平行线证明专题
《平行线的性质》平行线的证明PPT课件
C
∵AB∥CD(已知)
∴∠1=∠D(两直线平行,内错角相等)
∵∠B=∠D(已知)
∴∠1=∠B(等量代换)
∴AD∥BC(同位角相等,两直线平行)
例2:已知,如图,AB∥CD,∠B=∠D,求证:
AD∥BC.
证法三:
A
D
3
如图,连接BD(构造一组内错角)
4
∵AB∥CD(已知)
B 12
C
∴∠1=∠4(两直线平行,内错角相等)
所以∠BDF=∠EDF.
课堂小结
已知
同位角相等 内错角相等 同旁内角互补
得到
判定 性质
得到 两直线平行
已知
1ppt.
如果∠1 ≠ ∠2c,n AB与CD的位置P课P件T 关系会怎样呢/?kejia
存在两条直线AB和GH都与直线 CD平行.这与基本事实“过直线外 一点有且只有一条直线与这条直
n/ 语文
线平行”相矛盾.
课件
这说明∠1 ≠ ∠2的假设不成立,
/kejia n/yu
所以∠1 =∠2.
wen/
总结归纳
5.如图,是一块梯形铁片的残余部分,量得∠A=100°, ∠B=115°,梯形的另外两个角分别是多少度?
解:因为梯形上、下底互相平行,所以
∠A与∠D互补, ∠B与∠C互补. D
C
于是∠D=180 °-∠A=180°-
100°=80°
A
B
∠C= 180 °-∠B=180°-115°=65°
所以梯形的另外两个角分别是80° 、 65°.
第七章 平行线的证明
平行线的性质
学习目标
1.理解并掌握平行线的性质公理和定理.(重点) 2.能熟练运用平行线的性质进行简单的推理证 明.(难点)
平行线的判定》证明题
平行线的判定》证明题1.当∠1=∠2时,直线a、b平行。
因为这时∠1+∠2=180°,根据平行线的性质可知a、b平行。
2.已知∠XXX∠BCD,且∠ABC+∠CDG=180°,因此∠BCD=∠XXX根据三角形内角和定理可知∠XXX∠BCD+∠XXX∠ABC+∠BCD=180°,所以BC∥GD。
3.已知∠1=15°,∠2=15°,因此∠ACE=∠BDF=75°。
但AE与BF不平行,因为它们交于点F。
4.BE平分∠ABD,DE平分∠XXX,且∠DQP=∠1=∠2,因此∠XXX∠XXX∠BCQ。
根据同位角和内错角性质可知AB∥CD,DE∥BE,因此AD∥BC。
5.已知∠2=∠3,且∠1+∠2=90°,因此∠1=90°-∠2=90°-∠3.根据同位角和内错角性质可知BE∥DF,因为∠AEB=∠DFB=90°。
6.已知∠1=30°,∠B=60°,因此∠C=90°。
根据三角形内角和定理可知∠ABC=∠ACB=60°,因此AB=AC。
又因为∠BAC=90°,所以AD∥BC。
7.已知∠BAD=∠DCB,∠BAC=∠DCA,因此三角形ABD与三角形CBD相似。
根据相似三角形的性质可知AB∥CD。
8.直线EF分别与直线AB、CD相交于点P和点Q,PG 平分∠APQ,QH平分∠DPQ。
根据角平分线的性质可知∠XXX∠GPQ+∠HPQ=1/2(∠APQ+∠DPQ)=1/2(180°)=90°,因此GH∥AB∥CD。
9.已知XXX,XXX,∠1=∠2,因此∠XXX∠BCD。
根据同位角和内错角性质可知BE∥CF。
10.已知AB⊥DF,∠2=90°,∠2=∠3,因此∠1=90°-∠2=90°-∠3.根据同位角和内错角性质可知BE∥DF,因为∠AEB=∠DFB=90°。
平行线的判定及性质 例题及练习
平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
小专题三证明平行线中几种常见的结论
