弹性力学基本方法
6弹塑性力学基本求解方法
d r
dr
1 r
(2
r
)
0
代入几何方程和物理方程,整理可得
d 2ur 2 dur 2 ur 0 dr 2 r dr r 2
第六章 弹性力学基本求解方法
❖位移法应用——错配球
解此微分方程,其一般解为:
由 r 时 ur 0 C1 0
ur
C1r
C2 r2
由 r r1 时 ur r0 C2 r0 (1 )2 r02 r03
l 2
h/2
x
ydy
0
第六章 弹性力学基本求解方法
❖应力函数——逆解法
于是可求得:
B
r 5h2
,C
l2r 4h2
10r,
D
3 4
r
x
所以 y
xy
第六章 弹性力学基本求解方法
❖应力函数——逆解法 总结:应力函数设计
1.集中载荷——按材料力学方法求解 2.均布载荷—— f (xi2 ) 3.线性分布载荷—— f (xi3 ) 4.非线性分布载荷—— f (xi4 xi8 )
r1
r0
r0
)
—— 错配度
分析:基体变形为球对称变形,则
ur 0 u u 0
边界条件:
r , ur 0 (符合圣维南原理)
第六章 弹性力学基本求解方法
❖位移法应用——错配球
根据应力平衡微分方程
R0
有
r r
1 r
r
r r sin
1 r
(2
r
r ctg ) 0
r
r
0
r
r
ur
r0
(
r0 r
)2
由几何方程可得
第9次课第4章弹性力学解题方法问题2
(3)整理上面的方程,把其中 l 的指标取为 k,
σ ij , kk + σ kk , ij − σ ik , jk − σ
=
jk , ik jk Θ , ik
μ
1+ μ
(δ ij Θ , kk + δ kk Θ , ij − δ ik Θ , jk − δ
)
把 l=j 和 l=k 加起来,
σ ij , kj + σ kj , ij − σ ik , jj − σ
+ σ i 2 ,12 + σ 12 ,i 2 − σ i1,21 − σ 21,i1 + σ i 3,13 + σ 13, i 3 − σ i1,31 − σ 31,i1
σ i1,21 + σ 21,i1 − σ i 2,12 − σ 12,i 2
+σ i 2,22 + σ 22,i 2 − σ i 2,22 − σ 22,i 2 +σ i 3,23 + σ 23,i 3 − σ i 2,32 − σ 32,i 2
)
把 上两式相加有,
σ ij , kj + σ kj , ij − σ ik , jk − σ
=
jk , ik jk Θ , ik
μ
1+ μ
(δ ij Θ , kj + δ kj Θ , ij − δ ik Θ , jk − δ
)
对 k =1,2,3 时的三个方程叠加起来, 运用
σ kk = Θ δ kk = 3
满足位移边界条件 _ y =+ h : v = 0
弹性力学应力解法的基本步骤: 以应力分量 σij 作为基本未知量; 用六个应力分量表示协调方程; 关键点:以应力表示的协调方程。 应力解法的基本方程: 1. 平衡微分方程 2. 变形协调方程(用应力表示) 3. 本构方程(用应力表示应变) 4. 面力边界条件
弹性力学简介及其求解方法
弹性力学简介及其求解方法2010-08-27弹性力学简介及其求解方法弹性力学又称弹性理论,是固体力学的一个分支,是研究弹性体由于外力作用或温度改变等原因而发生的应力、应变和位移。
确定弹性体的各质点应力、应变和位移的目的就是确定构件设计中的强度和刚度指标,以此用来解决实际工程结构中的强度、刚度和稳定性问题。
材料力学、结构力学三门学科所研究的内容和目的相同,但是研究对象和研究方法不同。
材料力学研究对象是杆状构件,结构力学是在材料力学基础上研究由多杆构成的杆系结构的强度和刚度问题。
而对于一般弹性实体结构,如板与壳结构、挡土墙与堤坝、地基以及其他三维实体结构来说,相应的强度和刚度问题要用弹性理论的方法来解决。
在研究方法上,弹性力学和材料力学都从静力学、几何关系、物理方程三方面着手来进行分析,但不同点是材料力学常借助于直观和实验现象做一些假设。
在具体问题计算时材料力学与结构力学都利用解决单一变量的常微分方程,在数学上求解容易。
弹性力学需解决的是满足边界条件的高阶多变量偏微分方程,在数学上求解困难,一般弹性体问题很难得到解析解。
所以,与材料力学相比,弹性力学的研究对象更加广泛,研究方法更加严密,能解决更加复杂的实际问题,因此需要用较多的数学工具。
弹性力学问题可以归结为边值问题:在弹性体内必须满足基本方程,即平衡微分方程、几何方程和物理方程;在应力边界上应满足应力边界条件;在位移边界上应满足位移边界条件;在混合边界上应满足相应的应力边界和位移边界条件。
满足基本方程的解答叫做弹性力学解;既满足基本方程,又满足边界条件的解答叫做弹性力学问题的解。
在求解弹性力学问题时,通常已知的是物体的形状、尺寸、约束情况和外载荷以及材料的物理常数。
