2017-2018学年浙江省丽水市八年级(下)期末数学试卷
浙江省丽水市八年级下学期数学期末考试试卷(五四制)
浙江省丽水市八年级下学期数学期末考试试卷(五四制)姓名:________ 班级:________ 成绩:________一、填空题 (共10题;共11分)1. (1分)如果实数x、y满足方程组,那么x2﹣y2= ________.2. (1分)不等式﹣5≤3的正整数解的和为________3. (1分) (2017八上·余杭期中) 己知中,,作与只有一条公共边,且与全等的三角形,这样的三角形一共能作出________个.4. (1分) (2019八下·新田期中) 如图,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE 上,AD=5,BE=4,则AB的长为________.5. (1分)一个八边形的内角和是________6. (1分)若 = =1,将原方程组化为的形式为________.7. (1分)(2019·广西模拟) 如图,在扇形OAB中,∠AOB=60°,扇形半径为r,点C在弧AB上,CD⊥OA,垂足为D,当△OCD的面积最大时,弧AC的长为________8. (1分) (2020七下·灌南月考) 若关于的不等式的整数解共有个,则的取值范围是________.9. (1分) (2019九上·香坊月考) 如图所示,在中,分别是边上的点,且,则 ________.10. (2分) (2019八上·越秀期中) 如图:∠EAF=15°,AB=BC=CD,则∠ECD等于________°.二、单选题 (共10题;共20分)11. (2分)平行四边形的一条边长是10cm,那么它的两条对角线的长可能是()A . 6cm和8cmB . 10cm和20cmC . 8cm和12cmD . 12cm和32cm12. (2分) (2020八下·曹县月考) 点A(a,-1)与点B(2,b)关于y轴对称,则点(a,b)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限13. (2分)如图为1995~2000年我国国内生产总值年增长率的变化情况,从图上看,下列结论中不正确的是()A . 1995~1999年,国内生产总值的年增长率逐年减少B . 2000年国内生产总值的年增长率开始回升C . 这7年中,每年的国内生产总值不断增长D . 这7年中,每年的国内生产总值有增有减14. (2分)(2018·南宁模拟) 不等式组的解集在数轴上表示正确的是()A .B .C .D .15. (2分) (2016八上·扬州期末) 如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是()A . ∠M=∠NB . AM∥CNC . AB = CDD . AM=CN16. (2分)(2019·石家庄模拟) 某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员普换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A . 平均数变小,方差变小B . 平均数变大,方差变大C . 平均数变大,方差不变D . 平均数变大,方差变小17. (2分)如果2xa﹣2b﹣3ya+b+1=0是二元一次方程,那么a,b的值分别是()A . 1,0B . 0,1C . ﹣1,2D . 2,﹣118. (2分) (2018七上·河口期中) 在△ABC和△A′B′C′中,下列条件:①AB=A′B′,②BC=B′C′,③AC=A′C′,④∠A=∠A′,⑤∠B=∠B′,⑥∠C=∠C′,不能判定△ABC≌△A′B′C′的是()A .B .C .D .19. (2分)(2010·华罗庚金杯竞赛) 用甲乙两种饮料按照x:y(重量比)混合配制成一种新饮料,原来两种饮料成本是:甲每500克5元,乙每500克4元。
浙江省丽水市八年级下学期期末考试数学试题
浙江省丽水市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)(2017·永嘉模拟) 要使二次根式有意义,则x应满足()A . x≠1B . x≥1C . x≤1D . x<12. (2分)(2017·黔西南) 下列各式正确的是()A . (a﹣b)2=﹣(b﹣a)2B . =x﹣3C . =a+1D . x6÷x2=x33. (2分)在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A . 当a<5时,点B在⊙A内B . 当1<a<5时,点B在⊙A内C . 当a<1时,点B在⊙A外D . 当a>5时,点B在⊙A外4. (2分)若A(a1 , b1),B(a2 , b2)是反比例函数y=-图象上的两个点,且a1<a2 ,则b1与b2的大小关系是()A . b1<b2B . b1=b2C . b1>b2D . 大小不确定5. (2分)如果用长20米的铁丝围成一个面积为24平方米的长方形,那么长方形的长和宽分别是()A . 8米,2米B . 6米,4米C . 7米,3米D . 9米,1米6. (2分) (2017九上·吴兴期中) 如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E 在优弧AB上.若∠AOD=52°,则∠DEB的度数为()A . 52°B . 40°C . 26°D . 45°二、填空题 (共20题;共112分)7. (1分)(2017·绵阳) 关于x的分式方程 = 的解是________.8. (1分) (2016八上·泰山期中) 分式与的最简公分母是________.9. (1分) (2016八上·埇桥期中) 比较大小:3 ________5 .10. (2分)方程x2+(k﹣1)x﹣3=0的一个根是1,则k的值是________,另一个根是________.11. (1分) (2017八下·沂源开学考) 如果x<﹣4,那么|(2﹣x)﹣ |的值为________.12. (1分)(2020·桂林) 反比例函数y=(x<0)的图象如图所示,下列关于该函数图象的四个结论:①k>0;②当x<0时,y随x的增大而增大;③该函数图象关于直线y=﹣x对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有________个.13. (1分) (2019九上·惠州期末) 设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为________;14. (1分)(2020·寿宁模拟) 若AB是的直径,AC是弦,于点,若,则BC=________.15. (1分)(2019·昆明模拟) 已知:m﹣=5,则m2+ =________.16. (1分)(2019·武昌模拟) 如图,AB为弓形AB的弦,AB=2 ,弓形所在圆⊙O的半径为2,点P为弧AB上动点,点I为△PAB的内心,当点P从点A向点B运动时,点I移动的路径长为________.17. (10分) (2019八下·大连月考)(1)(2)18. (10分) (2020九上·德城期末) 解下列方程:(1) 2x2-4x-1=0(配方法);(2) (x+1)2=6x+6.19. (5分)(2019·邹平模拟) 先化简,再求值:(x-1)÷( -1),其中x为方程x2+3x+2=0的根.20. (5分)(2019·朝阳) 佳佳文具店购进A,B两种款式的笔袋,其中A种笔袋的单价比B种袋的单价低10%.已知店主购进A种笔袋用了810元,购进B种笔袋用了600元,且所购进的A种笔袋的数量比B种笔袋多20个.请问:文具店购进A,B两种款式的笔袋各多少个?21. (15分)(2020·临沂) 已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:)是反比例函数关系.当时,.(1)写出I关于R的函数解析式;(2)完成下表,并在给定的平面直角坐标系中画出这个函数的图象;…………(3)如果以此蓄电池为电源的用电器的限制电流不能超过.那么用电器可变电阻应控制在什么范围内?22. (11分) (2015八上·谯城期末) 已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”,试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系________;(2)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N,利用(1)的结论,试求∠P的度数;(3)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系?并说明理由.23. (5分)(2020·凉山模拟) 一个容器盛满纯酒20升,第一次倒出纯酒精若干升后,加水注满,第二次倒出相同数量的酒精,这时容器内的纯酒精只是原来的,问第一次倒出纯酒精多少升?24. (10分)(2017·郑州模拟) 已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形的两边长,且k=4,求该矩形的周长.25. (15分)(2019·武汉模拟) 在△ABC中,D是CB延长线上一点,∠BAD=∠BAC.(1)如图,求证:;(2)如图,在AD上有一点E,∠EBA=∠ACB=120°.若AC=2BC=2,求DE的长;(3)如图,若AB=AC=2BC=4,BE⊥AB交AD于点E,直接写出△BDE的面积.26. (15分) (2018九下·河南模拟) 正方形ABCD和正方形CEFG如图1所示,其中B、C、E在一条直线上,O 是AF的中点,连接OD、OG(1)探究OD与OG的位置关系的值;(写出结论不用证明)(2)如图2所示,将正方形ABCD和正方形CEFG改为菱形ABCD和菱形CEFG,且∠ABC=∠DCE=120°,探究OD 与OG的位置关系,及的比值;(3)拓展探索:把图1中的正方形CEFG绕C顺时针旋转小于90°的角后,其他条件均不变,问第1问中的两个结论是否发生变化?(写出结论不用证明)参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共20题;共112分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、17-2、18-1、18-2、19-1、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。
浙江省丽水市八年级下学期数学期末考试试卷
浙江省丽水市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分) (2018八下·瑶海期中) 下列计算正确是A .B .C .D .2. (2分) (2015八上·宜昌期中) 若一个多边形的内角和为1080°,则这个多边形的边数为()A . 6B . 7C . 8D . 93. (2分)已知两组数据,2、3、4和3、4、5,那么下列说法正确的是()A . 中位数不相等,方差不相等B . 平均数相等,方差不相等C . 中位数不相等,平均数相等D . 平均数不相等,方差相等4. (2分) (2017八下·广州期中) 下列命题:如图,正方形ABCD中,E、F分别为AB、AD上的点,AF=BE,CE、BF交于H,BF交AC于M,O为AC的中点,OB交CE于N,连OH.下列结论中:①BF⊥CE;②OM=ON;③ ;④ .其中正确的命题有()A . 只有①②B . 只有①②④C . 只有①④D . ①②③④5. (2分)根据下列一次函数y = kx + b的图象,常数k、b的符号正确的是()A . k>0,b<0B . k<0,b>0C . k<0,b<0D . k>0,b>06. (2分)下列二次根式中,最简二次根式是()A .B .C .D .7. (2分) (2017九下·无锡期中) 已知点A,B分别在反比例函数y= (x>0),y= (x>0)的图象上且OA⊥OB,则tanB为()A .B .C .D .8. (2分)如图,平行四边形ABCD的周长为20cm,AB≠AD,AC、BD相交于点0,EO⊥BD交AD于点E,则△ABE 的周长为()A . 4cmB . 6cmC . 8cmD . 10cm9. (2分) (2019八下·北京期中) 如图,一次函数y=kx+b的图象经过点(﹣1,0)与(0,2),则关于x 的不等式kx+b>0的解集是()A . x>﹣1B . x<﹣1C . x>2D . x<210. (2分)下列命题是假命题的是()A . 三角形的中线平分三角形的面积B . 三角形的角平分线交点到三角形各边距离相等C . 三角形的高线至少有两条在三角形内部D . 三角形外心是三边垂直平分线的交点11. (2分)关于4,3,8,5,5这五个数,下列说法正确的是()A . 众数是5B . 平均数是4C . 方差是5D . 中位数是812. (2分)已知,A市到B市的路程为260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回A市,同时甲车以原来1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车所用时间x(小时)之间的函数图象,下列四种说法:①甲车提速后的速度是60千米/时;②乙车的速度是96千米/时;③乙车返回时y与x的函数关系式为y=﹣96x+384;④甲车到达B市乙车已返回A市2小时10分钟.其中正确的个数是()A . 1个B . 2个C . 3个D . 4个13. (2分)如图,矩形ABCD中,点E是BC边上一点,连接AE,将△ABE向右平移得到△DCF,连接AF.若四边形AEFD为菱形,AF=4 ,BE:EC=3:2,则AD长为()A . 3B .C . 5D .14. (2分)(2018·深圳模拟) 如图,在同一平面直角坐标系中,反比例函数y=与一次函数y=kx-1(k为常数,且k>0)的图象可能是()A .B .C .D .15. (2分)顺次连结等腰梯形各边中点所得的四边形一定是()A . 等腰梯形B . 矩形C . 菱形D . 正方形16. (2分)药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药后时间x(时)之间的函数关系如图所示,则当1≤x≤6时,y的取值范围是()A . ≤y≤B . ≤y≤8C . ≤y≤8D . 8≤y≤16二、填空题 (共3题;共3分)17. (1分) (2016八下·龙湖期中) 计算 =________.18. (1分)已知一次函数经过点(﹣2,3)且y随x增大而减小,请写出一个满足上述条件的函数关系式________.19. (1分)如图,在菱形A BCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF=________.三、解答题 (共7题;共68分)20. (10分)计算;(1);(2).21. (5分)如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上任意一点,且CD切⊙O于点D.(1)试求∠AED的度数.(2)若⊙O的半径为cm,试求:△ADE面积的最大值.22. (8分) (2017七下·东城期末) 阅读下列材料:2013年,北京发布《2013年至2017年清洁空气行动计划》,北京的空气污染治理目标是力争到2017年全市PM2.5年均浓度比2012年下降25%以上,控制在60微克/立方米左右.根据某空气监测单位发布数据,2013年北京PM2.5年均浓度89.5微克/立方米,清洁空气问题引起了所有人的高度关注.2014年北京PM2.5年均浓度85.9微克/立方米,比2013年下降3.6微克/立方米.2015年北京PM2.5年均浓度80.6微克/立方米,比上一年又下降了5.3微克/立方米,治理成效比较明显. 2016年北京PM2.5年均浓度73微克/立方米,下降更加明显.去年11月,北京市通过的《北京市“十三五”时期环境保护和生态环境建设规划》确定的生态环保目标为:2020年,北京市PM2.5年均浓度比2015年下降30%,全市空气质量优良天数比例超过56%.根据以上材料解答下列问题:(1)在折线图中表示2013﹣2016年北京市PM2.5年度浓度变化情况,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2017年北京市PM2.5年均浓度为________,你的预估理由是________.(3)根据《北京市“十三五”时期环境保护和生态环境建设规划》,估计2020年北京市PM2.5年度浓度降至________微克/每立方米.(结果保留整数)23. (15分)(2018·方城模拟) 某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件.考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案?(3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元.在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?24. (10分)如图,在△ABC中,∠A=60°,点D是AC边上一点,连接BD,将△ABD沿DB折叠至△EBD,连接EC,且BE=AC+CE.(1)如图1,求证:∠BEC= ∠DEC;(2)如图2,当AD=4EC=4时,在BE上取一点M使MD=MC,求BM的长.25. (10分) (2019八下·长春月考) 如图,直线y=kx+b分别交x轴、y轴于A(1,0)、B(0,﹣1),交双曲线y= 于点C、D.(1)求k、b的值;(2)写出不等式kx+b>的解集.26. (10分) (2017八上·宜城期末) 如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.参考答案一、选择题 (共16题;共32分)1-1、2-1、答案:略3-1、答案:略4-1、5-1、答案:略6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、答案:略14-1、15-1、16-1、二、填空题 (共3题;共3分)17-1、答案:略18-1、19-1、答案:略三、解答题 (共7题;共68分)20-1、答案:略20-2、21-1、答案:略22-1、22-2、22-3、23-1、23-2、23-3、24-1、答案:略24-2、25-1、答案:略25-2、答案:略26-1、答案:略26-2、。
丽水市八年级下学期期末考试数学试题
丽水市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017八下·盐都期中) 下列图形是中心对称图形的是()A .B .C .D .2. (2分)下列调查中,适合用普查方式的是()A . 了解一批炮弹的杀伤半径B . 了解江都电视台《视点》栏目的收视率C . 了解长江中鱼的种类D . 了解某班学生对“奥运精神”的知晓率3. (2分)下列二次根式中,最简二次根式是()A .B .C .D .4. (2分)下列事件中,是必然事件的是()A . 抛掷1枚硬币,掷得的结果是正面朝上B . 抛掷1枚硬币,掷得的结果是反面朝上C . 抛掷1枚硬币,掷得的结果不是正面朝上就是反面朝上D . 抛掷2枚硬币,掷得的结果是1个正面朝上与1个反面朝上5. (2分)计算﹣﹣的结果是()A . 1B . ﹣1C . ﹣﹣D . ﹣6. (2分)(2011·苏州) 如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A .B .C .D .7. (2分)(2018·柘城模拟) 分式方程的根为()A . ﹣1或3B . ﹣1C . 3D . 1或﹣38. (2分) (2015九上·山西期末) 如图,∠1=∠2,则下列各式中,不能说明△ABC∽△ADE的是()A . ∠D=∠BB . ∠E=∠CC .D .9. (2分)已知一次函数y=kx+b的图象经过第一、二、四象限,则函数y=的图象在()A . 第一、三象限B . 第一、二象限C . 第二、四象限D . 第三、四象限10. (2分) (2019八上·江苏期中) 如图,在△ABC中,∠B=90°,点O是∠CAB、∠ACB平分线的交点,且BC=4cm,AC=5cm,则点O到边AB的距离为()A . 3cmB . 2cmC . 1cmD . 4cm二、填空题 (共7题;共7分)11. (1分)(2017·浙江模拟) 计算 - =________.12. (1分) (2017九上·临沭期末) 如图,大圆半径为6,小圆半径为3,在如图所示的圆形区域中,随机撒一把豆子,多次重复这个实验,若把“豆子落在小圆区域A中”记作事件W,请估计事件W的概率P(W)的值________.13. (1分) (2017九上·恩阳期中) 如图,正方形ABCD中,点N为AB的中点,连接DN并延长交CB的延长线于点P ,连接AC交DN于点M ,若PN=3,则DM的长为________ .14. (1分)(2017·松北模拟) 在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为________.15. (1分) (2019八下·绍兴期中) 如图,中,点E是BC的中点,点F在AD上,AF=6cm,BF =12cm,BD平分∠FBC,若点P,Q分别是AF,BC上点,且CQ=2AP.若点P、Q、E、F为顶点的四边形构成平行四边形,则AP的长为________.16. (1分)(2017·微山模拟) 如图,直线y= x+b与双曲线y= 相交于点A(m,3),与x轴相交于点C,点P是x轴上一点,如果△PAC的面积等于6,那么点P的坐标是________.17. (1分) (2017八上·德惠期末) 如图,已知圆柱底面周长是4dm,圆柱的高为3dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为________ dm.三、解答题 (共10题;共105分)18. (10分) (2019八上·宜兴月考) 计算:(1);(2) .19. (10分) (2018八上·柘城期末) 解下列分式方程:(1);(2)20. (5分)解不等式组,并把解集在数轴上表示出来..21. (9分)(2019·大连模拟) 某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),按测试成绩m(单位:分)分为A、B、C、D四个组别并绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:分组成绩人数A12≤m≤1510B9≤m≤1122C6≤m≤8D m≤53(1)在被调查的男生中,成绩等级为D的男生有________人,成绩等级为A的男生人数占被调查男生人数的百分比为________%;(2)本次抽取样本容量为________,成绩等级为C的男生有________人;(3)若该校九年级男生有300名,估计成绩少于9分的男生人数.22. (10分) (2019九上·新泰月考) 如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O 于点D ,且AE⊥CD,垂足为点E .(1)求证:直线CE是⊙O的切线.(2)若BC=3,CD=3 ,求弦AD的长.23. (6分) (2019九下·梅江月考) 如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是________.24. (10分)(2017·南山模拟) 某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.25. (15分)(2017·营口模拟) 如图,抛物线y=﹣ x2+bx+e与x轴交于点A(﹣3,0)、点B(9,0),与y轴交于点C,顶点为D,连接AD、DB,点P为线段AD上一动点.(1)求抛物线的解析式;(2)如图1,过点P作BD的平行线,交AB于点Q,连接DQ,设AQ=m,△PDQ的面积为S,求S关于m的函数解析式,以及S的最大值;(3)如图2,抛物线对称轴与x轴交与点G,E为OG的中点,F为点C关于DG对称的对称点,过点P分别作直线EF、DG的垂线,垂足为M、N,连接MN,直接写出△PMN为等腰三角形时点P的坐标.26. (15分) (2018九上·于洪期末) 如图1,正方形ABCD中,AB=4cm,点P从点D出发沿DA向点A匀速运动,速度是1cm/s,同时,点Q从点A出发沿AB方向,向点B匀速运动,速度是2cm/s,连接PQ、CP、CQ,设运动时间为t(s)(0<t<2)(1)是否存在某一时刻t,使得PQ∥BD?若存在,求出t值;若不存在,说明理由(2)设△PQC的面积为s(cm2),求s与t之间的函数关系式;(3)如图2,连接AC,与线段PQ相交于点M,是否存在某一时刻t,使S△QCM:S△PCM=3:5?若存在,求出t值;若不存在,说明理由.27. (15分)(2018·资中模拟) 如图,抛物线y=﹣x2+bx+c与x轴分别交于点A、B,与y轴交于点C,且OA=1,OB=3,顶点为D,对称轴交x轴于点Q.(1)求抛物线对应的二次函数的表达式;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△DCM∽△BQC?如果存在,求出点M的坐标;如果不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共10题;共105分)18-1、18-2、19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、。