小专题(三)证明平行线中几种常见的结论学习目标:1.利用直线的平行性质证明角的相等.2.利用角的关系判定直线平行.学习重点:两直线平行的性质的应用.学习难点:找角的关系来判定两直线平行.学习过程:一、课前热身(知识准备)平行线的判定(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补;二、新知探究:类型1 证明角相等已知:如图1所示,DE//BC,CD平分<ACB,求证:32∠=∠.图1 典例1:已知:如图2所示,AB∥CD,AC∥DE.求证:<A=<D.图2反馈1:已知:如图3所示,AB∥CD,<1=<2,求证:<E= <F.图3类型2 证明角平分线已知:如图4所示,AE ⊥BC,DF ⊥BC,E,F 为垂足,<A =<1.求证:DF 平分<BDC图4典例2:如图5,∠1+∠2=180°,∠DAE=∠BCF,DA 平分∠BDF.(1)AE 与FC 会平行吗?说明理由; (2)AD 与BC 的位置关系如何?为什么? (3)BC 平分∠DBE 吗?为什么?图5类型3 证明两直线平行已知:如图6所示,BE 平分<ABC ,CF 平分<ACB ,且<ABC =<ACB,<1=<D . 求证:CF ∥DE .图6典例3:如图7所示,已知AB ∥CD ,D B ∠=∠,求证:AD ∥BC .图7反馈2:F E21DCBA如图8所示,已知AB∥CD,EM、FN分别平分<BEF 和<CEF.求证:EM∥NF.图8三、思维模型总结本单元中证明两角相等的方法主要有:(1)对顶角相等;(2)同角(或等角)的余角相等;(3)同角(或等角)的补角相等;(4)两直线平行,同位角相等;(5)两直线平行,内错角相等;(6)两直线平行,同旁内角互补;本单元中证两直线平行的方法主要有:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)都与第三条直线平行的两直线互相平行;四、课堂检测1.如图9所示,点O在CD上,OE⊥AB于E,当<1是什么角时AB∥CD?图92.如图10所示,已知<B=<D,AB∥CE,求证:CE∥DF.图103. 已知:如图11∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.图114. 如图12所示,已知BE 、CE 分别平分<ABC 、<BCD ,∠1+∠2=90°.求证:AB ∥CD .图125.如图13,DE ⊥AB ,EF ∥AC ,∠A=35°,求∠DEF 的度数。
专题12 平行线的证明压轴题的三种考法(原卷版)(北师大版)
专题12平行线的证明压轴题的三种考法类型一、三角形折叠问题(1)如图1,当点C 落在边BC 上时,若58ADC '∠=︒,则C ∠=,可以发现ADC ∠的数量关系是;(2)如图2,当点C 落在ABC 内部时,且42BEC '∠=︒,20ADC '∠=︒,求C ∠的度数;(3)如图3,当点C 落在ABC 外部时,若设BEC '∠的度数为x ,ADC '∠的度数为y ,请求出C ∠与x ,y 之间的数量关系.(1)如图1,点P 与点E 重合时,用含α的式子表示DEF ∠;(2)当点P 与点E 不重合时,①如图2,若22.5,AP α=︒平分,BAE PD ∠交AB 于点G ,猜想,,AC AF DG 关系,并说明你的理由;②若BAD β∠=,请直接写出APD ∠的大小(用含,αβ的式子表示).【变式训练1】(1)如图1,把三角形纸片ABC 折叠,使3个顶点重合于点P .这时,123456∠+∠+∠+∠+∠+∠=__________︒;(2)如果三角形纸片ABC 折叠后,3个顶点并不重合于同一点,如图2,那么(1)中的结论是否仍然成立?请说明理由;(3)折叠后如图3所示,直接写出1∠、2∠、3∠、4∠、5∠、6∠之间的数量关系_______;(4)折叠后如图4,直接写出1∠、2∠、3∠、4∠、5∠、6∠之间的数量关系:_______;【变式训练2】(1)如图,把ABC 沿DE 折叠,使点A 落在点1A 处,试探究1∠、2∠与A ∠的关系;(2)如图2,若1140∠=︒,280∠=︒,作ABC ∠的平分线BN ,与ACB ∠的外角平分线CN 交于点N ,求BNC ∠的度数;(3)如图3,若点1A 落在ABC 内部,作ABC ∠,ACB ∠的平分线交于点1A ,此时1∠,2∠,1BA C ∠满足怎样的数量关系?并给出证明过程.(1)如图1,当点B落在直线A′E上时,猜想两折痕的夹角∠(2)当∠A′EB′=13∠B′EB时,设∠A′EB′=x.