比和比例奥数题

合集下载

六年级奥数题比和比1

六年级奥数题比和比1

六年级奥数题比和比1比和比例(一)11、小明和小方各走一段路程,小明走的路程比小方多,小方用的时间比小明 51多。

小明和小方的速度之比是多少? 82、东街小学六年级有学生46人,分成三个课外科技小组。

第一组与第二组人数比是2:3,第一组与第三组的人数比是3:4。

三个组各有多少人?3、一列火车3小时行驶150千米。

从A地到B地有240千米,需要行几小时?如果速度加快20%,要行多少小时?4、有一自助餐厅,规定每次每人用餐费是:先生交30元,女士交20元,儿童交10元。

某一天前来用餐的先生与女士人数之比是2:9,女士与儿童的人数之比是3:7,共收到所交的用餐费9450元。

求这一天用餐的先生、女士和儿童的人数。

125、圆A和圆B一局部重叠,重叠局部的面积是圆A的,也是圆B的,求A、B 515的面积比。

6、某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15元,小轿车10元。

某日通过该收费站的大客车和小客车数量之比是5:6,小客车与小轿车之比是4:11,收取小轿车的通行费比大客车多210元。

求这天三种车辆通过的数量。

比和比例〔二〕111、小军行走的路程比小红多,而小红行走所用的时间却比小军多,求小军 410和小红的速度比。

2、甲、乙两个正方体棱长的比是1:2,求他们的外表积的比和体积的比。

3、白玉兰学校有运发动108人,分成甲、乙、丙三个队进行训练,甲队与乙队人数之比为2:3,乙队与丙队的人数之比为3:4,求各队的人数。

14、三个运输队,A队有载重3吨的汽车8辆,B队有载重4吨的汽车5辆,C 2队有载重5吨的汽车4辆。

把运输612吨货物的任务按他们的运输能力分配给三个队,各应分配多少吨?5、甲、乙、丙三人共同种树,他们种树棵数的比是3:4:5,丙比甲多种6棵?问三人各种树多少棵?6、海水中水与盐的比是183:17。

现在要使它改变成水与盐之比为19:1,在400千克海水中应掺入多少千克清水?7、一根木材,据成四段,付锯板费8.4元,如果锯成5段,应付锯板费多少元?8、一次爬山活动,路程为18千米,分为上坡、平路和下坡三段,各段路长之比是2:1:3,而走各段路程所用的时间之比为5:4:6。

奥数题比和比例

奥数题比和比例

比和比例1、比:两个数相除又叫两个数的比,表示两个数之间的倍比关系。

2、①甲数是乙数的1/2,那么乙数与甲数的比是()②甲数的3/4等于乙数的2/7,那么甲数是乙数的()3、表格中:地的面积(一定)从表格中你可获得哪些信息?主要的:方砖的面积与所需块数成反比例。

方砖的边长与所需块数不成比例。

圆的半径与面积不成比例圆的面积与半径的平方成正比例4、判断:①速度与路程成正比例。

()②S=a2,S一定,a和a成反比例。

()③d一定,c和π成正比例。

()④工作时间一定,生产每个零件用的时间和工作总量成反比例。

()5、用同样的砖铺地,铺18平方米要用618块砖。

如果铺24平方米,要用多少块砖?6、一间房子要用方砖铺地,用面积是9平方分米的方砖,需要96块。

如果改用4平方分米的方砖,需要多少块?7、一辆汽车从甲地开往乙地,1.5小时行了全程的1/6,照这样计算,剩下的路程还需要多少小时?8、毛巾厂原计划生产12000条毛巾,前3天完成40%,照这样计算,完成任务一共要用多少天?9、某工厂计划加工一批零件,如果每天加工30个,20天可以完成。

时间3天加工了120个,照这样计算,几天可以加工完?10、某一时刻,1米长的竹竿在地上的影子长3米,另有一棵高树的影子长46.5米,问这棵高树高多少米?11、一对互相咬合的齿轮,大齿轮有60个齿,每分钟转50转,小齿轮有20个齿,每分钟应转多少转?12、一批化肥,原计划80户农民分,每户分10包。

后来增加20户农民一起分,每户比原计划少分多少包?13、一个水箱,用小桶25桶、大桶12桶水可以将水箱装满;如果改用小桶15桶、大桶20桶水也可以将水箱装满。

大桶和小桶的容积的比是()。

14、路程一定,速度与时间成反比例,在比里面的具体体现:例:走完一段路程,甲要6小时,乙要8小时。

甲与乙所需时间的比是:甲与乙速度之比是:结论:15、两个相互咬合的圆形齿轮齿数之比是4∶3,大齿轮每分钟转36圈,小齿轮每分钟可转多少圈?16、甲乙两辆汽车从A、B两地相向而行,相遇时甲车比乙车多行了36千米,已知甲、乙两车的速度之比为5∶6,求甲乙两地相距多少千米?17、客车和货车同时从甲乙两地的中点反向行驶3小时后,客车到达甲地,货车离乙地还有30千米。