浙江省丽水市八年级下学期数学期末考试试卷
浙江省丽水市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2020八下·鹤山期中) 下列式子中,属于最简二次根式的是()A .B .C .D .2. (2分) (2019八上·丹江口期末) 下列各式的计算中,成立的是()A .B .C .D .3. (2分)点A(1,m)在函数y=2x的图象上,则m的值是()A . 1B . 2C .D . 04. (2分)学校广播站要招聘1名记者,小亮和小丽报名参加了3项素质测试,成绩如下:写作能力普通话水平计算机水平小亮90分75分51分小丽60分84分72分将写作能力、普通话水平、计算机水平这三项的总分由原先按3:5:2计算,变成按5:3:2计算,总分变化情况是()A . 小丽增加多B . 小亮增加多C . 两人成绩不变化D . 变化情况无法确定5. (2分) (2017八下·垫江期末) 一次函数y=3x﹣6的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分) (2015八下·六合期中) 下列线段不能构成直角三角形的是()A . 5,12,13B . 2,3,C . 4,7,5D . 1,,8. (2分) (2017八下·城关期末) 下列命题的逆命题正确的是()A . 平行四边形的一组对边相等B . 正方形的对角线相等C . 同位角相等,两直线平行D . 邻补角互补9. (2分) (2019七上·松滋期末) 当n为1,2,3,…时,由大小相同的小正方形组成的图形如图所示,则第10个图形中小正方形的个数总和等于()A . 100B . 96C . 144D . 14010. (2分)(2020·扬州模拟) 与现在的年龄数据相比较,某数学合作学习小组6名成员5年后年龄数据的()A . 平均数改变,方差不变B . 平均数改变,方差改变C . 平均数不变,方差不变D . 平均数不变,方差改变11. (2分)(2017·响水模拟) 如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点,连接MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是()A . 一直增大B . 一直减小C . 先减小后增大D . 先增大后减少12. (2分)(2020·抚州模拟) 如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A . AF= CFB . ∠DCF=∠DFCC . 图中与△AEF相似的三角形共有5个D . tan∠CAD=二、填空题 (共6题;共6分)13. (1分)(2020·路桥模拟) 二次根式中,a的取值范围是________.14. (1分) (2019八下·天台期中) 如图,在中,,点是上的一个动点,以为对角线的所有中,最小的值是________.15. (1分)已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组的解是________ .16. (1分)已知一组数据0,1,2,2,x,3的平均数是2,则这组数据的方差是________.17. (1分) (2017九上·商水期末) 某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊________.18. (1分) (2020八上·成都月考) 如图,在,,,将折叠,使点与的中点重合,折痕为,则线段的长为________.三、解答题) (共6题;共71分)19. (25分) (2019八上·银川期中) 计算:(1)(2)(3)(4)(5)20. (10分) (2016七下·黄陂期中) 长方形ABCD放置在如图所示的平面直角坐标系中,点A(2,2 ),AB∥x轴,AD∥y轴,AB=3,AD= .(1)分别写出点B,C,D的坐标;(2)在x轴上是否存在点P,使三角形PAD的面积为长方形ABCD面积的?若存在,请求出点P的坐标;若不存在,请说明理由.21. (10分) (2019七下·电白期末) 已知:如图:△ABC是等边三角形,点D、E分别是边BC、CA上的点,且BD=CE,AD、BE相交于点O.(1)求证:△ACD≌△BAE;(2)求∠AOB的度数.22. (10分) (2018八下·长沙期中) 如图,已知直线AB的函数解析式为,直线与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),过点P作PE⊥x轴于点E,PF⊥y轴于点F,连接EF;①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.23. (7分) (2020九上·晋中月考) 某“综合与实践”小组开展了测量本校对面山上一座古塔高度的实活动,他们制订了方案,并利用课余时间完成了实地测量.他们在该山脚的一块平地上,选择两个不同测点,分别测量山顶和塔顶的俯角,以及这两个测点之间的距离.为了减小测量误差,小组在测量俯角的度数以及两个测点之间的距离时,都分别测量了三次并取它们的平均值为测量结果,测量数据如下表(不完整).课题测量山上塔的高度测量工具测量角度的仪器,皮尺等测量示意图说明:线段 CD 表示山高, CB 表示塔的高,测量角度的仪器的高度,端点B,C,D,A,E在同一竖直平面内,点D,C,B共线,点D,A,E共线.测量数据测量项目第一次第二次第三次平均值的度数63.6°63.3°63.3°63.4°的度数29.9°29.8°30.3°30°的度数44.9°45.3°44.8°__________A,E之间的距离50.1m49.8m50.1m__________……(1)三次测量的度数平均值是________;A,E之间的距离的平均值是________m.(2)根据以上测量结果,请你帮助该“综合与实践”小组求出塔 BC 的高度.(结果精确到0.1m.参考数据:,,,,)24. (9分) (2020八下·大庆期中) 某市自来水公司为限制单位用水,每月只给某单位计划内用水 3000 吨,计划内用水每吨收费 0.5元,超计划部分每吨按 0.8 元收费.(1)写出该单位水费 y(元)与每月用水量 x(吨)之间的函数关系式:(写出自变量取值范围)①用水量小于等于 3000 吨________;②用水量大于 3000 吨________.(2)某月该单位用水 3200 吨,水费是________元;若用水 2800 吨,水费________元.(3)若某月该单位缴纳水费 1580 元,则该单位用水多少吨?参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共6分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题) (共6题;共71分)答案:19-1、答案:19-2、答案:19-3、答案:19-4、答案:19-5、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:。
2017-2018学年浙教版八年级数学下册期末测试卷及答案
2017-2018学年度八年级下学期数学期末试卷姓名 班级 学号 成绩一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,只有一个是正确的,请将正确答案填写在括号中。
1、如果分式x11有意义,那么x 的取值范围是( ) A 、x >1 B 、x <1 C 、x ≠1 D 、x =12. 命题“两点之间线段最短”是( )A.角的定义B.假命题C.公理D.定理 3、一直角三角形两边分别为3和5,则第三边为( ) A 、4 B 、34 C 、4或34 D 、2 4、用两个全等的等边三角形,可以拼成下列哪种图形( ) A 、矩形 B 、菱形 C 、正方形 D 、等腰梯形 5. 若一个多边形的内角和等于720度,则这个多边形的边数是( ) A.5 B.6 C.7 D.86、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考( )A 、众数B 、平均数C 、加权平均数D 、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为( ) A 、120cm B 、360cm C 、60cm D 、320cm第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为( ) A 、16 B 、14 C 、12 D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为( )A 、100B 、150C 、200D 、300 10、下列命题正确的是( )A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。
浙江省丽水市八年级下学期数学期末试卷
浙江省丽水市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共18题;共36分)1. (2分)要使式子有意义,则x的取值范围是()A . x>0B . x≥-2C . x≥2D . x≤2【考点】2. (2分)将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A . 1,2,3B . 2,3,4C . 4,5,6D . 5,13,12【考点】3. (2分)某校研究性学习小组在学习二次根式=|a|之后,研究了如下四个问题,其中错误的是()【考点】4. (2分) (2020八上·咸阳月考) 下列四组线段中,不能组成直角三角形的是()A . ,,B . ,,C .D . ,,【考点】5. (2分)化简为()A . -B . +C .D .【考点】6. (2分) (2015八下·杭州期中) 使代数式有意义的x的取值范围是()A . x≠3B . x<7且x≠3C . x≤7且x≠2D . x≤7且x≠3【考点】7. (2分) (2019八上·徐汇期中) 已知函数y=kx中,y随x的增大而减小,那么它和函数在同一平面直角坐标系内的大致图像可能是()A .B .C .D .【考点】8. (2分) (2018·秦淮模拟) 如图,在平面直角坐标系中,□ABCD的顶点坐标分别为A(3.6,a),B(2,2),C(b,3.4),D(8,6),则的值为()A . 8B . 9C . 10D . 11【考点】9. (2分)为了解某班学生每天使用零花钱的使用情况,张华随机调查了15名同学,结果如下表:每天使用零花钱(单位:元)01345人数13542关于这15名同同学每天使用的零花钱,下列说法正确的是()A . 众数是5元B . 平均数是2.5元C . 级差是4元D . 中位数是3元【考点】10. (2分) (2020八上·滨州期末) 计算:等于()A .B .C .D .【考点】11. (2分)如图,直角△ABC的周长为24,且AB:AC=5:3,则BC=()A . 6B . 8C . 10D . 12【考点】12. (2分)(2019·保定模拟) 对于一次函数y=﹣x+4,下列结论不正确是()A . 函数值随自变量的增大而减小B . 点(4﹣a , a)在该函数的图象上C . 函数的图象与直线y=﹣x﹣2平行D . 函数图象与坐标轴围成三角形的周长4+4【考点】13. (2分)如图,矩形OABC的边OA长为2 ,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()【考点】14. (2分) (2016九上·兖州期中) 如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A . 3B . 2.5C . 4D . 3.5【考点】15. (2分) (2020八下·通州月考) 如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC 上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE 是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2 .以上结论中,你认为正确的有()个.A . 1B . 2C . 3D . 4【考点】16. (2分) (2017八下·建昌期末) 下列命题中,不正确的是()A . 有一组邻边相等的平行四边形是菱形B . 有一个角是直角的平行四边形是矩形C . 对角线垂直的平行四边形是正方形D . 一组对边平行且相等的四边形是平行四边形【考点】17. (2分) (2020八下·北京月考) 如图,矩形ABCD的对角线AC,BD交于点O,AC=4cm,∠AOD=120º,则BC的长为()cm.A .B . 4C .D . 2【考点】18. (2分) (2017八下·丰台期中) 下列图形中,表示一次函数与正比例函数(、是常数且)图象是().A .B .C .D .【考点】二、填空题 (共4题;共4分)19. (1分)(2019·株洲模拟) 如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=8cm,EF=15cm,则边AD的长是________cm.【考点】20. (1分) (2020八上·集贤期末) 点(﹣1,5)不在直线y=2x﹣3上.________(判断对错)【考点】21. (1分) (2020七上·东坡月考) 已知x2+3x+5的值为3,则代数式3x2+9x−1的值为________.【考点】22. (1分) (2020八上·青岛期末) 甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是________(填“甲”或“乙”)【考点】三、解答题 (共4题;共24分)23. (15分)(2018·菏泽) 计算:﹣12018+()﹣2﹣| ﹣2|﹣2sin60°.【考点】24. (5分) (2020八下·临江期末) 某住宅小区有一块草坪如图所示.已知米,米,米,米,且,求这块草坪的面积.【考点】25. (2分) (2020八下·昌平期末) 如图 1,C是线段 AB 上一个定点,动点P从点 A出发向点B匀速移动,动点Q从点B出发向点C匀速移动,点P , Q同时出发,移动时间记为x(s),点 P与点 C的距离记为 y (cm),点 Q与点 C 的距离记为 y (cm). y 、y 与 x的关系如图 2 所示.(1)线段AB的长为________cm;(2)求点P出发 3 秒后y 与x之间的函数关系式;(3)当 P , Q两点相遇时,x=________s.【考点】26. (2分) (2019八下·蚌埠期末) 如图(1),折叠平行四边形ABCD,使得B,D分别落在BC,CD边上的B′,D′点,AE,AF为折痕.(1)若AE=AF,证明:平行四边形ABCD是菱形;(2)若∠BCD=110°,求∠B'AD'的大小;(3)如图(2),以AE,AF为邻边作平行四边形AEGF,若AE=EC,求∠CG E的大小.【考点】参考答案一、单选题 (共18题;共36分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:二、填空题 (共4题;共4分)答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:三、解答题 (共4题;共24分)答案:23-1、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:答案:26-1、答案:26-2、答案:26-3、考点:解析:。
浙江省丽水市八年级下学期数学期末考试试卷
浙江省丽水市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016七下·临沭期中) 若点A(m,n)在第二象限,那么点B(﹣m,|n|)在()A . 第一象限B . 第二象限;C . 第三象限D . 第四象限2. (2分) (2017八下·通州期末) 我国传统文化中的“福禄寿喜”图由下面四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A .B .C .D .3. (2分) (2017八上·潜江期中) 一个正多边形的每一个外角都等于45°,则这个多边形的边数为()A . 4B . 6C . 8D . 104. (2分)(2019·安顺) 如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=350 ,则∠2的度数是()A . 350B . 450C . 550D . 6505. (2分)甲乙两组各10名学生,进行趣味数学抢答比赛,共10道题,两组答对题数的有关数据统计如下()答对题数5678910平均数方差甲组(人)1015218 1.6乙组(人)0043218A . 甲组比乙组的成绩稳定B . 乙组比甲组的成绩稳定C . 两个组的成绩一样稳定D . 无法比较6. (2分)关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2 ,且有x1-x1x2+x2=1-a,则a的值是()A . 1B . -1C . 1或-1D . 27. (2分)用配方法将二次三项式x2+4x﹣96变形,结果为()A . (x+2)2+100B . (x﹣2)2﹣100C . (x+2)2﹣100D . (x﹣2)2+1008. (2分) (2018九上·温州开学考) 如图,在菱形ABOC中,∠ABO=120°,它的一个顶点C在反比例函数的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则该反比函数的表达式为()A .B .C .D .9. (2分)(2017·佳木斯) 如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A .B .C .D .10. (2分)(2017·山东模拟) 如图①,在平面直角坐标系中,平行四边形ABCD在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,被平行四边形ABCD截得的线段EF的长度l与平移的距离m的函数图象如图②,那么平行四边形ABCD的面积为()A . 4B .C . 8D .二、填空题 (共6题;共6分)11. (1分) (2017八下·萧山期中) 若代数式有意义,则x的取值范围是________.12. (1分) (2019九上·龙华期末) 若x=2是方程x2-x-c=0的一个根,则c=________.13. (1分)若点P(-3, ),Q(2, )在一次函数的图象上,则与的大小关系是________14. (1分) (2019九上·孝昌期末) 如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则AM+BM+CM的最小值为________.15. (1分) (2018九上·库伦旗期末) 在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米,则修建的路宽应为________.16. (1分)如图,四边形ABCD是平行四边形,∠ABC=70°,BE平分∠ABC且交AD于点E,DF∥BE且交BC 于点F,则∠1的度数为________.三、解答题 (共11题;共105分)17. (5分) (2017八下·西城期末) 解方程:.18. (5分) (2018九上·晋江期中) 解方程:x2﹣2x﹣1=0.19. (5分)(2019·越秀模拟) 如图,在□ABCD中,点E、F分别在AD,BC上,且AE=CF,EF,BD相交于点O,求证:OE=OF20. (15分) (2017八下·遂宁期末) 某市火车运货站现有甲种货物1530吨,乙种货物1150 吨,安排用一列货车将这批货物运往广州,这种货车可挂A、B两种不同规格的货厢50节.已知用一节A型货厢的运费是0.5万元,用一节B型货厢的运费是0.8万元.(1)设运输这批货物的总运费y(万元),用A型货厢的节数为x(节),试写出y与x之间的函数关系式;(2)已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢.按此要求安排A、B两种货厢的节数,有哪几种运输方案?请你设计出来;(3)利用函数性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?21. (15分) (2016九上·延庆期末) 设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x 的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m.n]上的“闭函数”.如函数,当x=1时,y=3;当x=3时,y=1,即当时,有,所以说函数是闭区间[1,3]上的“闭函数”.(1)反比例函数y= 是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由;(2)若二次函数y= 是闭区间[1,2]上的“闭函数”,求k的值;(3)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的表达式(用含m,n的代数式表示).22. (5分) (2019九上·盐城月考) 某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.若商场获得了10000元销售利润,求该玩具销售单价应定为多少元?23. (12分)某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为________份,“严加干涉”部分对应扇形的圆心角度数为________(2)把条形统计图补充完整.(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?24. (10分) (2015九上·平邑期末) 如图,一次函数y1=kx+b的图象与反比例函数y2= (x>0)的图象交于A(1,6),B(a,2)两点.(1)求一次函数与反比例函数的解析式;(2)直接写出y1≤y2时x的取值范围.25. (12分)操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点c重合,点E,F分别在正方形的边CB,CD上,连接AF.取AF中点M,EF的中点N,连接MD,MN.(1)连接AE,求证:△AEF是等腰三角形;(2)猜想与发现:在(1)的条件下,请判断DM,MN的数量关系和位置关系,得出结论.结论1:DM,MN的数量关系是________;结论2:DM,MN的位置关系是________;(3)拓展与探究:如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.26. (11分) (2017九上·肇源期末) 【问题发现】小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.(1)小明发现,过点D作DF//AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系:________;(2)【类比探究】如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论.(3)【拓展应用】当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.27. (10分) (2020八上·南京期末) 用函数方法研究动点到定点的距离问题.在研究一个动点P(x,0)到定点A(1,0)的距离S时,小明发现:S与x的函数关系为S=并画出图像如图:借助小明的研究经验,解决下列问题:(1)写出动点P(x,0)到定点B(-2,0)的距离S的函数表达式,并求当x取何值时,S取最小值?(2)设动点P(x,0)到两个定点M(1,0)、N(5,0)的距离和为y.①随着x增大,y怎样变化?②当x取何值时,y取最小值,y的最小值是多少?③当x<1时,证明y随着x增大而变化的规律.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共105分)17-1、18-1、19-1、20-1、20-2、20-3、21-1、21-2、21-3、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、。
