基本一致。 y=impulse(num,den,t);[y,x,t]=impulse(num,den); [y,x,t]=impulse(A,B,C,D,iu,t) impulse(num,den);impulse(num,den,t) impulse(A,B,C,D,iu);impulse(A,B,C,D,iu,t)
1 0 u1 u 0 2 0
x1 y1 0 1 0 3 x2 0 2 u1 y 0 0 0 1 x 2 0 u 3 2 2 x4
求系统的阶跃响应曲线。 例exp4_6.m 已知某闭环系统的传递函数为:
2
求其阶跃响应曲线。
10s 25 G( s) 3 2 0.16s 1.96s 10s 25
仿真时间t的选择:
3~ 4 对于典型二阶系统根据其响应时间的估算公式 ts wn 可以确定。
对于高阶系统往往其响应时间很难估计,一般采用试探的 方法,把t选大一些,看看响应曲线的结果,最后再确定其 合适的仿真时间。
求系统的单位阶跃响应和冲激响应。
MATLAB的step()和impulse()函数本身可以处理多输入多输出 的情况,因此编写MATLAB程序并不因为系统输入输出的增 加而变得复杂。
例 exp4_8.m 某系统框图如下所示,求 d 和 e 的值,使系统的阶跃响应满足: (1)超调量不 大于 40%, (2)峰值时间为 0.8 秒。 R(s) + _ 1+es
例exp4_4.m 已知系统的开环传 s 8s 36s 40s
求系统在单位负反馈下的脉冲激励响应曲线。
例exp4_5.m 已知某典型二阶系统的传递函数为:
wn G(s) 2 2 , 0.6,wn 5 s 2wn s wn
initial:连续系统的零输入响应
lsim:连续系统对任意输入的响应
对于离散系统只需在连续系统对应函数前加d就可以,如 dstep,dimpulse等。
它们的调用格式与step、impulse类似,可以通过help命令来 察看自学。
三、时域分析应用实例
例exp4_7.m 某2输入2输出系统如下所示:
第一节 控制系统的时域分析
一、时域分析的一般方法
一个动态系统的性能常用典型输入作用下的响应 来描述。响应是指零初始值条件下某种典型的输入函数 作用下对象的响应,控制系统常用的输入函数为单位阶 跃函数和脉冲激励函数(即冲激函数)。在MATLAB的 控制系统工具箱中提供了求取这两种输入下系统响应的 函数。
2
100

/[ (ln
100

) ]
2
1 2
,w
n

(t p 1 2 )
例 exp4_9.m
根据输入的典型二阶系统参数阻尼比 alph 及
自然振荡频率 wn, 求取系统的单位阶跃响应参数:超调量 pos(100%) ;峰值 时间 tp;上升时间 tr; 调节时间 ts2( 2% )
相关文档
最新文档