①试用含x的代数式表示∠FEG的度数.②探究EB′是否可能平分∠FEG,若可能,求出此时∠由.类型二、三角形内角和定理与外角和定理(1)求证:CD AB ⊥;(2)若2ACB ABE ∠=∠,求证:AC BC =;(3)如图2,在(2)的条件下,延长BE 至点G ,连接AG ,CG 求线段AB 的长.(注:不能应用等腰三角形的相关性质和判定)(1)如图1,BD ,CD 分别是ABC ∆的两个内角ABC ∠,ACB ∠的平分线,说明D ∠=的理由.【深入探究】(2)①如图2,BD ,CD 分别是ABC ∆的两个外角EBC ∠,FCB ∠的平分线,D ∠间的等量关系是;②如图3,BD ,CD 分别是ABC 的一个内角ABC ∠和一个外角ACE ∠的平分线,类型三、平行线性质与判定例.如图①,已知AB CD ,一条直线分别交AB 、CD 于点E 、F ,EFB B ∠=∠,FH FB ⊥,点Q 在BF 上,连接QH .(1)已知70EFD ∠=︒,求B ∠的度数;(2)求证:FH 平分GFD ∠.(3)在(1)的条件下,若30FQH ∠=︒,将FHQ 绕着点F 顺时针旋转,如图②,若当边FH 转至线段EF 上时停止转动,记旋转角为α,请求出当α为多少度时,QH 与EBF △某一边平行?(4)在(3)的条件下,直接写出DFQ ∠与GFH ∠之间的关系.【变式训练1】如图,AB CD ,点P 在直线AB 上,作50BPM ∠=︒,交CD 于点M ,点F 是直线CD 上的一个动点,连接PF ,PE CD ⊥于点E ,PN 平分MPF ∠.(1)若点F 在点E 左侧且32PFM ∠=︒,求NPE ∠的度数;(2)当点F 在线段EM (不与点M ,E 重合)上时,设PFM α∠=︒,直接写出NPE ∠的度数(用含α的代数式表示);(3)将射线PF 从(1)中的位置开始以每秒10︒的速度绕点P 逆时针旋转至PM 的位置,转动的时间为t 秒,求当t 为何值时,FPM 为直角三角形.【变式训练2】【基础巩固】(1)如图1,已知AD BC ∥EF ∥,求证:AEB DAE CBE ∠=∠+∠;【尝试应用】(2)如图2,在四边形ABCD 中,AD BC ∥,点E 是线段CD 上一点.70AEB ∠=︒,30DAE ∠=︒,求CBE ∠的度数;【拓展提高】(3)如图3,在四边形ABCD 中,AD BC ∥,点E 是线段CD 上一点,若AE 平分DAC ∠,CAB ABC ∠=∠.①试求出BAE ∠的度数;②已知AEB ABE ∠=∠,30EBC ∠=︒,点G 是直线AD 上的一个动点,连接CG 并延长.2.1若CA 恰好平分BCD ∠,当CG 与四边形ABCD 中一边所在直线垂直时,ACG ∠=________;2.2如图4,若CG 是ACD ∠的平分线,与BA 的延长线交于点F ,与AE 交于点P ,且BFC α∠=︒,则ADC ∠=________︒(用含α的代数式表示).课后训练4.(1)如图1,将ABC 纸片沿A A DC A EB ''∠∠∠、、之间的数量关系为:(2)如图2,若将(1)中“点A 落在四边形外点A '的位置”,则此时,A ∠∠(3)如图3,将四边形纸片ABCD (90C ∠=︒,AB 与CD 不平行)沿EF 折叠成图3的形状,若115D EC '∠=︒,45A FB '∠=︒,求ABC ∠的度数;(4)在图3中作出D EC A FB ''∠∠、的平分线EG 、FH ,试判断射线EG 、FH 的位置关系,当点E 在DC 边上向点C 移动时(不与点C 重合),D EC A FB ''∠∠、的大小随之改变(其它条件不变),上述EG ,FH 的位置关系改变吗?为什么?5.如图1至图2,在ABC 中,BAC α∠=,点D 在边AC 所在直线上,作DE 垂直于直线BC ,垂足为点E ;BM 为ABC 的角平分线,ADE ∠的平分线交直线BC 于点G .(1)如图1,延长AB 交DG 于点F ,若BM DG ∥,30F ∠=︒.①ABC ∠=________;②求证:AC AB ⊥;(2)如图2,当90α<︒,DG 与BM 反向延长线交于点H ,用含α的代数式表示BHD ∠;(3)当点D 在直线AC 上移动时,若射线DG 与射线BM 相交,设交点为N ,直接写出BND ∠与α的关系式.。