浙江省丽水市八年级下学期数学期末考试试卷
浙江省丽水市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020八上·封开期末) 下列图形中,是轴对称图形是()A .B .C .D .【考点】2. (2分) (2019八下·仁寿期中) 函数y=自变量x的取值范围是()A . x≥1B . x≥1且x≠3C . x≠3D . 1≤x≤3【考点】3. (2分) (2019八下·宛城期末) 反比例函数的图象如图所示,以下结论错误的是()A .B . 若点在图象上,则C . 在每个象限内,的值随值的增大而减小D . 若点,在图象上,则【考点】4. (2分) (2020八下·长沙期末) 某件羊毛衫的售价为元,因换季促销,商家决定降价销售,在连续两次降价后,售价降为元,则为()A .B .C .D .【考点】5. (2分)已知一组数据1,7,10,8,x,6,0,3,若,则x的值应等于()。
A . 6B . 5C . 4D . 2【考点】6. (2分)若1<x<2,则的值为().A . 2x-4B . -2C . 4-2xD . 2【考点】7. (2分) ????????ABCD?????AC?????B???B?????AB??CD???E??AB=8?AD=3????????????? ?A . 11B . 16C . 19D . 22【考点】8. (2分)若反比例函数y= 的图象位于第二、四象限,则k的取值可能是()。
A . 4B . 3C . 2D . 0【考点】9. (2分)已知三角形两边长是4和7,第三边是方程x2-16x+55=0的根,则第三边长是()A . 5B . 11C . 5或11D . 6【考点】10. (2分)(2019·朝阳模拟) 如图,点E、F分别为正方形ABCD的边BC、CD上一点,AC、BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF =∠ANM;④S△AEF=2S△AMN ,以上结论中,正确的个数有()个.A . 1B . 2C . 3D . 4【考点】二、填空题 (共6题;共8分)11. (1分) (2020七下·嘉荫期末) 若,则 ________.【考点】12. (1分)小亮应聘小记者,进行了三项素质测试,测试成绩分别是:采访写作90分,计算机输入85分,创意设计70分,若将采访写作、计算机输入、创意设计三项成绩按5:2:3的比例来计算平均成绩,则小亮的平均成绩是________ 分.【考点】13. (1分) (2019九上·简阳期末) 关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不相等的实数解;③无论m取何值,方程都有一个负数解.其中正确的是________(填序号).【考点】14. (1分)(2020·福州模拟) 已知A(﹣2,0),B(0,2),P是x轴上动点,将B绕P点顺时针旋转90°得到点C ,则AC CP的最小值是________.【考点】15. (2分) (2020九下·卧龙模拟) 如图,已知正比例函数与反比例函数的图象分别交于A、B两点,其中,(1)求正比例函数与反比例函数的解析式;(2)求时,的取值范围.【考点】16. (2分)(2020·江都模拟) 如图,抛物线y=ax2+bx+c(a、b、c是常数,a≠0)经过原点O和两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0, 2).(1) a=________,b=________,c=________;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M、N两点,M在N的左边.当△AMN为等腰三角形时,直接写出圆心P的横坐标.【考点】三、解答题 (共7题;共75分)17. (10分) (2017八下·日照开学考) 计算:(1)(π﹣3.14)0+| ﹣2|﹣ +()﹣2 .(2)﹣4 ﹣(﹣).(3)(x﹣3)(3﹣x)﹣(x﹣2)2 .【考点】18. (10分) (2019九上·江都月考) 解方程:;【考点】19. (10分)(2020·建水模拟) 为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇今年1-5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1-5月新注册小型企业一共有________家.请将折线统计图补充完整.________(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.【考点】20. (10分) (2017八上·乌审旗期中) 如图,在△ABC中,AB=AC,AD是高,求证:(1) BD=CD;(2)∠BAD=∠ACD.【考点】21. (10分)(2020·上海模拟) 已知:如图,在平行四边形中,对角线与相交于点,过点作的垂线交边于点,与的延长线交于点,且.求证:(1)四边形是矩形;(2).【考点】22. (15分)阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于点D,交AC于点E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.小明发现,过点E作EF∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).(1)请回答:BC+DE的值为________.(2)参考小明思考问题的方法,解决问题:如图3,已知▱ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数.【考点】23. (10分) (2018八下·萧山期末) 把一个足球垂直地面向上踢,t(秒)后该足球的高度h(米)适用公式h=20t﹣5t2.(1)经多少秒后足球回到地面?(2)试问足球的高度能否达到25米?请说明理由.【考点】参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共8分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、答案:15-2、考点:解析:答案:16-1、答案:16-2、答案:16-3、考点:解析:三、解答题 (共7题;共75分)答案:17-1、答案:17-2、答案:17-3、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:。
浙江省丽水市八年级下学期数学期末考试试卷
浙江省丽水市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共29分)1. (3分)下列计算正确的是()A . =3﹣πB . (x2)3=x5C . (﹣2x2)3=﹣8x6D . (x+1)2=x2+12. (3分)下列各组数中,以a、b、c为边的三角形不是直角三角形的是()A . a=1.5,b=2,c=3B . a=7,b=24,c=25C . a=6,b=8,c=10D . a=3,b=4,c=53. (3分) (2018八上·汕头期中) 关于一次函数y=-2x+3,下列结论正确的是()A . 图像过点(1,-1)B . 图像经过一、二、三象限C . y随着x的增大而增大D . 当x> 时,y<04. (3分)(2017·河北) 如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的是()A .B .C .D .5. (3分)小明想知道银河系里恒星大约有多少颗,他可以获取有关数据的方式是()A . 问卷调查B . 实地考察C . 查阅文献资料D . 实验6. (3分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,则与△AOB成中心对称的三角形是()A . △BOCB . △CODC . △AODD . △ACD7. (3分)(2017·景德镇模拟) 为迎接“劳动周”的到来,某校将九(1)班50名学生本周的课后劳动时间比上周都延长了10分钟,则该班学生本周劳动时间的下列数据与上周比较不发生变化的是()A . 平均数B . 中位数C . 众数D . 方差8. (3分) (2017九下·潍坊开学考) 下列函数中,满足y的值随x的值增大而增大的是()A . y=﹣2xB . y=3x﹣1C . y=D . y=x29. (2分)线段CD是由线段AB平移得到的,点A(﹣1,5)的对应点为C(4,8),则点B(﹣4,﹣2)的对应点D的坐标为()A . (﹣9,﹣5)B . (﹣9,1)C . (1,﹣5)D . (1,1)10. (3分) (2020八下·唐县期末) 一次函数y=-2x+3的图像所经过的象限是第()象限。
浙江省丽水市八年级下学期数学期末考试试卷
浙江省丽水市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分) (2018八下·兴义期中) 估计的运算结果是()A . 6与7之间B . 7与8之间C . 8与9之问D . 9与10之问2. (2分)(2019·聊城) 在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A . 96分,98分B . 97分,98分C . 98分,96分D . 97分,96分3. (2分)如图圆锥的高AO为12,母线AB长为13,则该圆锥的侧面积等于()A . 32.5πB . 60πC . 65πD . 156π4. (2分)若点P(3a﹣9,1﹣a)在第三象限内,且a为整数,则a的值是()B . a=2C . a=3D . a=45. (2分) (2016九下·苏州期中) 二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是()A .B .C .D .6. (2分)如图,在▱ABCD中,AB=6,AD=9,AF平分∠BAD交BC于点E,交DC的延长线于点F,BG⊥AF于点G,BG=4 ,EF= AE,则△CEF的周长为().A . 8B . 10C . 147. (2分)有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是通过圆心的弦;④在同圆或等圆中,相等的两条弦所对的弧是等弧.其中真命题是()A . ③④B . ①③C . ①④D . ②③8. (2分) (2019八下·闽侯期中) 下列条件中,能判断四边形是菱形的是()A . 对角线相等的平行四边形B . 对角线互相垂直且相等的四边形C . 对角线互相平分且垂直的四边形D . 对角线互相垂直的四边形9. (2分)要判断小刚的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A . 平均数B . 中位数C . 方差D . 众数10. (2分)(2016·台湾) 表为甲班55人某次数学小考成绩的统计结果,关于甲班男、女生此次小考成绩的统计量,下列叙述何者正确?()A . 男生成绩的四分位距大于女生成绩的四分位距B . 男生成绩的四分位距小于女生成绩的四分位距C . 男生成绩的平均数大于女生成绩的平均数D . 男生成绩的平均数小于女生成绩的平均数11. (2分) (2014九上·宁波月考) 如图,AC,BD为圆O的两条互相垂直的直径,动点P从圆心O出发,沿O→C→D→O的路线作匀速运动,设运动时间为t秒,∠APB的度数为y度,那么表示y与t之间函数关系的图象大致为()A .B .C .D .12. (2分)在下列四组点中,可以在同一个正比例函数图象上的一组点是()A . (﹣2,﹣3),(4,﹣6)B . (﹣2,3),(4,6)C . (2,﹣3),(﹣4,6)D . (2,3),(﹣4,6)13. (2分)如果2m,m,1﹣m这三个实数在数轴上所对应的点从左到右依次排列,那么m的取值范围是()A . m>0B . m>C . m<0D . 0<m<14. (2分)函数y=3x﹣4与函数y=2x+3的交点的坐标是()A . (5,6)B . (7,﹣7)C . (﹣7,﹣17)D . (7,17)15. (2分)(2017·黔南) 如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC 上的一个动点,则PE+PD的最小值是()A . 3B . 10C . 9D . 916. (2分) (2020九下·安庆月考) 如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP 于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF。
2017-2018学年浙教版数学初二(下册)期末考试试卷及答案
2017-2018学年八年级(下册)期末数学试卷一、选择1.下列二次根式:中,是最简二次根式的有()A.2个B.3个C.4个D.5个2.用配方法解方程x2﹣2x﹣2=0,下列配方正确的是()A.(x﹣1)2=2 B.(x﹣1)2=3 C.(x﹣2)2=3 D.(x﹣2)2=6 3.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则a2+b2的值为()A.36 B.50 C.28 D.254.小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB 的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.平行四边形5.已知点A(x1,y1),B(x2,y2)是反比例函数y=(k>0)图象上的两点,若x1<0<x2,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<06.如图,E是矩形ABCD内的一个动点,连接EA、EB、EC、ED,得到△EAB、△EBC、△ECD、△EDA,设它们的面积分别是m、n、p、q,给出如下结论:①m+n=q+p;②m+p=n+q;③若m=n,则E点一定是AC与BD的交点;④若m=n,则E点一定在BD上.其中正确结论的序号是()A.①③B.②④C.①②③D.②③④7.如图,矩形ABCD的边分别与两坐标轴平行,对角线AC经过坐标原点,点D在反比例函数(x>0)的图象上.若点B的坐标为(﹣4,﹣4),则k的值为()A.2 B.6 C.2或3 D.﹣1或68.如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为()A.B.C.D.9.如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一组对边平行的四边形是梯形C.一组对边相等,一组对角相等的四边形是平行四边形D.对角线相等的平行四边形是矩形10.已知:如图,梯形ABCD是等腰梯形,AB∥CD,AD=BC,AC⊥BC,BE⊥AB交AC 的延长线于E,EF⊥AD交AD的延长线于F,下列结论:①BD∥EF;②∠AEF=2∠BAC;③AD=DF;④AC=CE+EF.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题11.命题:“三角形中至多有两个角大于60度”,用反证法第一步需要假设.12.如图,在梯形ABCD中,CD∥AB,且CD=6cm,AB=9cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向B运动,Q以2cm/s的速度由C向D运动.则秒时,直线QP将四边形ABCD截出一个平行四边形.13.如图所示,点D、E分别是AB、AC的中点,点F、G分别为BD、CE的中点,若FG=6,则DE+BC=,BC=.14.已知=5,则=.15.已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,它的顶点A在x轴的正半轴上运动(点A,D都不与原点重合),顶点B,C都在第一象限,且对角线AC,BD相交于点P,连接OP.设点P到y轴的距离为d,则在点A,D运动的过程中,d的取值范围是.16.如图,已知双曲线y1=﹣与两直线y2=﹣x,y3=﹣8x,若无论x取何值,y总取y1,y2,y3中的最小值,则y的最大值为.三、解答题.17.计算:.18.如图,在平行四边形中挖去一个矩形,在请用无刻度的直尺,准确作出一条直线,将剩下图形的面积平分.(保留作图痕迹)19.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲、乙射击成绩统计表.平均数中位数方差命中10环的次数甲7 0乙 1甲、乙射击成绩折线图.(1)请补全上述图表(请直接在表中填空和补全折线图),并写出甲和乙的平均数和方差的计算过程和结果.(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由.20.阅读下列材料:求函数的最大值.解:将原函数转化成x的一元二次方程,得.∵x为实数,∴△==﹣y+4≥0,∴y≤4.因此,y的最大值为4.根据材料给你的启示,求函数的最小值.21.如图,直角坐标系中,四边形ABCO是菱形,对角线OB在x轴正半轴上,点A的坐标为(4,4),点D为AB的中点.动点M从点O出发沿x轴向点B运动,运动的速度为每秒1个单位,试解答下列问题:(1)则菱形ABCO的周长为,菱形ABCO的周长为,(2)当t=4时,求MA+MD的值;(3)当t取什么值时,使MA+MD的值最小?并求出他的最小值.22.一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平.(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元;(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x 个月的利润和相等;(3)求使用回收净化设备后两年的利润总和.23.如图,在矩形ABCD中,∠ADC的平分线交BC于点E、交AB的延长线于点F,G是EF的中点,连接AG、CG.(1)求证:BE=BF;(2)请判断△AGC的形状,并说明理由.24.如图1,已知直线y=2x分别与双曲线y=、y=(x>0)交于P、Q两点,且OP=2OQ.(1)求k的值.(2)如图2,若点A是双曲线y=上的动点,AB∥x轴,AC∥y轴,分别交双曲线y=(x >0)于点B、C,连接BC.请你探索在点A运动过程中,△ABC的面积是否变化?若不变,请求出△ABC的面积;若改变,请说明理由;(3)如图3,若点D是直线y=2x上的一点,请你进一步探索在点A运动过程中,以点A、B、C、D为顶点的四边形能否为平行四边形?若能,求出此时点A的坐标;若不能,请说明理由.八年级(下)期末数学试卷参考答案与试题解析一、选择1.下列二次根式:中,是最简二次根式的有()A.2个B.3个C.4个D.5个【考点】最简二次根式.【分析】根据最简二次根式的定义分别判断解答即可.【解答】解:中是最简二次根式的有,,故答案为:A.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.用配方法解方程x2﹣2x﹣2=0,下列配方正确的是()A.(x﹣1)2=2 B.(x﹣1)2=3 C.(x﹣2)2=3 D.(x﹣2)2=6【考点】解一元二次方程-配方法.【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方得出即可.【解答】解:∵x2﹣2x﹣2=0,∴x2﹣2x=2,∴x2﹣2x+1=2+1,∴(x﹣1)2=3.故选:B.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则a2+b2的值为()A.36 B.50 C.28 D.25【考点】根与系数的关系.【分析】根据题意,a、b可看作方程x2﹣6x+4=0的两根,则根据根与系数的关系得到a+b=6,ab=4,然后把原式变形得到原式=再利用整体代入的方法计算即可.