六年级奥数比和比例测试题
六年级奥数题比和比1
六年级奥数题比和比1比和比例(一)11、小明和小方各走一段路程,小明走的路程比小方多,小方用的时间比小明 51多。
小明和小方的速度之比是多少? 82、东街小学六年级有学生46人,分成三个课外科技小组。
第一组与第二组人数比是2:3,第一组与第三组的人数比是3:4。
三个组各有多少人?3、一列火车3小时行驶150千米。
从A地到B地有240千米,需要行几小时?如果速度加快20%,要行多少小时?4、有一自助餐厅,规定每次每人用餐费是:先生交30元,女士交20元,儿童交10元。
某一天前来用餐的先生与女士人数之比是2:9,女士与儿童的人数之比是3:7,共收到所交的用餐费9450元。
求这一天用餐的先生、女士和儿童的人数。
125、圆A和圆B一局部重叠,重叠局部的面积是圆A的,也是圆B的,求A、B 515的面积比。
6、某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15元,小轿车10元。
某日通过该收费站的大客车和小客车数量之比是5:6,小客车与小轿车之比是4:11,收取小轿车的通行费比大客车多210元。
求这天三种车辆通过的数量。
比和比例〔二〕111、小军行走的路程比小红多,而小红行走所用的时间却比小军多,求小军 410和小红的速度比。
2、甲、乙两个正方体棱长的比是1:2,求他们的外表积的比和体积的比。
3、白玉兰学校有运发动108人,分成甲、乙、丙三个队进行训练,甲队与乙队人数之比为2:3,乙队与丙队的人数之比为3:4,求各队的人数。
14、三个运输队,A队有载重3吨的汽车8辆,B队有载重4吨的汽车5辆,C 2队有载重5吨的汽车4辆。
把运输612吨货物的任务按他们的运输能力分配给三个队,各应分配多少吨?5、甲、乙、丙三人共同种树,他们种树棵数的比是3:4:5,丙比甲多种6棵?问三人各种树多少棵?6、海水中水与盐的比是183:17。
现在要使它改变成水与盐之比为19:1,在400千克海水中应掺入多少千克清水?7、一根木材,据成四段,付锯板费8.4元,如果锯成5段,应付锯板费多少元?8、一次爬山活动,路程为18千米,分为上坡、平路和下坡三段,各段路长之比是2:1:3,而走各段路程所用的时间之比为5:4:6。
小学六年级数学思维能力(奥数)《比和比例》训练题
小学六年级数学思维能力(奥数)《比和比例》训练题1、某俱乐部男、女会员的人数之比是3:2,分为甲、乙、丙三组.已知甲、乙、丙三组的人数比是10:8:7,甲组中男、女会员的人数之比是3:1,乙组中男、女会员的人数之比是5:3.求丙组中男、女会员人数之比.2、一项公路的修建工程被平均分成两份承包给甲、乙个工程队建设,两个工程队建设了相同多的一段时间后,分别剩下60%、40%的任务没有完成,已知两个工程队的工作效率(建设速度)之比3:1,求这两个工程队原先承包的修建公路长度之比.3某团体有100名会员,男女会员人数之比是14:11,会员分成三组,甲组人数与乙、丙两组人数之和一样多,各组男女会员人数之比依次为12:13、5:3、2:1,那么丙组有多少名男会员?4、A、B、C三项工程的工作量之比为1:2:3,由甲、乙、丙三队分别承担.三个工程队同时开工,若干天后,甲完成的工作量是乙未完成的工作量的二分之一,乙完成的工作量是丙未完成的工作量的三分之一,丙完成的工作量等于甲未完成的工作量,则甲、乙、丙队的工作效率的比是多少?5、某次数学竞赛设一、二、三等奖.已知:①甲、乙两校获一等奖的人数相等;②甲校获一等奖的人数占该校获奖总人数的百分数与乙校相应的百分数的比为5:6;③甲、乙两校获二等奖的人数总和占两校获奖人数总和的20%;④甲校获三等奖的人数占该校获奖人数的50%;⑤甲校获二等奖的人数是乙校获二等奖人数的4.5倍.那么,乙校获一等奖的人数占该校获奖总人数的百分数等于多少?6、某校毕业生共有9个班,每班人数相等.②已知一班的男生人数比二、三班两个班的女生总数多1;③四、五、六班三个班的女生总数比七、八、九班三个班的男生总数多1.那么该校毕业生中男、女生人数比是多少?7、一些苹果平均分给甲、乙两班的学生,甲班比乙班多分到16个,而甲、乙两班的人数比为13:11,求一共有多少个苹果?小新、小志、小刚三人拥有的藏书数量之比为3:4:6,三人一共藏书52本,求他们三人各自的藏书数量.8、在抗洪救灾区活动中,甲、乙、丙三人一共捐了80元.已知甲比丙多捐18元,甲、乙所捐资的和与乙、丙所捐资的和之比是10:7,则甲捐元,乙捐元,丙捐元.与二班分到的9、有120个皮球,分给两个班使用,一班分到的131相等,求两个班各分到多少皮球?.210、一班和二班的人数之比是8:7,如果将一班的8名同学调到二班去,则一班和二班的人数比变为4:5.求原来两班的人数..11、幼儿园大班和中班共有32名男生,18名女生.已知大班男生数与女生数的比为5:3,中班男生数与女生数的比为2:1,那么大班有女生多少名?12、参加植树的同学共有720人,已知六年级与五年级人数的比是3:2,六年级比四年级多80人,三个年级参加植树的各有多少人?13、圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问圆珠笔的单价是每支多少元?14、甲、乙两只蚂蚁同时从A 点出发,沿长方形的边爬去,结果在距B 点2厘米的C 点相遇,已知乙蚂蚁的速度是甲的1.2倍,求这个长方形的周长.15、甲乙两车分别从 A , B 两地出发,相向而行.出发时,甲、乙的速度比是5∶4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B 地时,乙离A 地还有10千米.问:A ,B 两地相距多少千米?C B16、师徒二人加工一批零件,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任务时,师傅比徒弟多加工100个零件,求师傅和徒弟一共加工了多少个零件?17、师徒二人共加工零件400个,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任务时,师傅比徒弟多加工多少个零件?18、A、B、C三个水桶的总容积是1440公升,如果A、B两桶装满水,C桶是空的;若将A桶水的全部和B桶水的15,或将B桶水的全部和A桶水的13倒入C桶,C桶都恰好装满.求A、B、C三个水桶容积各是多少公升?19、学而思学校四五六年级共有615名学生,已知六年级学生的1 2,等于五年级学生的25,等于四年级学生的37。
小学六年级奥数题-专题训练之比和比例应用题
比和比例应用题
1、乘坐某路汽车成人票价3元,学生票价2元,军人票价1元,某天乘车的成年人、学生和军人的人数比是50:20:1,共收得票款26740元,这天乘车中成年人、学生和军人各有多少人?
2.甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米?
4.]一种什锦糖是由酥糖、奶糖和水果糖按5:4:3的比例混合而成,酥糖、奶糖和水果糖的单价比是11:8:7,要合成这样的什锦糖120千克,什锦糖每千克32.4元,混合前的酥糖每千克是多少元?
5.、A、B、C是三个顺次咬合的齿轮。
当A转4圈时,B恰好转3圈;当B转4圈时,C恰好转5圈,问这三个齿轮的齿数的最小数分别是多少?
6、甲、乙、丙三个平行四边形的底之比是4:5:6,高之比是3:2:1,已知三个平行四边形的面积和是140平方分米,那么甲、乙、丙三个平行四边形的面积各是多少?
7、甲、乙、丙三个三角形的面积之比是8:9:10,高之比是2:3:4,对应的底之比是多少?
8、某校四、五年级参加数学竞赛的人数相等,四年级获奖人数与未获奖人数的比是1:4,五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少?