需要求解的是应力、应变和位移,它们都是物体内点的坐标的函数。
对于空间问题,一共有15个未知函数:3个位移分量、6个应变分量和6个应力分量。
可利用的独立方程也有15个,即3个平衡微分方程、6个几何方程和6个物理方程。
弹性力学的概念
经典弹性力学建立
17世纪末到18世纪初,R·胡克、C·惠更斯 、L·欧拉和J·伯努利等人建立了经典的弹性 力学理论,奠定了弹性力学的基础。
弹性力学应用领域
工程领域
材料科学
弹性力学广泛应用于各种工程领域,如建 筑、桥梁、道路、隧道、航空航天等,用 于分析和设计各种结构物。
弹性力学对于研究材料的力学性能和变形 行为具有重要意义,为材料科学的发展提 供了理论基础。
组分、结构等因素变化。
智能材料
03
如压电材料、形状记忆合金等,其力学行为与电场、磁场、温
度等外部条件密切相关,对弹性力学提出新的挑战。
复杂环境下弹性力学问题
极端环境
如高温、低温、高压、 真空等极端环境下,材 料的弹性力学行为可能 发生变化,需要研究相 应的理论和实验方法。
多场耦合
在力、热、电、磁等多 场耦合作用下,材料的 弹性力学响应更加复杂 ,需要建立多场耦合的 弹性力学模型。
泊松比
又称横向变形系数,是反映材料在受到纵向压缩或拉伸时,横向应变与纵向应变 比值的物理量。泊松比越大,说明材料在受到纵向力时横向收缩或膨胀越明显。
应力集中与应力分布
应力集中
在物体内部,由于形状、尺寸或材料性质等原因,某些部位 的应力可能显著高于其他部位,这种现象称为应力集中。应 力集中容易导致物体在局部范围内发生破坏。
地震学
生物力学
弹性力学在地震学中也有重要应用,用于 研究地震波在地球内部的传播规律和地震 引起的地面振动等问题。
生物力学是研究生物体运动和变形的学科, 弹性力学为其提供了基本的理论和方法。
02
弹性力学基本概念
CHAPTER
应力与应变概念
应力
物体内部单位面积上所承受的力,表示物体内部某一点的受力状态。应力分为 正应力和切应力,正应力与截面垂直,切应力与截面平行。
力学中的弹性力分析
力学中的弹性力分析弹性力是指物体在外力作用下发生弹性变形时回复原状的力量。
在力学中,弹性力是一种重要的研究对象,对于理解物体的弹性行为和设计弹性结构有着重要的意义。
一、弹性力的基本概念弹性力是物体在受到外力作用下发生形变时,由于弹性势能的存在而产生的力量。
当外力停止作用时,物体会恢复到原来的形状,这种恢复的力就是弹性力。
弹性力的大小与物体的弹性系数、形变量以及外力大小有关。
二、胡克定律根据胡克定律,弹性力与物体的形变量呈正比,弹性力的方向与物体发生形变的方向相反。
胡克定律可以用下式表示:F = -kx其中F表示弹性力,k表示弹性系数,x表示物体的形变量。
负号表示弹性力与形变方向相反。
三、弹簧的弹性力分析弹簧是最常见的用来研究弹性力的物体之一。
当弹簧受到外力作用时,形变量x与外力F之间满足胡克定律的关系。
弹簧的弹性系数k 可以通过实验测量得到。
在弹簧的等长状态下,弹簧没有受到外力作用,弹性力为零。
四、杨氏模量杨氏模量是描述物体材料的弹性性质的物理量。
它表示单位面积受力时,在弹性变形范围内的应变与应力之间的比值。
杨氏模量可以用下式表示:E = (F/A)/(Δl/l0)其中E表示杨氏模量,A表示受力物体的横截面积,F表示受力物体上的外力,Δl表示物体发生的形变量,l0表示物体的原始长度。
五、应用领域弹性力的研究对于很多领域都具有重要意义。
在结构工程中,设计弹性结构需要掌握弹性力的原理和计算方法。
在材料科学中,了解材料的弹性性质对于合理选择材料、优化材料性能有着重要的作用。
在机械工程中,掌握弹性力的分析方法可以用于弹性元件的设计和计算。
在物理学的实验研究中,弹性力的研究有助于理解物体的弹性行为,并推导出相应的物理规律。
总结:力学中的弹性力分析是研究物体在外力作用下发生弹性变形时,回复原状的力量。
胡克定律描述了弹性力与形变量的关系,弹簧是常见的弹性力研究对象。
杨氏模量是描述物体材料弹性性质的重要参数。
弹性力的研究在结构工程、材料科学、机械工程等领域有着广泛的应用。
弹性力学杨氏模量和弹性系数
弹性力学杨氏模量和弹性系数弹性力学是研究固体在外力作用下发生弹性形变的学科,而杨氏模量和弹性系数则是描述固体材料弹性性质的重要参数。
本文将详细介绍杨氏模量和弹性系数的概念、计算方法以及其在工程实践中的应用。
一、杨氏模量杨氏模量(Young's modulus)是刻画固体材料在拉伸或压缩载荷作用下产生的形变程度的物理量。
它定义为单位面积内受力与相应应变之比,常用符号为E。
杨氏模量的数值越大,表示材料的刚度越高,即材料越难发生形变。
计算杨氏模量的方法如下:(1)单轴拉伸法:设材料的原始长度为L₀,受力后发生形变,长度为L,应变为ε = (L - L₀) / L₀。
将拉力F除以材料的截面积A,得到单位面积受力σ = F / A。
则杨氏模量E = σ / ε。