【解答】解:∵a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,∴a,b可看作方程x2﹣6x+4=0的两根,∴a+b=6,ab=4,∴原式=(a+b)2﹣2ab=62﹣2×4=28,故选C.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.4.小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB 的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.平行四边形【考点】作图—基本作图;菱形的判定.【分析】根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形【解答】解:∵分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,∴AC=AD=BD=BC,∴四边形ADBC一定是菱形,故选:B.【点评】此题主要考查了线段垂直平分线的性质以及菱形的判定,得出四边形四边关系是解决问题的关键.5.已知点A(x1,y1),B(x2,y2)是反比例函数y=(k>0)图象上的两点,若x1<0<x2,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<0【考点】反比例函数图象上点的坐标特征.【专题】压轴题.【分析】根据反比例函数的增减性再结合反比例函数图象上点的坐标特征解答即可.【解答】解:∵k>0,函数图象在一三象限;若x1<0<x2.说明A在第三象限,B在第一象限.第一象限的y值总比第三象限的点的y值大,∴y1<0<y2.故选A.【点评】在反比函数中,已知两点的横坐标,比较纵坐标的大小,首先应区分两点是否在同一象限内.在同一象限内,按同一象限内点的特点来比较,不在同一象限内,按坐标系内点的特点来比较.6.如图,E是矩形ABCD内的一个动点,连接EA、EB、EC、ED,得到△EAB、△EBC、△ECD、△EDA,设它们的面积分别是m、n、p、q,给出如下结论:①m+n=q+p;②m+p=n+q;③若m=n,则E点一定是AC与BD的交点;④若m=n,则E点一定在BD上.其中正确结论的序号是()A.①③B.②④C.①②③D.②③④【考点】矩形的性质.【分析】过E作MN⊥AB,交AB于M,CD于N,作GH⊥AD,交AD于G,BC于H,由矩形的性质容易证出①不正确,②正确;若m=n,则p=q,作AP⊥BE于P,作CQ⊥DE 于Q,延长BE交CD于F,先证AP=CQ,再证明△ABP≌△CFQ,得出AB=CF,F与D 重合,得出③不正确,④正确,即可得出结论.【解答】解:过E作MN⊥AB,交AB于M,CD于N,作GH⊥AD,交AD于G,BC于H,如图1所示:则m=ABEM,n=BCEH,p=CDEN,q=ADEG,∵四边形ABCD是矩形,∴AB=CD=GH,BC=AD=MN,∴m+p=ABMN=ABBC,n+q=(BCGH=BCAB,∴m+p=n+q;∴①不正确,②正确;若m=n,则p=q,作AP⊥BE于P,作CQ⊥DE于Q,延长BE交CD于F,如图2所示:则∠APB=∠CQF=90°,∵m=BEAP,n=BECQ,∵m=n,∴AP=CQ,∵AB∥CD,∴∠1=∠2,在△ABP和△CFQ中,,∴△ABP≌△CFQ(AAS),∴AB=CF,∴F与D重合,∴E一定在BD上;∴③不正确,④正确.故选:B.【点评】本题考查了矩形的性质、三角形面积的计算、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.7.如图,矩形ABCD 的边分别与两坐标轴平行,对角线AC 经过坐标原点,点D 在反比例函数(x >0)的图象上.若点B 的坐标为(﹣4,﹣4),则k 的值为( )A .2B .6C .2或3D .﹣1或6 【考点】反比例函数综合题.【专题】计算题.【分析】根据矩形的对角线将矩形分成面积相等的两个直角三角形,找到图中的所有矩形及相等的三角形,即可推出S 四边形DEOH =S 四边形FBGO ,根据反比例函数比例系数的几何意义即可求出k 2﹣5k+10=16,再解出k 的值即可.【解答】解:如图:∵四边形ABCD 、FAEO 、OEDH 、GOHC 为矩形, 又∵AO 为四边形FAEO 的对角线,OC 为四边形OGCH 的对角线, ∴S △AEO =S △AFO ,S △OHC =S △OGC ,S △DAC =S △BCA , ∴S △DAC ﹣S △AEO ﹣S △OHC =S △BAC ﹣S △AFO ﹣S △OGC , ∴S 四边形FBGO =S 四边形DEOH =(﹣4)×(﹣4)=16,∴xy=k 2﹣5k+10=16, 解得k=﹣1或k=6. 故选:D .【点评】本题考查了反比例函数k 的几何意义、矩形的性质、一元二次方程的解法,关键是判断出S 四边形DEOH =S 四边形FBGO .8.如图,在正方形ABCD 中,AD=5,点E 、F 是正方形ABCD 内的两点,且AE=FC=3,BE=DF=4,则EF 的长为( )A .B .C .D .【考点】正方形的性质;全等三角形的判定与性质;勾股定理;等腰直角三角形.【分析】延长AE 交DF 于G ,再根据全等三角形的判定得出△AGD 与△ABE 全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF 的长.【解答】解:延长AE 交DF 于G ,如图: ∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,∴同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE,在△AGD和△BAE中,,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=,故选D.【点评】此题考查正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.9.如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一组对边平行的四边形是梯形C.一组对边相等,一组对角相等的四边形是平行四边形D.对角线相等的平行四边形是矩形【考点】平行四边形的判定;全等三角形的判定与性质;等腰三角形的性质;矩形的判定;梯形;命题与定理.【分析】已知条件应分析一组对边相等,一组对角对应相等的四边不是平行四边形,根据全等三角形判定方法得出∠B=∠E,AB=DE,进而得出一组对边相等,一组对角相等的四边形不是平行四边形,得出答案即可.【解答】解:∵△ABC是等腰三角形,∴AB=AC,∠B=∠C,在△ADE与△DAC中,∵,∴△ADE≌△DAC,∴∠E=∠C,∴∠B=∠E,AB=DE,但是四边形ABDE不是平行四边形,故一组对边相等,一组对角相等的四边形是平行四边形说法错误;故选:C.【点评】此题主要考查了平行四边形的判定方法以及全等三角形的判定,结合已知选项,得出已知条件应分析一组对边相等,一组对角相等的四边不是平行四边形是解题关键.10.已知:如图,梯形ABCD是等腰梯形,AB∥CD,AD=BC,AC⊥BC,BE⊥AB交AC 的延长线于E,EF⊥AD交AD的延长线于F,下列结论:①BD∥EF;②∠AEF=2∠BAC;③AD=DF;④AC=CE+EF.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】等腰梯形的性质.【分析】根据已知利用等腰梯形的性质对各个结论进行分析从而得出最后的答案.【解答】解:根据四边形ABCD是等腰梯形,可得出的条件有:AC=BD,∠OAB=∠OBA=∠ODC=∠OCD(可通过全等三角形ABD和BAC得出),OA=OB,OC=OD,∠ACB=∠ADB=90°(三角形ACB和BDA全等).①要证BD∥EF就要得出∠ADB=∠EFD,而∠ADB=90°,∠EFD=90°,因此∠ADB=∠EFD,此结论成立;②由于BD∥EF,∠AEF=∠AOD,而∠AOD=∠OAB+∠OBA=2∠OAB,因此∠AEF=2∠OAB,此结论成立.③在直角三角形ABE中,∠OAB=∠OBA,∠OAB+∠OEB=∠OBA+∠OBE=90°,因此可得出∠OEB=∠OBE,因此OA=OB=OE,那么O就是直角三角形ABE斜边AE的中点,由于OD∥EF,因此OD就是三角形AEF的中位线,那么D就是AF的中点,因此此结论也成立.④由③可知EF=2OD=2OC,而OA=OE=OC+CE.那么AC=OA+OC=OC+OC+CE=2OC+CE=EF+CE,因此此结论也成立.故选D.【点评】本题主要考查了等腰梯形的性质.根据等腰梯形的性质得出的角和边相等是解题的基础.二、填空题11.命题:“三角形中至多有两个角大于60度”,用反证法第一步需要假设三个内角都不大于60度.【考点】反证法.【分析】利用反证法证明的步骤,进而得出答案.【解答】解:用反证法证明命题“三角形中至多有两个角大于60度”,应先假设三个内角都不大于60度.故答案为:三个内角都不大于60度.【点评】此题主要考查了反证法,正确掌握反证法的第一步是解题关键.12.如图,在梯形ABCD中,CD∥AB,且CD=6cm,AB=9cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向B运动,Q以2cm/s的速度由C向D运动.则2或3秒时,直线QP将四边形ABCD截出一个平行四边形.【考点】平行四边形的判定;梯形.【专题】动点型.【分析】设x秒时,直线QP将四边形ABCD截出一个平行四边形;则AP=xcm,BP=(9﹣x)cm,CQ=2xcm,DQ=(6﹣2x)cm;分两种情况:①当AP=DQ时,得出方程,解方程即可;②当BP=CQ时,得出方程,解方程即可.【解答】解:设x秒时,直线QP将四边形ABCD截出一个平行四边形;则AP=xcm,BP=(9﹣x)cm,CQ=2xcm,DQ=(6﹣2x)cm;∵CD∥AB,∴分两种情况:①当AP=DQ时,x=6﹣2x,解得:x=2;②当BP=CQ时,9﹣x=2x,解得:x=3;综上所述:当2秒或3秒时,直线QP将四边形ABCD截出一个平行四边形;故答案为:2或3.【点评】本题考查了梯形的性质、平行四边形的判定、解方程等知识;熟练掌握梯形的性质和平行四边形的判定方法是解决问题的关键.13.如图所示,点D、E分别是AB、AC的中点,点F、G分别为BD、CE的中点,若FG=6,则DE+BC=12,BC=8.【考点】三角形中位线定理.【专题】计算题.【分析】根据中位线定理得:DE=BC,根据梯形中位线定理得FG=(DE+BC),由FG=6求得DE+BC的值即可.【解答】解:∵点F、G分别为BD、CE的中点,∴FG=(DE+BC),∵FG=6,∴DE+BC=2FG=2×6=12;∵D、E分别是AB、AC的中点,∴DE=BC,∴DE+BC=BC+BC=BC=12,∴BC=8.故答案为:12;8.【点评】本题考查了梯形的中位线与三角形的中位线的性质,是一道不错的几何综合题.14.已知=5,则=﹣4或﹣1.【考点】二次根式的化简求值.【分析】利用完全平方公式得出=6,即可求出=2,=3或=3,=2.分别代入求解即可.【解答】解:∵ =5,∴()2=25,解得=6,∴解得=2,=3或=3, =2.∴=﹣4或﹣1,故答案为:﹣4或﹣1.【点评】本题主要考查了二次根式的化简求值,解题的关键是求出与的值.15.已知:如图,平面直角坐标系xOy 中,正方形ABCD 的边长为4,它的顶点A 在x 轴的正半轴上运动(点A ,D 都不与原点重合),顶点B ,C 都在第一象限,且对角线AC ,BD 相交于点P ,连接OP .设点P 到y 轴的距离为d ,则在点A ,D 运动的过程中,d 的取值范围是 2<d ≤2.【考点】正方形的性质;坐标与图形性质;全等三角形的判定与性质.【分析】根据垂线段最短,A 、O 重合时,点P 到y 轴的距离最小,为正方形ABCD 边长的一半,OA=OD 时点P 到y 轴的距离最大,为PD 的长度,即可得解.【解答】解:当A 、O 重合时,点P 到y 轴的距离最小,d=×4=2,当OA=OD 时,点P 到y 轴的距离最大,d=PD=2,∵点A ,D 都不与原点重合,∴2<d ≤2,故答案为2<d ≤2.【点评】本题考查了正方形的性质,坐标与图形的性质,全等三角形的判定与性质,角平分线的判定,(2)作辅助线构造出全等三角形是解题的关键,(2)根据垂线段最短判断出最小与最大值的情况是解题的关键.16.如图,已知双曲线y 1=﹣与两直线y 2=﹣x ,y 3=﹣8x ,若无论x 取何值,y 总取y 1,y 2,y 3中的最小值,则y 的最大值为 2.【考点】反比例函数与一次函数的交点问题.【分析】y 始终取三个函数的最小值,y 最大值即求三个函数的公共部分的最大值.【解答】解:联立y 1、y 2可得,解得或,∴A (﹣2,),B (2,),联立y 1、y 3可得,解得或,∴C (﹣,2),D (,﹣2), ∵无论x 取何值,y 总取y 1,y 2,y 3中的最小值, ∴y 的最大值为A 、B 、C 、D 四点中的纵坐标的最大值,∴y 的最大值为C 点的纵坐标,∴y的最大值为2,故答案为:2.【点评】本题主要考查一次函数与反比例函数的交点问题,确定出y的最大值为三个函数公共部分的最大值是解题的关键.三、解答题.17.计算:.【考点】二次根式的混合运算.【分析】根据二次根式的性质,先化简,再进一步按照运算顺序计算合并即可.【解答】解:原式=3﹣+2(﹣)=3﹣+6﹣4=5﹣.【点评】此题考查二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.18.如图,在平行四边形中挖去一个矩形,在请用无刻度的直尺,准确作出一条直线,将剩下图形的面积平分.(保留作图痕迹)【考点】作图—应用与设计作图.【分析】先找到矩形和平行四边形的中心,然后过中心作直线即可.【解答】解:如图所示:【点评】本题考查了作图﹣应用与设计作图,用到的知识点有中心对称及矩形、平行四边形的性质,有一定难度,注意掌握中心与中心对称点之间的关系.19.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲、乙射击成绩统计表.平均数中位数方差命中10环的次数甲7 740乙77.5 5.4 1甲、乙射击成绩折线图.(1)请补全上述图表(请直接在表中填空和补全折线图),并写出甲和乙的平均数和方差的计算过程和结果.(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由.【考点】折线统计图;算术平均数;中位数;方差.【专题】图表型.【分析】(1)分别利用中位数以及方差和平均数求法得出即可;(2)利用方差的意义,分析得出答案即可.【解答】解:(1)甲、乙射击成绩统计表平均数中位数方差命中10环的次数甲7 7 4 0乙7 7.5 5.4 1甲、乙射击成绩折线图,根据折线统计图得:乙的射击成绩为:2,4,6,8,7,7,8,9,9,10,则平均数为=7(环),方差为:[(2﹣7)2+(4﹣7)2+(6﹣7)2+(8﹣7)2+(7﹣7)2+(7﹣7)2+(8﹣7)2+(9﹣7)2+(9﹣7)2+(10﹣7)2]=5.4;甲的射击成绩为9,6,7,6,2,7,7,?,8,9,平均数为7(环),则甲第八环成绩为70﹣(9+6+7+6+2+7+7+8+9)=9(环),所以甲的10次成绩为:9,6,7,6,2,7,7,9,8,9.方差为:[(9﹣7)2+(6﹣7)2+(7﹣7)2+(6﹣7)2+(2﹣7)2+(7﹣7)2+(7﹣7)2+(9﹣7)2+(8﹣7)2+(9﹣7)2]=4.…(8分)(2)由甲的方差小于乙的方差,甲比较稳定,故甲胜出.【点评】此题主要考查了中位数以及方差和平均数求法,正确记忆相关定义是解题关键.20.阅读下列材料:求函数的最大值.解:将原函数转化成x的一元二次方程,得.∵x为实数,∴△==﹣y+4≥0,∴y≤4.因此,y的最大值为4.根据材料给你的启示,求函数的最小值.【考点】一元二次方程的应用.【专题】压轴题.【分析】根据材料内容,可将原函数转换为(y﹣3)x2+(2y﹣1)x+y﹣2=0,继而根据△≥0,可得出y的最小值.【解答】解:将原函数转化成x的一元二次方程,得(y﹣3)x2+(2y﹣1)x+y﹣2=0,∵x为实数,∴△=(2y﹣1)2﹣4(y﹣3)(y﹣2)=16y﹣23≥0,∴y≥,因此y的最小值为.【点评】本题考查了一元二次方程的应用,这样的信息题,一定要熟读材料,套用材料的解题模式进行解答.21.如图,直角坐标系中,四边形ABCO是菱形,对角线OB在x轴正半轴上,点A的坐标为(4,4),点D为AB的中点.动点M从点O出发沿x轴向点B运动,运动的速度为每秒1个单位,试解答下列问题:(1)则菱形ABCO的周长为32,菱形ABCO的周长为32,(2)当t=4时,求MA+MD的值;(3)当t取什么值时,使MA+MD的值最小?并求出他的最小值.【考点】四边形综合题.【分析】(1)根据坐标与图形的关系求出OF,AF的长,根据勾股定理求出菱形的边长,根据菱形的性质求出周长;(2)根据直角三角形的斜边的中线是斜边的一半求出MD的值,计算得到MA+MD的值;(3)作点D关于x轴的对称点D′,连接AD′交x轴于点M,作出MA+MD的值最小时的点M,根据菱形的性质和坐标与图形的关系求出AD′的长,得到答案.【解答】解:(1)∵点A的坐标为(4,4),∴OF=4,AF=4,由勾股定理得,OA==8,∴菱形ABCO的周长为32;(2)当t=4时,点M与对角线的交点F重合,则MA=4,在Rt△AMB中,AB=8,点D为AB的中点,∴MD=AB=4,∴MA+MD=4+4;(3)作点D关于x轴的对称点D′,连接AD′交x轴于点M,则此时MA+MD的值最小,由题意和菱形的性质可知,点D的坐标为(6,2),则D′的坐标为(6,﹣2),设直线AD′的解析式为:y=kx+b,,解得,,则直线AD′的解析式为:y=﹣3x+16,﹣3x+16=0,x=,点M的坐标为(,0),即OM=,则当t=时,MA+MD的值最小,作D′E⊥AC于E,由菱形的性质可知,D′为BC的中点,∴D′E=2,EF=2,则AE=6,在Rt△AED′中,AE=6,D′E=2,AD′==4,则MA+MD的最小值为4.【点评】本题考查的是菱形的性质、勾股定理和轴对称﹣最短路径问题以及待定系数法求一次函数解析式,灵活应用待定系数法求函数解析式、掌握直角三角形的斜边的中线是斜边的一半,作出对称点得到最短路径是解题的关键.22.一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平.(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元;(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x 个月的利润和相等;(3)求使用回收净化设备后两年的利润总和.【考点】一元二次方程的应用.【专题】销售问题;压轴题.【分析】(1)因为使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,所以y=xw=x(10x+90);要求前几个月的利润和=700万元,可令y=700,利用方程即可解决问题;(2)因为原来每月利润为120万元,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等,所以有y=120x,解之即可求出答案;(3)因为使用回收净化设备后第一、二年的利润=12×(10×12+90),求出它们的和即可.【解答】解:(1)y=xw=x(10x+90)=10x2+90x,10x2+90x=700,解得:x1=5或x2=﹣14(不合题意,舍去),答:前5个月的利润和等于700万元;(2)10x2+90x=120x,解得:x1=3,x2=0(不合题意,舍去),答:当x为3时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等;(3)第一年全年的利润是:12(10×12+90)=2520(万元),前11个月的总利润是:11(10×11+90)=2200(万元),∴第12月的利润是2520﹣2200=320(万元),第二年的利润总和是12×320=3840(万元),2520+3840=6360(万元).答:使用回收净化设备后两年的利润总和是6360万元.【点评】本题需正确理解题意,找出数量关系,列出函数关系式进一步求解.23.如图,在矩形ABCD中,∠ADC的平分线交BC于点E、交AB的延长线于点F,G是EF的中点,连接AG、CG.(1)求证:BE=BF;(2)请判断△AGC的形状,并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形;矩形的性质.【分析】(1)由矩形的性质结合角平分线的定义可证得∠ADF=∠BEF=∠CDF=∠F,可证明BE=BF;(2)连接BG,可证明△AGF≌△CGB,可证得AG=CG,进一步可证明∠AGC=90°,可判定△AGC为等腰直角三角形.【解答】(1)证明:∵四边形ABCD为矩形,∴AB∥CD,AD∥BC,∴∠F=∠CDF,∠ADF=∠BEF,∵DF平分∠ADC,∴∠CDF=∠ADF,∴∠F=∠BEF,∴BE=BF;(2)解:△AGC为等腰直角三角形,理由如下:如图,连接BG,由(1)可知BE=BF,且∠FBE=90°,∴∠F=45°,∴AF=AD=BC,∵G为EF中点,∴BG=FG,∠EBG=45°,在△AGF和△CGB中,,∴△AGF≌△CGB(SAS),∴AG=CG,∠AGF=∠BGC,∴∠BGF+∠AGB=∠AGB+∠AGC,∴∠AGC=∠BGF=90°,∴△AGC为等腰直角三角形.【点评】本题主要考查全等三角形的判定和性质和矩形的性质,在(1)中充分利用矩形的对边分别平行是解题的关键,在(2)构造三角形全等是解题的关键.24.如图1,已知直线y=2x分别与双曲线y=、y=(x>0)交于P、Q两点,且OP=2OQ.(1)求k的值.(2)如图2,若点A是双曲线y=上的动点,AB∥x轴,AC∥y轴,分别交双曲线y=(x >0)于点B、C,连接BC.请你探索在点A运动过程中,△ABC的面积是否变化?若不变,请求出△ABC的面积;若改变,请说明理由;(3)如图3,若点D是直线y=2x上的一点,请你进一步探索在点A运动过程中,以点A、B、C、D为顶点的四边形能否为平行四边形?若能,求出此时点A的坐标;若不能,请说明理由.【考点】反比例函数综合题;解分式方程;待定系数法求反比例函数解析式;反比例函数与一次函数的交点问题;平行四边形的性质;相似三角形的判定与性质.【专题】综合题.【分析】(1)先求出点P的坐标,再从条件OP=2OQ出发,构造相似三角形,求出点Q的坐标,就可求出k的值.(2)设点A的坐标为(a,b),易得b=,结合条件可用a的代数式表示点B、点C的坐标,进而表示出线段AB、AC的长,就可算出△BAC的面积是一个定值.(3)以点A、B、C、D为顶点的四边形为平行四边形可分成两类:①AC为平行四边形的一边,②AC为平行四边形的对角线;然后利用平行四边形的性质建立关于a的方程,即可求出a的值,从而求出点A的坐标.【解答】解:(1)过点Q作QE⊥x轴,垂足为E,过点P作PF⊥x轴,垂足为F,如图1,联立,解得:或.∵x>0,∴点P的坐标为(2,4).∴OF=2,PF=4.。
2017-2018学年浙江省丽水市八年级(下)期末数学试卷(解析版)