9、盒子里共有红、白、黑三种颜色的彩球共68个,红球与白球个数的比是1:2,白球与黑球个数的比是3:4,红球有多少个?。
六年级奥数《比和比例》测试题
六年级奥数《比和比例》测试题第1篇:奥数比和比例测试题1.一段路程分成上坡、平路、下坡三段,各段路的路程长之比依次是1:2:3,某人走各段路所用的时间之比依次是4:5:6,已知他上坡时速度为每小时3千米,路程全长50千米,问此人走完全程用了多少时间?2.在60米赛跑中,*冲过终点线时,比乙领先10米,乙比*领先20米,假如乙和*的速度始终不变,那么当乙到达终点时,将比*领先多少米?3.小华和小明各走一段路,小华走的路程比小明多1/4,小明用的时间比小华用的多1/5,问小明的速度是小华的几分之几?4.*、乙、*各有一些钱,*、乙的钱数之比是5:4,*、乙的钱数之比是3:4.如果*给乙18元,那么两人的钱数相等,*、乙、*三人共有多少元钱?5.下面是四个互相咬合着的齿轮,其中最大的那个齿轮通过顺时针旋转可带动其他三个齿轮,各齿轮的齿数依次为16,12,10,6.如图所示,当最大的齿轮按照顺时针方向恰好旋转7周时,各个齿轮上面箭头所指的四个汉字是什么?6.三名工人师傅张强、李辉和王充分别加工200个零件。
他们同时开始工作,当李辉加工200个零件的任务全部完成时,张强才加工了160个,王充还有48个没有加工。
当张强加工200个零件的任务全部完成时,王充还有多少个零件没有加工?7.有*、乙、*三个梯形,它们的高之比是1:2:3,上底之比依次是6:9:4,下底之比依次是12:15:10.已知*梯形的面积是30平方厘米,那么乙与*两个梯形的面积之和是多少平方厘米?8.2003年*航天员杨利伟飞天成功,2005年费俊龙和聂海胜实现从单人到多人的太空飞行,比美国和前苏联从单人到多人太空飞行的时间间隔分别缩短1年和1年半。
前苏联、美国、*从单人到多人太空飞行的时间间隔的最简单自然数比是多少?9.a、b、c是三个顺次咬合的齿轮,已知a旋转7圈时,c旋转6圈。
求:(1)如果a的齿轮数是24,那么c的齿轮是多少?(2)如果b旋转7圈,c旋转1圈,那么当a旋转8圈时,b旋转了多少圈?10.一列快车、一列慢车同时从*、乙两地出发相向而行,开出4小时后还相距240千米。
六年级:比和比例应用题(奥数培优有难度)
六年级:比和比例应用题(奥数培优有难度)例1 淘淘和笑笑原有邮票张数的比是5:4,如果淘淘给笑笑48张后,淘淘和笑笑的张数比是3:4,淘淘原来有多少张?解析如下:练习1:甲,乙两个建筑队原有水泥的重量之比是4:3,当甲队给乙队54吨水泥后,甲乙两队水泥重量之比是3:4,原来甲队有多少水泥?(答案:216吨)例2 某学校有若干名学生参加电视邀请赛,其中男生人数与女生人数的比为8:5,后来又有20名女生报名参赛,这时女生人数占参赛总人数的 5/11 。
现在参赛的学生共有多少人?解析如下:练习2 某校图书室有图书210本,其中新书占5/7,又买进一些新书后,新书本数与现在图书本数的比是4:5,现在图书室一共有多少新书?(答案:240本)例3 有一袋糖分配给甲,乙,丙三人,三人依次所得数目之比是5:4:3,如果把糖重新分配给甲,乙,丙三人,使其比依次为7:6:5,则其中一人会比原来所得的数目多10颗,求此人原来所得的数目。
解析如下:练习3 马小跳和刘超,唐飞三人斗地主,游戏前,三人游戏币之比是6:5:4,游戏结束后,游戏币之比是5:4:3,其中一个人赢了200枚,那么这个人是?他开始有多少游戏币?(答案:马小跳,4800枚)例4 车过河需要交渡费3元,马过河需要交渡费2元,人过河需要交渡费1元。
某天过河的车与马数目比是2:9,马和人数目比是3:7,共收渡费945元,则这天车,马,人数目各是?解析如下:练习4 某商贩按大个桃子每个3角,小个桃子每个2角的价格卖出了一批桃子,共收51元。
已知他卖出的桃子大小个数比是8:5,则卖出的大小桃子各有多少个?(答案:卖出大桃120个,小桃75个)例5 一个盒子里有黑棋子和白棋子若干,若取出一粒黑子,则余下的黑白数比是9:7,若放回黑子,再取出一粒白子,则余下黑白之比是7:5,那么盒子原有黑比白多多少?解析如下:练习5 同学周末登山,男背红包,女背蓝包,他们每人只能看到背包,其中一位男生说:我看到的红蓝包之比是5:3,另一女生说:我看到的蓝包是红包的一半。
(完整版)六年级奥数比和比例
1例题 1 有三盒珠子,每盒的珠子的数目互不同样。
小王从第一个盒子内拿出该盒珠子数目的 3 ,又从第1 1二个盒子内拿出该盒珠子数目的 4 ,再从第三个盒子内拿出该盒珠子数目 5 。
最后,这三个盒子内剩下的珠子的数目都相等。
请问小王从这三个盒子内所拿出的珠子数目之总和的最小可能的值是什么?2 3 4剖析依照题意有 3 A= 4 B= 5C,则 A:B:C=18:16:15例题 2 甲、乙两校原有图书的比是 7:5,假如甲校给乙校 650 本,甲、乙两校的图书籍数的比就是 3:4,本来甲校友图书多少本?随堂练习(1)有一个长方体, 长和宽的比是 2:1,宽与高的比是 3:2。
已知这个长方体的所有棱长之和是 220cm ,求这个长方体的体积。
11 ( 2)小明和小方各走一段路,小明走的行程比小方多 5 ,小方用的时间比小明多8 。
小明和小方的速度之比 是多少?( 3)甲、乙两库房存货吨数比为 4: 3,假如由甲库中提取 8 吨放到乙库中,则甲、乙两库房存货吨数比为 4: 5。
两库房原存货总吨数是多少吨? 例题 3 如图(见黑板),正方形 ABCD 的边 AB 与正方形 MNPQ 的边 PQ 平行且相等。
试求暗影部分的面积与正方形 ABCD 的面积之比。
例题 4 如图,三个齐心圆,他们的半径之比是 3:4:5,假如大圆的面积是 100 平方厘米,那么中圆和小圆之间的圆环面积是多少?练习(1)如图在四边形ABCD 中,AC 和BD 订交于O 点。
三个小三角形的面积分别是20、 16、 32。
那么暗影三角形BOC的面积是多少?ABO DC(2)如下图梯形ABCD 的上底 AD 长 12 厘米,高BD 长 18 厘米, BE=2DE, 则下底 BC 长多少厘米?A DB C1、六年级一班的男、女生比率是 3: 2,又来了 4 名女生后,全班共有 44 人,求此刻的男、女生人数之比。
2、师徒二人共加工部件 400 个,师傅加工一个部件用 9 分钟,徒弟加工一个部件用 15 分钟。
六年级奥林匹克数学比及比例学习习题.doc
六年级比和比率(1)比的后项能够是0吗数学课上,刘老师给同学们讲比的知识,当她讲到“比的后项不可以为0”时,有一个同学楠楠站起来说:“刘老师,比的后项能够是0。
”刘老师请他坐下并笑着问大家:“根据比与分数及除法的关系,大家谈谈,比的后项能不可以为0?”有的同学说:“比的后项相当于除法里的除数,除数不可以为0,所以比的后项也不可以为0。
”有的同学说:“比的后项相当于分数中的分母,分母不可以是0,所以比的后项也不可以是0。
”楠楠仍是有点不理解,他说:“大家讲的道理都不错,但我昨天夜晚在电视里看了一场足球竞赛,黄队以3:0获胜。
播音员说的也是3:0,这不是 0做了比的后项吗?”“噢,本来是这么回来。
”刘老师说,“数学里讲的比,表示两个数相除,除得的商表示两个数之间的倍数关系。
而球赛中的几比几,是记录得分多少的,是为了直观而借用了比的特号,它表示两个数的相差关系。
