数字逻辑_习题一_答案
数字逻辑课后习题答案
第一章开关理论基础1.将下列十进制数化为二进制数和八进制数十进制二进制八进制491100016153110101651271111111177635100111101111737.493111.11117.7479.4310011001.0110111231.3342.将下列二进制数转换成十进制数和八进制数二进制十进制八进制1010101211110161751011100921340.100110.593750.4610111147570110113153.将下列十进制数转换成8421BCD码1997=000110011001011165.312=01100101.0011000100103.1416=0011.00010100000101100.9475=0.10010100011101014.列出真值表,写出X的真值表达式A B C X00000010010001111000101111011111X=A BC+A B C+AB C+ABC5.求下列函数的值当A,B,C为0,1,0时:A B+BC=1(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,1,0时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,0,1时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=06.用真值表证明下列恒等式(1)(A⊕B)⊕C=A⊕(B⊕C)A B C(A⊕B)⊕C A⊕(B⊕C)0000000111010110110010011101001100011111所以由真值表得证。
(2)A⊕B⊕C=A⊕B⊕CA B C A⊕B⊕C A⊕B⊕C00011001000100001111100001011111011111007.证明下列等式(1)A+A B=A+B 证明:左边=A+A B=A(B+B )+A B =AB+A B +A B =AB+A B +AB+A B =A+B =右边(2)ABC+A B C+AB C =AB+AC 证明:左边=ABC+A B C+AB C=ABC+A B C+AB C +ABC =AC(B+B )+AB(C+C )=AB+AC =右边(3)E D C CD A C B A A )(++++=A+CD+E证明:左边=ED C CD A C B A A )(++++=A+CD+A B C +CDE =A+CD+CD E =A+CD+E =右边(4)C B A C B A B A ++=CB C A B A ++证明:左边=CB AC B A B A ++=C B A C AB C B A B A +++)(=C B C A B A ++=右边8.用布尔代数化简下列各逻辑函数表达式(1)F=A+ABC+A C B +CB+C B =A+BC+C B (2)F=(A+B+C )(A+B+C)=(A+B)+C C =A+B (3)F=ABC D +ABD+BC D +ABCD+B C =AB+BC+BD (4)F=C AB C B BC A AC +++=BC(5)F=)()()()(B A B A B A B A ++++=B A 9.将下列函数展开为最小项表达式(1)F(A,B,C)=Σ(1,4,5,6,7)(2)F(A,B,C,D)=Σ(4,5,6,7,9,12,14)10.用卡诺图化简下列各式(1)CAB C B BC A AC F +++=0 ABC00 01 11 1011111化简得F=C(2)CB A D A B A DC AB CD B A F++++=111111AB CD 00 01 11 1000011110化简得F=DA B A +(3)F(A,B,C,D)=∑m (0,1,2,5,6,7,8,9,13,14)1111111111ABCD 00 01 11 1000011110化简得F=DBC D C A BC A C B D C ++++(4)F(A,B,C,D)=∑m (0,13,14,15)+∑ϕ(1,2,3,9,10,11)Φ1ΦΦ1ΦΦ1Φ1AB CD 00 01 11 1000011110化简得F=ACAD B A ++11.利用与非门实现下列函数,并画出逻辑图。
数字逻辑-习题以及习题答案
AD
F的卡诺图
ACD
G的卡诺图
根据F和G的卡诺图,得到:F G
湖南理工学院计算机与信息工程系通信教研室 陈进制作
第3章习题 3.4 在数字电路中,晶体三极管一般工作在什么状态?
答:在数字电路中,晶体三极管一般工作在饱和导通状态 或者截止状态。
湖南理工学院计算机与信息工程系通信教研室 陈进制作
第3章习题
111110
1100110
⊕ ⊕⊕⊕ ⊕
10 000 1
⊕ ⊕⊕⊕ ⊕⊕
10 101 01
⑵ (1100110)2 = 64+32+4+2 = (102)10 = (0001 0000 0010)8421码
(1100110)2 =( 101?0101 )格雷码
湖南理工学院计算机与信息工程系通信教研室 陈进制作
第2章习题
2.2 用逻辑代数的公理、定理和规则证明下列表达式:
⑴ AB AC AB AC
⑵ AB AB AB AB 1
⑶ AABC ABC ABC ABC
证⑴:AB AC
AB AC
A B A C
AA AC BA BC
证⑶:AABC
A A B C
AB AC
第1章习题 1.3 数字逻辑电路可分为哪两种类型?主要区别是什么?