2017-2018学年浙江省丽水市八年级(下)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(3分)化简的结果是()A.2B.﹣2C.±2D.42.(3分)下列手机手势解锁图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)用反证法证明“a>0”,应假设()A.a<0B.a=0C.a≠0D.a≤04.(3分)若一个多边形的每一个外角都等于72°,则这个多边形的边数是()A.4B.5C.6D.75.(3分)下列各点中,不在反比例函数y=图象上的点是()A.P(3,﹣4)B.P(3,4)C.P(2,6)D.P(﹣2,﹣6)6.(3分)若关于x的一元二次方程x2﹣2x+a=0有实数根,则a应满足()A.a<1B.a≤1C.a>1D.a≥17.(3分)从甲、乙、丙、丁四位同学中选派两位选手参加数学竞赛,老师对他们五次数学测验成绩进行统计,得出他们的平均分均为85分,且S甲2=100,S乙2=110,S丙2=120,S丁2=90.根据统计结果,最适合参加竞赛的两位同学是()A.甲、乙B.丙、丁C.甲、丁D.乙、丙8.(3分)下列条件,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=CD,BC=ADC.∠A=∠C,AD∥BC D.AB∥CD,∠A=∠B9.(3分)如图,以正方形ABCD的边AB为一边向内作等边△ABE,连结DE,则∠BED 的度数为()A.120°B.125°C.135°D.150°10.(3分)如图,EF是Rt△ABC的中位线,∠BAC=90°,AD是斜边BC边上的中线,EF和AD相交于点O,则下列结论不正确的是()A.AO=OD B.EF=ADC.S△AEO=S△AOF D.S△ABC=2S△AEF二、填空题(本题有6小题,每小题3分,共18分)11.(3分)若二次根式有意义,则x的取值范围是.12.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,要使矩形ABCD成为正方形,应添加的一个条件是.13.(3分)已知关于x的一元二次方程x2﹣2ax+3a=0的一个根是2,则a=.14.(3分)某校四个植树小队,在植树节这天种下柏树的棵数分别为10,x,10,8,若这组数据的中位数和平均数相等,那么x=.15.(3分)如图,在反比例函数y=(x>0)的图象上有四个点A,B,它们的横坐标依次为a,2a,3a,4a,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和为.16.(3分)如图,在▱ABCD中,点E是BC边上的动点,已知AB=4,BC=6,∠B=60°,现将△ABE沿AE折叠,点B′是点B的对应点,设CE长为x.(1)如图1,当点B′恰好落在AD边上时,x=;(2)如图2,若点B′落在△ADE内(包括边界),则x的取值范围是三、解答题(本题有8小题,共52分)17.(6分)计算:(1)﹣(2)(1﹣)(+1).18.(6分)解方程(1)x2﹣9=0;(2)x(2x﹣3)=5x.19.(6分)为了解某校八年级150名女生的身高情况,从中随机抽取10名女生,测得身高并绘制如下条形统计图.(1)求出这10名女生的身高的中位数和众数;(2)依据样本估计该校八年级全体女生的平均身高;(3)请你依据这个样本,在该校八年级中,设计一个挑选50名女生组成方队的方案(要求选中女生的身高尽可能接近).20.(6分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点A(1,5)和点B(n,1).(1)求m,n的值;(2)根据图象判断,当不等式kx+b≤成立时,x的取值范围是什么?21.(6分)如图,在矩形ABCD中,对角线AC与BD相交于点O,点E,F分别是AO,DO的中点,连结BE,CF.(1)求证:BE=CF;(2)连结EF,若EF=3,∠EOF=120°,求矩形ABCD的周长.22.(6分)某种商品的标价为500元/件,经过两次降价后的价格为320元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该商品进价为280元/件,两次降价共售此种商品100件,为使两次降价销售的总利润不少于8000元,则第一次降价后至少要售出该种商品多少件?23.(8分)在一次数学实践活动中,观测小组对某品牌节能饮水机进行了观察和记录,当观察到第t分钟时,水温为y℃,记录的相关数据如下表所示:(饮水机功能说明:水温加热到100℃时饮水机停止加热,水温开始下降,当降到40℃时饮水机又自动开始加热)请根据上述信息解决下列问题:(1)根据表中数据在如图给出的坐标系中,描出相应的点;(2)选择适当的函数,分别求出第一次加热过程和第一次降温过程y关于t的函数关系式,并写出相应自变量的取值范围;(3)已知沏茶的最佳水温是80℃≤y≤90℃,若18:00开启饮水机(初始水温20℃)到当晚20:10,沏茶的最佳水温时间共有多少分钟?24.(8分)如图1,点O是菱形ABCD对角线的交点,已知菱形的边长为12,∠ABC=60°.(1)求BD的长;(2)如图2,点E是菱形边上的动点,连结EO并延长交对边于点G,将射线OE绕点O 顺时针旋转30°交菱形于点H,延长HO交对边于点F.①求证:四边形EFGH是平行四边形;②若动点E从点B出发,以每秒1个单位长度沿B→A→D的方向在BA和AD上运动,设点E运动的时间为t,当t为何值时,四边形EFGH为矩形.2017-2018学年浙江省丽水市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(3分)化简的结果是()A.2B.﹣2C.±2D.4【解答】解:=2.故选:A.2.(3分)下列手机手势解锁图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:C.3.(3分)用反证法证明“a>0”,应假设()A.a<0B.a=0C.a≠0D.a≤0【解答】解:由于命题:“a>0”的反面是:“a≤0”,故用反证法证明:“a>0”,应假设“a≤0”,故选:D.4.(3分)若一个多边形的每一个外角都等于72°,则这个多边形的边数是()A.4B.5C.6D.7【解答】解:边数n=360°÷72°=5.故选:B.5.(3分)下列各点中,不在反比例函数y=图象上的点是()A.P(3,﹣4)B.P(3,4)C.P(2,6)D.P(﹣2,﹣6)【解答】解:∵y=,∴xy=12A.(3,﹣4),此时xy=3×(﹣4)=﹣12,符合题意;B、(3,4),此时xy=3×4=12,不合题意;C、(2,6),此时xy=2×6=12,不合题意;D、(﹣2,﹣6),此时xy=﹣2×(﹣6)=12,不合题意;故选:A.6.(3分)若关于x的一元二次方程x2﹣2x+a=0有实数根,则a应满足()A.a<1B.a≤1C.a>1D.a≥1【解答】解:∵关于x的一元二次方程x2﹣2x+a=0有实数根,∴△=4﹣4a≥0,解得:a≤1;故选:B.7.(3分)从甲、乙、丙、丁四位同学中选派两位选手参加数学竞赛,老师对他们五次数学测验成绩进行统计,得出他们的平均分均为85分,且S甲2=100,S乙2=110,S丙2=120,S丁2=90.根据统计结果,最适合参加竞赛的两位同学是()A.甲、乙B.丙、丁C.甲、丁D.乙、丙【解答】解:从四个方差看,甲,丁的方差在四个同学中是较小的,方差小成绩发挥稳定,所以应选他们两人去参加比赛.故选:C.8.(3分)下列条件,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=CD,BC=ADC.∠A=∠C,AD∥BC D.AB∥CD,∠A=∠B【解答】解:A、由AB∥CD,AB=CD可以判断四边形ABCD是平行四边形;B、由AB=CD,BC=AD可以判断四边形ABCD是平行四边形;C、由∠A=∠C,AD∥BC,可以推出∠B=∠D,可以判断四边形ABCD是平行四边形;D、由AB∥CD,∠A=∠B不可以判断四边形ABCD是平行四边形;故选:D.9.(3分)如图,以正方形ABCD的边AB为一边向内作等边△ABE,连结DE,则∠BED的度数为()A.120°B.125°C.135°D.150°【解答】解:如图,在正方形ABCD中,∠ABC=90°,AB=BC.∵△ABE是等边三角形,∴∠AEB=∠BAE=60°,AE=AB,∴∠DAE=90°﹣60°=30°,AE=AD,∴∠AED=∠ADE=(180°﹣30°)=75°,∴∠BED=∠AEB+∠AED=60°+75°=135°.故选:C.10.(3分)如图,EF是Rt△ABC的中位线,∠BAC=90°,AD是斜边BC边上的中线,EF和AD相交于点O,则下列结论不正确的是()A.AO=OD B.EF=ADC.S△AEO=S△AOF D.S△ABC=2S△AEF【解答】解:∵EF是Rt△ABC的中位线,∴EF BC,∵AD是斜边BC边上的中线,∴AD=BC,∴EF=AD,故选项B正确;∵AE=BE,EO∥BD,∴AO=OD,故选项A正确;∵E,O,F,分别是AB,AD,AC中点,∴EO=BD,OF=DC,∵BD=CD,∴OE=OF,又∵EF∥BC,∴S△AEO=S△AOF,故选项C正确;∵EF∥BC,∴△ABC∽△AEF,∵EF是Rt△ABC的中位线,∴S△ABC:S△AEF=4:1,即S△ABC=4S△AEF≠2S△AEF,故选D错误,故选:D.二、填空题(本题有6小题,每小题3分,共18分)11.(3分)若二次根式有意义,则x的取值范围是x≥﹣1.【解答】解:由题意得:x+1≥0,解得:x≥﹣1,故答案为:x≥﹣1.12.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,要使矩形ABCD成为正方形,应添加的一个条件是AB=BC(答案不唯一).【解答】解:添加的条件可以是AB=BC.理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是正方形.故答案为:AB=BC(答案不唯一).13.(3分)已知关于x的一元二次方程x2﹣2ax+3a=0的一个根是2,则a=4.【解答】解:∵关于x的一元二次方程x2﹣2ax+3a=0有一个根为2,∴22﹣2a×2+3a=0,解得,a=4,故答案为4.14.(3分)某校四个植树小队,在植树节这天种下柏树的棵数分别为10,x,10,8,若这组数据的中位数和平均数相等,那么x=12或8.【解答】解:∵这组数据的中位数和平均数相等,∴=10或9,解得:x=12或8,故答案为:12或8.15.(3分)如图,在反比例函数y=(x>0)的图象上有四个点A,B,它们的横坐标依次为a,2a,3a,4a,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和为2.【解答】解:如图,∵反比例函数的解析式为y=,∴矩形AEOF的面积为4.由题意,图中阴影部分的面积之和=×矩形AEOF的面积=2,故答案为2.16.(3分)如图,在▱ABCD中,点E是BC边上的动点,已知AB=4,BC=6,∠B=60°,现将△ABE沿AE折叠,点B′是点B的对应点,设CE长为x.(1)如图1,当点B′恰好落在AD边上时,x=2;(2)如图2,若点B′落在△ADE内(包括边界),则x的取值范围是2≤x≤2﹣2【解答】解:(1)点B′恰好落在AD边上时,四边形ABEB′是边长为4的菱形,∴EC=BC﹣BE=6﹣4=2.(2)作AH⊥DE于H.在Rt△AHB′中,∵∠AB′H=60°,AB′=4,∴HB′=AB′=2,AH=HB′=2,在Rt△ADH中,DH==2,∵AD∥BC,∴∠DAB=∠AEB=∠AED,∴DA=DE=6,∴EB′=BE=6﹣(2﹣2)=8﹣2,∴EC=BC﹣BE=6﹣(8﹣2)=2﹣2.∴若点B′落在△ADE内(包括边界),则x的取值范围是2≤x﹣2.故答案为:2,2﹣2.三、解答题(本题有8小题,共52分)17.(6分)计算:(1)﹣(2)(1﹣)(+1).【解答】解:(1)原式=2﹣=;(2)原式=1﹣5=﹣4.18.(6分)解方程(1)x2﹣9=0;(2)x(2x﹣3)=5x.【解答】解:(1)∵x2﹣9=0,∴x2=9,∴x=±3;(2)方程整理可得2x2﹣8x=0,因式分解得2x(x﹣4)=0,解得:x=0或x=4.19.(6分)为了解某校八年级150名女生的身高情况,从中随机抽取10名女生,测得身高并绘制如下条形统计图.(1)求出这10名女生的身高的中位数和众数;(2)依据样本估计该校八年级全体女生的平均身高;(3)请你依据这个样本,在该校八年级中,设计一个挑选50名女生组成方队的方案(要求选中女生的身高尽可能接近).【解答】解:(1)这10名女生的身高为:154、158、158、161、161、162、162、162、165、167,∴这10名女生的身高的中位数是:=161.5cm,众数是162cm,即这10名女生的身高的中位数和众数分别是161.5cm、162cm;(2)平均身高是:=161cm,即该校八年级全体女生的平均身高是161cm;(3)可以先将八年级身高是162cm的所有女生挑选出来,若不够,再挑选身高与162cm最接近的,直到挑选到50人为止.20.(6分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点A(1,5)和点B(n,1).(1)求m,n的值;(2)根据图象判断,当不等式kx+b≤成立时,x的取值范围是什么?【解答】解:(1)把A(1,5)代入y=中,得到m=5,∴反比例函数的解析式为y=,把B(n,1)代入y=中,得到n=5.(2)∵A(1,5),B(5,1),观察图象可知:不等式kx+b≤成立时,x的取值范围是0<x≤1或x≥5.21.(6分)如图,在矩形ABCD中,对角线AC与BD相交于点O,点E,F分别是AO,DO的中点,连结BE,CF.(1)求证:BE=CF;(2)连结EF,若EF=3,∠EOF=120°,求矩形ABCD的周长.【解答】(1)证明:∵四边形ABCD是矩形,∴OB=OD=OC=OA,∵点E,F分别是AO,DO的中点,∴OE=OA,OF=OD,∴OE=OF,∵∠BOE=∠COF,∴△BOE≌△COF,∴BE=CF.(2)∵点E,F分别是AO,DO的中点,∴AD=2EF=6,∵∠AOD=120°,AO=OD,∴∠ODA=30°,在Rt△ADB中,AB=AD•tan30°=2,∴矩形的周长为2(6+2)=12+4.22.(6分)某种商品的标价为500元/件,经过两次降价后的价格为320元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该商品进价为280元/件,两次降价共售此种商品100件,为使两次降价销售的总利润不少于8000元,则第一次降价后至少要售出该种商品多少件?【解答】解:(1)设该种商品每次降价的百分率为x,根据题意得:500(1﹣x)2=320,解得:x1=0.2=20%,x2=1.8(舍去).答:该种商品每次降价的百分率为20%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,根据题意得:[500×(1﹣20%)﹣280]m+(320﹣280)(100﹣m)≥8000,解得:m≥50.答:第一次降价后至少要售出该种商品50件.23.(8分)在一次数学实践活动中,观测小组对某品牌节能饮水机进行了观察和记录,当观察到第t分钟时,水温为y℃,记录的相关数据如下表所示:(饮水机功能说明:水温加热到100℃时饮水机停止加热,水温开始下降,当降到40℃时饮水机又自动开始加热)请根据上述信息解决下列问题:(1)根据表中数据在如图给出的坐标系中,描出相应的点;(2)选择适当的函数,分别求出第一次加热过程和第一次降温过程y关于t的函数关系式,并写出相应自变量的取值范围;(3)已知沏茶的最佳水温是80℃≤y≤90℃,若18:00开启饮水机(初始水温20℃)到当晚20:10,沏茶的最佳水温时间共有多少分钟?【解答】解:(1)如图所示.(2)观察图象可知第一次加热过程的函数关系是一次函数,设解析式为y=kt+b,则有,解得,∴第一次加热过程的函数关系是y=2x+20.(0≤t≤40)由图象可知第一次降温过程的函数关系是反比例函数,设y=,把(50,80)代入得到m=4000,∴第一次降温过程的函数关系是y=.(40≤t≤100).(3)由题意可知,第二次加热观察时间为30分钟,结束加热是第130分钟,而18:00至20:10共130分钟,∴饮水机加热一次,降温一次,再加热了一次的过程,把y=80代入y=2t+20,得到t=30,把y=90代入y=2x+20,得到t=35,∴一次加热过程出现的最佳水温时间为:35﹣30=5分钟,把y=80代入y=,得到t=50,把y=90代入y=得到t=,∴一次降温出现的最佳水温时间为:50﹣=(分钟),∴18:00开启饮水机(初始水温20℃)到当晚20:10,沏茶的最佳水温时间共+5×2=(分钟).24.(8分)如图1,点O是菱形ABCD对角线的交点,已知菱形的边长为12,∠ABC=60°.(1)求BD的长;(2)如图2,点E是菱形边上的动点,连结EO并延长交对边于点G,将射线OE绕点O 顺时针旋转30°交菱形于点H,延长HO交对边于点F.①求证:四边形EFGH是平行四边形;②若动点E从点B出发,以每秒1个单位长度沿B→A→D的方向在BA和AD上运动,设点E运动的时间为t,当t为何值时,四边形EFGH为矩形.【解答】解:(1)∵四边形ABCD是菱形,∴AC⊥BD,∥ABO=∠OBC=30°,∴AO=AB=6,∴OB=AB•cos30°=6,∴BD=2BO=12.(2)①∵四边形ABCD是菱形,∴AB∥CD,BO=OD,∴∠EBO=∠GDO∵∠BOE=∠DOG,∴△EOB≌△GOD,∴EO=GO,同理可得HO=FO,∴四边形EFGH是平行四边形.②a、当点E、H都在AB上时,四边形EFGH是矩形,作∠EOH的平分线OM,∵OE=OH,∴OM⊥EH.∴∠MOB=90°﹣∠ABO=60°,∵∠MOE=∠EOH=15°,∴∠EOB=∠MOB﹣∠MOE=45°,作EN⊥OB于N.设ON=EN=x,则NB=x,∵OB=6,∴x+x=6,∴x=9﹣3,∴BE=2EN=18﹣6,∴t=18﹣6时,四边形EFGH是矩形.b、当点E在AB上,点H在AD上,四边形EFGH是矩形.由菱形和矩形都是轴对称图形可知,∠AOE=∠AOH=15°,∴∠EOB=90°﹣15°=75°,∵∠ABO=30°,∴∠BEO=180°﹣∠EOB﹣∠ABO=75°,∴∠BEO=∠BOE,∴BE=BO=6,∴t=6时,四边形EFGH是矩形.c、当点E、H都在AD上时,四边形EFGH是矩形.由b同理可证:DE=DO=6,∴AB+AE=AB+AD﹣DE=24﹣6∴t=24﹣6时,四边形EFGH是矩形.d、当点E在AD上,点H在DC上,四边形EFGH是矩形.由菱形、矩形都是轴对称图形可知,∠DOE=∠HOE=15°,∴∠EOA=90°﹣15°=75°,∵∠OAD=60°,过点O作OK⊥AD,∴∠AOK=90°﹣∠OAD=30°,∴∠KOE=75°﹣30°=45°,∴KE=OK,∴AE=AK+KE=3+3,∴BA+AE=15+3,∴t=15+3,∴t=15+3时,四边形EFGH是矩形.综上所述,t为18﹣6,6,24﹣6,15+3时,四边形EFGH是矩形.。
浙江省丽水市八年级下学期数学期末考试试卷
浙江省丽水市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·大庆) 函数的自变量的取值范围是()A .B .C .D .2. (2分) (2020九上·奉化期末) 正五边形的每个内角度数为()A . 36°B . 72°C . 108°D . 120°3. (2分) (2020九上·覃塘期末) 下列各点不在反比例函数的图象上的是()A .B .C .D .4. (2分) (2020八下·哈尔滨期中) 关于x一元二次方程x2-kx-6=0的根的情况为()A . 有两个不相等的实数根B . 有两个相等的实数根C . 无实数根D . 无法确定根的情况5. (2分) (2019七下·厦门期中) 在下列式子中,正确是()A . =﹣2B . ﹣=﹣0.6C . =﹣13D . =±66. (2分)一组数据:0,1,2,3,3,5,5,10的中位数是()A . 2.5B . 3C . 3.5D . 57. (2分) (2018八上·武汉月考) 平面内点 A(-1,2)和点 B(-1,-2)的对称轴是()A . x 轴B . y 轴C . 直线 y=4D . 直线 x=-18. (2分) (2020八下·长沙期中) 如图,在□ABCD中, BE平分∠ABC,若∠D=64°,则∠AEB等于()A . 64°B . 32°C . 116°D . 30°9. (2分) (2017八下·泰州期中) 下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连结矩形四边中点得到的四边形是菱形;④等边三角形既是轴对称图形又是中心对称图形.其中真命题共有()A . 1个B . 2个C . 3个D . 4个10. (2分) (2019八下·南岸期中) 如图,△ABC中,AB=AC,AB 的垂直平分线交 AB 于点 D,交 CA 的延长线于点 E,∠EBC=42°,则∠BAC=()A . 159°B . 154°C . 152°D . 138°二、填空题 (共6题;共7分)11. (1分) (2019八上·咸阳月考) 0.36的平方根是________,81的算术平方根是________12. (1分) (2019九上·北流期中) 已知一元二次方程x2+kx-3=0有一个根为1,则k的值为________.13. (1分) (2018八下·句容月考) 已知平形四边形ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF的长是________.14. (1分)(2019·绍兴模拟) 从甲、乙两班分别任抽10名学生进行英语口语测验,其测试成绩的方差是s甲2=13,s乙2=26,,则________班学生的成绩比较整齐.15. (1分) (2017八下·巢湖期末) 如图,AC是正方形ABCD的对角线,AE平分∠BAC,EF⊥AC交AC于点F,若BE=2,则CF长为________。
2017-2018学年浙教版八年级数学(下册)期末测试卷及答案