(2)横向收缩法:当固体材料受到拉伸力时,同时在横向产生收缩变形,这种方法可以通过测量垂直于拉伸方向的应变和应力来计算杨氏模量。
二、弹性系数弹性系数是描述固体材料弹性性能的量,通常包括剪切模量、泊松比和体积弹性模量等。
它们反映了材料在受到外力作用时的抗形变能力。
1. 剪切模量剪切模量(Shear modulus)也被称为切变模量或横向模量,表示材料在剪切应力作用下产生剪切变形的能力。
剪切模量的定义是单位面积内切应力与相应切变应变之比,常用符号为G。
剪切模量越大,材料的抗剪切性能越好。
2. 泊松比泊松比(Poisson's ratio)是描述材料在拉伸或压缩应力下横向应变与纵向应变之比的物理量。
泊松比常用符号为μ。
泊松比的数值通常在0和0.5之间,大多数固体材料的泊松比约为0.25。
当泊松比为0.5时,材料称为无体积变化材料,即在拉伸或压缩过程中体积保持不变。
3. 体积弹性模量体积弹性模量(Bulk modulus)是衡量材料在体积压缩或膨胀时的抗形变能力。
体积弹性模量的定义是单位体积内压力与相应体积应变之比,常用符号为K。
体积弹性模量越大,表示材料越难发生体积变化。
弹塑性力学___第四章_弹性力学的求解方法
叠加原理:弹性体受几组外力同时作用时的解等于每一组外力单 独作用时对应解的和。
叠加原理成立的条件:小变形条件(平衡、几何方程才 为线性的),弹性本构方程(虎克定律)。
4-5塑性力学最简单的问题、求解塑性力学的问题
在塑性力学中,有些问题在平衡方程和屈服条件 中的未知函数和议程式的数目相等,因而结合边 界条件一般便可找出弹塑性体或结构中应力分布 的规律。而应变和位移再根据本构方程和几何方 程或连续性条件分别求出。这种仅通过平衡方程、 屈服条件就能完全确定应力场的问题属静定问题 (称为塑性力学最简单问题)
(2)应变协调方程(变形连续必条件)(变形相容条件)
可缩写为:
上述方程是六个应变分量 保证三个位移分量 连续函数(保持连续)的条件。 为单值
3、本构方程(物性方程)
(1)在弹性变形阶段,且屈服函数 则有
如用应变表示应力,则有
为了与塑性变形本构方程对比,也可将本构方程表示为
(2)在弹塑性变形阶段,屈服函数
1. 平衡(或运动方程)
若等式右式不等零,即表示物体内质点处于运动状态, 则根据理论力学中的达朗伯原理需将上式右端等于括号 内的惯性力项。 方程只表明物体内一点的应力状态与其邻点的应力 状态之间在平衡(或运动)时所满足的关系。
2. 几何方程与应变协调方程
(1)几何方程
此式表明在小变形条件下,物体内一点附近的变形情况和该点的 应变状态之间的关系。
第四章 弹塑性力学基础理论的建立及基本解法
§4-1 弹塑性力学基本理论的建立 弹塑性力学的任务:研究各种具体几何尺寸的
弹性、弹塑性体或刚塑性体在各种几何约束及 承受不同外力作用时、发生于其内部的应力分 布与变形(或位移)规律。
与材料力学一样,弹塑性力学所求解的大多 数问题是超静定问题,因此其基础理论的 建立来自三个方面的客观规律:平衡方 程 ;几何方程 ;本构方程
弹塑性力学第四章弹性力学的求解方法
微分方程并求解,最后根据边界条件确定待定常数。
逆解法求解空间问题
逆解法的基本思想
从已知的空间应力或位移函数出发,反推得到弹性体的形状和边界条件。
适用于具有特定应力或位移分布的空间问题
如无限大体、半无限大体等具有特殊应力或位移分布的空间问题。
求解步骤
假设空间应力或位移函数,根据弹性力学基本方程推导得到弹性体的形状和边界条件,并 验证假设的合理性。
04
半解析法在弹性力学中的应用
有限差分法基本原理及步骤
差分原理
有限差分法基于差分原理,将连续问 题离散化,通过求解差分方程得到近 似解。
网格划分
将求解区域划分为规则的网格,每个 网格节点对应一个未知数。
差分格式
根据问题的性质和精度要求,选择合 适的差分格式,如向前差分、向后差 分、中心差分等。
边界处理
电测实验方法介绍及优缺点分析
电阻应变片法
利用电阻应变片将试件表面的应变转换 为电阻变化,通过测量电路获取应变信 息。该方法具有测量精度高、稳定性好 、适用于各种环境和试件形状的优点, 但需要粘贴应变片并进行温度补偿,且 只能进行点测量。
VS
电容传感器法
利用电容传感器将试件表面的位移或应变 转换为电容变化,通过测量电路获取相关 信息。电容传感器法具有非接触、高灵敏 度、宽频响等优点,但易受环境干扰,且 需要进行复杂的电路设计和信号处理。
04 边界条件处理 根据边界条件对总体刚度矩阵和荷载向量进行修正。
05
求解线性方程组
求解总体刚度矩阵和荷载向量构成的线性方程组,得 到节点位移。
边界元法基本原理及步骤
边界积分方程
边界离散化
单元分析
总体合成
求解线性方程组
2024版弹性力学
•弹性力学基本概念与原理•弹性力学分析方法与技巧•一维问题求解方法与实例分析•二维问题求解方法与实例分析•三维问题求解方法与实例分析•弹性力学在工程中应用与拓展弹性力学基本概念与原理弹性力学定义及研究对象弹性力学定义弹性力学是研究弹性体在外力作用下产生变形和内部应力分布规律的科学。