答:数字逻辑电路可分为组合逻辑电路、时序逻辑电路两 种类型。 主要区别:组合逻辑电路无记忆功能, 时序逻辑电路有记忆功能。
湖南理工学院计算机与信息工程系通信教研室 陈进制作
第1章习题 1.6 将下列二进制数转换成十进制数、八进制数和十六进制数。
第2章习题 2.8 ⑴ ②求出最简或-与表达式。
两次取反法
圈0,求F 最简与或式。
数字逻辑电路习题与答案
1、在数字系统中,下列哪种不是数的小数点表示法?A.定点整数表示法B.记阶表示法C.浮点表示法D.定点小数表示法正确答案:B2、下列哪种代码是自补码?A.格雷码B.步进码C.8421码D.2421码正确答案:D3、下列哪种不是可靠性编码?A.8421海明码B.余三码C.格雷码D.奇偶校验码正确答案:B4、下列哪个不是逻辑代数的基本运算?A.与B.与非C.或D.非5、下列逻辑函数的表示方法中哪种不是唯一的?A.卡诺图B.最小项标准式C.逻辑表达式D.真值表正确答案:C6、下列哪个不是逻辑门的符号标准?A.长方形符号B.数字符号C.等效符号D.变形符号正确答案:B7、下列哪个叙述是正确的?A.竞争是同一个信号或同时变化的某些信号经过不同路径到达某一点有时差的这种现象B.产生错误输出的竞争是非临界竞争C.竞争一定是同一个信号经过不同路径到达某一点有时差的这种现象D.竞争一定是同时变化的某些信号经过不同路径到达某一点有时差的这种现象正确答案:B8、下列哪个叙述是正确的?A.险象分为静态险象和动态险象B.险象分为功能险象和静态险象C.险象分为功能险象和逻辑险象D.险象不一定是竞争的结果正确答案:A9、下列叙述哪个是正确的?A.RC延迟电路不能用于消除险象B.RC延迟电路在实际运行的数字电路中起到了很重要的作用C.RC延迟电路在电路中很少存在D.RC延迟电路在电路的使用中不会起到好的作用正确答案:B10、在广义上,组合电路可以看作是下列哪个器件?A.译码器B.选择器C.分配器D.编码器正确答案:A11、下列逻辑电路中为时序逻辑电路的是()。
A.译码器B.寄存器C.数据选择器D.加法器正确答案:B12、对于D触发器,欲使=,应使输入D=()。
A.0B.QC.D.1正确答案:B13、有一T触发器,在T=1时加上时钟脉冲,则触发器()。
A.状态反转B.保持原态C.置0D.置1正确答案:A14、现欲将一个数据串延时4个CP(时钟周期)的时间,则最简单的办法采用()。
数字逻辑第四版课后练习题含答案
数字逻辑第四版课后练习题含答案1. 第一章1.1 课后习题1. 将十进制数22转换为二进制数。
答:22 = 101102. 将二进制数1101.11转换为十进制数。
答:1101.11 = 1 x 2^3 + 1 x 2^2 + 0 x 2^1 + 1 x 2^0 + 1 x 2^(-1) + 1 x 2^(-2) = 13.753. 将二进制数1101.01101转换为十进制数。
答:1101.01101 = 1 x 2^3 + 1 x 2^2 + 0 x 2^1 + 1 x 2^0 + 0 x 2^(-1)+ 1 x 2^(-2) + 1 x 2^(-4) + 0 x 2^(-5) + 1 x 2^(-6) = 13.406251.2 实验习题1. 合成与门电路设计一个合成与门电路,使得它的输入A,B和C,只有当A=B=C=1时输出为1,其他情况输出为0。
答:下面是一个合成与门电路的示意图。
合成与门电路示意图其中,S1和S2是两个开关,当它们都被打开时,电路才会输出1。
2. 第二章2.1 课后习题1. 将十进制数168转换为八进制数和二进制数。
答:168 = 2 x 8^3 + 1 x 8^2 + 0 x 8^1 + 0 x 8^0 = 250(八进制)。
168 = 10101000(二进制)。
2. 将八进制数237转换为十进制数和二进制数。
答:237 = 2 x 8^2 + 3 x 8^1 + 7 x 8^0 = 159(十进制)。
237 = 010111111(二进制)。
2.2 实验习题1. 全加器电路设计一个全加器电路,它有三个输入A,B和C_in,两个输出S和C_out。
答:下面是一个全加器电路的示意图。
C_in|/ \\/ \\/ \\/ \\/ \\A|________ \\| | AND Gate______| |B|__| XOR |_| S\\\\ /\\ /\\ /\\ /| | OR Gate| ||_| C_out其中,AND Gate表示与门,XOR Gate表示异或门,OR Gate表示或门。
1数字逻辑基础习题解答
ABC ABC ABC A BC AB C ABC AB( C C) BC(A A) C A( B B)
AB BC C A
1 数字逻辑基础习题解答
5
6.根据图 P1.6 所示时序图,列出逻辑函数 Z= F(A,B,C)的真值表,并写出其标 准积之和表达式。
(B C ) AB AB C ABC AB C 解: Y AB BC AB Bቤተ መጻሕፍቲ ባይዱ AB
A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
C 0 1 0 1 0 1 0 1
Y 0 0 0 0 1 1 0 0
8.写出如图 P1.8 所示逻辑电路表达式,列出真值表。
1 数字逻辑基础习题解答
1
自我检测题