2017-2018学年八年级(下册)期末数学试卷一、选择题(每小题2分,共20分)1.要使二次根式有意义,则下列选择中字母x可以取的是()A.0 B.1 C.2 D.32.下列各图形都由若干个小正方形构成,其中是中心对称图形的是()A.B.C.D.3.已知5个数a1、a2、a3、a4、a5的平均数是a,则数据a1+1,a2+2,a3+3,a4+4,a5+5的平均数为()A.a B.a+3 C. a D.a+154.下列二次根式是最简二次根式的是()A. B.C. D.5.下列一元二次方程有两个相等的实数根的是()A.x2+1=0 B.x2+4x﹣4=0 C.x2+x+=0 D.x2﹣x+=06.如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm7.如图是一个近似“囧”的图形,若已知四边形ABCD是一个边长为2的正方形,点P,M,N分别是边AD、AB、CD的中点,E、H分别是PM、PN的中点,则正方形EFGH的面积是()A.2 B.1 C.D.8.用反证法证明“在△ABC中,若AB≠AC,则∠B≠∠C”时,第一步应假设()A.AB=AC B.AB≠AC C.∠B=∠C D.∠B≠∠C9.如图,点E、F是四边形ABCD的边AD、BC上的点,连接EF,将四边形ABFE 沿直线EF折叠,若点A,点B都落在四边形ABCD内部,记∠C+∠D=a,则下列结论一定正确的是()A.∠1+∠2=180°﹣αB.∠1+∠2=360°﹣αC.∠1+∠2=360°﹣2αD.∠1+∠2=540°﹣2α10.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共30分)11.﹣()2=.12.已知点A(﹣2,m)是反比例函数y=的图象上的一点,则m的值为.13.若整数x满足|x|≤2,则使为整数的x的值是.14.若关于x的一元二次方程x2+mx+m2﹣4=0有一根为0,则m=.15.为积极响应嵊州市创建国家卫生城市的号召,某校利用双休日组织45名学生上街捡垃圾,他们捡到的垃圾重量如表所示:这些学生捡到的垃圾重量的众数是 千克.16.如图是由射线AB ,BC,CD,DE ,EA 组成的平面图形,则∠1+∠2+∠3+∠4+∠5= .17.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m ,另一边减少了3m ,剩余一块面积为20m 2的矩形空地,则原正方形空地的边长为 m .18.如图,点P 是正比例函数y=x 与反比例函数y=在第一象限内的交点,PA ⊥OP 交x 轴于点A ,△POA 的面积为2,则k 的值是 .19.如图,在矩形ABCD 中,边AB 的长为3,点E ,F 分别在AD ,BC 上,连接BE ,DF ,EF ,BD .若四边形BEDF 是菱形,且EF=AE +FC ,则边BC 的长为 .20.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三、解答题21.计算:(1)﹣()2(2)÷﹣.22.解方程:(1)x2=2x(2)x2﹣4x+1=0.23.在喜迎建党九十周年之际,某校举办校园唱红歌比赛,选出10名同学担任评委,并事先拟定从如下四种方案中选择合理方案来确定演唱者的最后得分(每个评委打分最高10分).方案1:所有评委给分的平均分.方案2:在所有评委中,去掉一个最高分和一个最低分,再计算剩余评委的平均分.方案3:所有评委给分的中位数.方案4:所有评委给分的众数.为了探究上述方案的合理性,先对某个同学的演唱成绩进行统计实验,右侧是这个同学的得分统计图:(1)分别按上述四种方案计算这个同学演唱的最后得分.(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演唱的最后得分?24.如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE.(2)若∠DBC=30°,AB=4,求△BED的周长.25.阅读材料:新定义运算max{a,b}:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.例如:max{﹣3,x}=2请你阅读以上材料,完成下列各题.(1)max{,3}=.(2)已知y=和y=k2x+b在同一平面直角坐标系中的图象如图所示,当max{,k2x+b}=时,结合图象,直接写出x的取值范围.(3)当max={﹣3x﹣1,﹣2x+3}=x2+x+3时,求x的值.26.已知:如图,直线y=﹣x+3与x轴、y轴交于点A,点B,点O关于直线AB的对称点为点O′,且点O′恰好在反比例函数y=的图象上.(1)求点A与B的坐标;(2)求k的值;(3)若y轴正半轴有点P,过点P作x轴的平行线,且与反比例函数y=的图时,象交于点Q,设A、P、Q、O′四个点所围成的四边形的面积为S.若S=S△OAB求点P的坐标.四、附加题(共20分)27.在平行四边形ABCD中,BC=8,F为AD的中点,点E是边AB上一点,连结CE恰好有CE⊥AB.(1)当∠B=60°时,求CE的长.(2)当AB=4时,求∠AEF:∠EAF:∠EFD.28.如图,在平面直角坐标系中A(﹣2,0)、B(0,1),AB=AC,且∠BAC=90°.(1)求C点坐标;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;(3)在(2)的条件下,直线B′C′交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.参考答案与试题解析一、选择题(每小题2分,共20分)1.要使二次根式有意义,则下列选择中字母x可以取的是()A.0 B.1 C.2 D.3【考点】二次根式有意义的条件.【分析】直接利用二次根式的定义得出x的取值范围,进而得出答案.【解答】解:∵二次根式有意义,∴x﹣3≥0,解得:x≥3,故字母x可以取的是:3.故选:D.2.下列各图形都由若干个小正方形构成,其中是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行解答.【解答】解:A、C、D都不是中心对称图形,只有C是中心对称图形.故选:C.3.已知5个数a1、a2、a3、a4、a5的平均数是a,则数据a1+1,a2+2,a3+3,a4+4,a5+5的平均数为()A.a B.a+3 C. a D.a+15【考点】算术平均数.【分析】根据数据a1+1,a2+2,a3+3,a4+4,a5+5比数据a1、a2、a3、a4、a5的和多15,可得数据a1+1,a2+2,a3+3,a4+4,a5+5的平均数比a多3,据此求解即可.【解答】解:a+[(a1+1+a2+2+a3+3+a4+4+a5+5)﹣(a1+a2+a3+a4+a5)]÷5=a+[1+2+3+4+5]÷5=a+15÷5=a+3故选:B.4.下列二次根式是最简二次根式的是()A. B.C. D.【考点】最简二次根式.【分析】根据最简二次根式满足的两个条件进行判断即可.【解答】解:=4,被开方数中含能开得尽方的因数,不是最简二次根式;,被开方数含分母,不是最简二次根式;是最简二次根式;被开方数含分母,不是最简二次根式,故选:C.5.下列一元二次方程有两个相等的实数根的是()A.x2+1=0 B.x2+4x﹣4=0 C.x2+x+=0 D.x2﹣x+=0【考点】根的判别式.【分析】直接利用根的判别式分别分析各选项,即可求得答案.【解答】解:A、∵a=1,b=0,c=1,∴△=b2﹣4ac=02﹣4×1×1=﹣4<0,∴此一元二次方程无实数根;B、∵a=1,b=4,c=﹣4,∴△=b2﹣4ac=42﹣4×1×(﹣4)=32>0,∴此一元二次方程有两个不相等的实数根;C、∵a=1,b=1,c=,∴△=b2﹣4ac=12﹣4×1×=0,∴此一元二次方程有两个相等的实数根;D、∵a=1,b=﹣1,c=,∴△=b2﹣4ac=(﹣1)2﹣4×1×=﹣1<0,∴此一元二次方程无实数根.故选C.6.如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm【考点】平行四边形的性质.【分析】根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,得出方程x+x+2=10,求出方程的解即可.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,∵▱ABCD的周长为20cm,∴x+x+2=10,解得:x=4,即AB=4cm,故选D.7.如图是一个近似“囧”的图形,若已知四边形ABCD是一个边长为2的正方形,点P,M,N分别是边AD、AB、CD的中点,E、H分别是PM、PN的中点,则正方形EFGH的面积是()A.2 B.1 C.D.【考点】正方形的性质;三角形中位线定理.【分析】连接MN,由三角形中位线定理可求得EH=MN,则可求得正方形EFGH 的面积.【解答】解:连接MN,∵M、N分别是AB、CD的中点,∴MN=AD=2,∵E、H分别是PM、PN的中点,∴EH=MN=1,=EH2=1,∴S正方形EFGH故选B.8.用反证法证明“在△ABC中,若AB≠AC,则∠B≠∠C”时,第一步应假设()A.AB=AC B.AB≠AC C.∠B=∠C D.∠B≠∠C【考点】反证法.【分析】根据反证法的一般步骤解答即可.【解答】解:用反证法证明命题“在△ABC中,AB≠AC,求证:∠B≠∠C”,第一步应是假设∠B=∠C,故选:C.9.如图,点E、F是四边形ABCD的边AD、BC上的点,连接EF,将四边形ABFE 沿直线EF折叠,若点A,点B都落在四边形ABCD内部,记∠C+∠D=a,则下列结论一定正确的是()A.∠1+∠2=180°﹣αB.∠1+∠2=360°﹣αC.∠1+∠2=360°﹣2αD.∠1+∠2=540°﹣2α【考点】翻折变换(折叠问题).【分析】根据四边形内角和为360°可得∠A+∠B=360°﹣a,进而可得∴∠AEF+∠BFE=a,再根据折叠可得:∠3+∠4=a,再由平角定义可得答案.【解答】解:∵∠A+∠B+∠C+∠D=360°,∠C+∠D=a,∴∠A+∠B=360°﹣a,∵∠A+∠B+∠AEF+∠AFE=360°,∴∠AEF+∠BFE=360°﹣(∠A+∠B)=a,由折叠可得:∠3+∠4=a,∴∠1+∠2=360°﹣2a,故选:C.10.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4【考点】反比例函数综合题.【分析】作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F,易证△OAB ≌△FDA≌△BEC,求得A、B的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a 的值即可求解.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,∵在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4).代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把y=4代入y=得:x=1.即G的坐标是(1,4),∴CG=2.故选:B.二、填空题(每小题3分,共30分)11.﹣()2=﹣3.【考点】实数的运算.【分析】直接根据平方的定义求解即可.【解答】解:∵()2=3,∴﹣()2=﹣3.12.已知点A(﹣2,m)是反比例函数y=的图象上的一点,则m的值为﹣4.【考点】反比例函数图象上点的坐标特征.【分析】直接把点A(﹣2,m)代入反比例函数y=,求出m的值即可.【解答】解:∵点A(﹣2,m)是反比例函数y=的图象上的一点,∴m==﹣4.故答案为:﹣4.13.若整数x 满足|x |≤2,则使为整数的x 的值是 ﹣2 . 【考点】实数.【分析】先求出x 的取值范围,再根据算术平方根的定义解答.【解答】解:∵|x |≤2,∴﹣2≤x ≤2,∴当x=﹣2时,==3, 故使为整数的x 的值是﹣2.故答案为:﹣2.14.若关于x 的一元二次方程x 2+mx +m 2﹣4=0有一根为0,则m= ±2 .【考点】一元二次方程的解.【分析】根据关于x 的一元二次方程x 2+mx +m 2﹣4=0有一根为0,将x=0代入即可求得m 的值,本题得以解决.【解答】解:∵关于x 的一元二次方程x 2+mx +m 2﹣4=0有一根为0,∴m 2﹣4=0,解得,m=±2,故答案为:±2.15.为积极响应嵊州市创建国家卫生城市的号召,某校利用双休日组织45名学生上街捡垃圾,他们捡到的垃圾重量如表所示:这些学生捡到的垃圾重量的众数是 6 千克.【考点】众数.【分析】一组数据中出现次数最多的数据叫做众数,依此求解即可.【解答】解:由图表可知,6千克出现了15次,次数最多,所以众数为6千克.故答案为6.16.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.【考点】多边形内角与外角.【分析】首先根据图示,可得∠1=180°﹣∠BAE,∠2=180°﹣∠ABC,∠3=180°﹣∠BCD,∠4=180°﹣∠CDE,∠5=180°﹣∠DEA,然后根据三角形的内角和定理,求出五边形ABCDE的内角和是多少,再用180°×5减去五边形ABCDE的内角和,求出∠1+∠2+∠3+∠4+∠5等于多少即可.【解答】解:∠1+∠2+∠3+∠4+∠5=++++=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.17.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长为7m.【考点】一元二次方程的应用.【分析】本题可设原正方形的边长为xm,则剩余的空地长为(x﹣2)m,宽为(x﹣3)m.根据长方形的面积公式方程可列出,进而可求出原正方形的边长.【解答】解:设原正方形的边长为xm,依题意有(x﹣3)(x﹣2)=20,解得:x1=7,x2=﹣2(不合题意,舍去)即:原正方形的边长7m.故答案是:7.18.如图,点P是正比例函数y=x与反比例函数y=在第一象限内的交点,PA ⊥OP交x轴于点A,△POA的面积为2,则k的值是2.【考点】反比例函数系数k的几何意义;等腰直角三角形.【分析】过P作PB⊥OA于B,根据一次函数的性质得到∠POA=45°,则△POA=S△POA=×2=1,然后根据反比例为等腰直角三角形,所以OB=AB,于是S△POB函数y=(k≠0)系数k的几何意义即可得到k的值.【解答】解:过P作PB⊥OA于B,如图,∵正比例函数的解析式为y=x,∴∠POA=45°,∵PA⊥OP,∴△POA为等腰直角三角形,∴OB=AB,=S△POA=×2=1,∴S△POB∴k=1,∴k=2.故答案为2.19.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为3.【考点】矩形的性质;菱形的性质.【分析】根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,AB=BO=3,因为四边形BEDF是菱形,所以可求出BE,AE,进而可求出BC的长.【解答】解:∵四边形ABCD是矩形,四边形BEDF是菱形,∴∠A=90°,AD=BC,DE=BF,OE=OF,EF⊥BD,∠EBO=FBO,∴AE=FC.又EF=AE+FC,∴EF=2AE=2CF,又EF=2OE=2OF,AE=OE,∴△ABE≌OBE,∴∠ABE=∠OBE,∴∠ABE=∠EBD=∠DBC=30°,∴BE=,∴BF=BE=2,∴CF=AE=,∴BC=BF+CF=3,故答案为:3.20.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【考点】翻折变换(折叠问题).【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.三、解答题21.计算:(1)﹣()2(2)÷﹣.【考点】二次根式的混合运算.【分析】根据二次根式的混合运算顺序,求出每个算式的值各是多少即可.【解答】解:(1)﹣()2=4﹣5=﹣1(2)÷﹣=2﹣=22.解方程:(1)x2=2x(2)x2﹣4x+1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)移项然后提公因式可以解答此方程;(2)根据配方法可以解答此方程.【解答】解:(1)x2=2xx2﹣2x=0x(x﹣2)=0∴x=0或x﹣2=0,解得,x1=0,x2=2;(2)x2﹣4x+1=0x2﹣4x=﹣1(x﹣2)2=3x﹣2=,∴.23.在喜迎建党九十周年之际,某校举办校园唱红歌比赛,选出10名同学担任评委,并事先拟定从如下四种方案中选择合理方案来确定演唱者的最后得分(每个评委打分最高10分).方案1:所有评委给分的平均分.方案2:在所有评委中,去掉一个最高分和一个最低分,再计算剩余评委的平均分.方案3:所有评委给分的中位数.方案4:所有评委给分的众数.为了探究上述方案的合理性,先对某个同学的演唱成绩进行统计实验,右侧是这个同学的得分统计图:(1)分别按上述四种方案计算这个同学演唱的最后得分.(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演唱的最后得分?【考点】众数;加权平均数;中位数.【分析】本题关键是理解每种方案的计算方法:(1)方案1:平均数=总分数÷10.方案2:平均数=去掉一个最高分和一个最低分的总分数÷8.方案3:10个数据,中位数应是第5个和第6个数据的平均数.方案4:求出评委给分中,出现次数最多的分数.(2)考虑不受极值的影响,不能有两个得分等原因进行排除.【解答】解:(1)方案1最后得分:(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案2最后得分:(7.0+7.8+3×8+3×8.4)=8;方案3最后得分:8;方案4最后得分:8和8.4.(2)因为方案1中的平均数受极端数值的影响,不适合作为这个同学演讲的最后得分,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.24.如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE.(2)若∠DBC=30°,AB=4,求△BED的周长.【考点】矩形的性质.【分析】(1)根据矩形的对角线相等可得AC=BD,然后证明四边形ABEC是平行四边形,再根据平行四边形的对边相等可得AC=BE,从而得证;(2)根据矩形的对角线互相平分求出BD的长度,再根据30°角所对的直角边等于斜边的一半求出CD的长度,然后求出DE,即可得出结果.【解答】(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD,又∵BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE;(2)解:∵在矩形ABCD中,BO=4,∴BD=2BO=2×4=8,∵∠DBC=30°,BD=BE,∴CD=BD=×8=4,∴AB=CD=4,DE=CD+CE=CD+AB=4+4=8,∴△BED的周长=BD+BE+DE=8+8+8=24..25.阅读材料:新定义运算max{a,b}:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.例如:max{﹣3,x}=2请你阅读以上材料,完成下列各题.(1)max{,3}=3.(2)已知y=和y=k2x+b在同一平面直角坐标系中的图象如图所示,当max{,k2x+b}=时,结合图象,直接写出x的取值范围.(3)当max={﹣3x﹣1,﹣2x+3}=x2+x+3时,求x的值.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据新定义运算的法则进行计算即可;(2)根据max{,k2x+b}=,得出≥k2x+b,再结合图象进行判断即可;(3)分两种情况进行讨论:①﹣3x﹣1≥﹣2x+3时;②﹣3x﹣1<﹣2x+3时,分别求得x的值,并检验是否符合题意即可.【解答】解:(1)∵<3,∴max{,3}=3,故答案为:3;(2)∵max{,k2x+b}=,∴≥k2x+b,∴从图象可知,x的取值范围为﹣3≤x<0或x≥2;(3)①当﹣3x﹣1≥﹣2x+3时,解得x≤﹣4,此时,﹣3x﹣1=x2+x+3,解得x1=x2=﹣2(不合题意)②当﹣3x﹣1<﹣2x+3时,解得x>﹣4,此时,﹣2x+3=x2+x+3,解得x1=0,x2=﹣3(符合题意)综上所述,x的值为0或﹣3.26.已知:如图,直线y=﹣x+3与x轴、y轴交于点A,点B,点O关于直线AB的对称点为点O′,且点O′恰好在反比例函数y=的图象上.(1)求点A与B的坐标;(2)求k的值;(3)若y轴正半轴有点P,过点P作x轴的平行线,且与反比例函数y=的图时,象交于点Q,设A、P、Q、O′四个点所围成的四边形的面积为S.若S=S△OAB求点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)分别令直线y=﹣x+3中的x=0,y=0即可求得A、B两点的坐标;(2)根据对称点的性质即可;(3)分两种情况:①当点P在点B的上方时,即:m>3,延长AO′于PQ相交于点M,设P(0,m),由面积关系可求;②当点P在点B的上方时,即:0<m <3,方法同上.【解答】解:(1)A(3,0),B(0,3)(2)如图①图①∵点O 与O′关于直线AB 对称,∴由题意可得四边形OAO′B 为正方形,∴O′(3,3)则 k=3×3=9即:k 的值为9(3)设P (0,m ),显然,点P 与点B 不重合①当点P 在点B 的上方时,即:m >3,延长AO′于PQ 相交于点M ,如图②所示:则:Q (,m ),M (3,m )∴PM=3,AM=m ,MO′=m ﹣3,QM=3﹣,∴S=S △PMA ﹣S △QMO′==×=∴﹣(3﹣m )(m +3)=, 解之得:m=6②当点P 在点B 的上方时,即:0<m <3,如图③所示:显然,PQ⊥AO′,∴S=•PQ•AO′=×3×=,∴m=2∴P(0,2)或(0,6)四、附加题(共20分)27.在平行四边形ABCD中,BC=8,F为AD的中点,点E是边AB上一点,连结CE恰好有CE⊥AB.(1)当∠B=60°时,求CE的长.(2)当AB=4时,求∠AEF:∠EAF:∠EFD.【考点】平行四边形的性质.【分析】(1)由已知条件得出∠BEC=90°,∠BCE=30°,得出BE=BC=4,由勾股定理求出CE即可;(2)取BC的中点G,连接FG交CE于O,证出四边形ABGF和四边形CDFG都是菱形,且O为CE的中点,得出∠AEF=∠EFG,∠DFC=∠CFG,OF为CE的中垂线,得出∠EFG=∠CFG,因此∠EFD=3∠AEF,得出∠FAE=∠EFD﹣∠AEF=2∠AEF,即可得出结论.【解答】解:(1)∵CE⊥AB,∴∠BEC=90°,∵∠B=60°,∴∠BCE=30°,∴BE=BC=4,∴CE===4;(2)取BC的中点G,连接FG交CE于O,连接CF,如图所示:∵BC=8,AB=4,四边形ABCD是平行四边形,∴四边形ABGF和四边形CDFG都是菱形,且O为CE的中点,∴∠AEF=∠EFG,∠DFC=∠CFG,OF为CE的中垂线,∴EF=CF,∴∠EFG=∠CFG,∴∠EFD=3∠AEF,∴∠FAE=∠EFD﹣∠AEF=2∠AEF,∴∠AEF:∠EAF:∠EFD=1:2:3.28.如图,在平面直角坐标系中A(﹣2,0)、B(0,1),AB=AC,且∠BAC=90°.(1)求C点坐标;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;(3)在(2)的条件下,直线B′C′交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)作CN⊥x轴于点N,通过角的计算得出∠NAC=∠OBA,结合相等的直角以及AC=AB即可证出Rt△CNA≌Rt△AOB(AAS),进而得出ON和CN的长度,此题得解;(2)设反比例函数解析式为y=,C′(c,2),根据平移的性质结合点B、C的坐标即可得出点B′的坐标,再根据反比例函数图象上点的坐标特征即可得出关于k、c的二元一次方程组,解方程组即可得出k、c值,由此即可得出反比例函数解析式与点B′、C′坐标,根据点B′、C′坐标利用待定系数法即可求出直线B′C′的解析式;(3)假设存在,根据直线B′C′的解析式即可求出点G的坐标,设点M(t,0),根据平行四边形的性质即可得出点P的坐标,再利用反比例函数图象上点的坐标特征即可得出关于t的分式方程,解方程即可得出t值,将t值代入点M、P的坐标即可得出结论.【解答】解:(1)作CN⊥x轴于点N,如图1所示.∵∠BAC=90°,∴∠NAC+∠OAB=90°,∵∠OAB+∠OBA=90°,∴∠NAC=∠OBA.在Rt△CNA和Rt△AOB中,,∴Rt△CNA≌Rt△AOB(AAS),∴AN=BO=1,NO=NA+AO=3,CN=AO=2,∴C点坐标为(﹣3,2).(2)设反比例函数解析式为y=,∵C(﹣3,2),B(0,1),∴设C′(c,2),则B′(c+3,1).∵点B′和C′在反比例函数图象上,∴,解得:,∴反比例函数解析式为y=.∵c=3,∴C′(3,2),B′(6,1),设直线B′C′的解析式为y=mx+n,则,解得:,∴直线B′C′的解析式位y=﹣x+3.(3)假设存在,令y=﹣x+3中x=0,则y=3,∴G(0,3),设点M(t,0),则P(0+3﹣t,3+2﹣0),即(3﹣t,5),∵点P在反比例函数y=的图象上,∴5=,解得:t=,经检验t=是方程5=的解,∴M(,0),P(,5).故存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形,点M的坐标为(,0),点P的坐标为(,5).2017年2月26日。