比和比例奥数题

比和比例奥数题

优质文本小学六年级奥数训练题之比和比例(1)例1、乘坐某路汽车成年人票价3元,儿童票价2元,残疾人票价1元,某天乘车的成年人、儿童和残疾人的人数比是50:20:1,共收得票款26740元,这天乘车中成年人、儿童和残疾人各有多少人?提示:单价比:成年人:儿童:残疾人=3:2:1人数比:50:20:1[练习]甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米?例2、“希望小学”搞了一次募捐活动,她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元。

已知购得的甲商品与乙商品的数量之比为5:6,乙商品与丙商品的数量之比为4:11,且购买丙商品比购买甲商品多花了210元。

提示:根据已知条件可先求三种商品的数量比。

[练习]一种什锦糖是由酥糖、奶糖和水果糖按5:4:3的比例混合而成,酥糖、奶糖和水果糖的单价比是11:8:7,要合成这样的什锦糖120千克,什锦糖每千克32.4元,混合前的酥糖每千克是多少元?例3、A、B、C是三个顺次咬合的齿轮。

当A转4圈时,B恰好转3圈;当B转4圈时,C恰好转5圈,问这三个齿轮的齿数的最小数分别是多少?提示:根据已知条件已知A、B、C转速与齿数的积都相等,即它们的转速与齿数成反比例。

习题:1、甲、乙、丙三个平行四边形的底之比是4:5:6,高之比是3:2:1,已知三个平行四边形的面积和是140平方分米,那么甲、乙、丙三个平行四边形的面积各是多少?2、甲、乙、丙三个三角形的面积之比是8:9:10,高之比是2:3:4,对应的底之比是多少?3、某校四、五年级参加数学竞赛的人数相等,四年级获奖人数与未获奖人数的比是1:4,五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少?4、盒子里共有红、白、黑三种颜色的彩球共68个,红球与白球个数的比是1:2,白球与黑球个数的比是3:4,红球有多少个?1 / 1。

(完整版)六年级奥数比和比例

(完整版)六年级奥数比和比例

1例题 1 有三盒珠子,每盒的珠子的数目互不同样。

小王从第一个盒子内拿出该盒珠子数目的 3 ,又从第1 1二个盒子内拿出该盒珠子数目的 4 ,再从第三个盒子内拿出该盒珠子数目 5 。

最后,这三个盒子内剩下的珠子的数目都相等。

请问小王从这三个盒子内所拿出的珠子数目之总和的最小可能的值是什么?2 3 4剖析依照题意有 3 A= 4 B= 5C,则 A:B:C=18:16:15例题 2 甲、乙两校原有图书的比是 7:5,假如甲校给乙校 650 本,甲、乙两校的图书籍数的比就是 3:4,本来甲校友图书多少本?随堂练习(1)有一个长方体, 长和宽的比是 2:1,宽与高的比是 3:2。

已知这个长方体的所有棱长之和是 220cm ,求这个长方体的体积。

11 ( 2)小明和小方各走一段路,小明走的行程比小方多 5 ,小方用的时间比小明多8 。

小明和小方的速度之比 是多少?( 3)甲、乙两库房存货吨数比为 4: 3,假如由甲库中提取 8 吨放到乙库中,则甲、乙两库房存货吨数比为 4: 5。

两库房原存货总吨数是多少吨? 例题 3 如图(见黑板),正方形 ABCD 的边 AB 与正方形 MNPQ 的边 PQ 平行且相等。

试求暗影部分的面积与正方形 ABCD 的面积之比。

例题 4 如图,三个齐心圆,他们的半径之比是 3:4:5,假如大圆的面积是 100 平方厘米,那么中圆和小圆之间的圆环面积是多少?练习(1)如图在四边形ABCD 中,AC 和BD 订交于O 点。

三个小三角形的面积分别是20、 16、 32。

那么暗影三角形BOC的面积是多少?ABO DC(2)如下图梯形ABCD 的上底 AD 长 12 厘米,高BD 长 18 厘米, BE=2DE, 则下底 BC 长多少厘米?A DB C1、六年级一班的男、女生比率是 3: 2,又来了 4 名女生后,全班共有 44 人,求此刻的男、女生人数之比。

2、师徒二人共加工部件 400 个,师傅加工一个部件用 9 分钟,徒弟加工一个部件用 15 分钟。

小学六年级奥数比和比例问题、发车问题练习题

小学六年级奥数比和比例问题、发车问题练习题

1.小学六年级奥数比和比例问题练习题篇一(1)用同样的砖铺地,铺36平方米要用1236块,铺90平方米要用多少块砖?这道题里的O是一定的。

A、总面积B、每块砖的面积C、砖的。

总块数(2)下面两种量成正比例的是OoA、分数值一定,分数的分子和分母B、利息一定,利率和本金C、长方体的体积一定,底面积和高(3)在一定的时间里,做一个零件所用的时间与所做零件的个数OoA、成正比例B、成反比例C、不成比例(4)平行四边形的底一定,高和面积OoA、成正比例B、成反比例C、不成比例(5)王强看一本故事书,每天看的页数和所用的天数OoA、成正比例B、成反比例C、不成比例一、选择正确答案的序号填在括号内。