1. (26.125)10=(11010.001)2 =(1A.2)16 2. (100.9375)10=(1100100.1111)2 3. (1011111.01101)2=( 137.32 )8=(95.40625)10 4. (133.126)8=(5B.2B)16 5. (1011)2×(101)2=(110111)2 6. (486)10=(010010000110)8421BCD=(011110111001)余 3BCD 7. (5.14)10=(0101.00010100)8421BCD 8. (10010011)8421BCD=(93)10 9.基本逻辑运算有 与 、或、非 3 种。 10.两输入与非门输入为 01 时,输出为 1 。 11.两输入或非门输入为 01 时,输出为 0 。 12. 逻辑变量和逻辑函数只有 0 和 1 两种取值, 而且它们只是表示两种不同的逻 辑状态。 13.当变量 ABC 为 100 时,AB+BC= 0 , (A+B) (A+C)=__1__。 14.描述逻辑函数各个变量取值组合和函数值对应关系的表格叫 真值表 。 15.用与、 或、 非等运算表示函数中各个变量之间逻辑关系的代数式叫 逻辑表达式 。 16.根据 代入 规则可从 AB A B 可得到 ABC A B C 。 17.写出函数 Z=ABC +(A+BC) (A+C)的反函数 Z = ( A B C 。 )( A( B C) A C ) 18.已知 F A(B C ) CD ,其对偶式 F'= (A B C) C D 。 19. Y ABC C ABDE 的最简与-或式为 Y= AB C 。 20.函数 Y AB BD 的最小项表达式为 Y= ∑m(1,3,9,11,12,13,14,15) 。 21.逻辑函数 F(A,B,C)=∏M(1,3,4,6,7) ,则 F(A,B,C)=∑m( 0,2,5) 。 22.最小项 m115 与 m116 可合并 × (√,×) 。 115=1110011B 116=1110100B,逻辑不相邻。 23.无关项是 不会出现 的变量取值所对应的最小项,其值总是等于 0。 24.和二进制数(1100110111.001)2 等值的十六进制数是 。 A. (337.2)16 B. (637.1)16 C. (1467.1)16 D. (C37.4)16 25.下列四个数中与十进制数(163)10 不相等的是 。 A. (A3)16 B. (10100011)2 C. (000101100011)8421BCD D. (100100011)8 26.下列数中最大数是 。 A. (100101110)2 B. (12F)16 C. (301)10 D. (10010111)8421BCD 27.和八进制数(166)8 等值的十六进制数和十进制数分别为 。 A.76H,118D B.76H,142D C.E6H,230D D.74H,116D 28.下列四个数中,与十进制数(10.44)10 相等的是 。
(完整word版)《数字逻辑》(第二版)习题答案
第一章1。
什么是模拟信号?什么是数字信号?试举出实例。
模拟信号—----指在时间上和数值上均作连续变化的信号。
例如,温度、压力、交流电压等信号.数字信号--—--指信号的变化在时间上和数值上都是断续的,阶跃式的,或者说是离散的,这类信号有时又称为离散信号。
例如,在数字系统中的脉冲信号、开关状态等。
2. 数字逻辑电路具有哪些主要特点?数字逻辑电路具有如下主要特点:●电路的基本工作信号是二值信号。
●电路中的半导体器件一般都工作在开、关状态.●电路结构简单、功耗低、便于集成制造和系列化生产。
产品价格低廉、使用方便、通用性好。
●由数字逻辑电路构成的数字系统工作速度快、精度高、功能强、可靠性好。
3。
数字逻辑电路按功能可分为哪两种类型?主要区别是什么?根据数字逻辑电路有无记忆功能,可分为组合逻辑电路和时序逻辑电路两类。
组合逻辑电路:电路在任意时刻产生的稳定输出值仅取决于该时刻电路输入值的组合,而与电路过去的输入值无关。
组合逻辑电路又可根据输出端个数的多少进一步分为单输出和多输出组合逻辑电路。
时序逻辑电路:电路在任意时刻产生的稳定输出值不仅与该时刻电路的输入值有关,而且与电路过去的输入值有关。
时序逻辑电路又可根据电路中有无统一的定时信号进一步分为同步时序逻辑电路和异步时序逻辑电路。
4. 最简电路是否一定最佳?为什么?一个最简的方案并不等于一个最佳的方案。
最佳方案应满足全面的性能指标和实际应用调整。
5。
把下列不同进制数写成按权展开形式。
(1) (4517.239)10(3) (325.744)8(2)(10110.0101)2(4) (785.4AF)16解答(1)(4517。
239)10 = 4×103+5×102+1×101+7×100+2×10—1+3×10—2+9×10—3(2)(10110.0101)2= 1×24+1×22+1×21+1×2-2+1×2-4(3)(325.744)8 = 3×82+2×81+5×80+7×8-1+4×8-2+4×8—3(4) (785。
数字逻辑课后习题答案
第一章开关理论基础1.将下列十进制数化为二进制数和八进制数十进制二进制八进制491100016153110101651271111111177635100111101111737.493111.11117.7479.4310011001.0110111231.3342.将下列二进制数转换成十进制数和八进制数二进制十进制八进制1010101211110161751011100921340.100110.593750.4610111147570110113153.将下列十进制数转换成8421BCD码1997=000110011001011165.312=01100101.0011000100103.1416=0011.00010100000101100.9475=0.10010100011101014.列出真值表,写出X的真值表达式A B C X00000010010001111000101111011111X=A BC+A B C+AB C+ABC5.求下列函数的值当A,B,C为0,1,0时:A B+BC=1(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,1,0时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,0,1时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=06.用真值表证明下列恒等式(1)(A⊕B)⊕C=A⊕(B⊕C)A B C(A⊕B)⊕C A⊕(B⊕C)0000000111010110110010011101001100011111所以由真值表得证。