2017~2018第二学期八年级数学期末试卷
2017~2018学年第二学期期末考试卷 八年级数学试题 2018.6一、选择题(本大题共10小题,每题3分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请把正确现象前的字母代号填涂在答题卷相应位置..........) 1.下列图形中,既是轴对称图形,又是中心对称图形的是……………………………………………( ▲ )A. B.C.D.2.下列各式: a -b2 ,x -3x ,5+y π ,a +b a -b ,1n(-y )中,是分式的共有…………………………( ▲ ) A.1个 B.2个C.3个D.4个 3.下列式子从左到右变形一定正确的是 ………………………………………………………………( ▲ )A. a b =a 2b 2B. a b =a +1b +1C. a b =a -1b -1D. a 2 ab =a b4.若2x -1 在实数范围内有意义,则的取值范围是………………………………………………( ▲ ) A.≥12B. ≥-12C.>12D.≠125.下列计算:(1)(2)2=2,(2)(-2)2=2,(3)(-23)2=12,(4)(2+3)( 2-3)=-1,其中结果正确的个数为 …………………………………………………………………………………………( ▲ ) A.1B.2C.3D.46.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是………… ……………………………………………………………………………( ▲ ) A.至少有1个球是黑球 B.至少有1个球是白球 C.至少有2个球是黑球D.至少有2个球是白球7.已知P 1(1,y 1),P 2(2,y 2),P 3(3,y 3)是反比例函数y =6x的图像上三点,且y 1<y 2<0<y 3,则1,2,3的大小关系是 …………………………………………………………………………………………( ▲ ) A. 1<2<3B. 3<2<1C. 2<1<3D. 2<3<18.关于的分式方程7x x -1 +5=2m -1x -1 有增根,则m 的值为 ……………( ▲ )A.5B.4C.3D.19.如图,在菱形ABCD 中,∠BCD =110°,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连接DF ,则∠CDF 等于 …………………………………………( ▲ )A.15°B.25°C.45°D.55°10.如图,在平面直角坐标系中,直线y =33+2与轴交于点A ,与y 轴交于点B ,将△ABO 沿直线AB 翻折,点O 的对应点C 恰好落在双曲线y =k x(≠0)上,则的值为……( ▲ ) A.-4B.-2C. -2 3D. -3 3二、填空题:(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位置.......上.) 11.若分式x -3x值为0,则的值为 ▲ . 12.若最简二次根式 2a -3 与5是同类二次根式,则a 的值为 ▲ .13.若反比例函数y =k -2x的图像经过第二、四象限,则的取值范围是 ▲ . 14.关于的分式方程x +m x -2+2m2-x=3的解为正实数,则实数m 的取值范围是 ▲ . 15.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =2,BC =6,则OB 的长为 ▲ .16.如图,正方形ABCD 的边长为6,点G 在对角线BD 上(不与点B 、D 重合),GF ⊥BC 于点F ,连接AG ,若∠AGF =105°,则线段BG = ▲ .17.如图,在平面直角坐标系中,点A 的坐标为(1,0),等腰直角三角形ABC 的边AB 在轴的正半轴上,∠ABC =90°,点B 在点A 的右侧,点C 在第一象限.将△ABC 绕点A 逆时针旋转75°,若点C 的对应点E 恰好落在y 轴上,则边AB 的长为 ▲ .CF E DBA(第9题)(第10题)18.如图,已知点A 是一次函数y =23(≥0)图像上一点,过点A 作轴的垂线,B 是上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰三角形ABC ,反比例函数y =kx(>0)的图像过点B 、C ,若△OAB 的面积为5,则△ABC 的面积是 ▲ .三、解答题(本大题共8小题,共计74分.解答需写出必要的文字说明或演算步骤.)19.(本题满分16分) 计算:(1)6×33-(12)-2+|1-2|;(2)(312-213+48)÷3;(3)1m -2-4m 2-4; (4)解方程:1x -2-1-x 2-x=-3.20.(本题满分4分)先化简,再求值:x -1x ÷(- 1x),其中=3-1.21.(本题满分8分)今年4月23日是第23个“世界读书日”.某校围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:MDABOCADG BFC(第15题)(第1(1)本次抽样调查的样本容量是多少? (2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计我市12000名初二学生中日均阅读时间在0.5~1.5小时的有多少人.22.(本题满分8分)如图,在□ABCD 中,E 、F 为对角线BD 上的两点,且∠BAE =∠DCF . 求证:BF =DE .23.(本题满分8分)如图,方格纸中每个小正方形的边长都是1个单位长度. Rt △ABC 的三个顶点A (-2,2),B (0,5),C (0,2). (1)将△ABC 以点C 为旋转中心旋转180°,得到△A 1B 1C ,请画出的图形△A 1B 1C .(2)平移△ABC ,使点A 的对应点A 2坐标为(-2,-6),请画出平移后对应的△A 2B 2C 2.(3)请用无刻度的直尺在第一、四象限内画出一个以A 1B 2为边,面积是7的矩形A 1B 1EF .(保留作图痕迹,不写作法)(4)若将△A 1B 1C 绕某一点旋转可得到△A 2B 2C 2,请直接写出旋转中心的坐标.日人均阅读时间各时间段人数所占的百分比FEABCD24.(本题满分8分)某公司在工程招标时,接到甲、乙两个工程队的投标书.工程领导小组根据甲、乙两队的投标书测算:每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元.甲队单独完成此工程刚好如期完工,乙队单独完成此工程要比规定工期多用5天,若甲、乙两队合作4天,剩下的工程由乙独做也正好如期完工.(1)求甲、乙两队单独完成此项工程各需要多少天?(2)由于任务紧迫,公司要求工程至少提前7天完成,问怎样安排甲、乙两个工程队施工所付施工费最少?最少施工费是多少万元?(施工天数不满一天以一天计)25.(本题满分10分)如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =k x (>0,>0)的图像上,点D 的坐标为(2,32),设AB 所在直线解析式为y =+b (a ≠0),(1)求的值,并根据图像直接写出不等式a +b >kx的解集; (2)若将菱形ABCD 沿轴正方向平移m 个单位,① 当菱形的顶点B 落在反比例函数的图像上时,求m 的值;② 在平移中,若反比例函数图像与菱形的边AD 始终有交点,求m 的取值范围.26.(本题满分12分)在矩形ABCD 中,AB =4,AD =3,现将纸片折叠,点D 的对应点记为点P ,折痕为EF (点E 、F 是折痕与矩形的边的交点),再将纸片还原.(1)若点P 落在矩形ABCD 的边AB 上(如图1).① 当点P 与点A 重合时,∠DEF = ▲ °,当点E 与点A 重合时,∠DEF = ▲ °. ② 当点E 在AB 上时,点F 在DC 上时(如图2),若AP =72,求四边形EPFD 的周长.(2)若点F 与点C 重合,点E 在AD 上,线段BA 与线段FP 交于点M (如图3),当AM =DE时,请求出线段AE 的长度.(3)若点P 落在矩形的内部(如图4),且点E 、F 分别在AD 、DC 边上,请直接写出AP 的最小值.APBCFDE AEP DFCBDCE MAP BDFCEPAB(图1)(图2)(图3)(图4)。
浙教版2017-2018年第二学期八年级期末数学检测试题有答案
D. 9
7.如图,在菱形 ABCD 中, AC、 BD 是对角线,若∠ BAC= 50°,则∠ ABC 等于(
)
A. 40°
B. 50°
C. 80°
D. 100 °
第 7题
第 8题
第 9题
8. 如图,点 P 是 x 轴正半轴上的一个动点,过点
P 作 PQ⊥ x 轴交双曲线 y
1 (x
0) 于点
x
Q,连结 OQ. 当点 P 沿 x 轴的正方向运动时, Rt△ QOP 的面 积( )
2 解方程 : 3x2 4x2 4 5 0
[来源 :学+科+网 Z+X+X+K]
18(本题 8 分)甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等. 比赛结束后,发现 学生成绩分别为 7 分、 8 分、 9 分、 10 分(满分为 10 分).依 据统计 数据绘制了如下尚不完整的统计图表.
x
在第一象限内的图像经过 OB 边的中点 C,则点 B 的坐标是(
) 第 10 题
A. ( 1 , 3 ) B. Fra bibliotek 3 , 1 )
C. ( 2 , 2 3 )
D. ( 2 3 , 2 )
二.填空题(本大题共 6 小题,每小题 4 分,共 24 分) 温馨提示:填空题要求将最正确最简捷的答案填在空格处!
2017-2018 学年度八年级(下)期末数学检测试卷
一.选择题(本大题共 10 小题,每小题 3 分,共 30 分)
温馨提示:每题中四个答案只有一个是正确的,请你把正确的答案选出来!
1. 某同学一周中每天完成家庭作业所花时间(单位:分钟)分别为:
35, 40, 45, 40, 55,
浙江省丽水市数学八年级下学期期末考试试卷
浙江省丽水市数学八年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2018八上·金堂期中) 若式子在实数范围内有意义,则x的取值范围是()A . x<2B . x>2C . x≤2D . x≥22. (2分)下列各组数中,能构成直角三角形的是()A . 4,5,6B . 1,1,C . 6,8,11D . 5,12,233. (2分)如图,△ABC中,∠ABC=∠BAC,D是AB的中点,EC∥AB,DE∥BC,AC与DE交于点O.下列结论中,不一定成立的是()A . AC=DEB . AB=ACC . AD=ECD . OA=OE4. (2分)(2012·锦州) 下列说法正确的是()A . 同位角相等B . 梯形对角线相等C . 等腰三角形两腰上的高相等D . 对角线相等且垂直的四边形是正方形5. (2分)已知:甲乙两组数据的平均数都是5,甲组数据的方差S甲2=,乙组数据的方差S乙2=,下列结论中正确的是()A . 甲组数据比乙组数据的波动大B . 乙组数据的比甲组数据的波动大C . 甲组数据与乙组数据的波动一样大D . 甲组数据与乙组数据的波动不能比较6. (2分)已知一次函数y=kx+b的图像,如图所示,当x<0时,y的取值范围是()A . y>0B . y<0C . -2<y<0D . y<-2二、填空题 (共8题;共10分)7. (2分) (2017七上·乐清期中) 若x2=9,则x=__,,则x=__.8. (1分) (2019九上·苏州开学考) 如果A(﹣1,2),B(2,﹣1),C(m,m)三点在同一条直线上,则m 的值等于________.9. (1分) (2019八下·温州期中) 某射击运动员射击10次的成绩统计如下:成绩(环)5678910次数(次)232111则这10次成绩的中位数为________环.10. (1分)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是________.11. (2分) (2016九上·金东期末) P是正方形ABCD的BC边上一点,连结AP,AB=8,BP=3,Q是线段AP 上一动点,连结BQ并延长交四边形ABCD的一边于点R,若点Q是BR的三等分点,则AR的长为________12. (1分) (2019九上·淮阴期末) 在中,,,,则 ________.13. (1分)如图,矩形ABCD中,F 是DC上一点,BF⊥AC,垂足为 E,=,△CEF的面积为S1 ,△AEB的面积为S2 ,则的值等于________14. (1分) (2019八下·乌兰浩特期中) 如图,点P为正方形ABCD的对角线BD上任一点,过点P作PE⊥BC,PF⊥CD,垂足分别为点E、F,连接EF.下列结论:①△FPD是等腰直角三角形;②AP=EF;③AD=PD;④∠PFE=∠BAP.其中正确结论是__.(请填序号)三、综合题 (共10题;共82分)15. (5分) (2017七下·如皋期中) 计算:(1);(2)16. (5分)(2016·云南模拟) 如图,在▱ABCD中,对角线AC、BD相交成的锐角为60°,若AC=6,BD=8,求▱ABCD的面积.(,结果精确到0.1)17. (6分) (2016八下·吕梁期末) 如图,在平面直角坐标系中,直线y=kx+b与x轴交于点A,与y轴交于点B,且四边形AOBC是矩形,BC=6,矩形AOBC的面积为18.(1)求线段OC的长.(2)求直线AB的解析式.18. (2分)(2018·柳州模拟) 我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18 ℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线y= 的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18 ℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?19. (15分) (2019九下·无锡期中) 如图,在由边长为1的小正方形组成的8×8的网格图中有两个格点.(注:网格线交点称为格点)(1)请直接写出的长:________;(2)请在图中确定格点,使得的面积为10.如果符合题意的格点不止一个,请分别用,…表示;(3)请用无刻度的直尺在图中以为一边画一个面积为14的矩形 .(不要求写画法,但要保留画图痕迹)20. (15分)(2013·来宾) 在△AOB中,∠AOB=90°,AO=6厘米,BO=8厘米,分别以OB和OA所在直线为x 轴,y轴建立平面直角坐标系,如图所示,动点M从点A开始沿AO方向以2厘米/秒的速度向点O移动,同时动点N从点O开始沿OB方向以4厘米/秒的速度向点B移动(其中一点到达终点时,另一点随即停止移动).(1)求过点A和点B的直线表达式;(2)当点M移动多长时间时,四边形AMNB的面积最小?并求出四边形AMNB面积的最小值;(3)在点M和点N移动的过程中,是否存在以O,M,N为顶点的三角形与△AOB相似?若存在,请求出点M 和点N 的坐标;若不存在,请说明理由.21. (15分) (2019九上·赣榆期末) 某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:(1)请将下表补充完整:(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,________的成绩好些;②从平均数和中位数相结合看,________的成绩好些;③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.________22. (2分)(2018·吉林模拟) 如图,在矩形ABCD中,DE⊥AC于E,cos∠ADE= ,AB=3.(1)求AD的值;(2)直接写出S△DEC的值是________.23. (11分) (2015八下·淮安期中) 如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A,C分别在DG、DE上,连接AE、BG.(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论;(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.24. (6分)(2018·陕西) 经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:商品红枣小米规格1kg/袋2kg/袋成本(元/袋)4038售价(元/袋)6054根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg,其中,这种规格的红枣的销售量不低于600kg.假设这后五个月,销售这种规格的红枣为x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共8题;共10分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、综合题 (共10题;共82分)15-1、15-2、16-1、17-1、17-2、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、22-1、22-2、第11 页共13 页23-1、23-2、24-1、24-2、第12 页共13 页第13 页共13 页。
2017-2018学年浙教版数学八年级下册期末测试卷(含答案)
2017-2018学年八年级(下)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.若使二次根式在实数范围内有意义,则x的取值范围是()A.x≥3 B.x>3 C.x<3 D.x≤32.一元二次方程2x 2﹣3x=1的二次项系数a、一次项系数b和常数c分别是()A.a=2,b=3,c=﹣1 B.a=2,b=1,c=﹣3C.a=2,b=﹣3,c=﹣1 D.a=2,b=﹣3,c=13.下列图形,既是轴对称图形又是中心对称图形的是()A.平行四边形B.正五边形 C.等边三角形D.矩形4.五边形的内角和为()A.360°B.540°C.720°D.900°5.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数都为8.8环,方差分别为s甲2=0.016,s乙2=0.025,s丙2=0.012,则三人中成绩最稳定的选手是()A.甲B.乙C.丙D.不能确定6.在平行四边形ABCD中,已知∠A:∠B=1:2,则∠B的度数是()A.45°B.90°C.120°D.135°7.用反证法证明某一命题的结论“a<b”时,应假设()A.a>b B.a≥b C.a=b D.a≤b8.用配方法解方程x2+4x﹣4=0,配方变形结果正确的是()A.(x+2)2=﹣8 B.(x﹣2)2=﹣8 C.(x﹣2)2=8 D.(x+2)2=89.关于x的一元二次方程ax 2﹣2x+1=0有实数根,则整数a的最大值是()A.1 B.﹣1 C.2 D.﹣210.如图,在矩形ABCD中,AB=6,BC=8,M是AD上任意一点,且ME⊥AC于E,MF ⊥BD于F,则ME+MF为()A.B.C.D.不能确定二、填空题(本题有6小题,每小题3分,共18分)11.=______.12.如图,A、B两点分别位于山脚的两端,小明想测量A、B两点间的距离,于是想了个主意:先在地上取一个可以直接达到A、B两点的点C,找到AC、BC的中点D、E,并且测出DE的长为15m,则A、B两点间的距离为______m.第1页(共19页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年浙江省丽水市八年级(下)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(3分)化简的结果是()A.2B.﹣2C.±2D.42.(3分)下列手机手势解锁图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)用反证法证明“a>0”,应假设()A.a<0B.a=0C.a≠0D.a≤04.(3分)若一个多边形的每一个外角都等于72°,则这个多边形的边数是()A.4B.5C.6D.75.(3分)下列各点中,不在反比例函数y=图象上的点是()A.P(3,﹣4)B.P(3,4)C.P(2,6)D.P(﹣2,﹣6)6.(3分)若关于x的一元二次方程x2﹣2x+a=0有实数根,则a应满足()A.a<1B.a≤1C.a>1D.a≥17.(3分)从甲、乙、丙、丁四位同学中选派两位选手参加数学竞赛,老师对他2=100,们五次数学测验成绩进行统计,得出他们的平均分均为85分,且S甲S乙2=110,S丙2=120,S丁2=90.根据统计结果,最适合参加竞赛的两位同学是()A.甲、乙B.丙、丁C.甲、丁D.乙、丙8.(3分)下列条件,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=CD,BC=AD C.∠A=∠C,AD∥BC D.AB∥CD,∠A=∠B9.(3分)如图,以正方形ABCD的边AB为一边向内作等边△ABE,连结DE,则∠BED的度数为()A.120°B.125°C.135°D.150°10.(3分)如图,EF是Rt△ABC的中位线,∠BAC=90°,AD是斜边BC边上的中线,EF和AD相交于点O,则下列结论不正确的是()A.AO=OD B.EF=AD C.S△AEO=S△AOF D.S△ABC=2S△AEF二、填空题(本题有6小题,每小题3分,共18分)11.(3分)若二次根式有意义,则x的取值范围是.12.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,要使矩形ABCD 成为正方形,应添加的一个条件是.13.(3分)已知关于x的一元二次方程x2﹣2ax+3a=0的一个根是2,则a=.14.(3分)某校四个植树小队,在植树节这天种下柏树的棵数分别为10,x,10,8,若这组数据的中位数和平均数相等,那么x=.15.