1.下面第()组的两个比不能组成比例。

①8:7和14:16②0.6:0.2和3:1③19:110和10:92、在钟面上,分针和时针旋转速度的比是()。

①60:1②360:1③12:13、因为3a=4b,所以()。

①a:b=3:4②a:4=3:b③b:3=a:4④3:a=4:b二、应用题:1、合唱组男女生人数的比是5:7,其中有女生25人,这个合唱组男生多少人?1、一辆客车和一辆小汽车的速度比是1:2,如果小汽车的速度是120千米,那么客车的速度是多少千米?2、花园小区1号楼的实际高度是45米,它的高度与模型高度的比是500:1。

模型的高度是多少厘米?3、用某洗洁精洗水果以1:1000稀释,现在有3000毫升的水,要加入多少毫升的洗洁精?3.小学六年级奥数发车问题练习题篇三1、小红在环形公路上行走,每隔6分钟就可以看见一辆公共汽车迎面开来,每隔9分钟就有一辆公共汽车从背后超过她。

如果小红步行的速度和公共汽车的速度各自都保持一定,而汽车站每隔相等的时间向相反的方向各发一辆公共汽车,那么汽车站发车的间隔时间是多少?2、小明从东城到西城去,一共用了24分钟。

两城之间同时并且每隔相等的时间对发一辆公共汽车。

他出发时恰好有一辆公共汽车从东城发出,之后他每隔4分钟看见一辆公共汽车迎面开来,每隔6分钟有一辆公共汽车从背后超过。

六年级奥数《比和比例》训练题

六年级奥数《比和比例》训练题

六年级奥数《比和比例》训练题
1、某校女同窗占全校先生总人数的51%。

假定该校有男生735人,那么该校有女同窗多少人?
2、假定3a=4b,5b=6c,那么a是c的多少倍?
3、某超市展开促销活动,将原来九折销售的鸡蛋降为八折销售。

这样,一次买5斤鸡蛋可以少花1.75元。

那么鸡蛋的原价是每斤多少元?
4、某商品价钱为25元/件,求打八折再降价2元后的价钱。

5、某商品进价为a元/件,在销售旺季,该商品售价较进价高50%;销售旺季事先,又以7折的价钱对该商品展开促销活动,这时,一件商品的售价为〔〕
〔A〕1.5a元〔B〕0.7a元〔C〕1.2a元〔D〕1.05a元6、用一根长24厘米的铁丝弯成一个长:宽=5:1的长方形,求这个长方形的面积。

7、某种中药含有甲、乙、丙、丁四种草药成分。

这四种成分的重量之比是0.7:1:2:4.7,现要配制这种中药2100克,这四种草药区分需求多少克?
8、在直角∠AOB内引射线OC,假定∠AOC: ∠BOC=3:2,求∠BOC的度数。

9、甲、乙、丙三人的年龄有以下关系:甲的年龄是乙的年龄的2倍,且是丙的年龄的10倍,而去年乙的年龄是丙的年龄的6倍。

求三人各自的年龄?
10、班委会决议,由大宝、二宝两人担任选购圆珠笔、钢笔共22支,送给结对的山区学校的先生。

他们去了商场,看到圆珠笔每支2元,钢笔每支6元。

假定购置圆珠笔9折优惠,购置钢笔8折优惠,在所需费用不超越60元的前提下,请你写出一种选购方案。

奥数比和比例含答案

奥数比和比例含答案

y;a;x=ma(其中m≠0);y b;x=;②=⇒x-y a-b;x+y,y=c x ac;x:y:z=ac:bc:bd;比和比例月日姓名【知识要点】一、比和比例的性质性质1:若a:b=c:d,则(a+c):(b+d)=a:b=c:d;性质2:若a:b=c:d,则(a-c):(b-d)=a:b=c:d;性质3:若a:b=c:d,则(a+x c):(b+x d)=a:b=c:d;(x为常数)性质4:若a:b=c:d,则a×d=b×c;(即外项积等于内项积)正比例:如果a÷b=k(k为常数),则称a、b成正比;反比例:如果a×b=k(k为常数),则称a、b成反比.二、主要比例转化实例①x a=⇒y bb x a mx a===x a a b x y y b my b y mb③x a x a=⇒=y b x+y a+b ;a+b==x a x-y a-b;④x a=⇒=y b z d z bd⑤x的c等于y的d,则x是y的ad,y是x的bc.a b bc ad三、按比例分配与和差关系⑴按比例分配例如:将x个物体按照a:b的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x的比分别为a:(a+b)和b:(a+b),所以甲分配到ax个,乙分配到bx个.a+b a+b⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A、B,元素的数量比为a:b(这里a>b),数量差为x,那么A的元素数量为ax,Ba-b 的元素数量为bx,所以解题的关键是求出(a-b)与a或b的比值.a-b四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l”。