研究对象弹性力学的研究对象主要是弹性体,即在外力作用下能够发生变形,当外力去除后又能恢复原状的物体。
弹性体基本假设与约束条件基本假设弹性体在变形过程中,其内部各点之间保持连续性,且变形是微小的,即小变形假设。
约束条件弹性体的变形受到外部约束和内部约束的限制。
外部约束指物体边界上的限制条件,如固定端、铰链等;内部约束指物体内部的物理性质或化学性质引起的限制条件,如材料的不均匀性、各向异性等。
0102 03应力应力是单位面积上的内力,表示物体内部的力学状态。
在弹性力学中,应力分为正应力和剪应力。
应变应变是物体在外力作用下产生的变形程度,表示物体形状的改变。
在弹性力学中,应变分为线应变和角应变。
位移关系位移是物体上某一点位置的改变。
在弹性力学中,位移与应变之间存在微分关系,即位移的一阶导数为应变。
应力、应变及位移关系虎克定律及其适用范围虎克定律虎克定律是弹性力学的基本定律之一,它表述了应力与应变之间的线性关系。
对于各向同性材料,虎克定律可表示为σ=Eε,其中σ为应力,E为弹性模量,ε为应变。
适用范围虎克定律适用于小变形条件下的线弹性问题。
对于大变形或非线性问题,需要考虑更复杂的本构关系。
此外,虎克定律还受到温度、加载速率等因素的影响,因此在实际应用中需要注意其适用范围和限制条件。
弹性力学分析方法与技巧ABDC建立问题的数学模型根据实际问题,确定弹性体的形状、尺寸、边界条件、外力作用等,建立相应的数学模型。
选择合适的坐标系根据问题的特点和求解的方便性,选择合适的坐标系,如直角坐标系、极坐标系、柱坐标系等。
列出平衡方程根据弹性力学的基本方程,列出平衡方程,包括应力平衡方程、应变协调方程等。
弹性力学的数学建模方法
弹性力学的数学建模方法在弹性力学领域,数学建模是非常重要的一环。
合理的数学模型能够准确描述物体在受力时的变形和应力分布情况,为工程设计和科学研究提供了理论基础。
本文将介绍弹性力学中常用的数学建模方法,包括有限元法、变分法和能量方法等。
有限元法是一种广泛应用于弹性力学领域的数值计算方法。
它将复杂的结构分解为许多小的单元,通过分析单元之间的相互作用来求解整个结构的应力和变形。
有限元法的基本思想是将问题的解表示为未知数的线性组合,然后通过求解线性方程组来得到各个节点的位移值。
这种方法能够准确描述结构在受力时的力学行为,对于复杂结构的分析具有很高的效率和准确性。
变分法是另一种常用的建模方法,它通过最小化或最大化能量泛函来求解弹性力学问题。
变分法的核心思想是将物体的变形状态看作能量泛函的一个极值问题,通过对泛函求导得到物体的平衡方程。
这种方法能够简洁地推导出结构的应力分布和变形情况,适用于各种边界条件和材料性质。
能量方法是一种基于能量守恒原理的建模方法,它将结构的形变看作能量的转化和储存过程。
通过建立系统的能量方程,可以求解出结构在受力时的位移和应力分布。
能量方法能够直观地理解物体在受力时的力学行为,对于结构工程和材料设计具有很高的实用性。
除了以上介绍的建模方法,弹性力学领域还有很多其他数学工具和模型,如复合材料力学、非线性弹性力学等。
通过不断探索和创新,人们可以更好地理解和描述物体在受力时的行为,为工程设计和科学研究提供更为准确和可靠的数学模型。
总的来说,弹性力学的数学建模方法是解决工程问题和科学探索的重要工具。
通过合理的建模方法,人们可以更好地分析和理解物体在受力时的变形和应力分布情况,为实践和理论研究提供有力支持。
希望本文的介绍能够帮助读者更好地理解和运用弹性力学中的数学建模方法。
弹性力学第五章第五章弹性力学的求解方法和一般性原理
弹性力学第五章第五章弹性力学的求解方法和一般性原理弹性力学是研究物质在外力作用下发生弹性变形的力学学科,其求解方法和一般性原理是该学科的重要内容。
首先,弹性力学的求解方法主要包括材料本构方程和边界条件的建立,以及解方程的方法。
材料本构方程是描述材料的力学性质和变形规律的方程。
根据材料的不同性质和变形特点,可以选用不同的本构方程。
常用的本构方程包括胡克定律、庞加莱-克莱葛尔方程等。
通过假设材料是各向同性、线弹性等,可以建立相应的本构方程。
边界条件是指在弹性力学问题中,给定的物体表面上的约束条件。
边界条件的建立是弹性力学问题求解的基础。
一般情况下,边界条件包括位移边界条件和力边界条件。
位移边界条件是指物体表面上的位移限制,力边界条件是指物体表面上的力的作用情况。
通过建立合理的边界条件,可以求解出问题的解。
解方程的方法包括解析方法和数值方法。
解析方法是指通过分析和计算得到方程的解析解,解析解有精确度高、可视化好的优点。
数值方法是指通过数值计算得到方程的数值解,数值解可以通过计算机程序进行求解,适用范围广。
其次,弹性力学的一般性原理是指弹性力学问题的基本原理和公式。