(3分)如图,在反比例函数y=(x>0)的图象上有四个点A,B,它们的横坐标依次为a,2a,3a,4a,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和为.16.(3分)如图,在▱ABCD中,点E是BC边上的动点,已知AB=4,BC=6,∠B=60°,现将△ABE沿AE折叠,点B′是点B的对应点,设CE长为x.(1)如图1,当点B′恰好落在AD边上时,x=;(2)如图2,若点B′落在△ADE内(包括边界),则x的取值范围是三、解答题(本题有8小题,共52分)17.(6分)计算:(1)﹣(2)(1﹣)(+1).18.(6分)解方程(1)x2﹣9=0;(2)x(2x﹣3)=5x.19.(6分)为了解某校八年级150名女生的身高情况,从中随机抽取10名女生,测得身高并绘制如下条形统计图.(1)求出这10名女生的身高的中位数和众数;(2)依据样本估计该校八年级全体女生的平均身高;(3)请你依据这个样本,在该校八年级中,设计一个挑选50名女生组成方队的方案(要求选中女生的身高尽可能接近).20.(6分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点A(1,5)和点B(n,1).(1)求m,n的值;(2)根据图象判断,当不等式kx+b≤成立时,x的取值范围是什么?21.(6分)如图,在矩形ABCD中,对角线AC与BD相交于点O,点E,F分别是AO,DO的中点,连结BE,CF.(1)求证:BE=CF;(2)连结EF,若EF=3,∠EOF=120°,求矩形ABCD的周长.22.(6分)某种商品的标价为500元/件,经过两次降价后的价格为320元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该商品进价为280元/件,两次降价共售此种商品100件,为使两次降价销售的总利润不少于8000元,则第一次降价后至少要售出该种商品多少件?23.(8分)在一次数学实践活动中,观测小组对某品牌节能饮水机进行了观察和记录,当观察到第t分钟时,水温为y℃,记录的相关数据如下表所示:(饮水机功能说明:水温加热到100℃时饮水机停止加热,水温开始下降,当降到40℃时饮水机又自动开始加热)请根据上述信息解决下列问题:(1)根据表中数据在如图给出的坐标系中,描出相应的点;(2)选择适当的函数,分别求出第一次加热过程和第一次降温过程y关于t的函数关系式,并写出相应自变量的取值范围;(3)已知沏茶的最佳水温是80℃≤y≤90℃,若18:00开启饮水机(初始水温20℃)到当晚20:10,沏茶的最佳水温时间共有多少分钟?24.(8分)如图1,点O是菱形ABCD对角线的交点,已知菱形的边长为12,∠ABC=60°.(1)求BD的长;(2)如图2,点E是菱形边上的动点,连结EO并延长交对边于点G,将射线OE绕点O顺时针旋转30°交菱形于点H,延长HO交对边于点F.①求证:四边形EFGH是平行四边形;②若动点E从点B出发,以每秒1个单位长度沿B→A→D的方向在BA和AD上运动,设点E运动的时间为t,当t为何值时,四边形EFGH为矩形.2017-2018学年浙江省丽水市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(3分)化简的结果是()A.2B.﹣2C.±2D.4【分析】直接利用二次根式的性质化简得出答案.【解答】解:=2.故选:A.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.2.(3分)下列手机手势解锁图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)用反证法证明“a>0”,应假设()A.a<0B.a=0C.a≠0D.a≤0【分析】根据命题:“a>0”的反面是:“a≤0”,可得假设内容.【解答】解:由于命题:“a>0”的反面是:“a≤0”,故用反证法证明:“a>0”,应假设“a≤0”,故选:D.【点评】此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.4.(3分)若一个多边形的每一个外角都等于72°,则这个多边形的边数是()A.4B.5C.6D.7【分析】用多边形的外角和360°除以72°即可.【解答】解:边数n=360°÷72°=5.故选:B.【点评】本题考查了多边形的外角和等于360°,是基础题,比较简单.5.(3分)下列各点中,不在反比例函数y=图象上的点是()A.P(3,﹣4)B.P(3,4)C.P(2,6)D.P(﹣2,﹣6)【分析】直接利用反比例函数图象上点的坐标特点进而得出答案.【解答】解:∵y=,∴xy=12A.(3,﹣4),此时xy=3×(﹣4)=﹣12,符合题意;B、(3,4),此时xy=3×4=12,不合题意;C、(2,6),此时xy=2×6=12,不合题意;D、(﹣2,﹣6),此时xy=﹣2×(﹣6)=12,不合题意;故选:A.【点评】此题主要考查了反比例函数图象上点的坐标特征,属于基础题6.(3分)若关于x的一元二次方程x2﹣2x+a=0有实数根,则a应满足()A.a<1B.a≤1C.a>1D.a≥1【分析】由方程有实数根,得到根的判别式的值大于等于0,列出关于A的不等式,求出不等式的解集即可得到a的范围.【解答】解:∵关于x的一元二次方程x2﹣2x+a=0有实数根,∴△=4﹣4a≥0,解得:a≤1;故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.7.(3分)从甲、乙、丙、丁四位同学中选派两位选手参加数学竞赛,老师对他2=100,们五次数学测验成绩进行统计,得出他们的平均分均为85分,且S甲S乙2=110,S丙2=120,S丁2=90.根据统计结果,最适合参加竞赛的两位同学是()A.甲、乙B.丙、丁C.甲、丁D.乙、丙【分析】方差反映了一组数据的波动大小,方差越大,波动性越大,方差越小,波动越小.选派方差较小的两位.【解答】解:从四个方差看,甲,丁的方差在四个同学中是较小的,方差小成绩发挥稳定,所以应选他们两人去参加比赛.故选:C.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.(3分)下列条件,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=CD,BC=AD C.∠A=∠C,AD ∥BC D.AB∥CD,∠A=∠B【分析】根据平行四边形的判定方法一一判断即可;【解答】解:A、由AB∥CD,AB=CD可以判断四边形ABCD是平行四边形;B、由AB=CD,BC=AD可以判断四边形ABCD是平行四边形;C、由∠A=∠C,AD∥BC,可以推出∠B=∠D,可以判断四边形ABCD是平行四边形;D、由AB∥CD,∠A=∠B不可以判断四边形ABCD是平行四边形;故选:D.【点评】本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考常考题型.9.(3分)如图,以正方形ABCD的边AB为一边向内作等边△ABE,连结DE,则∠BED的度数为()A.120°B.125°C.135°D.150°【分析】在正方形ABCD中,△ABE是等边三角形,可求出∠AEB、∠DAE的大小以及推断出AD=AE,从而可求出∠AED,再根据角的和差关系求出∠BED的度数.【解答】解:如图,在正方形ABCD中,∠ABC=90°,AB=BC.∵△ABE是等边三角形,∴∠AEB=∠BAE=60°,AE=AB,∴∠DAE=90°﹣60°=30°,AE=AD,∴∠AED=∠ADE=(180°﹣30°)=75°,∴∠BED=∠AEB+∠AED=60°+75°=135°.故选:C.【点评】本题考查了正方形的性质、等边三角形的性质.根据正方形和等边三角形的性质推知AD=AE是解题的关键.10.(3分)如图,EF是Rt△ABC的中位线,∠BAC=90°,AD是斜边BC边上的中线,EF和AD相交于点O,则下列结论不正确的是()A.AO=OD B.EF=AD C.S△AEO=S△AOF D.S△ABC=2S△AEF【分析】根据三角形中位线定理以及直角三角形斜边上的中线等于斜边的一半逐项分析即可.【解答】解:∵EF是Rt△ABC的中位线,∴EF BC,∵AD是斜边BC边上的中线,∴AD=BC,∴EF=AD,故选项B正确;∵AE=BE,EO∥BD,∴AO=OD,故选项A正确;∵E,O,F,分别是AB,AD,AC中点,∴EO=BD,OF=DC,∵BD=CD,∴OE=OF,又∵EF∥BC,∴S△AEO=S△AOF,故选项C正确;∵EF∥BC,∴△ABC∽△AEF,∵EF是Rt△ABC的中位线,∴S△ABC :S△AEF=4:1,即S△ABC=4S△AEF≠2S△AEF,故选D错误,故选:D.【点评】本题考查了三角形中位线定理的运用、直角三角形斜边上的中线的性质以及全等三角形的判断和性质,证明EO,OF是三角形的中位线是解题的关键.二、填空题(本题有6小题,每小题3分,共18分)11.(3分)若二次根式有意义,则x的取值范围是x≥﹣1.【分析】根据二次根式有意义的条件可得x+1≥0,再解不等式即可.【解答】解:由题意得:x+1≥0,解得:x≥﹣1,故答案为:x≥﹣1.【点评】此题主要考查了二次根式的意义.关键是二次根式中的被开方数必须是非负数,否则二次根式无意义.12.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,要使矩形ABCD 成为正方形,应添加的一个条件是AB=BC(答案不唯一).【分析】根据正方形的判定添加条件即可.【解答】解:添加的条件可以是AB=BC.理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是正方形.故答案为:AB=BC(答案不唯一).【点评】本题考查了矩形的性质,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.此题是一道开放型的题目,答案不唯一,也可以添加AC ⊥BD.13.(3分)已知关于x的一元二次方程x2﹣2ax+3a=0的一个根是2,则a=4.【分析】根据关于x的一元二次方程x2﹣2ax+3a=0有一个根为2,将x=2代入方程即可求得a的值.【解答】解:∵关于x的一元二次方程x2﹣2ax+3a=0有一个根为2,∴22﹣2a×2+3a=0,解得,a=4,故答案为4.【点评】此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可解决问题.14.(3分)某校四个植树小队,在植树节这天种下柏树的棵数分别为10,x,10,8,若这组数据的中位数和平均数相等,那么x=12或8.【分析】先根据中位数和平均数的概念得到平均数等于,由题意得到=10或9,解出x即可.【解答】解:∵这组数据的中位数和平均数相等,∴=10或9,解得:x=12或8,故答案为:12或8.【点评】本题考查了中位数的概念:一组数据按从小到大排列,最中间那个数(或最中间两个数的平均数)就是这组数据的中位数.15.(3分)如图,在反比例函数y=(x>0)的图象上有四个点A,B,它们的横坐标依次为a,2a,3a,4a,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和为2.【分析】由题意,图中阴影部分的面积之和=×矩形AEOF的面积,根据比例系数k的几何意义即可解决问题;【解答】解:如图,∵反比例函数的解析式为y=,∴矩形AEOF的面积为4.由题意,图中阴影部分的面积之和=×矩形AEOF的面积=2,故答案为2.【点评】本题考查反比例函数的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.16.(3分)如图,在▱ABCD中,点E是BC边上的动点,已知AB=4,BC=6,∠B=60°,现将△ABE沿AE折叠,点B′是点B的对应点,设CE长为x.(1)如图1,当点B′恰好落在AD边上时,x=2;(2)如图2,若点B′落在△ADE内(包括边界),则x的取值范围是2≤x≤2﹣2【分析】(1)点B′恰好落在AD边上时,四边形ABEB′是边长为4的菱形,由此即可解决问题;(2)作AH⊥DE于H.解直角三角形求出AH、HB′、DH,再证明DA=DE=6,求出EB′即可解决问题;【解答】解:(1)点B′恰好落在AD边上时,四边形ABEB′是边长为4的菱形,∴EC=BC﹣BE=6﹣4=2.(2)作AH⊥DE于H.在Rt△AHB′中,∵∠AB′H=60°,AB′=4,∴HB′=AB′=2,AH=HB′=2,在Rt△ADH中,DH==2,∵AD∥BC,∴∠DAB=∠AEB=∠AED,∴DA=DE=6,∴EB′=BE=6﹣(2﹣2)=8﹣2,∴EC=BC﹣BE=6﹣(8﹣2)=2﹣2.∴若点B′落在△ADE内(包括边界),则x的取值范围是2≤x﹣2.故答案为:2,2﹣2.【点评】本题考查翻折变换、平行四边形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题(本题有8小题,共52分)17.(6分)计算:(1)﹣(2)(1﹣)(+1).【分析】(1)先把化为最简二次根式,然后合并即可;(2)利用平方差公式计算.【解答】解:(1)原式=2﹣=;(2)原式=1﹣5=﹣4.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(6分)解方程(1)x2﹣9=0;(2)x(2x﹣3)=5x.【分析】(1)利用直接开平方法求解可得;(2)整理为一般式后,再利用因式分解法求解可得.【解答】解:(1)∵x2﹣9=0,∴x2=9,∴x=±3;(2)方程整理可得2x2﹣8x=0,因式分解得2x(x﹣4)=0,解得:x=0或x=4.【点评】本题考查一元二次方程的解法,解题的关键是灵活运用所学知识解决问题,学会用适当的方法解一元二次方程,属于中考常考题型.19.(6分)为了解某校八年级150名女生的身高情况,从中随机抽取10名女生,测得身高并绘制如下条形统计图.(1)求出这10名女生的身高的中位数和众数;(2)依据样本估计该校八年级全体女生的平均身高;(3)请你依据这个样本,在该校八年级中,设计一个挑选50名女生组成方队的方案(要求选中女生的身高尽可能接近).【分析】(1)根据统计图中的数据可以求得这组数据的中位数和众数;(2)根据加权平均数的求法可以解答本题;(3)根据题意可以设计出合理的方案,注意本题答案不唯一.【解答】解:(1)这10名女生的身高为:154、158、158、161、161、162、162、162、165、167,∴这10名女生的身高的中位数是:=161.5cm,众数是162cm,即这10名女生的身高的中位数和众数分别是161.5cm、162cm;(2)平均身高是:=161cm,即该校八年级全体女生的平均身高是161cm;(3)可以先将八年级身高是162cm的所有女生挑选出来,若不够,再挑选身高与162cm最接近的,直到挑选到50人为止.【点评】本题考查条形统计图、用样本估计总体、加权平均数、中位数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(6分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点A(1,5)和点B(n,1).(1)求m,n的值;(2)根据图象判断,当不等式kx+b≤成立时,x的取值范围是什么?【分析】(1)利用待定系数法即可解决问题;(2)观察图象写出反比例函数图象在一次函数的图象上方的x的取值范围即可.【解答】解:(1)把A(1,5)代入y=中,得到m=5,∴反比例函数的解析式为y=,把B(n,1)代入y=中,得到n=5.(2)∵A(1,5),B(5,1),观察图象可知:不等式kx+b≤成立时,x的取值范围是0<x≤1或x≥5.【点评】本题考查一次函数与反比例函数的交点问题,解题的关键是灵活应用待定系数法确定函数解析式,学会利用图象法解决取值范围问题,属于中考常考题型.21.(6分)如图,在矩形ABCD中,对角线AC与BD相交于点O,点E,F分别是AO,DO的中点,连结BE,CF.(1)求证:BE=CF;(2)连结EF,若EF=3,∠EOF=120°,求矩形ABCD的周长.【分析】(1)欲证明BE=CF,只要证明△BOE≌△COF即可;(2)利用三角形中位线定理求出AD,解直角三角形求出AB即可解决问题;【解答】(1)证明:∵四边形ABCD是矩形,∴OB=OD=OC=OA,∵点E,F分别是AO,DO的中点,∴OE=OA,OF=OD,∴OE=OF,∵∠BOE=∠COF,∴△BOE≌△COF,∴BE=CF.(2)∵点E,F分别是AO,DO的中点,∴AD=2EF=6,∵∠AOD=120°,AO=OD,∴∠ODA=30°,在Rt△ADB中,AB=AD•tan30°=2,∴矩形的周长为2(6+2)=12+4.【点评】本题考查矩形的性质,三角形的中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(6分)某种商品的标价为500元/件,经过两次降价后的价格为320元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该商品进价为280元/件,两次降价共售此种商品100件,为使两次降价销售的总利润不少于8000元,则第一次降价后至少要售出该种商品多少件?【分析】(1)设该种商品每次降价的百分率为x,根据该种商品的原价及经两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,根据总利润=单件利润×销售数量结合两次降价销售的总利润不少于8000元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设该种商品每次降价的百分率为x,根据题意得:500(1﹣x)2=320,解得:x1=0.2=20%,x2=1.8(舍去).答:该种商品每次降价的百分率为20%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,根据题意得:[500×(1﹣20%)﹣280]m+(320﹣280)(100﹣m)≥8000,解得:m≥50.答:第一次降价后至少要售出该种商品50件.【点评】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据各数量间的关系,找出关于m的一元一次不等式.23.(8分)在一次数学实践活动中,观测小组对某品牌节能饮水机进行了观察和记录,当观察到第t分钟时,水温为y℃,记录的相关数据如下表所示:(饮水机功能说明:水温加热到100℃时饮水机停止加热,水温开始下降,当降到40℃时饮水机又自动开始加热)请根据上述信息解决下列问题:(1)根据表中数据在如图给出的坐标系中,描出相应的点;(2)选择适当的函数,分别求出第一次加热过程和第一次降温过程y关于t的函数关系式,并写出相应自变量的取值范围;(3)已知沏茶的最佳水温是80℃≤y≤90℃,若18:00开启饮水机(初始水温20℃)到当晚20:10,沏茶的最佳水温时间共有多少分钟?【分析】(1)利用描点法画出图形即可;(2)利用待定系数法即可解决问题;(3)首先判断出而18:00至20:10共130分钟,饮水机加热一次,降温一次,再加热了一次的过程,分别求出加热过程中,降温过程中的最佳水温时间即可解决问题;【解答】解:(1)如图所示.(2)观察图象可知第一次加热过程的函数关系是一次函数,设解析式为y=kt+b,则有,解得,∴第一次加热过程的函数关系是y=2x+20.(0≤t≤40)由图象可知第一次降温过程的函数关系是反比例函数,设y=,把(50,80)代入得到m=4000,∴第一次降温过程的函数关系是y=.(40≤t≤100).(3)由题意可知,第二次加热观察时间为30分钟,结束加热是第130分钟,而18:00至20:10共130分钟,∴饮水机加热一次,降温一次,再加热了一次的过程,把y=80代入y=2t+20,得到t=30,把y=90代入y=2x+20,得到t=35,∴一次加热过程出现的最佳水温时间为:35﹣30=5分钟,把y=80代入y=,得到t=50,把y=90代入y=得到t=,∴一次降温出现的最佳水温时间为:50﹣=(分钟),∴18:00开启饮水机(初始水温20℃)到当晚20:10,沏茶的最佳水温时间共+5×2=(分钟).【点评】本题考查的是反比例函数的应用、一次函数的应用,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.24.(8分)如图1,点O是菱形ABCD对角线的交点,已知菱形的边长为12,∠ABC=60°.(1)求BD的长;(2)如图2,点E是菱形边上的动点,连结EO并延长交对边于点G,将射线OE绕点O顺时针旋转30°交菱形于点H,延长HO交对边于点F.①求证:四边形EFGH是平行四边形;②若动点E从点B出发,以每秒1个单位长度沿B→A→D的方向在BA和AD上运动,设点E运动的时间为t,当t为何值时,四边形EFGH为矩形.【分析】(1)解直角三角形求出OB即可解决问题;(2)①想办法证明OE=OG,OH=OF即可解决问题;②分四种情形画出图形,a、当点E、H都在AB上时,四边形EFGH是矩形;b、当点E在AB上,点H在AD上,四边形EFGH是矩形;c、当点E、H都在AD 上时,四边形EFGH是矩形;d、当点E在AD上,点H在DC上,四边形EFGH 是矩形.分别求解即可解决问题;【解答】解:(1)∵四边形ABCD是菱形,∴AC⊥BD,∥ABO=∠OBC=30°,∴AO=AB=6,∴OB=AB•cos30°=6,∴BD=2BO=12.(2)①∵四边形ABCD是菱形,∴AB∥CD,BO=OD,∴∠EBO=∠GDO∵∠BOE=∠DOG,∴△EOB≌△GOD,∴EO=GO,同理可得HO=FO,∴四边形EFGH是平行四边形.②a、当点E、H都在AB上时,四边形EFGH是矩形,作∠EOH的平分线OM,∵OE=OH,∴OM⊥EH.∴∠MOB=90°﹣∠ABO=60°,∵∠MOE=∠EOH=15°,∴∠EOB=∠MOB﹣∠MOE=45°,作EN⊥OB于N.设ON=EN=x,则NB=x,∵OB=6,∴x+x=6,∴x=9﹣3,∴BE=2EN=18﹣6,∴t=18﹣6时,四边形EFGH是矩形.b、当点E在AB上,点H在AD上,四边形EFGH是矩形.由菱形和矩形都是轴对称图形可知,∠AOE=∠AOH=15°,∴∠EOB=90°﹣15°=75°,∵∠ABO=30°,∴∠BEO=180°﹣∠EOB﹣∠ABO=75°,∴∠BEO=∠BOE,∴BE=BO=6,∴t=6时,四边形EFGH是矩形.c、当点E、H都在AD上时,四边形EFGH是矩形.由b同理可证:DE=DO=6,∴AB+AE=AB+AD﹣DE=24﹣6∴t=24﹣6时,四边形EFGH是矩形.d、当点E在AD上,点H在DC上,四边形EFGH是矩形.由菱形、矩形都是轴对称图形可知,∠DOE=∠HOE=15°,∴∠EOA=90°﹣15°=75°,∵∠OAD=60°,过点O作OK⊥AD,∴∠AOK=90°﹣∠OAD=30°,∴∠KOE=75°﹣30°=45°,∴KE=OK,∴AE=AK+KE=3+3,∴BA+AE=15+3,∴t=15+3,∴t=15+3时,四边形EFGH是矩形.综上所述,t为18﹣6,6,24﹣6,15+3时,四边形EFGH是矩形.【点评】本题考查四边形综合题、菱形的性质、矩形的判定和性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。