题中如果有几个不同的单位“1”,必须根据具体情况,将不同的单位“1”,转化成统一的单位“1”,使数量关系简单化,达到解决问题的效果。

在解答分数应用题时,要注意以下几点:1.题中有几种数量相比较时,要选择与各个已知条件关系密切、便于直接解答的数量为单位“1”。

奥数比和比例含答案

奥数比和比例含答案

比和比例 月 日 姓 名【知识要点】一、比和比例的性质性质1:若a : b =c :d ,则(a + c ):(b + d )= a :b =c :d ;性质2:若a : b =c :d ,则(a - c ):(b - d )= a :b =c :d ;性质3:若a : b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数)性质4:若a : b =c :d ,则a ×d = b ×c ;(即外项积等于内项积)正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比;反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例①x a y b = ⇒ y b x a =; x y a b =; a b x y =;② x a y b = ⇒ mx a my b =; x ma y mb =(其中0m ≠); ③x a y b = ⇒ x a x y a b =++; x y a b x a --=; x y a b x y a b ++=-- ; ④ x a y b =,y c z d = ⇒ x ac z bd=;::::x y z ac bc bd =; ⑤ x 的ca 等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad . 三、按比例分配与和差关系⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bx a b+个. ⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为ax a b -,B 的元素数量为bx a b -,所以解题的关键是求出()a b -与a 或b 的比值. 四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。

六年级下册-第二单元比和比例能力提高题和奥数题(附答案)

六年级下册-第二单元比和比例能力提高题和奥数题(附答案)

第二单元 比和比例能力提升题和奥数题板块一 比例题1.小明读一本书,已读的页数和未读的页数之比是5∶4,如果再读27页,已读的页数和未读的页数之比是2∶1。

求这本书有多少页?练习1.甲、乙两袋糖果的质量比是3∶2,如果从甲袋糖果中拿出5千克放入乙袋,这时甲、乙两袋糖果的质量比是1∶1。

两袋糖果一共重多少千克?例题2.甲数是乙数的103,乙数是丙数的94,求这三个数的连比。

练习2.在学校召开的秋季运动会上,李小强、刘小刚、王小林三个人参加了百米赛跑。

赛跑的过程中,李小强的速度比刘小刚慢101,刘小刚的速度比王小林慢101,他们三人的速度比是多少?例题3.蓝天小学和新世纪小学学生人数的比为3∶5。

如果从蓝天小学转入新世纪小学150人,则蓝天小学与新世纪小学学生人数的比为3∶7。

求原来蓝天小学和新世纪小学各有多少人?练习3.甲、乙两个仓库货物的质量比是7:5,如果甲仓给乙仓26吨,那么甲、乙两个仓库货物的质量比是3:4.甲仓原来有多少吨货物?例题4.某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15元,小轿车10元。

某日通过该收费站的大客车和小客车数量之比是5:6,小客车与小轿车之比是4:11,收取小轿车的通行费比大客车多210元。

求这天这三种车辆通过的数量。

练习4.学校组织体检,收费标准如下:老师每人3元,学生每人2元。

已知老师和学生的人数比为2:9,共收得体检费3120元。

那么老师、学生各有多少人?例题5.甲、乙、丙三人合买一台电视机,甲所付钱数的21等于乙所付钱数的31,等于丙所付钱数的73。

已知丙比甲多付了120元,那么这台电视机多少钱?练习5..甲、乙、丙三人逛商场,甲花的钱数的21等于乙花的钱数的31,乙花的钱数的74等于丙花的钱数的43,丙比甲多花47元,乙花了多少元?例题6.张、王、李、赵4人联合为灾区捐款,张捐的钱数是王,李,赵总和的41,王捐的钱是张,李,赵总和的237,李捐的钱是张,王,赵总和的114,赵捐了9元钱。