弹性力学的一般性原理包括平衡原理、相容性原理和构造方程。
平衡原理是指物体在外力作用下的平衡条件。
根据平衡原理,可以通过力的平衡方程建立弹性力学问题的公式。
平衡方程可以通过平衡力的矢量和等于零来表示。
相容性原理是指物体在变形过程中的相容性条件。
根据相容性原理,物体在变形过程中,任意两个小变形都相容。
相容性原理可以用于控制弹性力学问题的求解范围。
构造方程是用来描述物体在外力作用下的变形状态的方程。
通过对变形量的定义和方程的建立,可以得到物体的变形状态和应变状况。
综上所述,弹性力学的求解方法和一般性原理是该学科的重要内容。
求解方法包括材料本构方程和边界条件的建立,以及解方程的方法。
一般性原理包括平衡原理、相容性原理和构造方程。
弹性力学的求解方法和一般性原理的运用,能够帮助研究者解决复杂的弹性力学问题,进一步推动该学科的发展。
有限元分析第3章弹性力学基础知识1
联立得到几何方程,表明应变分量与位移分量之间的关系:
¶u ¶v ¶w , y , z ¶x ¶y ¶z ¶u ¶v ¶v ¶w ¶w ¶u + , yz + , zx + ¶y ¶x ¶z ¶y ¶x ¶z
弹性力学的基本假定
4、各向同性(Isotropy)
物体的弹性性质在所有各个方向都相同 好处:物体材料常数不随坐标方向改变而改变
像木材,竹子以及纤维增强材料等,属于各向异 性材料。
弹性力学的基本假定
5、小变形假定(Small deformation):
物体的位移和形变是微小的. 即物体的位移 远小于物体原来的尺寸, 而且应变和转角都远小 于1
u+
¶u dy ¶y
C'
D" b D '
D C
A ' B ' AB x AB ¶u (u + dx) u ¶x dx ¶u ¶x
dy
u
v
A
A'
B'
a
v+
¶v dx ¶x
B dx
¶u u + dx ¶x
B"
x
0
¼ Í
1-5
弹性力学的基本方程之几何方程
(2)y方向的相对伸长量
y
¶u dy ¶y
切应力符号 的含义
受力面的法线方向
xy
力的方向
弹性力学的运动与变形
1、位移、形变、正应变、剪应变的概念
位移(displacement): 是指位置的移动. 它在 x, y and z 轴上的 投影用 u, v 和w。
(整理)弹性力学第五章第五章弹性力学的求解方法和一般性原理
第五章弹性力学的求解方法和一般性原理知识点弹性力学基本方程边界条件位移表示的平衡微分方程应力解法体力为常量时的变形协调方程物理量的性质逆解法和半逆解法解的迭加原理,弹性力学基本求解方法位移解法位移边界条件变形协调方程混合解法应变能定理解的唯一性原理圣维南原理一、内容介绍通过弹性力学课程学习,我们已经推导和确定了弹性力学的基本方程和常用公式。
本章的任务是对弹性力学所涉及的基本方程作一总结,并且讨论具体地求解弹性力学问题的方法。
弹性力学问题的未知量有位移、应力和应变分量,共计15个,基本方程有平衡微分方程、几何方程和本构方程,也是15个。
面对这样一个庞大的方程组,直接求解显然是困难的,必须讨论问题的求解方法。
根据这一要求,本章的主要任务有三个:一是综合弹性力学的基本方程,并按边界条件的性质将问题分类;二是根据问题性质,确定基本未知量,建立通过基本未知量描述的基本方程,得到基本解法。
弹性力学问题的基本解法主要是位移解法、应力解法和混合解法等。
应该注意的是对于应力解法,基本方程包括变形协调方程。
三是介绍涉及弹性力学求解方法的一些基本原理。
主要包括解的唯一性原理、叠加原理和圣维南原理等,这些原理将为今后的弹性力学问题解建立基础。
如果你在学习本章内容时有困难,请及时查阅和复习前三章相关内容,以保证今后课程的学习。
二、重点1、弹性力学的基本方程与边界条件分类;2、位移解法与位移表示的平衡微分方程;3、应力解法与应力表示的变形协调方程;4、混合解法;5、逆解法和半逆解法;6、解的唯一性原理、叠加原理和圣维南原理§5.1 弹性力学的基本方程及其边值问题学习思路:通过应力状态、应变状态和本构关系的讨论,已经建立了一系列的弹性力学基本方程和边界条件。
本节的主要任务是将基本方程和边界条件作综合总结,并且对求解方法作初步介绍。
弹性力学问题具有15个基本未知量,基本方程也是15个,因此问题求解归结为在给定的边界条件下求解偏微分方程。
弹性力学的理论模型和计算方法
弹性力学的理论模型和计算方法弹性力学是研究物体在外力作用下的形变和应力分布规律的学科。
它在工程学、物理学、材料学等领域中有着广泛的应用。
本文将介绍弹性力学的理论模型和计算方法,帮助读者更好地理解和应用弹性力学的知识。
1. 弹性力学的基本概念弹性力学研究物体在受力时的变形和应力,其中弹性变形指物体在外力作用下的恢复性形变,应力则是物体内部单元之间的相互作用力。
根据物体受力的不同方式,弹性力学可以分为静力学和动力学两个分支。
2. 弹性力学的理论模型在弹性力学中,最常用的理论模型是胡克定律。