人教版七年级下册数学平行线证明题专题训练(含答案)
人教版七年级下册数学平行线证明题专题训练 1.如图,已知∠1+∠2=180°,且∠3=∠B .(1)求证:∠AFE =∠ACB ;(2)若CE 平分∠ACB ,且∠2=110°,∠3=50°,求∠ACB 的度数.2.如图,点D 、F 在线段AB 上,点E 、G 分别在线段BC 和AC 上,CD EF ∥,12∠=∠.(1)求证: DG BC ∥;(2)若DG 是角ADC ∠的平分线,385∠=︒,且:9:10DCE DCG ∠∠=,请说明AB 和CD 怎样的位置关系?3.如图,已知BE AO ∥,12∠=∠,OE OA ⊥于点O ,那么4∠与5∠有什么数量关系?为什么?4.如图所示,已知CD 平分ACB ∠,12∠=∠,那么B 与4∠相等吗?完成下面的填空.CD 平分ACB ∠(已知)2∴∠=∠______(______), 12∠=∠(已知), ∴∠______1=∠(______),∴______∥______(______),4B ∴∠=∠(______). 5.如图,在四边形ABCD 中,AD BC ∥,连接BD ,点E 在BC 边上,点F 在DC 边上,且12∠=∠.(1)求证:EF BD ∥.(2)若DB 平分ABC ∠,130A ∠=︒,70C ∠=︒,求CFE ∠的度数.6.如图,D ,E ,G 分别是AB ,AC ,BC 边上的点,12180∠+∠=︒,3B ∠=∠.(1)请说明∥DE BC 的理由;7.已知如图,已知∠1=∠2,∠C =∠D .(1)判断BD 与CE 是否平行,并说明理由;(2)当∠A =30°时,求∠F 的大小.8.如图所示,已知BE FG ∥,12∠=∠.求证∥DE BC .9.推理填空:如图,CF 交BE 于点H ,AE 交CF 于点D ,∠1=∠2,∠3=∠C ,∠ABH =∠DHE ,求证:BE ∠AF .证明:∠∠ABH =∠DHE (已知),∠_______(_____________),∠∠3+______=180°(_______).∠∠3=∠C (已知),∠∠C +________=180°(_________),∠AD ∠BC (___________),∠∠2=∠E (___________).∠∠1=∠2(已知),∠∠1=∠E (等量代换).∠BE ∠AF (内错角相等,两直线平行).10.如图,AB 、CD 是两条直线,BMN CNM ∠=∠,12∠=∠.请说明E F ∠=∠的理由.11.如图,MN BC ∥,BD DC ⊥,1260∠=∠=︒,DC 是NDE ∠的平分线(1)AB 与DE 平行吗?请说明理由;(2)试说明ABC C ∠=∠;(3)求ABD ∠的度数.12.如图,AD 与BE 相交于F ,∠A =∠C ,∠1与∠2互补.(1)试说明:AB CE ∥;(2)若∠1=85°,∠E =26°,求∠A 的度数.13.已知,点A ,B 在直线EF 上,∠1+∠2=180°,DB 平分∠CDA ,CD ∠AB .(1)求证:AD ∠BC ;(2)若∠DAB =52°,求∠BDC 的度数.14.如图,已知180BAD ADC ∠+∠=︒,AE 平分BAD ∠,交CD 于点F ,交BC 的延长线于点E ,DG 交BC 的延长线于点G ,CFE AEB ∠=∠.(1)若87B ∠=︒,求DCG ∠的度数;(2)AD 与BC 是什么位置关系?请说明理由;(3)若DAB α∠=,DGC β∠=,直接写出α,β满足什么数量关系时AE DG ∥.15.已知:如图,D ,E ,F 分别是AB ,AC ,BC 上的点,DE ∠BC ,∠ADE =∠EFC ,求证:∠1=∠2.16.如图,直线EF分别与直线AB,CD相交于点A,C,AD平分∠BAC,交CD于点D,若∠1=∠2,且∠ADC=54°.(1)直线AB、CD平行吗?为什么?