比方,方才所说的3:0,意思是说黄队得 3分,蓝队得0分,黄队比蓝队多得3分,所以黄队以3:0取胜。
”“老师,我理解了。
”楠楠说,“球赛中的比和数学里的比是完整不同的两回事。
”什么叫作比?什么叫作比的基天性质?什么叫作比率?什么叫作比率的基天性质?什么叫比率尺?说出比率尺1:3000000的详细含义。
比率尺还有什么形式?请举例说明。
.写出一个比率,使它的两个比的比值都是,写出一个比率,使它的两个外项互为倒数,。
.假如4a=3b,那么a:b=():()1.4:()=12=()÷12=0.8=()%=():()专心爱心专心12.建筑工地计划运进一批水泥,第一次运来总数的1,第二次运来180吨,这时运来的与4没有运来的吨数比是4:3,工地计划运进水泥多少吨?3.已知a:b=c:d,现将a扩大2倍,b减小到本来的1,c不变,d应2()才能使比率式仍建立。
在1、2、3、4、6、8、12、16这八个数中,哪些数能构成比率。
(答案有多组,起码写出此中的两组,即8个比率式。
小学六年级奥数比和比例问题、发车问题练习题
1.小学六年级奥数比和比例问题练习题篇一(1)用同样的砖铺地,铺36平方米要用1236块,铺90平方米要用多少块砖?这道题里的O是一定的。
A、总面积B、每块砖的面积C、砖的。
总块数(2)下面两种量成正比例的是OoA、分数值一定,分数的分子和分母B、利息一定,利率和本金C、长方体的体积一定,底面积和高(3)在一定的时间里,做一个零件所用的时间与所做零件的个数OoA、成正比例B、成反比例C、不成比例(4)平行四边形的底一定,高和面积OoA、成正比例B、成反比例C、不成比例(5)王强看一本故事书,每天看的页数和所用的天数OoA、成正比例B、成反比例C、不成比例一、选择正确答案的序号填在括号内。
1.下面第()组的两个比不能组成比例。
①8:7和14:16②0.6:0.2和3:1③19:110和10:92、在钟面上,分针和时针旋转速度的比是()。
①60:1②360:1③12:13、因为3a=4b,所以()。
①a:b=3:4②a:4=3:b③b:3=a:4④3:a=4:b二、应用题:1、合唱组男女生人数的比是5:7,其中有女生25人,这个合唱组男生多少人?1、一辆客车和一辆小汽车的速度比是1:2,如果小汽车的速度是120千米,那么客车的速度是多少千米?2、花园小区1号楼的实际高度是45米,它的高度与模型高度的比是500:1。
模型的高度是多少厘米?3、用某洗洁精洗水果以1:1000稀释,现在有3000毫升的水,要加入多少毫升的洗洁精?3.小学六年级奥数发车问题练习题篇三1、小红在环形公路上行走,每隔6分钟就可以看见一辆公共汽车迎面开来,每隔9分钟就有一辆公共汽车从背后超过她。
如果小红步行的速度和公共汽车的速度各自都保持一定,而汽车站每隔相等的时间向相反的方向各发一辆公共汽车,那么汽车站发车的间隔时间是多少?2、小明从东城到西城去,一共用了24分钟。
两城之间同时并且每隔相等的时间对发一辆公共汽车。
他出发时恰好有一辆公共汽车从东城发出,之后他每隔4分钟看见一辆公共汽车迎面开来,每隔6分钟有一辆公共汽车从背后超过。
六下。第二单元比和比例能力提高题和奥数题(附答案)
六下。
第二单元比和比例能力提高题和奥数题(附答案)在北京课改版六年级下册同步奥数中,第二单元是关于比和比例能力提升的题目和奥数题。
其中,板块一主要涉及比的概念和应用,如例题1中的求解已读页数和未读页数比例的问题。
练1则涉及甲、乙两袋糖果的质量比,通过拿出一部分糖果来使两袋糖果的质量比相等。
例题2和练2则涉及数的比例关系,如求解甲数是乙数的多少倍,以及三人参加百米赛跑的速度比例问题。
例题3和练3则是关于学生人数和货物质量比例的问题,如求解从一个学校转入另一个学校的学生人数,或者从一个仓库向另一个仓库转移货物的质量比例问题。
在例题4和练4中,涉及到收费标准和人数比例的问题,如求解不同类型车辆通过收费站的数量,或者学生和老师体检的人数比例问题。
例题5和练5则是关于合买和购物的问题,如求解三人合买电视机的价格,或者三人在商场购物的花费比例问题。
最后,例题6和练6涉及到捐款的问题,如求解四人捐款的比例和总金额问题。
需要注意的是,文章中存在一些格式错误和明显有问题的段落,需要删除或者修改。
同时,对于每段话,可以进行小幅度的改写,使得表述更加清晰明了。
北京课改版六年级下册同步奥数第二单元是关于比和比例的能力提升、思维突破和挑战极限的练。
下面是一些例题和练。
例题1:用2、4、8和16组成不同的比例。
练1:用6、12、15再加上一个数组成比例。
例题2:用2,3.6,4.5和x组成比例,求x的值。
练2:用4,4.8,12和a组成比例,求a的值。
例题3:XXX在100米赛跑中领先XXX10米,领先XXX15米。
如果XXX和XXX按原来的速度继续冲向终点,那么当XXX到达终点时,XXX还差多少米到达终点?例题4:甲、乙两个圆柱形,底面积的比为4∶3,甲中水深7厘米,乙中水深3厘米,再往两个中注入同样多的水,直到水深相等,甲中的水面应上升多少厘米?练4:甲、乙两个长方体,底面积的比是4∶5,甲中水深8厘米,乙中水深12厘米,再往两个中注入同样多的水,直到水深相等,甲中的水面应上升多少厘米?例题1:某车队运一堆煤,第一天运走这堆煤的1/6,第二天比第一天多运30吨,这时已运走6/11的煤与余下煤吨数比是7:5,这堆煤共有多少吨?练1:有一桶油,桶重与油重的比是2:23,用了44千克油后,剩下油的重量是桶重的桶内原有油的多少千克?例题2:甲、乙两运输队同时合运一批货物,甲队每天比乙队每天多运3/4的物品,当甲队运了全部货物的4/11时,就比乙队多运了138吨。
小学六年级数学思维能力(奥数)《较复杂的比和比例》训练题
小学六年级数学奥数《较复杂的比和比例》训练题1、一个正方形的一边减少20%,另一边增加2米,得到一个长方形,这个长方形的面积与原正方形面积相等.原正方形的边长是多少米?2、一把小刀售价3元.如果小明买了这把小刀,那么小明与小强剩余的钱数之比是2:5;如果小强买了这把小刀,那么两人剩余的钱数之比变为8:13.小明原来有多少钱?3、甲、乙两人原有的钱数之比为6:5,后来甲又得到180元,乙又得到30元,这时甲、乙钱数之比为18:11,求原来两人的钱数之和为多少?4、一项机械加工作业,用4台A型机床,5天可以完成;用4台A型机床和2台B型机床3天可以完成;用3台B型机床和9台C型机床,2天可以完成,若3种机床各取一台工作5天后,剩下A、C型机床继续工作,还需要多少天可以完成作业?5、动物园门票大人20元,小孩10元.六一儿童节那天,儿童免票,结果与前一天相比,大人增加了60%,儿童增加了90%,共增加了2100人,但门票收入与前一天相同.六一儿童节这天共有多少人入园?6、某水果批发市场存放的苹果与桃子的吨数的比是1:2,第一天售出苹果的20%,售出桃子的吨数与所剩桃子的吨数的比是1:3;第二天售出苹果18吨,桃子12吨,这样一来,所剩苹果的吨数是所剩桃子,问原有苹果和桃子各有多少吨?吨数的4157、有一个长方体,长和宽的比是2:1,宽与高的比是3:2.表面积为272cm,求这个长方体的体积.8、有一个长方体,长与宽的比是2:1,宽与高的比是3:2.