(完整版)六年级奥数题:比和比例一

(完整版)六年级奥数题:比和比例一

比例问题一、 填空题1.4:( )=2016=( )÷10=( )% 2.在3:5里,如果前项加上6,要使比值不变,后项应加 .3.12:1的图纸上,精密零件的长度为6厘米,它的实际长度是 毫米.4.某生产队有一块正方形菜地,边长120米,在总面积中种植西红柿、南瓜、茄子面积的比是25:1:21,三种蔬菜各种了 亩.5.买甲、乙两种铅笔共210支,甲种铅笔每支价值3分,乙种铅笔每支价值4分,两种铅笔用去的钱相同,甲种铅笔买了 支.6.车库中停放若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数的比是2:5.问:摩托车的辆数与小卧车的辆数的比是 .7.自然数A 、B 满足182111=-B A ,且A :B =7:13.那么,A +B = . 8.光明小学有三个年级,一年级学生占全校学生人数的25%,二年级与三年级学生人数的比是3:4,已知一年级比三年级学生少40人,一年级有学生 人.9.水泥、石子、黄砂各有5吨,用水泥、石子、黄砂按5:3:2拌制某种混凝土,若用完石子,水泥缺 吨.黄砂多 吨.10.甲、乙两人步行的速度比是13:11.如果甲、乙分别由A 、B 两地同时出发相向而行,0.5小时后相遇,如果它们同向而行,那么甲追上乙需要 小时.11.已知甲、乙两数的比为5:3,并且它们最大公约数与最小公倍数的和是1040,那么甲数是多少,乙数是多少.12.有一块铜锌合金,其中铜与锌的比是2:3.现在加入锌6克,共得新合金36克,求在新合金内铜与锌的比.13.一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1:2:3.某人走各段路所用时间之比依次是4:5:6.已知他上坡时速度为每小时3千米.路程全长50千米.问:此人走完全程用了多少时间?14.一个圆柱体的容器中,放有一个长方形铁块.现在打开一个水龙头往容器中注水,3分钟时,水恰好没过长方体的顶面,又过了18分钟,水灌满容器.已知容器的高度是50厘米.长方体的高度是20厘米,那么长方体底面积:容器底面面积等于多少?练习题1 有一个长方体,长与宽的比是2:1,宽与高的比是3:2,已知这个长方体的全部棱长之和是220cm。

比例和反比例 (奥数)

比例和反比例 (奥数)

比例和反比例(奥数)一、比例和反比例1.一辆汽车在公路上行驶,行驶的时间和路程如下图。

(1)这辆车10小时行驶多少千米?(2)行驶600千米要多少时?【答案】(1)解:10x80=800(千米)答:这辆车10小时行驶800千米。

(2)解:600+80=7.5(小时)答:行驶600千米要7.5时。

【解析】【分析】(1)由时间路程图可知,1小时行驶的路程是80千米,即汽车的速度是80千米/小时,再由“路程=速度x时间〃进行计算;(2)由(1)可知汽车的速度,再由“时间=路程+速度〃进行计算。

2.两个咬合在一起的齿轮,主动轮有50个齿,每分钟转100转;从动轮有20个齿,每分钟转多少转?【答案】解:设从动轮每分钟转x转,则20x=50x10020x=5000x=250答:从动轮每分钟转250转。

【解析】【分析】由于两齿轮咬合在一起,它们必须在相同时间内转过相等的齿数,设从动齿轮每分钟转x转,则有:50x100=20x,就可解答此题.3.从甲地到乙地,小华用了5小时,小红用了3小时。

小华和小红所用的时间的比是,他们的速度比是。

【答案】5:3;3:5【解析】【解答】解:小华和小红所用的时间的比是5:3,他们的速度比是3:5。

故答案为:5:3;3:5。

【分析】路程一定,速度和时间成反比。

4.下图表示彩带的总价和购买长度之间的对应关系。

彩带总价和长度成比例关【答案】正;9.6;22.4【解析】【解答】下图表示彩带的总价和购买长度之间的对应关系。

彩带总价和长度成正比例关系,购买3米彩带需32x3=9.6元,购买7米彩带需3.2x7=22.4元。

故答案为:正;9.6;22.4o【分析】观察图可知,正比例图像是一条经过原点的直线,彩带的总价!彩带的长度=每米彩带的单价,当每米彩带的单价一定时,彩带的总价和长度成正比例;要求3米彩带需要多少钱,用每米彩带的单价x数量=彩带的总价,同样的方法可以求出7米彩带的总价,据此列式解答。

六年级——比与比例(奥数)

六年级——比与比例(奥数)

比与比例例1 甲乙两列火车同时从两地相向开出,已知甲列车每小时行120千米,乙列车每小时行90千米,求甲车乙车的速度比,甲乙两车相遇时所行路程比,甲乙两车各自行完全程所用的时间比。

例2 (1)a 的57等于b 的34,那么a :b=( ):( ) (2)a :b=3:4 b :c=5:6那么a :b :c=( )例3 要配制混凝土,其中水泥和砂的比是5:8,砂和石子的比是1:2。

问:要制混凝土1160吨,需要水泥、砂、石子各多少吨?例4 甲乙两色糖的重量比是4:1,如果从甲色糖取出10克放入乙色糖后,甲乙两色糖的重量比是7:5,那么甲色糖原来重多少克?例5 甲乙两个瓶子里装的溶液体积相等,甲瓶中酒精与水的体积比是3:1,乙瓶中酒精与水的体积之比是4:1,现在把两瓶溶液混合在一起,这时酒精和水的体积比是多少?大胆闯关:1 六年级三个班参加植树活动,一班与二班的人数比是5:4,二班与三班的人数比是3:2,已知一班比二、三班的总人数少15人,问:六年级参加植树的共多少人?2.甲乙丙三人共有存款106元,已知甲存款数的12相当于乙的15,乙存款数的14相当于丙的15。