胡克定律描述了物体的应力和应变之间的线性关系,即应力与应变成正比。
根据具体情况的不同,可以采用各种模型进行计算,如一维线弹性模型、平面应力和平面应变模型等。
3. 弹性力学的计算方法在实际应用中,针对不同的问题和受力情况,可以选择不同的计算方法来求解弹性力学的问题。
以下介绍几种常用的计算方法:a. 解析解法:从理论上解析得出物体的应力和应变分布规律,适用于简单几何形状和边界条件的情况。
b. 数值解法:通过建立有限元模型,利用数值方法求解弹性力学问题。
常用的数值解法有有限元法、有限差分法和边界元法等。
c. 实验方法:通过真实物体的实验测试来获取其力学性质,并反推计算应力和应变分布。
实验方法通常用于验证理论模型的正确性和精确度。
4. 弹性力学的应用领域弹性力学广泛应用于工程学和物理学等领域中。
在工程学中,弹性力学常用于结构设计和材料力学的分析,例如建筑物的承载能力计算和风力荷载分析等。
在物理学中,弹性力学被用于研究固体和流体的弹性性质,探究其力学行为和性能。
5. 弹性力学的发展趋势随着科技的不断发展和应用的深入,弹性力学的研究也在不断前进。
当前,弹性力学中的非线性、动态和复杂问题成为研究的热点。
同时,计算机技术和仿真方法的发展,为弹性力学的理论模型和计算方法提供了更多的工具和手段。
总结:弹性力学的理论模型和计算方法是研究物体在外力作用下的变形和应力分布规律的重要内容。
弹性力学第五章第五章弹性力学的求解方法和一般性原理
弹性⼒学第五章第五章弹性⼒学的求解⽅法和⼀般性原理第五章弹性⼒学的求解⽅法和⼀般性原理知识点弹性⼒学基本⽅程边界条件位移表⽰的平衡微分⽅程应⼒解法体⼒为常量时的变形协调⽅程物理量的性质逆解法和半逆解法解的迭加原理,弹性⼒学基本求解⽅法位移解法位移边界条件变形协调⽅程混合解法应变能定理解的唯⼀性原理圣维南原理⼀、内容介绍通过弹性⼒学课程学习,我们已经推导和确定了弹性⼒学的基本⽅程和常⽤公式。
本章的任务是对弹性⼒学所涉及的基本⽅程作⼀总结,并且讨论具体地求解弹性⼒学问题的⽅法。
弹性⼒学问题的未知量有位移、应⼒和应变分量,共计15个,基本⽅程有平衡微分⽅程、⼏何⽅程和本构⽅程,也是15个。
⾯对这样⼀个庞⼤的⽅程组,直接求解显然是困难的,必须讨论问题的求解⽅法。
根据这⼀要求,本章的主要任务有三个:⼀是综合弹性⼒学的基本⽅程,并按边界条件的性质将问题分类;⼆是根据问题性质,确定基本未知量,建⽴通过基本未知量描述的基本⽅程,得到基本解法。
弹性⼒学问题的基本解法主要是位移解法、应⼒解法和混合解法等。
应该注意的是对于应⼒解法,基本⽅程包括变形协调⽅程。
三是介绍涉及弹性⼒学求解⽅法的⼀些基本原理。
主要包括解的唯⼀性原理、叠加原理和圣维南原理等,这些原理将为今后的弹性⼒学问题解建⽴基础。
如果你在学习本章内容时有困难,请及时查阅和复习前三章相关内容,以保证今后课程的学习。
⼆、重点1、弹性⼒学的基本⽅程与边界条件分类;2、位移解法与位移表⽰的平衡微分⽅程;3、应⼒解法与应⼒表⽰的变形协调⽅程;4、混合解法;5、逆解法和半逆解法;6、解的唯⼀性原理、叠加原理和圣维南原理§5.1 弹性⼒学的基本⽅程及其边值问题学习思路:通过应⼒状态、应变状态和本构关系的讨论,已经建⽴了⼀系列的弹性⼒学基本⽅程和边界条件。
本节的主要任务是将基本⽅程和边界条件作综合总结,并且对求解⽅法作初步介绍。
弹性⼒学问题具有15个基本未知量,基本⽅程也是15个,因此问题求解归结为在给定的边界条件下求解偏微分⽅程。
弹塑性力学第四章弹性力学的求解方法
• 利用圣维南原理可放宽边界条件,扩大弹 性力学的解题范围。
END
1. 位移法:以位移作为基本未知量用,位移表述平
衡方程——位移法控制方程
2. 应力法:以应力作为基本未知量。将相容方程用 应力表示——应力控制方程
3. 应力函数法:先引入应力函数,相容方程用应力
函数表示法:将几何方程代入物理方程,得到用位移
表示的应力分量,再将应力分量代入平衡方程和应力边 界条件,即得到空间问题的位移法控制方程。不需要用 相容方程。
3、对非线弹性或弹塑形材料,应力应变关系是非线 性的,叠加原理不成立。
4、对载荷随变形而变的非保守力系或边界为 用非线性弹簧支承的情况,边界条件是非 线性的,叠加原理也将失效。
二. 解的唯一性定理:
在给定载荷作用下,处于平衡状态的弹性体, 其内部各点的应力、应变解是唯一的,如物体刚 体位移受到约束,则位移解也是唯一的。
无论何方法求得的解,只要能满足全部基本方 程和边界条件,就一定是问题的真解。
三.圣维南原理: 提法一:若在物体的一小部分区域上作用一自平衡力系,则
此力系对物体内距该力系作用区域较远的部分不产生 影响只在该力系作用的区域附近才引起应力和变形。
提法二:若在物体的一小部分区域上作用一自平衡力系,该 力系在物体中引起的应力将随离力系作用部分的距离 的增大而迅速衰减,在距离相当远处,其值很小,可 忽略不计。