已知这个长方体的全部棱长之和是220厘米,求这个长方体的体积.9、某高速公路收费站对于过往车辆收费标准是:大型车30元,中型车15元,小型车10元.一天,通过该收费站的大型车和中型车数量之比是5:6,中型车与小型车之比是4:11,小型车的通行费总数比大型车多270元.(1)这天通过收费站的大型车、中型车、小型车各有多少辆?(2)这天的收费总数是多少元?10、6枚壹分硬币摞在一起与5枚贰分硬币摞在一起一样高,4枚壹分硬币摞在一起与3枚伍分硬币摞在一起一样高.用壹分、贰分、伍分硬币各摞成一个圆柱体,并且三个圆柱体一样高,共用了124枚硬币,问:这些硬币的币值为多少元?11、某工地用3种型号的卡车运送土方.已知甲、乙、丙三种卡车载重量之比为10:7:6,速度比为6:8:9,运送土方的路程之比为15:14:14,三种车的辆数之比为10:5:7.工程开始时,乙、丙两种车全部投入运输,但甲种车只有一半投入,直到10天后,另一半甲种车才投入工作,一共干了25天完成任务.那么,甲种车完成的工作量与总工作量之比是多少?12、将一堆糖果全部分给甲、乙、丙三个小朋友.原计划甲、乙、丙三人所得糖果数的比为5:4:3.实际上,甲、乙、丙三人所得糖果数的比为7:6:5,其中有一位小朋友比原计划多得了15块糖果.那么这位小朋友是 (填“甲”、“乙”或“丙”),他实际所得的糖果数为多少块?13、今年儿子的年龄是父亲年龄的14,15年后,儿子的年龄是父亲年龄的511.今年儿子多少岁?14、一个周长是56厘米的大长方形,按图⑴与图⑵所示意那样,划分为四个小长方形.在图⑴中小长方形面积的比是:1:2A B=,:1:2B C=.而在图⑵中相应的比例是':'1:3A B=,':'1:3B C=.又知长方形'D的宽减去D的宽所得到的差与'D的长减去D的长所得到差之比为1:3.求大长方形的面积.(1)DCBA⑵D'C'B'A'15、北京中学生运动会男女运动员比例为19:12,组委会决定增加女子艺术体操项目,这样男女运动员比例变为20:13;后来又决定增加男子象棋项目,男女比例变为30:19,已知男子象棋项目运动员比女子艺术体操运动员多15人,则总运动员人数为多少?16、袋子里红球与白球的数量之比是19:13.放入若干只红球后,红球与白球数量之比变为5:3;再放入若干只白球后,红球与白球数量之比变为13:11.已知放入的红球比白球少80只.那么原来袋子里共有只球.17、有若干个突击队参加某工地会战,已知每个突击队人数相同,,以后上级从第一突而且每个队的女队员的人数是该队的男队员的718击队调走了该队的一半队员,而且全是男队员,于是工地上的全体女队员的人数是剩下的全体男队员的8,问开始共有多少支突击队参加17会战?18、某学校入学考试,参加的男生与女生人数之比是4:3.结果录取91人,其中男生与女生人数之比是8:5.未被录取的学生中,男生与女生人数之比是3:4.问报考的共有多少人?19、有甲、乙两块含铜率不同的合金,甲块重6千克,乙块重4千克,现在从甲、乙两块合金上各切下重量相等的一部分,将甲块上切下的部分与乙块的剩余的部分一起熔炼,再将乙块上切下的部分与甲块的剩余的部分一起熔炼,得到的两块新合金的含铜率相同,求切下的重量为多少千克?20、下图是一个园林的规划图,其中,正方形的3是草地;圆的46是竹林;竹林比草地多占地450平方米.问:水池占多少平方米? 721、乙两个班共种树若干棵,已知甲班种的棵数的1等于乙班种4,且乙班比甲班多种树24棵,甲、乙两个班各种树多少棵? 的棵数的15,甲本月支出的钱数是乙支22、甲本月收入的钱数是乙收入的58,甲节余240元,乙节余480元.甲本月收入多少元?出的3423、甲、乙两车分别从A、B两地同时相向开出,甲车速度是50千多50米/小时,乙车速度是40千米/小时,当甲车驶过A、B距离的13千米时与乙车相遇,A、B两地相距多少千米?24、甲、乙、丙三个数,已知()甲乙丙,:2:7:4:3+=甲乙丙。
奥数题专题训练之比和比例应用题
比和比例应用题例1、生产队饲养的鸡与猪的只数比为26∶5,羊与马的只数比为25∶9,猪与马的只数比为10∶3;求鸡、猪、马和羊的只数比;分析该题给出了三个单比,要求写出它们的连比;将几个单比写成连比,关键是利用比的基本性质将各个比中表示同一个量的值化为相同的值;解由题设,鸡∶猪=26∶5,羊∶马=25∶9,猪∶马=10∶3,由比的基本性质可得:猪∶马=10∶3=30∶9,羊:马=25∶9,鸡:猪=26∶5=156∶30,从而鸡∶猪∶马∶羊=156:30∶9∶25;答:鸡、猪、马、羊的只数比为156∶30∶9∶25;注将单比化为连比时,还可先化为三个量的连比,再化为四个量的连比;如,鸡∶猪=26∶5,猪∶马=10∶3,由此可得,鸡∶猪∶马=52∶10∶3;再注意到羊∶马=25∶9可得,鸡∶猪∶马∶羊=156∶30∶9∶25;例2.下列各题中的两个量是否成比例若成比例,请说明成正比例还是成反比例;1路程一定时,速度与时间;2速度一定时,路程与时间;3播种面积一定时,总产量与单位面积的产量;4圆的面积与该圆的半径;5两个相互啮合的大小齿轮,它们的转速与齿数;分析利用正比例、反比例的概念进行判定与说明;解 1由于速度与时间的乘积等于路程,所以,当路程一定时,速度与时间成反比例;2由于路程与时间的比值为速度,所以,当速度一定时,路程与时间成正比例;3由于总产量与单位面积的产量的比值为播种面积,所以,当播种面积一定时,总产量与单位面积的产量成正比例; 4设圆的半径为R,则圆的面积为∏R2,所以圆的面积与半径的积为∏R3,随半径的变化而变化,即圆的面积与半径不成反比例;而圆的面积与半径的比值为∏R,也随半径的变化而变化,即圆的面积与半径不成正比例;综上,圆的面积与半径不成比例;5由于齿轮的转速与齿数的积等于单位时间内齿轮转过的总齿数,而两个相互咬合的大小齿轮在单位时间内转过的总齿数相等,所以,它们的转速与齿数成反比例;注若两个相关联的量成正比例,则一个量变大小时,另一个量也变大小;若两个相关联的量成反比例,则一个量变大小时,另一个量反而变小大;因此,在上例的4中,注意到半径愈大,圆的面积也愈大,故只需判断圆的面积与半径不成正比例,就可断定圆的面积与半径不成比例;例3 某小学共有学生697人,已知低年级学生数的1/2等于中年级学生数的2/5,低年级学生数的1/3等于高年级学生数的2/7,求该校低、中、高年级各有多少名学生分析由题设条件可得低、中、高各年级的学生数的比,从而可按比例分配求得各年级的学生数;解设低年级的学生数为“1”,则中年级的学生数为1/2÷2/5=5/4,高年级的学生数为1/3÷2/7=7/6手:舌,从而,低、中、高年级的学生数的比为:低∶中∶高=1∶5/4∶7/6=12∶15∶14,按比例分配得,低年级学生数:697×12/12+15 +14=204人,中年级学生数:697×15/12+15 +14=255人,高年级学生数::697×14/12+15 +14=238人;答:该校低、中、高年级的学生数分别为204人、255人、238人;注按比例分配时,可先出每份对应的量,再求出相应的量;如:697÷12+15+17 =17人;从而,低年级有17×12=204人,中年级有17×15=255人,高年级有17×14=238人;例4 雏鹰小分队为“希望小学”搞了一次募捐活动;她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元;已知购得的甲商品与乙商品的数量之比为5∶6,乙商品与丙商品的数量之比为4∶11,且购买丙商品比购买甲商品多花了210元,求这次募捐所得的钱数;分析根据已知条件可先求出甲、乙、丙三种商品的数量比;即甲、乙、丙三种商品的份数比,再根据甲、丙商品的份数关系及单价,求出每份商品的实际数量,从而求出甲、乙、丙商品的数量,由此可得募捐所得的钱数;解已知:甲商品数∶乙商品数=5:6,乙商品数∶丙商品数=4∶11;于是,甲商品数∶乙商品数∶丙商品数=10∶12∶33,即甲、乙、丙商品分别有10份、12份、33份;由于购买丙商品比购买甲商品多花210元,所以,每份的商品数为210÷10×33—30×10 =7件;于是,甲商品数为:7×10=70件,乙商品数为:7×12=84件,丙商品数为:7×33=231件;由此,募捐所得到的钱数为:30×70+15×84+10×231=5670元.