甲乙丙各有存款多少元?3.某小学组织英语口语竞赛,已知参赛男生人数的14和参赛女生人数的25相等,男生比女生多36人,男生有多少人?4.甲乙两组的人数比是5:3,如果从甲组调9人去乙组,那么甲乙两组的人数比是2:3。

求甲乙两组原来各有多少人。

5.制造一个零件,甲需要8分钟,乙需要6分钟,丙需要5分钟,现在有1180个零件的制造任务分配给他们三人,要求在相同时间内完成,每个人应该分多少个零件?6.甲乙两桶油共130千克,从甲桶倒出2给乙桶,甲桶油与乙7桶油的比为7:6,原来甲乙两桶各有油多少千克?。

六年级比和比例奥数题

六年级比和比例奥数题

六年级比和比例(1)1.4:( )=()12=( )÷12=0.8=( )%=( ):( )2.建筑工地计划运进一批水泥,第一次运来总数的41,第二次运来180吨,这时运来的与没有运来的吨数比是4:3,工地计划运进水泥多少吨?3.已知a:b=c:d ,现将a 扩大2倍,b 缩小到原来的21,c 不变,d 应( )才能使比例式仍成立。

4.在1、2、3、4、6、8、12、16这八个数中,哪些数能组成比例。

(答案有多组,至少写出其中的两组,即8个比例式。

)5.在一个比例式里,第一个比是最简整数比,且比值是0.75,两个内项的乘积是60,这个比例式是( )。

6.在比例尺50001的地图,量得一长方形地长3.2厘米,宽1.2厘米,这块土地实际的面积是多少?第一部分必做题1.(☆)两个正方体棱长的比是2:3,这两个正方体底面积的比是():(),体积比是():()。

2.(☆)甲数和乙数的比是4:3,甲数与甲乙两数和的比是(),甲数比乙数多()(),乙数比甲数少()%。

3.一个正方体的六个面分别是红色、黄色、绿色、蓝色、红色、白色,把它拿在手上掷回桌面,蓝色朝上的可能性大约是()%,红色大约是()%。

4.(☆)⑴一幅行政区域图上用5厘米表示实际距离100千米,这幅地图的比例尺是()。

⑵一个零件实际长度是3毫米,画在图上的长度是3厘米,这幅图的比例尺是()。

⑶在比例尺1:2000000的地图上,测得A、B两地是4.5厘米,实际距离是()千米。

⑷如皋、海安两城之间的实际距离是192千米,在比例尺为1:600000的图纸上,应画()厘米。

5.(☆)海安实小新建学生公寓楼,地基是长方形,长40米,宽15米,把它画在设计图上,长画80厘米,宽应画多少厘米?6.(☆☆)看下图回答下列问题:学校西小青家0 200 400 600米小红家a.图中比例尺是()。

b.小青家在学校的()边。

c.小红家到学校有()米。

d.小青家到学校比小红家到学校远()米。

小学奥数比和比例

小学奥数比和比例

比和比例1.一块长方形菜地,长和宽的比是4:3,菜地的周长是210米,这块菜地的面积是多少平方米?2.一个长方形的周长是40分米,长与宽的比是3:1,这个长方形的面积是多少?3.已知一块长方形操场的面积是2200平方米,长与宽的比是11:8。

这块长方形操场的周长是多少?4.某实验小学的三个课外兴趣小组共198人,航模组与电子琴组的人数比是9:10,电子琴组与奥数组的人数比是5:7,这三个小组分别有多少人?5.部队开展植树活动,共植了560棵树,其中司令部与职工部植树棵树的比是3:5,职工部与后勤部植树棵树的比是15:4。

问:职工部植树多少棵?,走的时间6.小明和小强各走一段路程,小明比小强走的路程多16多1.小明和小强的速度比是多少?5,乙用的时间比7.甲和乙分别走不同的路程,甲走的路程比乙少13。

甲和乙的速度比是多少?甲多298.A、B两个长方形,它们的周长相等,A的长与宽的比是3:2,B的长与宽的比是5:3。

A与B的面积之比是多少?9.甲、乙两桶油的重量比是4:1,如果从甲桶倒给乙桶10千克,那么甲、乙两桶油的重量比是7:5。

两桶油共有多少千克?10.第一、二两个粮库贮粮的重量比是2:3,从第二个粮库运给第一个粮库2吨粮食,则第一、二两个粮库贮粮的重量比是5:6.第一个粮库原有粮食多少吨?11.建设工程队第一分队与第二分队人数的比是1:2,从第二分队调出6人到第一分队,这时第一、二分队人数的比是3:4.原来第一分队比第二分队少多少人?12.星期天,李华和家人去爬紫金山,上山时他们平均每分钟走30米,下山时他们平均每分钟走45米,上山下山共用去65分钟,假设他们中途没有停留,李华和家人上山下山共走了多少米?13.部队进行行军练习,从A地到B地,去时每小时行20千米,回来时每小时行15千米,来回共用了7小时,部队这次行军共走了多少千米?14.小强从学校回家拿忘记带的作业,去时每分钟走35米,回来时每分钟走25米,来回共用了72分钟,小强家离学校有多远?15.A、B两车的速度比是4:3,A车走完一段路程需要15小时,那么B车走完这段路程需要几小时?16.一辆汽车从甲城到乙城,如果速度提高20%,则时间应减少百分之几?17.一架直升飞机以每小时600千米的速度从乙市飞到甲市,又小时。