(2)求∠1的度数.17.如图,AE∠BC,FG∠BC,∠1=∠2,求证:AB∠CD.18.如图,已知DG∠BC,AC∠BC,EF∠AB,∠1=∠2,求证:CD∠AB19.如图,已知AD∠BC,FG∠BC,垂足分别为D,G.且∠1=∠2,猜想:DE与AC 有怎样的关系?说明理由.20.(1)如图1,AB∠CD,∠A=38°,∠C=50°,求∠APC的度数.(提示:作PE∠AB).(2)如图2,AB∠DC,当点P在线段BD上运动时,∠BAP=∠α,∠DCP=∠β,求∠CPA与∠α,∠β之间的数量关系,并说明理由.(3)在(2)的条件下,如果点P在段线OB上运动,请你直接写出∠CPA与∠α,∠β之间的数量关系______.参考答案:1.证明:∠∠1+∠2=180°,∠1+∠FDE =180°,∠∠FDE =∠2,∠∠3+∠FEC +∠FDE =180°,∠2+∠B +∠ECB =180°,∠B =∠3, ∠∠FEC =∠ECB ,∠EF ∥ BC ,∠∠AFE =∠ACB ;(2)解:∠∠3=∠B ,∠3=50°,∠∠B =50°,∠∠2+∠B +∠ECB =180°,∠2=110°,∠∠ECB =20°,∠CE 平分∠ACB ,∠∠ACB =2∠ECB =40°.2.(1)证明∠CD EF ∥,∠2DCB =∠∠,又∠12∠=∠,∠1DCB ∠=∠,∠DG BC ∥;(2)CD AB ⊥,理由如下:由(1 )知DG BC ∥,∠385∠=︒,∠180395BCG ∠=︒-∠=︒,∠:9:10DCE DCG ∠∠=, ∠9954519DCE ∠=︒⨯=︒, ∠DG BC ∥,∠45CDG ∠=︒,∠DG 是ADC ∠的平分线, ∠290ADC CDG ∠=∠=︒, ∠CD AB ⊥.3.解:∠4与∠5互余,理由:∠OE ∠OA ,∠∠AOE =90°,即∠2+∠3=90°, ∠∠1+∠2+∠3+∠4=180°, ∠∠1+∠4=90°∠∠1=∠2,∠∠2+∠4=90°,∠BE AO ∥,∠∠2=∠5, ∠∠5+∠4=90°,即∠4与∠5互余. 4.【详解】 CD 平分ACB ∠(已知)23∴∠=∠(角平分线的定义),12∠=∠(已知), 31∴∠=∠(等量代换),DE BC ∴∥(内错角相等,两直线平行),4B ∴∠=∠(两直线平行,同位角相等). 5.(1)证明:AD BC (已知), 1∴∠=∠DBC (两直线平行,内错角相等), 12∠=∠,2DBC ∴∠=∠(等量代换),EF BD ∴∥(同位角相等,两直线平行). (2)AD BC (已知),180ABC A ∴∠+∠=(两直线平行,同旁内角互补), 130A ∠=(已知), 50ABC ∴∠=, DB 平分 ABC ∠(已知), 1252DBC ABC ∴∠=∠=, 225DBC ∴∠=∠=,在 CFE 中,2180CFE C ∠+∠+∠=(三角形内角和定理),70C ∠=,85CFE ∴∠=.6.(1)解:∠12180∠+∠=︒,1DFG ∠=∠, ∠2180DFG ∠+∠=︒,∠AB EG ∥,∠B EGC ∠=∠.又∠3B ∠=∠,∠3EGC ∠=∠,∠∥DE BC ;(2)∠DE 平分ADC ∠,∠ADE EDC ∠=∠.∠∥DE BC ,∠B ADE EDC ∠=∠=∠,∠22B ∠=∠,2180ADE EDC ∠+∠+∠=︒, ∠2180B B B ∠+∠+∠=︒, ∠45B ∠=︒,∠2290B ∠=∠=︒,∠CD AB ⊥,∠AB EG∥,⊥.∠CD EG7.(1)BD∠CE,理由如下:∠∠1=∠2,∠2=∠3,∠∠1=∠3,∠BD∠CE;(2)∠BD∠CE,∠∠C=∠4,∠∠C=∠D,∠∠D=∠4,∠AC∠DF,∠∠A=∠F=30°.8.∥证明:∠BE FG∠2CBE∠=∠(两直线平行,同位角相等)又∠12∠=∠∠1CBE∠=∠DE BC(内错角相等,两直线平行)-∠∥9.证明:∠∠ABH=∠DHE(已知),∠AB∠CF(同位角相等,两直线平行),∠∠3+∠ADC=180°(两直线平行,同旁内角互补),∠∠3=∠C(已知),∠∠C+∠ADC=180°(等量代换),∠AD∠BC(同旁内角互补,两直线平行),∠∠2=∠E(两直线平行,内错角相等).