答:募捐所得到的钱为5670元;“比和比例”应用题错解例析2008-05-07 作者:佚名来源:网友投稿例1某车间要加工2220个零件,单独做,甲、乙、丙三人所需工作时间的比是4∶5∶6;现在由三人共同加工,问完成任务时,三人各加工了多少个错解由甲、乙、丙三人单独做所需工作时间的比是4∶5∶6,推出甲、乙、丙三人工作效率的比是6∶5∶4,用按比例分配的思路解;评析上述解答错在把甲、乙、丙三人工作效率的比看成是6∶5∶4;诚然,如果甲、乙二人工作时间的比是4∶5,那么,甲、乙二人工作效率的比就是5∶4,这是正确的;但是,把甲、乙、丙三人工作时间的连比是4∶5∶6转化成甲、乙、丙三人工作效率的连比是6∶5∶4,那就大错了不错,工作效率的比等于工作时间比的反比;从已知条件看,甲、乙二人工作时间的比是4∶5,所以,甲、乙二人工作效率的比是5∶4;乙、丙二人工作时间的比是5∶6,所以,乙、丙二人工作效率的比是6∶5;这里的“5∶4”表示甲5份,乙4份,“6∶5”表示乙6份,丙5分,两个比都是两重相比,其中同样表示“乙”有几份的数在前后两个比中并不相同,我们怎么能将这两个比直接变成甲、乙、丙三人工作效率的连比呢显然,上述解答中把甲、乙、丙三人工作效率的连比看成是6∶5∶4,是错误的;正确的解答应当是:甲、乙、丙三人工作效率的比=容易看出,因为5∶4=15∶12,6∶5=12∶10,所以,由上述“甲、乙二人工作效率的比是5∶4,乙、丙二人工作效率的比是6∶5”,也可以得到甲、乙、丙三人工作效率的比是是15∶12∶10;例2有两瓶同样重的盐水,甲瓶盐水盐与水重量的比是1∶8,乙瓶盐水盐与水重量的比是1:5;现将两瓶盐水并在一起,问在混合后的盐水中盐与水重量的比是多少错解认为在甲瓶盐水中,盐的重量是“1”,水的重量是“8”,在乙瓶盐水中,盐的重量是“1”,水的重量是“5”,于是,将两瓶盐水并在一起,便得到盐的重量是1+1=2,水的重量是8+5=13;1+1∶8+5=2∶13答:在混合后的盐水中盐与水重量的比是2∶13;评析上述解答的主要错误是把两种物质重量的最简比,看成了就是两种物质具体重量的比;甲瓶盐水盐与水重量的比是1∶8,不等于说在这瓶盐水中盐的重量是1千克,水的重量是8千克,乙瓶的情况也是一样;从已知条件可以看出,在甲瓶盐水中,盐有1份,水有8份,盐和水一共有1+8=9份,在乙瓶盐水中,盐有1份,水有5份,盐和水一共有1+5=6份;因为两瓶盐水是“同样重”,但甲瓶有9份,乙瓶只有6份,所以,可见两瓶盐水中每“1份”的重量有多少是不相同的;上述解答简单地将两瓶盐水中每份重量不同的盐和水的份数分别相加,然后再将两个“和”组成一个比,便造成了解答的错误;正确的解答是:1∶8=2∶16,2+16=18;1∶5=3:15,3+15=10;2+3∶16+15=5:31 答:在混合后的盐水中盐与水重量的比是5∶31;小学六年级奥数题:专题训练之比和比例应用题例1、乘坐某路汽车成年人票价3元,儿童票价2元,残疾人票价1元,某天乘车的成年人、儿童和残疾人的人数比是50:20:1,共收得票款26740元,这天乘车中成年人、儿童和残疾人各有多少人提示:单价比:成年人:儿童:残疾人=3:2:1人数比:50:20:1练习甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米例2、“希望小学”搞了一次募捐活动,她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元;已知购得的甲商品与乙商品的数量之比为5:6,乙商品与丙商品的数量之比为4:11,且购买丙商品比购买甲商品多花了210元;提示:根据已知条件可先求三种商品的数量比;练习一种什锦糖是由酥糖、奶糖和水果糖按5:4:3的比例混合而成,酥糖、奶糖和水果糖的单价比是11:8:7,要合成这样的什锦糖120千克,什锦糖每千克元,混合前的酥糖每千克是多少元例3、A、B、C是三个顺次咬合的齿轮;当A转4圈时,B恰好转3圈;当B转4圈时,C恰好转5圈,问这三个齿轮的齿数的最小数分别是多少提示:根据已知条件已知A、B、C转速与齿数的积都相等,即它们的转速与齿数成反比例;习题:1、甲、乙、丙三个平行四边形的底之比是4:5:6,高之比是3:2:1,已知三个平行四边形的面积和是140平方分米,那么甲、乙、丙三个平行四边形的面积各是多少2、甲、乙、丙三个三角形的面积之比是8:9:10,高之比是2:3:4,对应的底之比是多少3、某校四、五年级参加数学竞赛的人数相等,四年级获奖人数与未获奖人数的比是1:4,五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少4、盒子里共有红、白、黑三种颜色的彩球共68个,红球与白球个数的比是1:2,白球与黑球个数的比是3:4,红球有多少个。
六年级下册-第二单元比和比例能力提高题和奥数题(附答案)
第二单元 比和比例能力提升题和奥数题板块一 比例题1.小明读一本书,已读的页数和未读的页数之比是5∶4,如果再读27页,已读的页数和未读的页数之比是2∶1。
求这本书有多少页?练习1.甲、乙两袋糖果的质量比是3∶2,如果从甲袋糖果中拿出5千克放入乙袋,这时甲、乙两袋糖果的质量比是1∶1。
两袋糖果一共重多少千克?例题2.甲数是乙数的103,乙数是丙数的94,求这三个数的连比。
练习2.在学校召开的秋季运动会上,李小强、刘小刚、王小林三个人参加了百米赛跑。
赛跑的过程中,李小强的速度比刘小刚慢101,刘小刚的速度比王小林慢101,他们三人的速度比是多少?例题3.蓝天小学和新世纪小学学生人数的比为3∶5。
如果从蓝天小学转入新世纪小学150人,则蓝天小学与新世纪小学学生人数的比为3∶7。
求原来蓝天小学和新世纪小学各有多少人?练习3.甲、乙两个仓库货物的质量比是7:5,如果甲仓给乙仓26吨,那么甲、乙两个仓库货物的质量比是3:4.甲仓原来有多少吨货物?例题4.某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15元,小轿车10元。
某日通过该收费站的大客车和小客车数量之比是5:6,小客车与小轿车之比是4:11,收取小轿车的通行费比大客车多210元。
求这天这三种车辆通过的数量。
练习4.学校组织体检,收费标准如下:老师每人3元,学生每人2元。
已知老师和学生的人数比为2:9,共收得体检费3120元。