位移控制方程指标表示:
力边界条件也可用位移表述。
3个位移表述的平衡微分方程,包含3个位 移未知数。
结合边界条件,解上述方程,可求出位移分 量,由几何方程求应变,再由本构方程求应力。
弹性力学课件完整版
材料拉伸或压缩时力学性能指标
弹性模量
弹性模量是描述材料抵抗弹性变形能力的指标,它等于应 力与应变的比值。
泊松比
泊松比是描述材料在拉伸或压缩时横向变形与纵向变形之 间关系的指标。
屈服极限和强度极限
屈服极限是指材料开始产生塑性变形的应力值,强度极限 是指材料在拉伸或压缩时所能承受的最大应力值。这些指 标对于评价材料的力学性能具有重要意义。
生物医学领域人体骨骼、肌肉等软组织力学性能研究
骨骼力学性能研究
运用弹性力学理论对人体骨骼进行受力分析 和模拟,研究骨骼在不同载荷下的应力分布 和变形情况,为骨折治疗和骨骼生物力学研 究提供理论支持。
肌肉软组织力学性能研究
通过弹性力学方法建立肌肉软组织的力学模 型,研究肌肉在收缩和舒张过程中的应力应 变关系以及能量转换机制,为运动生物力学
通过弹性力学中的运动方程可以建立位移梯度与应变之间的联系。
03
位移边界条件与约束
在实际问题中,空间各点的位移会受到边界条件和约束的影响。因此,
在分析空间各点位移变化规律时,需要考虑这些因素的影响。
06
弹性力学在工程中应用 举例
建筑结构中梁、板、柱设计原理
梁的设计原理 根据梁的受力特点和支承条件,运用弹性力学理论进行内 力、应力和变形的分析,从而确定梁的截面尺寸和配筋。
实验法在弹性力学研究中作用
验证理论模型
通过实验手段,可以验证弹性力学理论模型 的正确性和有效性。
研究材料性能
通过实验可以研究不同材料的力学性能,为 弹性力学的研究提供基础数据。
获取实验数据
通过实验可以获取大量的实验数据,为弹性 力学的研究提供有力的支持。
探索新现象和新规律
通过实验可以发现新的力学现象和规律,推 动弹性力学的发展。
弹性力学发展史及实际中的解题方法
弹性力学弹性力学简介elasticity弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。
它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。
弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。
绝对弹性体是不存在的。
物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。
弹性力学的发展简史人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。
当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。
弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。
英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。
牛顿于1687年确立了力学三定律。
同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。
在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。
这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。
在17世纪末第二个时期开始时,人们主要研究梁的理论。
到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。
柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。
第三个时期是线性各向同性弹性力学大发展的时期。
这一时期的主要标志是弹性力学广泛应用于解决工程问题。
同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。
1855~1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期的开始。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 按应力求解平面问题;
1、按应力求解平面问题的基本思路;
(1)找到用应力表示的方程组(,,)0x y xy f σστ=
(2)给出合适的应力边界条件,求解,,x y xy σστ
(3)根据物理方程求出,,x y xy εεγ
(4)根据几何方程确定,u v
2、按应力求解平面问题的一般提法:
00yx x x xy y y f x y f x y