(2)A⊕B⊕C=A⊕B⊕CA B C A⊕B⊕C A⊕B⊕C00011001000100001111100001011111011111007.证明下列等式(1)A+A B=A+B 证明:左边=A+A B=A(B+B )+A B =AB+A B +A B =AB+A B +AB+A B =A+B =右边(2)ABC+A B C+AB C =AB+AC 证明:左边=ABC+A B C+AB C=ABC+A B C+AB C +ABC =AC(B+B )+AB(C+C )=AB+AC =右边(3)E D C CD A C B A A )(++++=A+CD+E证明:左边=ED C CD A C B A A )(++++=A+CD+A B C +CDE =A+CD+CD E =A+CD+E =右边(4)C B A C B A B A ++=CB C A B A ++证明:左边=CB AC B A B A ++=C B A C AB C B A B A +++)(=C B C A B A ++=右边8.用布尔代数化简下列各逻辑函数表达式(1)F=A+ABC+A C B +CB+C B =A+BC+C B (2)F=(A+B+C )(A+B+C)=(A+B)+C C =A+B (3)F=ABC D +ABD+BC D +ABCD+B C =AB+BC+BD (4)F=C AB C B BC A AC +++=BC(5)F=)()()()(B A B A B A B A ++++=B A 9.将下列函数展开为最小项表达式(1)F(A,B,C)=Σ(1,4,5,6,7)(2)F(A,B,C,D)=Σ(4,5,6,7,9,12,14)10.用卡诺图化简下列各式(1)CAB C B BC A AC F +++=0 ABC00 01 11 1011111化简得F=C(2)CB A D A B A DC AB CD B A F++++=111111AB CD 00 01 11 1000011110化简得F=DA B A +(3)F(A,B,C,D)=∑m (0,1,2,5,6,7,8,9,13,14)1111111111ABCD 00 01 11 1000011110化简得F=DBC D C A BC A C B D C ++++(4)F(A,B,C,D)=∑m (0,13,14,15)+∑ϕ(1,2,3,9,10,11)Φ1ΦΦ1ΦΦ1Φ1AB CD 00 01 11 1000011110化简得F=ACAD B A ++11.利用与非门实现下列函数,并画出逻辑图。
数字逻辑题目及其答案和解析(1)一共60道题
第一部分:1.在二进制系统中,下列哪种运算符表示逻辑与操作?A) amp;B) |C) ^D) ~解析:正确答案是 A。
在二进制系统中,amp; 表示逻辑与操作,它仅在两个位都为1时返回1。
2.在数字逻辑中,Karnaugh 地图通常用于简化哪种类型的逻辑表达式?A) 与门B) 或门C) 异或门D) 与非门解析:正确答案是B。
Karnaugh 地图通常用于简化或门的逻辑表达式,以减少门电路的复杂性。
3.一个全加器有多少个输入?A) 1B) 2C) 3D) 4解析:正确答案是 C。
一个全加器有三个输入:两个加数位和一个进位位。
4.下列哪种逻辑门可以实现 NOT 操作?A) 与门B) 或门C) 异或门D) 与非门解析:正确答案是 D。
与非门可以实现 NOT 操作,当且仅当输入为0时输出为1,输入为1时输出为0。
5.在数字逻辑中,Mux 是指什么?A) 多路复用器B) 解码器C) 编码器D) 多路分配器解析:正确答案是 A。
Mux 是指多路复用器,它可以选择输入中的一个,并将其发送到输出。
6.在二进制加法中,下列哪个条件表示进位?A) 0 + 0B) 0 + 1C) 1 + 0D) 1 + 1解析:正确答案是 D。
在二进制加法中,当两个位都为1时,会产生进位。
7.在数字逻辑中,一个 JK 触发器有多少个输入?A) 1B) 2C) 3D) 4解析:正确答案是 B。
一个 JK 触发器有两个输入:J 和 K。
8.下列哪种逻辑门具有两个输入,且输出为两个输入的逻辑与?A) 与门B) 或门C) 异或门D) 与非门解析:正确答案是 A。
与门具有两个输入,只有当两个输入都为1时,输出才为1。
9.在数字逻辑中,下列哪种元件可用于存储单个位?A) 寄存器B) 计数器C) 锁存器D) 可编程逻辑门阵列解析:正确答案是 C。
锁存器可用于存储单个位,它可以保持输入信号的状态。
10.一个带有三个输入的逻辑门,每个输入可以是0或1,一共有多少种可能的输入组合?A) 3B) 6C) 8D) 12解析:正确答案是 C。
数字逻辑试题及答案
数字逻辑试题及答案一、单项选择题(每题2分,共10分)1. 以下哪个是数字逻辑中的逻辑运算?A. 加法B. 减法C. 与运算D. 乘法答案:C2. 在数字逻辑中,一个逻辑门的输出是:A. 0B. 1C. 0或1D. 任意数字答案:C3. 以下哪个是组合逻辑电路的特点?A. 有记忆功能B. 无记忆功能C. 可以进行算术运算D. 可以进行逻辑运算答案:B4. 触发器的主要用途是:A. 逻辑运算B. 存储信息C. 放大信号D. 转换信号答案:B5. 一个4位二进制计数器可以计数到:A. 8B. 16C. 32D. 64答案:B二、多项选择题(每题3分,共15分)1. 下列哪些是数字逻辑中常用的逻辑门?A. 与门B. 或门C. 非门D. 异或门E. 与非门答案:ABCDE2. 在数字逻辑中,以下哪些可以作为信号的表示?A. 电压B. 电流C. 电阻D. 电容E. 电感答案:AB3. 以下哪些是数字电路的基本组成元素?A. 逻辑门B. 电阻C. 电容D. 触发器E. 运算放大器答案:ABD4. 在数字逻辑中,以下哪些是常见的电路类型?A. 组合逻辑电路B. 时序逻辑电路C. 模拟电路D. 混合信号电路E. 微处理器答案:ABD5. 以下哪些是数字电路设计时需要考虑的因素?A. 电路的复杂性B. 电路的功耗C. 电路的可靠性D. 电路的成本E. 电路的尺寸答案:ABCDE三、填空题(每题2分,共10分)1. 在数字逻辑中,一个逻辑门的输出状态取决于其_________。
答案:输入状态2. 一个D触发器的输出在时钟信号的_________沿触发。