那么老师、学生各有多少人?例题5.甲、乙、丙三人合买一台电视机,甲所付钱数的21等于乙所付钱数的31,等于丙所付钱数的73。
已知丙比甲多付了120元,那么这台电视机多少钱?练习5..甲、乙、丙三人逛商场,甲花的钱数的21等于乙花的钱数的31,乙花的钱数的74等于丙花的钱数的43,丙比甲多花47元,乙花了多少元?例题6.张、王、李、赵4人联合为灾区捐款,张捐的钱数是王,李,赵总和的41,王捐的钱是张,李,赵总和的237,李捐的钱是张,王,赵总和的114,赵捐了9元钱。
(完整版)六年级奥数题:比和比例一
比例问题一、 填空题1.4:( )=2016=( )÷10=( )% 2.在3:5里,如果前项加上6,要使比值不变,后项应加 .3.12:1的图纸上,精密零件的长度为6厘米,它的实际长度是 毫米.4.某生产队有一块正方形菜地,边长120米,在总面积中种植西红柿、南瓜、茄子面积的比是25:1:21,三种蔬菜各种了 亩.5.买甲、乙两种铅笔共210支,甲种铅笔每支价值3分,乙种铅笔每支价值4分,两种铅笔用去的钱相同,甲种铅笔买了 支.6.车库中停放若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数的比是2:5.问:摩托车的辆数与小卧车的辆数的比是 .7.自然数A 、B 满足182111=-B A ,且A :B =7:13.那么,A +B = . 8.光明小学有三个年级,一年级学生占全校学生人数的25%,二年级与三年级学生人数的比是3:4,已知一年级比三年级学生少40人,一年级有学生 人.9.水泥、石子、黄砂各有5吨,用水泥、石子、黄砂按5:3:2拌制某种混凝土,若用完石子,水泥缺 吨.黄砂多 吨.10.甲、乙两人步行的速度比是13:11.如果甲、乙分别由A 、B 两地同时出发相向而行,0.5小时后相遇,如果它们同向而行,那么甲追上乙需要 小时.11.已知甲、乙两数的比为5:3,并且它们最大公约数与最小公倍数的和是1040,那么甲数是多少,乙数是多少.12.有一块铜锌合金,其中铜与锌的比是2:3.现在加入锌6克,共得新合金36克,求在新合金内铜与锌的比.13.一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1:2:3.某人走各段路所用时间之比依次是4:5:6.已知他上坡时速度为每小时3千米.路程全长50千米.问:此人走完全程用了多少时间?14.一个圆柱体的容器中,放有一个长方形铁块.现在打开一个水龙头往容器中注水,3分钟时,水恰好没过长方体的顶面,又过了18分钟,水灌满容器.已知容器的高度是50厘米.长方体的高度是20厘米,那么长方体底面积:容器底面面积等于多少?练习题1 有一个长方体,长与宽的比是2:1,宽与高的比是3:2,已知这个长方体的全部棱长之和是220cm。
小学六年级数学思维能力(奥数)《较复杂的比和比例》训练题
小学六年级数学奥数《较复杂的比和比例》训练题1、一个正方形的一边减少20%,另一边增加2米,得到一个长方形,这个长方形的面积与原正方形面积相等.原正方形的边长是多少米?2、一把小刀售价3元.如果小明买了这把小刀,那么小明与小强剩余的钱数之比是2:5;如果小强买了这把小刀,那么两人剩余的钱数之比变为8:13.小明原来有多少钱?3、甲、乙两人原有的钱数之比为6:5,后来甲又得到180元,乙又得到30元,这时甲、乙钱数之比为18:11,求原来两人的钱数之和为多少?4、一项机械加工作业,用4台A型机床,5天可以完成;用4台A型机床和2台B型机床3天可以完成;用3台B型机床和9台C型机床,2天可以完成,若3种机床各取一台工作5天后,剩下A、C型机床继续工作,还需要多少天可以完成作业?5、动物园门票大人20元,小孩10元.六一儿童节那天,儿童免票,结果与前一天相比,大人增加了60%,儿童增加了90%,共增加了2100人,但门票收入与前一天相同.六一儿童节这天共有多少人入园?6、某水果批发市场存放的苹果与桃子的吨数的比是1:2,第一天售出苹果的20%,售出桃子的吨数与所剩桃子的吨数的比是1:3;第二天售出苹果18吨,桃子12吨,这样一来,所剩苹果的吨数是所剩桃子,问原有苹果和桃子各有多少吨?吨数的4157、有一个长方体,长和宽的比是2:1,宽与高的比是3:2.表面积为272cm,求这个长方体的体积.8、有一个长方体,长与宽的比是2:1,宽与高的比是3:2.已知这个长方体的全部棱长之和是220厘米,求这个长方体的体积.9、某高速公路收费站对于过往车辆收费标准是:大型车30元,中型车15元,小型车10元.一天,通过该收费站的大型车和中型车数量之比是5:6,中型车与小型车之比是4:11,小型车的通行费总数比大型车多270元.(1)这天通过收费站的大型车、中型车、小型车各有多少辆?(2)这天的收费总数是多少元?10、6枚壹分硬币摞在一起与5枚贰分硬币摞在一起一样高,4枚壹分硬币摞在一起与3枚伍分硬币摞在一起一样高.用壹分、贰分、伍分硬币各摞成一个圆柱体,并且三个圆柱体一样高,共用了124枚硬币,问:这些硬币的币值为多少元?11、某工地用3种型号的卡车运送土方.已知甲、乙、丙三种卡车载重量之比为10:7:6,速度比为6:8:9,运送土方的路程之比为15:14:14,三种车的辆数之比为10:5:7.工程开始时,乙、丙两种车全部投入运输,但甲种车只有一半投入,直到10天后,另一半甲种车才投入工作,一共干了25天完成任务.那么,甲种车完成的工作量与总工作量之比是多少?12、将一堆糖果全部分给甲、乙、丙三个小朋友.原计划甲、乙、丙三人所得糖果数的比为5:4:3.实际上,甲、乙、丙三人所得糖果数的比为7:6:5,其中有一位小朋友比原计划多得了15块糖果.那么这位小朋友是 (填“甲”、“乙”或“丙”),他实际所得的糖果数为多少块?13、今年儿子的年龄是父亲年龄的14,15年后,儿子的年龄是父亲年龄的511.今年儿子多少岁?14、一个周长是56厘米的大长方形,按图⑴与图⑵所示意那样,划分为四个小长方形.在图⑴中小长方形面积的比是:1:2A B=,:1:2B C=.而在图⑵中相应的比例是':'1:3A B=,':'1:3B C=.又知长方形'D的宽减去D的宽所得到的差与'D的长减去D的长所得到差之比为1:3.求大长方形的面积.(1)DCBA⑵D'C'B'A'15、北京中学生运动会男女运动员比例为19:12,组委会决定增加女子艺术体操项目,这样男女运动员比例变为20:13;后来又决定增加男子象棋项目,男女比例变为30:19,已知男子象棋项目运动员比女子艺术体操运动员多15人,则总运动员人数为多少?16、袋子里红球与白球的数量之比是19:13.放入若干只红球后,红球与白球数量之比变为5:3;再放入若干只白球后,红球与白球数量之比变为13:11.已知放入的红球比白球少80只.那么原来袋子里共有只球.17、有若干个突击队参加某工地会战,已知每个突击队人数相同,,以后上级从第一突而且每个队的女队员的人数是该队的男队员的718击队调走了该队的一半队员,而且全是男队员,于是工地上的全体女队员的人数是剩下的全体男队员的8,问开始共有多少支突击队参加17会战?18、某学校入学考试,参加的男生与女生人数之比是4:3.结果录取91人,其中男生与女生人数之比是8:5.未被录取的学生中,男生与女生人数之比是3:4.问报考的共有多少人?19、有甲、乙两块含铜率不同的合金,甲块重6千克,乙块重4千克,现在从甲、乙两块合金上各切下重量相等的一部分,将甲块上切下的部分与乙块的剩余的部分一起熔炼,再将乙块上切下的部分与甲块的剩余的部分一起熔炼,得到的两块新合金的含铜率相同,求切下的重量为多少千克?20、下图是一个园林的规划图,其中,正方形的3是草地;圆的46是竹林;竹林比草地多占地450平方米.问:水池占多少平方米? 721、乙两个班共种树若干棵,已知甲班种的棵数的1等于乙班种4,且乙班比甲班多种树24棵,甲、乙两个班各种树多少棵? 的棵数的15,甲本月支出的钱数是乙支22、甲本月收入的钱数是乙收入的58,甲节余240元,乙节余480元.甲本月收入多少元?出的3423、甲、乙两车分别从A、B两地同时相向开出,甲车速度是50千多50米/小时,乙车速度是40千米/小时,当甲车驶过A、B距离的13千米时与乙车相遇,A、B两地相距多少千米?24、甲、乙、丙三个数,已知()甲乙丙,:2:7:4:3+=甲乙丙。