τστσ∂∂++=∂∂∂∂++=∂∂ 平衡微分方程 ()()221y x x y f f x y x y σσμ∂⎛⎫⎛⎫∂∂∂++=-++ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭
补充方程(平面应力) ()2211y x x y f f x y x y σσμ∂⎛⎫⎛⎫∂∂∂++=-+ ⎪ ⎪∂∂-∂∂⎝⎭
⎝⎭ 补充方程(平面应变) x yx x
xy y y l m f l m f σττσ+=+= 应力边界条件
3、应力函数
22x x f x y φσ∂=-∂;22y y f y x φσ∂=-∂;2xy x y
φτ∂=-∂∂(记) 40ϕ∇=
按应力求解平面问题,可以归纳为求解一个应力函数φ,它必须满足在区域内的相容方程,在边界上的应力边界条件,在多连体中,还必须满足位移单值条件。
二、 按位移求解平面问题;
1、按位移求解平面问题的基本思路;
(1) 寻求关于位移的方程组(,)0f u v =
(2) 根据(,)0f u v =求出位移分量,u v
(3) 根据几何方程导出应变分量
(4) 根据物理方程导出应力分量
2、按位移求解平面问题的一般提法
222222222222110122110122x y E u u v f x y x y E v v u f y x x y μμμμμμ⎛⎫∂-∂+∂+++= ⎪-∂∂∂∂⎝⎭⎛⎫∂-∂+∂+++= ⎪-∂∂∂∂⎝⎭
基本方程 2
2112112x s y s E
u v u v l m f x y y x E
v u v u m l f y x x y μμμμμμ⎡⎤⎛⎫⎛⎫∂∂-∂∂+++=⎢⎥ ⎪ ⎪-∂∂∂∂⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫∂∂-∂∂+++=⎢⎥ ⎪ ⎪-∂∂∂∂⎝⎭⎝⎭⎣⎦用位移表示的应力边界条
件(平面应力)
2,11E E μμμμ⇒⇒--(平面应变)
s s u u v v == 位移边界条件
三、 逆解法;
1、 逆解法的基本思路;
(1)设定各种形式的应力函数ϕ,要求:满足相容方程 444422420x x y y
ϕϕϕ∂∂∂++=∂∂∂∂ 40ϕ∇= (2)求得应力分量
22x x f x y ϕσ∂=-∂ 22y y f y x ϕσ∂=-∂ 2xy x y
ϕτ∂=-∂∂ (3)由应力边界条件(2-15)式和弹性体的边界形状找到
应力分量对应的面力,从而得知所选取的应力函数 可以解决的问题。
四、半逆解法;¥¥¥
1、半逆解法的基本思路;
(1)针对所要求解的问题,根据边界形状和受力情况,假设部分或全部应力分量的函数形式;
(2)推出应力函数的形式;
(3)代入相容方程,求出应力函数的具体表达形式;(4)由应力函数求得应力分量;
(5)考查应力分量是否满足全部边界条件(多连体还要满足位移单值);
(6)满足是问题的解,不满足重新假设求解。
五、差分法;¥¥¥
1、基本思想;
是微分方程的近似解法,具体的讲,差分法就是把微分用差分来代替,把导数用差分商来代替,从而把基本方程和边界条件(微分方程)近似用差分方程来表示,把求解微分方程的问题变成求解代数方程问题。
其数学基础是泰勒公式。
1、基本公式;
(1)二阶差分公式:
130
213022022f f f x h f f f f x h -∂⎛⎫= ⎪∂⎝⎭⎛⎫+-∂= ⎪∂⎝⎭(记)
240
224022022f f f y h f f f f y h ⎛⎫-∂= ⎪∂⎝⎭⎛⎫+-∂= ⎪∂⎝⎭(记)
(2)四阶差分公式
()()()()()()4013911420
4012345678222040241012420
164142164f f f f f f x h f f f f f f f f f f x y h
f f f f f f y h ⎛⎫∂=-+++⎡⎤ ⎪⎣⎦∂⎝⎭⎛⎫∂=-+++++++⎡⎤ ⎪⎣⎦∂⎝⎭⎛⎫∂=-+++⎡⎤ ⎪⎣⎦∂⎝⎭ (3)相容方程的差分格式
0123456789101112208()2()()0φφφφφφφφφφφφφ-+++++++++++=(记)
(4)边界条件的差分格式
d d ()d ()d B x A B
B y A B B
B
B B B x y A A f s y f s x y y f s x x f s φφφ⎛⎫∂= ⎪∂⎝⎭∂⎛⎫=- ⎪∂⎝⎭=-+-⎰⎰⎰⎰(记)
六、位移变分法;¥¥¥
1、基本思路;
(1)设定一组包含若干待定系数的位移分量表达式;
(2)使它们满足位移边界条件;
(3)令其满足位移变分方程(代替平衡微分方程核应力边界条件)并求出待定系数,就同样地能得出实际位移解答。
2、基本公式:
00x m x m A s m
y m y m A s m U f u dxdy f u ds A U f v dxdy f v ds B σσ∂--=∂∂--=∂⎰⎰⎰⎰⎰⎰(记)。