答案:上升沿3. 一个4位二进制计数器的计数范围是从_________到_________。
答案:0000到11114. 一个逻辑电路的输出是其输入的_________。
答案:逻辑函数5. 在数字逻辑中,使用_________可以表示一个逻辑函数的真值表。
答案:卡诺图四、简答题(每题5分,共15分)1. 描述一个典型的组合逻辑电路的工作原理。
数字逻辑考题及答案
数字逻辑试题1答案一、填空:(每空1分,共20分) 1、(20.57)8 =( 10.BC )16 2、(63.25) 10= ( 111111.01 )2 3、(FF )16= ( 255 )104、[X]原=1.1101,真值X= -0.1101,[X]补 = 1.0011。
5、[X]反=0.1111,[X]补= 0.1111。
6、-9/16的补码为1.0111,反码为1.0110 。
7、已知葛莱码1000,其二进制码为1111, 已知十进制数为92,余三码为1100 01018、时序逻辑电路的输出不仅取决于当时的输入,还取决于电路的状态 。
9、逻辑代数的基本运算有三种,它们是_与_ 、_或__、_非_ 。
10、1⊕⊕=B A F ,其最小项之和形式为_ 。
AB B A F += 11、RS 触发器的状态方程为_n n Q R S Q +=+1_,约束条件为0=SR 。
12、已知B A F ⊕=1、B A B A F +=2,则两式之间的逻辑关系相等。
13、将触发器的CP 时钟端不连接在一起的时序逻辑电路称之为_异_步时序逻辑电路 。
二、简答题(20分)1、列出设计同步时序逻辑电路的步骤。
(5分) 答:(1)、由实际问题列状态图 (2)、状态化简、编码 (3)、状态转换真值表、驱动表求驱动方程、输出方程 (4)、画逻辑图 (5)、检查自起动2、化简)(B A B A ABC B A F +++=(5分) 答:0=F3、分析以下电路,其中RCO 为进位输出。
(5分) 答:7进制计数器。
4、下图为PLD 电路,在正确的位置添 * , 设计出B A F ⊕=函数。
(5分)5分 注:答案之一。
三、分析题(30分)1、分析以下电路,说明电路功能。
(10分)解: ∑∑==)7,4,2,1()7,6,5,3(m Y m X 2分A B Ci X Y 0 0 0 0 0 0110 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1该组合逻辑电路是全加器。
数字逻辑试题及答案
数字逻辑试题及答案一、选择题(每题2分,共20分)1. 以下哪个是数字逻辑电路中的基本逻辑运算?A. 加法B. 减法C. 乘法D. 与运算2. 一个3输入的与门,当所有输入都为高电平时,输出为:A. 低电平B. 高电平C. 浮空D. 不确定3. 一个D触发器的Q端在时钟信号上升沿触发时,其状态变化为:A. 保持不变B. 从0变到1C. 从1变到0D. 从D输入端状态变化4. 在数字电路中,以下哪个不是布尔代数的基本定理?A. 幂等律B. 交换律C. 反演律D. 分配律5. 一个4位二进制计数器在计数到31后,下一个状态是:A. 00000B. 00001C. 11111D. 不能确定6. 以下哪个不是数字逻辑电路设计中的优化方法?A. 布尔代数简化B. 逻辑门替换C. 增加冗余D. 逻辑划分7. 一个异或门的真值表中,当输入相同,输出为:A. 0B. 1C. 无法确定D. 无输出8. 在数字电路中,同步计数器与异步计数器的主要区别在于:A. 计数范围B. 计数速度C. 电路复杂度D. 计数精度9. 以下哪个不是数字逻辑电路中的存储元件?A. 触发器B. 寄存器C. 计数器D. 逻辑门10. 一个简单的数字逻辑电路设计中,如果需要实现一个2输入的或门,至少需要几个与门?A. 1B. 2C. 3D. 4答案:1. D2. B3. D4. C5. B6. C7. A8. B9. D10. A二、填空题(每空2分,共20分)1. 数字逻辑电路中最基本的逻辑运算包括______、或运算、非运算。
2. 一个2输入的与门,当输入都为高电平时,输出为______。
3. 布尔代数的基本定理包括______、结合律、分配律等。
4. 一个D触发器的Q端在时钟信号上升沿触发时,Q端状态与______相同。
5. 4位二进制计数器的计数范围是从______到1111。
6. 数字逻辑电路设计中的优化方法包括布尔代数简化、逻辑门替换、______等。
1数字逻辑基础习题解答
[T1.33]与逻辑式 XY + Y Z + YZ 相等的式子是 [T1.34]与逻辑式 A + ABC 相等的式子是 [T1.35]与逻辑式 ABC + A BC 相等的式子是 [T1.36]下列逻辑等式中不成立的有 (A) A + BC = ( A + B )( A + C ) (C) A + B + AB = 1 (A) A + B = A B (C) A + AB = A + B
[T1.23]和八进制数(166)8 等值的十六进制数和十进制数分别为
PDF 文件使用 "pdfFactory Pro" 试用版本创建
1 数字逻辑基础习题解答 (A)76H,118D (B)76H,142D (C)E6H,230D 。 (D)74H,116D
2
[T1.24]十进制数 118 对应的 16 进制数为
[P1.2]列出逻辑函数 Y = AB + BC 的真值表。 解: Y = A B + BC = AB ⋅ BC = A B (B + C )= A B + A B C = A BC + A B C
PDF 文件使用 "pdfFactory Pro" 试用版本创建
1 数字逻辑基础习题解答 A 0 0 0 0 1 1 1 1 B 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1 Y 0 0 0 0 1 1 0 0
1 ABC + BD + BC + C D + AC E + BE + CDE = DB + EAC + D C + BE (5)最小项 m115 与 m116 可合并。 (1)×,因为只要 A=1,不管 B、C 为何值,上式均成立。 (2)×,不成立,因为只要 A=0,不管 B、C 为何值,上式均成立。 (3)√,当 A=0 时,根据 A+B=A+C 可得 B=C;当 A=1 时,根据 AB=AC 可得 B=C。 (4)√