(完整版)六年级比和比例奥数题
3.已知 a:b=c:d,现将 a 扩大 2 倍,b 缩小到原来的 1 ,c 不变,d 应 2
( )才能使比例式仍成立。
4.在 1、2、3、4、6、8、12、16 这八个数中,哪些数能组成比例。(答案有多 组,至少写出其中的两组,即 8 个比例式。)
7
11.(☆☆)甲乙两个图书架所放图书册数的比是 2:3,现从乙书架拿出 42 册图 书放到甲书架,甲、乙两个书架图书的比是 5:4,甲书架原有图书多少册?
12.(☆☆)六⑵班上学期男女生人数比为 5:7,这学期转入 2 名男生,转出 2 名 女生后,男女生人数比为 11:13。这学期六⑵班有女生多少人?
4.(☆)压路机的滚筒长 1.5 米,底面半径 0.6 米,以每分钟滚动 15 周计算,把 面积为 25434 平方米的地基压一遍,需多少小时?
5.(☆)一个圆柱体侧面展开后是一个正方形,已知圆柱体底面半径是 5 厘米, 它的表面积、体积各是多少平方厘米?
6.(☆)一个圆柱形水桶的容积是 32 升,底面积是 24 平方分米,装了 1 桶水, 4
)与(
)的乘积。
1.一根圆柱形木材,底面直径 20 厘米。 ⑴把它切成相等的两个小圆柱,表面积增加了多少平方厘米?
⑵沿着它的直径切成相等的两块,切面是正方形,表面积增加了多少平方 米?
9
⑶如果圆柱形木材长 1 米。把它的底面平均分成若干个扇形,沿高切开后拼成 一个近似的长方体。表面积增加了多少平方米?
14.(☆☆☆)一个圆柱的底面半径为 2 厘米,如果把它的底面分成许多个相等的 小扇形,然后垂直切开,拼成一个与它等底等高的近似的长方体,这时长 方体的表面积比原来圆柱体的表面积增加了 24 平方厘米。求圆柱体的体 积。
小学六年级奥数比和比例【五篇】
小学六年级奥数比和比例【五篇】导读:本文小学六年级奥数比和比例【五篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【第一篇】习题:甲、乙、丙三人沿湖边一固定点出发,甲按顺时针方向走,乙与丙按逆时针方向走。
甲第一次遇到乙后又走了1分15秒遇到丙,再过3分45秒第二次遇到乙。
已知甲、乙的速度比是3:2,湖的周长是600米,求丙的速度。
解析:甲乙两人的速度和600÷(5/4+15/4))=120甲的速度120÷(1+2/3)=72乙的速度120-72=48甲和丙的速度和600÷(5/4+15/4+5/4)=96丙的速度96-72=24 【第二篇】习题:一位牧羊人赶着一群羊去放牧,跑出一只公羊后,他数了数羊的只数,发现剩下的羊中,公羊与母羊的只数比是9:7;过了一会儿跑走的公羊又回到羊群,却又跑走了一只母羊,牧羊人又数了数羊的只数,发现公羊与母羊的只数比是7:5。
这群羊原来有多少只?解析:设跑出一只公羊后,公羊9x只,则母羊7x只(9x+1):(7x-1)=7:57(7x-1)=5(9x+1)49x-7=45x+549x-45x=7+54x=12x=3所以:原有公羊=9x+1=27+1=28只原有母羊=7x=21只原有:群羊=28+21=49只【第三篇】习题:一个运输队运送一批货,第一天,运了全部的30%,第一天和第二天运量的比是3:2,还剩520吨没运走,这批货原有多少吨?解析:第一天运送30%,第一天与第二天运量比例是3:2,则第二天运了20%,共计50%,剩余50%,为520吨,故总共有520*2=1040吨【第四篇】习题:有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是多少升?解析:此题的关键是抓住不变量:差不变。
这样原来两桶水差13-8=5升,往两个桶中加进同样多的水后,后来还是差5升,所以后来一桶为5÷(7-5)×5=12.5,所以加入水量为4.5升。
六年级奥数题 (6)
第六周“比和比例”训练题姓名: 班级: 成绩:1.六年级举行数学竞赛,一班占参加比赛总人数的31,二班与三班参加比赛人数的比是11:13,二班比三班少8人,三个班各有多少人参加比赛?2.甲、乙两包糖的重量比是4:1,如果从甲包取出10克放入乙包后,甲乙两包糖的重量比变为7:5,那么两包糖的重量和是多少克?3.有甲、乙、丙三个梯形,它们的高之比是1:2:3;上底之比依次是6:9:4;下底之比依次12:15:10.已知甲梯形的面积是30平方厘米,那么乙与丙两个梯形的面积之和是多少平方厘米?4. 师徒两人共加工168个零件,师傅加工一个零件用5分钟,徒弟加工一个零件用9分钟。
完成任务时,两人各加工零件多少个?5.两个相同的瓶子装满酒精溶液,一个瓶中酒精与水的体积之比是3:1,而另一个瓶中酒精和水的体积之比是4:1,若把两瓶酒精溶液混合,混合液中酒精和水的体积之比是多少?6.一块合金内铜和锌的比试2:3,现在再加入6克锌,共得新合金36克,求新合金内铜和锌的比?7.一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段所用时间比依次是4:5:6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间?8. 甲、乙二人分别从A 、B 两地同时出发,相向而行,出发时他们的速度比是3:2,他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B 地时,乙离A 还有14千米,那么A 、B 两地间的距离是多少千米?答案:1. 48人,44人,52人2. 13246 3. 150平方厘米4. 108个,60个5. 31:96. 1:27.12.5小时8.45千米转化单位“1”(二)1、某小学低年级原有少先队员是非少先队员的1/3,后来又有39名同学加入了少先队,这样,少先队员是非少先队员的7/8,低年级有几人?2、一批零件,不合格产品是合格产品的1/19,后来又从合格产品发现2个不合格产品,这时合格率是94%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级奥数-比和比例测试题
比和比例
))得分(姓名(
填空:一、
))((。
甲数占甲、乙两数和的,乙数占甲、乙两数和的1.甲乙两数的比是11:9, ))(()()倍,乙数是甲数的甲、乙两数的比是3:2,甲数是乙数的(。