小升初奥数比、比例

小升初奥数比、比例

比与比例1、比的意义:两个数相除,又叫做这两个数的比。

2、求比值的方法(单位不一样时先统一单位)用比的前项除以比的后项所得的商就是这个比的比值。

注:比值可以用分数表示,也可以用小数或整数表示。

3、比与除法、分数之间的联系。

比前项 :(比号) 后项 比值 除法被除数 ÷(除号) 除数 商 分数 分子 -(分数线)分母 分数值 4、比和比例5、比例尺一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

即:图上距离:实际距离=比例尺 或 比例尺实际距离图上距离= 例1、( 6 )÷8=0.75= )16(12=(9 ):12举一反三、0.6=3:( 5 )=( 9 )÷15=(6 )成=( 60 )%例2、用一根60m 长的铁丝制成一个长方体框架,长、宽、高的比是2:2:1,这个长方体的体积是多少立方米?设每一份长为x2x*4+2x*4+4x=6020x=60X=3V=2x*2x*x=2*3*2*3*3=108举一反三、专业户刘大伯家养鸡、鸭、鹅共1800只,这三种家禽的只数比是5:3:1。

刘大伯家养鸡、鸭、鹅各多少只 ?例2、有一种混凝土所用的材料水泥、河沙、石子之比是2:3:5。

(1)已知配制这种混凝土用了40吨水泥,求河沙和石子各用了多少吨?(2)已知配制这种混凝土中的石子比河沙重30吨,求混凝土中各有材料多少吨?例3、在一幅1:600000的地图上,甲乙两地的距离是7cm ,那么,甲乙两地的实际距离是多少千米?例4、解比例752.125x = 441x 25:=: x 4110181:=: 6x 328.0:=:例题5、甲数是乙数的23 ,乙数是丙数的45,甲、乙、丙三数的比是( ):( ):( )。

举一反三、甲数是乙数的45 ,乙数是丙数的58 ,甲、乙、丙三数的比是( ):( ):( )。

例题6、甲、乙两校原有图书本数的比是7:5,如果甲校给乙校650本,甲、乙两校图书本数的比就是3:4。

小学六年级奥数比和比例【五篇】

小学六年级奥数比和比例【五篇】

【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。

以下是⽆忧考为⼤家整理的《⼩学六年级奥数⽐和⽐例【五篇】》供您查阅。

【第⼀篇】习题: 甲、⼄、丙三⼈沿湖边⼀固定点出发,甲按顺时针⽅向⾛,⼄与丙按逆时针⽅向⾛。

甲第⼀次遇到⼄后⼜⾛了1分15秒遇到丙,再过3分45秒第⼆次遇到⼄。

已知甲、⼄的速度⽐是3:2,湖的周长是600⽶,求丙的速度。

解析: 甲⼄两⼈的速度和600÷(5/4+15/4))=120 甲的速度120÷(1+2/3)=72 ⼄的速度120-72=48 甲和丙的速度和600÷(5/4+15/4+5/4)=96 丙的速度96-72=24【第⼆篇】习题: ⼀位牧⽺⼈赶着⼀群⽺去放牧,跑出⼀只公⽺后,他数了数⽺的只数,发现剩下的⽺中,公⽺与母⽺的只数⽐是9:7;过了⼀会⼉跑⾛的公⽺⼜回到⽺群,却⼜跑⾛了⼀只母⽺,牧⽺⼈⼜数了数⽺的只数,发现公⽺与母⽺的只数⽐是7:5。

这群⽺原来有多少只? 解析: 设跑出⼀只公⽺后,公⽺9x只,则母⽺7x只 (9x+1):(7x-1)=7:5 7(7x-1)=5(9x+1) 49x-7=45x+5 49x-45x=7+5 4x=12 x=3 所以: 原有公⽺=9x+1=27+1=28只 原有母⽺=7x=21只 原有:群⽺=28+21=49只【第三篇】习题: ⼀个运输队运送⼀批货,第⼀天,运了全部的30%,第⼀天和第⼆天运量的⽐是3:2,还剩520吨没运⾛,这批货原有多少吨? 解析: 第⼀天运送30%,第⼀天与第⼆天运量⽐例是3:2,则第⼆天运了20%,共计50%,剩余50%,为520吨,故总共有520*2=1040吨【第四篇】习题: 有两桶⽔:⼀桶8升,⼀桶13升,往两个桶中加进同样多的⽔后,两桶中⽔量之⽐是5:7,那麽往每个桶中加进去的⽔量是多少升? 解析: 此题的关键是抓住不变量:差不变。

(完整版)小学奥数-比和比例(教师版)