数字逻辑课后习题答案(科学出版社_第五版)
第一章开关理论基础1.将下列十进制数化为二进制数和八进制数十进制二进制八进制49 110001 6153 110101 65127 1111111 177635 1001111011 11737.493 111.1111 7.7479.43 10011001.0110111 231.3342.将下列二进制数转换成十进制数和八进制数二进制十进制八进制1010 10 12111101 61 751011100 92 1340.10011 0.59375 0.46101111 47 5701101 13 153.将下列十进制数转换成8421BCD码1997=0001 1001 1001 011165.312=0110 0101.0011 0001 00103.1416=0011.0001 0100 0001 01100.9475=0.1001 0100 0111 01014.列出真值表,写出X的真值表达式A B C X0 0 0 00 0 1 00 1 0 00 1 1 11 0 0 01 0 1 11 1 0 11 1 1 1 X=A BC+A B C+AB C+ABC5.求下列函数的值当A,B,C为0,1,0时:A B+BC=1(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,1,0时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,0,1时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=06.用真值表证明下列恒等式(1) (A⊕B)⊕C=A⊕(B⊕C)A B C (A⊕B)⊕C A⊕(B⊕C)0 0 0 0 00 0 1 1 10 1 0 1 10 1 1 0 01 0 0 1 11 0 1 0 01 1 0 0 01 1 1 1 1所以由真值表得证。
(2)A⊕B⊕C=A⊕B⊕CA B C A⊕B⊕C A⊕B⊕C0 0 0 1 10 0 1 0 00 1 0 0 00 1 1 1 11 0 0 0 01 0 1 1 11 1 0 1 11 1 1 0 07.证明下列等式(1)A+A B=A+B证明:左边= A+A B=A(B+B)+A B=AB+A B+A B=AB+A B+AB+A B=A+B=右边(2)ABC+A B C+AB C=AB+AC证明:左边= ABC+A B C+AB C= ABC+A B C+AB C+ABC=AC(B+B)+AB(C+C)=AB+AC=右边(3)EDCCDACBAA)(++++=A+CD+E证明:左边=EDCCDACBAA)(++++=A+CD+A B C+CD E=A+CD+CD E=A+CD+E=右边(4)C B A C B A B A ++=CB C A B A ++证明:左边=CB AC B A B A ++=CB AC AB C B A B A +++)(=C B C A B A ++=右边8.用布尔代数化简下列各逻辑函数表达式(1) F=A+ABC+A C B +CB+C B = A+BC+C B(2) F =(A+B+C )(A+B+C) = (A+B)+C C = A+B(3) F =ABC D +ABD+BC D +ABCD+B C = AB+BC+BD(4) F=C AB C B BC A AC +++= BC(5) F=)()()()(B A B A B A B A ++++=BA 9.将下列函数展开为最小项表达式(1) F(A,B,C) = Σ(1,4,5,6,7)(2) F(A,B,C,D) = Σ(4,5,6,7,9,12,14)10.用卡诺图化简下列各式(1)CAB C B BC A AC F +++=0ABC00 01 11 1011111化简得F=C(2)CB A D A B A DC AB CD B A F++++=111111ABCD 00 01 11 1000011110化简得F=DA B A +(3) F(A,B,C,D)=∑m (0,1,2,5,6,7,8,9,13,14)1111111111AB CD 00 01 11 1000011110化简得F=DBC D C A BC A C B D C ++++(4) F(A,B,C,D)=∑m (0,13,14,15)+∑ϕ(1,2,3,9,10,11)Φ1ΦΦ1ΦΦ1Φ1AB CD 00 01 11 1000011110化简得F=ACAD B A ++11.利用与非门实现下列函数,并画出逻辑图。
数字逻辑习题及答案
数字逻辑习题及答案一. 填空题1.一个触发器有Q和Q两个互补的输出引脚,通常所说的触发器的输出端是指Q ,所谓置位就是将输出端置成 1 电平,复位就是将输出端置成 0 电平。
2.我们可以用逻辑函数来表示逻辑关系,任何一个逻辑关系都可以表示为逻辑函数的与或表达式,也可表示为逻辑函数的或与表达式。
3.计数器和定时器的内部结构是一样的,当对不规则的事件脉冲计数时,称为计数器,当对周期性的规则脉冲计数时,称为定时器。
4.当我们在计算机键盘上按一个标为“3”的按键时,键盘向主机送出一个ASCII码,这个ASCII码的值为 33H 。
5.在5V供电的数字系统里,所谓的高电平并不是一定是5V,而是有一个电压范围,我们把这个电压范围称为高电平噪声容限;同样所谓的低电平并不是一定是0V,而也是有一个电压范围,我们把这个电压范围称为低电平噪声容限。
二. 选择题1.在数字系统里,当某一线路作为总线使用,那么接到该总线的所有输出设备(或器件)必须具有 b 结构,否则会产生数据冲突。
a. 集电极开路;b. 三态门;c. 灌电流;d. 拉电流 2.TTL集成电路采用的是 b 控制,其功率损耗比较大;而MOS集成电路采用的是 a 控制,其功率损耗比较小。