)(3,男生人) 2.某班男生人数与女生人数的比是,女生人数与男生人数的比是(4)。
)。
女生人数是总人数的比是(数和女生人数的比是(
,这)180张纸订5本本子,用纸的张数和所订的本子数的比是(王老师用3.。
)个比的比值的意义是(
22。
) 4.甲数的等于乙数的,甲数与乙数的比是(53)(()1。
给乙,甲、乙两数相等,甲数是乙数的,甲数比乙数多5.把甲数的))((7)(1。
乙数比甲数少。
)6.甲数比乙数多,甲数与乙数比是()(4是比的1.2),5是比的(= 1.2中,6是比的(),5 7.在6 :是487),和844和是比例的(84:()。
在4 7 =48 :中,。
)比例的(
15 :)= () 5 = 244 8.:÷(
,(—)盐的重量占盐水的的重量配制而成的。
:一种盐水是由盐和水按9.1 30 其中,11
/ 1
六年级奥数-比和比例测试题
水的重量占盐水的(—)。
12的约数有(),选择其中的四个约数,
把它们组成一个比例是()。
写出两个比值是8的比()、()。
10.加工零件的总个数一定,每小时加工的零件个数的加工的时间()比例;订数学书的本数与所需要的钱数()比例;加工零件的总个数一定,已经加工的零件和没有加工的零件个数()比例。
11.如果x÷y =712 ×2,那么x和y成()比例;如果x:4=5:y,那么x和y成()比例。
二、判断
1、由两个比组成的式子叫做比例。
()
2.正方形的面积一定,它的边长和边长不成比例。
()
3.如果8A
=
9B那么B
:A
=
8
:9()
4.15
:16和6
:5能组成比例。
()
三、选择(将正确答案的序号填在括号里)
1.小正方形和大正方形边长的比是2:7小正方形和大正方形面积的比是()A、2:7
B、6:21
C、4:14
11
/ 2
六年级奥数-比和比例测试题
2.下面第()组的两个比不能组成比例。
A、8:7和14:16
B、0.6:0.2和3:1
C、19: 110 和10:9
3.三角形的高一定,它的面积和底()
A、成正比例
B、成反比例
C、不成比例
11:能组成比例的是( 4.与)。
56111:5 C、5:6 A、:B、D、6:5
5661,盐和水的比是(在盐水中,盐占盐水的)。
5.10A、1:8 B、1:9 C、1:10 D、1:11
3Y,那么Y:X=(如果X=)。
6.433:1 C、3:、4 D、4:3
1A 、:B447.圆的半径与圆周长()。
A、成正比例
B、成反比例
C、不成比例
D、没有关系
13这四个数组成比例,其内项的积是()。
8.把4.5、7.5、、102A、1.35 B、3.75 C、33.75 D、2.25
9.小明从家里去学校,所需时间与所行速度()。
A、成正比例
B、成反比例
C、不成比例
10.一件工作,甲单独做12天完成,乙单独做18天完成。
甲乙效率的最简比是()。
6 :、 3 D 9:C 2 3、9 6、A : B :、2 12611.一个三角形三个内角度数的比是::,这个三角形是(。
)11
/ 3
六年级奥数-比和比例测试题
A、直角三角形
B、锐角三角形
C、钝角三角形
D、无法确定
12.甲与乙的工作效率比是6:5,两人合做一批零件共计880个,乙比甲少做()。
A、480个
B、400个
C、80个
D、40个
四、(1)求比值。
11421 2 3 :14:0.72 :1 32757
)(2化简比。
11112.6:0.4 0.24 7 :1:5520
五、解比例25:7=X:3523:X= 12 :14 514: 35= 57:x
56X:15=13: 54:2 34:X= X0.75=
81.25
11
/ 4
六年级奥数-比和比例测试题
111X14.21=:1.5 ::1=:X =X357542255 1X1.2542:=: 2.80.7X =:20.45:=X 361.25.570六、根据下面的条件列出比例,并且解比例
1.96和X的比等于16和5的比。
2.45 和X的比等于25和8的比。
3.两个外项是24和18,两个内项是X和36。
11
/ 5
六年级奥数-比和比例测试题
七、应用题
1.建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石子各多少吨?
2.一个县共有拖拉机550台,其中大型拖拉机台数和手扶拖拉机台数的比是3:8,这两种拖拉机各有多少台?
3.用84厘米长的铜丝围成一个三角形,这个三角形三条边长度的比是3:4:5。
这个三角形的三条边各是多少厘米?
4.甲、乙、丙三个数的平均数是84,甲、乙、丙三个数的比是3:4:5,甲、乙、丙三个数各是多少?
11
/ 6
六年级奥数-比和比例测试题
5.乙两个数的平均数是25,甲数与乙数的比是3:4,甲、乙两数各是多少?
6.一个直角三角形的两个锐角的度数比是1:5,这两个锐角各是多少度?
7.一块长方形试验田的周长是120米,已知长与宽的比是2:1,这块试验田的面积是多少平方米?
8.一种药水是用药物和水按3:400配制成的。
(1)要配制这种药水1612千克,需要药粉多少千克?
(2)用水60千克,需要药粉多少千克?
(3)用48千克药粉,可配制成多少千克的药水?
11
/ 7
六年级奥数-比和比例测试题
9.商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比是3:2,求运来电冰箱多少台?
3,绿色球的个数与黄色球个数红色球的个数是绿色球的10.纸箱里有红绿黄三色球,4的比是4:5,已知绿色球与黄色球共81个,问三色球各有多少个?
11.修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完?(用比例方法解)
12.同学们做操,每行站20人,正好站18行。
如果每行站24人,可以站多少行?(用比例方法解)
11
/ 8
六年级奥数-比和比例测试题
1小时的路程,汽车千米。
飞机行4飞机每小时飞行480千米,汽车每小时行6013.2要行多少小时?(用比例方法解)
千米,多少天可修完?0.6千米,,每天修0.536天完成。
如果每天修修一条公路14.
(用比例方法解)
吨海水可15千克盐;照这样的计算,用100一个晒盐场用15.500千克海水可以晒以晒多少吨盐?(用比例方法解答)
天完40天完成任务,如果要用台,一个车间装配一批电视机,如果每天装16. 5060成任务,每天应装多少台?(用比例方法解)11
/ 9
六年级奥数-比和比例测试题
17.生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?(用比例方法解)
18.小明买4本同样的练习本用了4.8元,3.6元可以买多少本这样的练习本?
19.配制一种农药,药粉和水的比是1:500
(1) 现有水6000千克,配制这种农药需要药粉多少千克?
(2) 现有药粉3.6千克,配制这种农药需要水多少千克?
20.两个底面积相等的长方体,第一个长方体与第二个长方体高的比是7:11,第二个长11
/ 10
六年级奥数-比和比例测试题
方体的体积是144立方分米,第一个长方体的体积是多少立方分米?
21.园林绿化队要栽一批树苗,第一天栽了总数的15 ,第二天栽了136棵,这时剩下的与已栽的棵数的比是3:5。
这批树苗一共有多少棵?
11
/ 11。