(完整版)小学奥数-比和比例(教师版)

比和比例【例1】★已知3 :(x —1)=7:9,求x . 【解析】764=x 【小试牛刀】某班的男、女生之比为3:2,又来了4名女生后,全班共有44人。

求现在的男、女生人数之比.【解析】原有40人,男生有40×3÷5=24人,女生40-24=16人,现在男女人数之比24:20=6:5【例2】★甲、乙两个长方形,它们的周长相等。

甲的长与宽之比是3:2,乙的长与宽之比是7:3,那么甲与乙的面积之比是多少?【解析】长+宽相等.甲的长:宽=6:4,乙的长:宽=7:3。

所以甲乙的面积比为(64):(73)8:7⨯⨯=【例3】★★两个相同的瓶子装满酒精溶液,一个瓶中酒精与水的体积之比是3:1,而另一个瓶中酒精与水的体积之比是4:1,若把两瓶酒精溶液混合,则混合后的酒精和水的体积之比是多少?【解析】两个瓶子体积相同。

第一个瓶子酒精:水=3:1=15:5,第二个瓶子酒精:水=4:1=16:4,于是混合后酒精:水=(15+16):(5+4)=31:9【小试牛刀】水果店运来的西瓜个数与白兰瓜个数的比为7:5。

如果每天卖白兰瓜40个,西瓜50个,若干天后卖完白兰瓜时,西瓜还剩36个。

问:水果店运来的西瓜有多少个?【解析】卖的瓜的总数比为西瓜:白兰瓜=5:4=25:20,原有西瓜:白兰瓜=7:5=28:20,西瓜剩3份36个,每份12个,所以原有西瓜28×12=336个。

【例4】★★商店购进甲乙两种不同糖果,所用费用之比为2:1,甲种糖果每千克6元,乙种每千克2元。

如果把这两种糖果混在一起成为什锦糖,那么,这种什锦糖每千克多少元?【解析】费用比2:1,单价比3:1,重量比212331=::,平均价格为6223 3.623⨯+⨯=+(元/千克) 【例5】★★甲乙二人共加工零件400个,甲加工一个零件用9分钟,乙加工一个零件用15分钟。

完成任务时,甲比乙多加工多少个零件?【解析】工效之比15:9=5:3,甲比乙多加工5340010053-⨯=+(个) 【小试牛刀】甲乙走完同一段路分别用40分和30分,甲先走5分后乙再追,乙几分钟才能追上甲?【解析】甲乙速度之比3:4,设乙x 分追上甲,则甲用(5+x )分,3(5+x )=4x ,x =15【例6】★★甲走的路比乙多31,乙用的时间却比甲多41,则甲乙两人的速度比是多少? 【解析】甲乙路程之比是4:3,甲乙时间之比是4:5,所以甲乙速度之比是5:3【例7】★★从A 地到B 地,甲、乙两人骑自行车行完全程所用的时间的比是4:5,如果甲、乙两人同时分别从A 、B 两地相对骑出,40分钟相遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比和比例奥数题
小学六年级奥数训练题之比和比例(1)
例1、乘坐某路汽车成年人票价3元,儿童票价2元,残疾人票价1元,某天乘车的成年人、儿童和残疾人的人数比是50:20:1,共收得票款26740元,这天乘车中成年人、儿童和残疾人各有多少人?
提示:单价比:成年人:儿童:残疾人=3:2:1
人数比:50:20:1
[练习]甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米?
例2、“希望小学”搞了一次募捐活动,她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元。

已知购得的甲商品与乙商品的数量之比为5:6,乙商品与丙商品的数量之比为4:11,且购买丙商品比购买甲商品多花了210元。

提示:根据已知条件可先求三种商品的数量比。

[练习]一种什锦糖是由酥糖、奶糖和水果糖按5:4:3的比例混合而成,酥糖、奶糖和水果糖的单价比是11:8:7,要合成这样的什锦糖120千克,什锦糖每千克32.4元,混合前的酥糖每千克是多少元?
例3、A、B、C是三个顺次咬合的齿轮。

当A转4圈时,B恰好转3圈;当B转4圈时,C恰好转5圈,问这三个齿轮的齿数的最小数分别是多少?
提示:根据已知条件已知A、B、C转速与齿数的积都相等,即它们的转速与齿数成反比例。

习题:
1、甲、乙、丙三个平行四边形的底之比是4:5:6,高之比是3:2:1,已知三个平行四边形的面积和是140平方分米,那么甲、乙、丙三个平行四边形的面积各是多少?
2、甲、乙、丙三个三角形的面积之比是8:9:10,高之比是2:3:4,对应的底之比是多少?
3、某校四、五年级参加数学竞赛的人数相等,四年级获奖人数与未获奖人数的比是1:4,五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少?
4、盒子里共有红、白、黑三种颜色的彩球共68个,红球与白球个数的比是1:2,白球与黑球个数的比是3:4,红球有多少个?
1 / 1。

相关文档
最新文档