a. 电压; b.电流; c. 灌电流; d. 拉电流3.欲将二进制代码翻译成输出信号选用 b ,欲将输入信号编成二进制代码选用 a ,欲将数字系统中多条传输线上的不同数字信号按需要选择一个送到公共数据线上选用 c ,欲实现两个相同位二进制数和低位进位数的相加运算选用 e 。
a. 编码器;b. 译码器;c. 多路选择器;d. 数值比较器;e. 加法器;f. 触发器;g. 计数器; h. 寄存器 4.卡诺图上变量的取值顺序是采用 b 的形式,以便能够用几何上的相邻关系表示逻辑上的相邻。
a. 二进制码;b. 循环码;c. ASCII码;d. 十进制码 5.根据最小项与最大项的性质,任意两个不同的最小项之积为0 ,任意两个不同的最大项之和为 1 。
《数字逻辑》题库及答案
《数字逻辑》题库及答案一、单项选择题1 .八进制数(573.4)的十六进制数是 _______ 。
8A. (17C .4)B. (16B .4)C. (17B .8)D. (17b .5)161616162 .用0,1两个符号对100个信息进行编码,则至少需要 。
A. 8位B. 7位C. 9位D. 6位3 .逻辑函数 F = AB + AB + BDEG + BA. F = BB. F = BC. F = 0 D, F = 1 4 .逻辑函数F (ABC ) = A ®C 的最小项标准式为。
A. F =Z (0,1,3,4,5)B, F = AC + AC5 .已知逻辑函数F =Z (0,1,3,4,5),则F 的最简反函数为A. F = AB + BCB, F = B + AC C. F = B + ACD, F = AB + BiC6 .在下列名组变量取值中,使函数F (ABCD ) = Z(0,1,3,4,6,12)的值为1的是A.1 1 0 1B.1 0 0 1C.0 1 0 1D. 1 1 0 07 .逻辑函数F = ABD + ACD + ABD + CD 的最简或非式是A. A + C + A + D B, A + C + A + D C. AC + ADD, A + C + A + D8.函数J F = Z (022,8,10,11,13,15)的最简与非式为 _________(ABD + BCD = 0(约束条件)A . AB - AD - BD B . BD - ADC . AD - BD、请根据真值表写出其最小项表达式1.C. F = m + m + m +mD. F = Z (0,1,6,7)2.三、用与非门实现L = A㊉ B = AB + AB四、用或非门实现L = A㊉ B = AB + AB五、逻辑电路如图所示,请分析出该电路的最简与或表达式,并画出其真值表。
数字逻辑(第2版)习题答案
毛法尧第二版习题一1.1 把下列不同进制数写成按权展开式:⑴(4517.239)10= 4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3⑵(10110.0101)2=1×24+0×23+1×22+1×21+0×20+0×2-1+1×2-2+0×2-3+1×2-4⑶(325.744)8=3×82+2×81+5×80+7×8-1+4×8-2+4×8-3⑷(785.4AF)16=7×162+8×161+5×160+4×16-1+A×16-2+F×16-31.2 完成下列二进制表达式的运算:1.3 将下列二进制数转换成十进制数、八进制数和十六进制数:⑴(1110101)2=(165)8=(75)16=7×16+5=(117)10⑵(0.110101)2=(0.65)8=(0.D4)16=13×16-1+4×16-2=(0.828125)10⑶(10111.01)2=(27.2)8=(17.4)16=1×16+7+4×16-1=(23.25)101.4 将下列十进制数转换成二进制数、八进制数和十六进制数,精确到小数点后5位:⑴(29)10=(1D)16=(11101)2=(35)8⑵(0.207)10=(0.34FDF)16=(0.00111)2=(0.15176)8采用0舍1入规则⑶(33.333)10=(21.553F7)16=(100001.01011)2=(41.25237)81.5 如何判断一个二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除?解: 一个二进制正整数被(2)10除时,小数点向左移动一位, 被(4)10除时,小数点向左移动两位,能被整除时,应无余数,故当b1=0和b0=0时, 二进制正整数B=b6b5b4b3b2b1b0能被(4)10整除.1.6 写出下列各数的原码、反码和补码:⑴0.1011[0.1011]原=0.1011; [0.1011]反=0.1011; [0.1011]补=0.1011⑵0.0000[0.000]原=0.0000; [0.0000]反=0.0000; [0.0000]补=0.0000⑶-10110[-10110]原=110110; [-10110]反=101001; [-10110]补=1010101.7 已知[N]补=1.0110,求[N]原,[N]反和N.解:由[N]补=1.0110得: [N]反=[N]补-1=1.0101, [N]原=1.1010,N=-0.10101.8 用原码、反码和补码完成如下运算:⑴0000101-0011010[0000101-0011010]原=10010101;∴0000101-0011010=-0010101。
数字逻辑习题(含部分答案)
一、用代数化简法求逻辑函数的最简与—或表达式。
(14分)( 1 )F=AC+BD+AD+AD+AB+BE+DEF=AC+BD+A(D+D)+AB+BE+DEF=AC+A+BD+AB+BE+DEF=A+C+AB+BD+BE+DE(C+C)F=A+C+BD+BE( 2 ) F=A B C+ABCD+ACDF=A C(B+BD)+ACDF=A B C+A CD+ACDF=A B C+CD(A+A)F=A B C+CD二、用卡诺图化简法求出逻辑函数的最简与—或表达式。
(14分)( 1 )F(A,B,C,D)=AC+BC+A B+A CD解:卡诺图如图所示由卡诺图得F(A,B,C,D)=A B+BC+AC( 2 )F(A,B,C,D)=BCD+ABC+ABC D+A CD+AB CD+ABCD解:卡诺图如图所示由卡诺图得F=CD+BD三、组合逻辑电路的设计。
(12分)设计一个四变量“多数表决”组合逻辑电路,求出逻辑函数的最简与—或表达式并并画出逻辑电路图。
解:分别设四变量为A,B,C,D,其真值表如下得F=ABCD+ABCD+ABCD+ABCD+ABCD化简得F=ABC+ABD+ACD+BCD逻辑电路图如下图所示四、组合逻辑电路的分析。
(12分)分析下图所示组合逻辑电路的功能。
要求:写出每个或非门的输出函数,根据F表达式列出真值表,最后分析电路的功能。
解:P1=A+B=A∙B P2=A+P1=A+(A∙B)=A∙(A+B)=A BP3=B+P1=B+(A∙B)=B∙(A+B)=ABP4=C+P2+P3=C+(P2+P3)=C+(A⊕B)=(A⊕B)∙CP5=P2+P3+P4=(A⊕B)+(A⊕B)∙C=(A⊕B)+C=(A⊕B)∙CP6=C+P4=(A⊕B)+C=(A⊕B)∙C综上得F=P5+P6=(A⊕B)∙C∙(A⊕B)∙C=(A⊕B)∙C+(A⊕B)∙C=(A⊕B)⊙C 真值表如下图所示由真值表知仅当A,B,C中0的个数为一个或三个时,F的值才为1,故该电路的功能为检测A,B,C中0的个数为奇书还是偶数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
〈习题一〉作业参考答案
1.4 如何判断一个7位二进制正整数A=a 1a 2 a 3 a 4 a 5 a 6 a 7是否是4的倍数。
答:只要a 6 a 7=00,A 即可被4整除。
1.10设[x]补=01101001,[y]补=10011101,求:1[
]2
x 补,1[
]4
x 补,1[
]2
y 补,1[
]4
y 补,[]x -补,
[]y -补。
答:(1)如[x]补=x 0x 1x 2…x n ,则1[]2
x 补= x 0x 0x 1x 2…x n-1. x n 。
所以,1[
]2
x 补=00110100.1,1[
]4
x 补=00011010.01,1[
]2
y 补=11001110.1,
1[]4
y 补=11100111.01。
(2)如[x]补=x 0x 1x 2…x n ,[-x]补=012...1n x x x x +。
所以,[]x -补=10010111,[]y -补=01100011。
注意:公式(1)[x]补=x 0x 1x 2…x n ,则1[
]2
x 补= x 0x 0x 1x 2…x n-1. x n
(2)[x]补=x 0x 1x 2…x n ,[-x]补=012...1n x x x x + 一定要掌握。
1.11根据原码和补码的定义回答下列问题: (1)已知[x]补>[y]补,是否有x>y?
(2)设-2n <x<0,x 为何值时,等式[x]补=[x]原成立。
答:(1)否。
如果x<0 且y>0,则[x]补>[y]补。
但显然x<y 。
(2)因为x<0,所以[x]补=2n+1+x ,[x]原=2n
-x ;
要使[x]补=[x]原,则2n+1+x=2n -x 。
从而可以得到:
X=-2(n-1)。
注意:因为-2n <x ,所以x 的数据位有n 位,加上一个符号位为n+1位。
所以,其补码为2n+1+x 。
1.12 设x 为二进制整数,[x]补=11x 1 x 2 x 3 x 4 x 5,若要x <-16,则x 1~x 5应满足什么条件? 答:[x –(-16)]补=[x+16]补=[x]补+10000,若要x <-16,则[x –(-16)]补>1000000,
即[x]补+10000>1000000。
根据补码加法,则x 1=0,x 2~x 5任意。
或:
[x]补=27
+x ,所以x=[x]补-27
<-16,即11x 1 x 2 x 3 x 4 x 5<112,因此x 1 x 2 x 3 x 4 x 5<16。
所以x 1=0,x 2 x 3 x 4 x 5任意。
1.16 完成下列代码之间的转换:
(1)(0101 1001 1001 0111.0111)8421BCD =(5997.7)10。
(2)(359.25)10=(0110 1000 1100.01011)余3。
(3)(1010001110010101)余3=(0111 0000 0110 0010)8421BCD
1.17 试写出下列二进制数的典型格雷码:101010,10111011。
答:典型格雷码的编码规则为:
1n n
i i i
G B G B B +=⎧⎨
=⊕⎩ 所以101010对应的格雷码为:111111。
10111011对应的格雷码为:11100110。
1.18 试给出一位余3码的奇校验海明码。
答:1)根据公式(21)r r k --= 且余3码对应的k=4,确定校验码位数r=3;
2)设置校验位b 1, b 2, b 3,将他们分别置于1,2,4码位上,并根据分组规则将它们分成3组,如下表所示:
3)列出校验位的表达式(奇校验):
112421343241131
b a a a b a a a b a a a =⊕⊕⊕=⊕⊕⊕=⊕⊕⊕ 计算每组余3码相应的校验位值。
完整的余3码海明码表如下表所示:
信息码序号
b 1 b 2 a 1 b 3 a 2 a 3 a 4 0 0
1 0 1 0 1 1 1 0 1 0 0 1 0 0
2 1 0 0 1 1 0 1
3 0 0 0 1 1 1 0
4 1 1 0 0 1 1 1
5 0 0 1 1 0 0 0 6
1
1
1
0 1 7 0 1 1 0 0 1 0 8 1 0 1 1 0 1 1 9 1 0 1 0 1 0
注意:不能把余3码转换成8421BCD 码,然后再求其海明码。
1.19 设有一信息码字a 1a 2a 3a 4=1010,需用偶校验的海明码进行传送,使给出该信息的海明码。
若接收端a 3变为0,如何发现?如何纠正?
答:该信息的海明码为:1011010。
若接收端a 3变为0,那么S 3S 2S 1=110(因为a 3对应的码位为6)。
直接将第6位(即a 3)取反即可。
注意:S 3S 2S 1指出了错码的码位,而不是a 的下标。