∠∠1=∠2(已知),∠∠1=∠E(等量代换),∠BE∠AF(内错角相等,两直线平行).故答案为:AB∠CF,同位角相等,两直线平行;∠ADC,两直线平行,同旁内角互补;∠ADC,等量代换;同旁内角互补,两直线平行;两直线平行,内错角相等.10.∵∠BMN=∠CNM(已知),∠AB CD(内错角相等,两直线平行).∠∠AMN=∠MND(两直线平行,内错角相等).∠∠1=∠2(已知),∠∠EMN=∠MNF(等式性质).∥(内错角相等,两直线平行).∠ME NF∠∠E=∠F(两直线平行,内错角相等),11.(1)解:AB DE∥,理由如下:∥,∠MN BC∠∠ABC=∠1=60°.又∠∠1=∠2,∠∠ABC=∠2,∠AB∠DE.(2)解:∠MN∠BC,∠∠NDE+∠2=180°,∠∠NDE=180°-∠2=180°-60°=120°.∠DC是∠NDE的平分线,∠1602∠=∠=∠=︒EDC NDC NDE.∠MN∠BC,∠∠C=∠NDC=60°,∠∠ABC=∠C.(3)解:∠ADC=180°-∠NDC=180°-60°=120°,∠BD∠DC,∠∠BDC=90°,∠∠ADB=∠ADC-∠BDC=120°-90°=30°.∠MN∠BC,∠∠DBC=∠ADB=30°,∠∠ABC=∠C=60°,∠∠ABD=30°12.(1)证明:∠∠1与∠2互补,∠AD BC∥,∠∠ADE=∠C,∠∠A=∠C,∠∠A=∠ADE,∠AB CE∥;(2)解:∠∠1与∠2互补,∠1=85°,∠∠2=180º-85º=95º,∠AB CE∥,∠E=26º,∠∠ABE=∠E=26º,∠∠ABC=∠ABE+∠2=26º+95º=121º,∠AD BC ∥,∠∠A =180º-∠ABC =180º-121º=59º.13.(1)∠∠1+∠2=180°,点A ,B 在直线EF 上, ∠∠1+∠DAB =180°,∠∠2=∠DAB ,∠AD ∠BC ;(2)∠CD ∠AB ,∠DAB =52°,∠∠CDA =180°﹣∠DAB =180°﹣52°=128°, ∠DB 平分∠CDA ,∠∠BDC 12=∠CDA =64°. 14.(1)解:∠180BAD ADC ∠+∠=︒,∠AB CD ∥,∠87B DCG ∠=∠=︒.(2)解:AD 与BC 是的位置关系为:AD BC ∥,理由如下: ∠AE 平分BAD ∠,∠BAE DAE ∠=∠,∠180BAD ADC ∠+∠=︒,∠AB CD ∥,∠BAE CFE ∠=∠,∠AEB CFE ∠=∠,∠∠AEB =∠BAE =∠DAE ,∠AD BC ∥.(3)解:α与β的数量关系为:12αβ=,理由如下:当AE DG∥时,AEB DGCβ∠=∠=,由(2)中推导可知,1122 AEB EAD BADα∠=∠=∠=,∠12αβ=.15.证明:∠DE∠BC,∠∠ADE=∠ABC.∠∠ADE=∠EFC,∠∠ABC=∠EFC.∠AB∠EF.∠∠1=∠2.16.(1)解:AB CD∥,理由:∠∠1=∠2,∠1=∠DCA,∠∠2=∠DCA,∠AB CD∥(2)解:∠∠ADC=54°,AB CD∥,∠∠DAB=∠ADC=54°,∠AD平分∠BAC,∠∠BAC=2∠DAB=108°,∠∠2=180°-∠BAC=72°,∠∠1=72°.17.直线平行可得AB∠CD.【详解】证明:如图,设BC与AE、GF分别交于点M、N.∠AE∠BC,FG∠BC,∠∠AMB=∠GNB=90°,∠AE∠FG,∠∠A=∠1;又∠∠2=∠1,∠∠A=∠2,∠AB∠CD.18.证明:∠ DG∠BC,AC∠BC(已知),∠ ∠DGB=∠ACB=90°(垂直的定义),∠ DG∠AC(同位角相等,两直线平行).∠ ∠2=∠ACD(两直线平行,内错角相等).∠ ∠1=∠2(已知),∠ ∠1=∠ACD(等量代换),∠ EF∠CD(同位角相等,两直线平行).∠ ∠AEF=∠ADC(两直线平行,同位角相等).∠ EF∠AB(已知),∠ ∠AEF=90°(垂直的定义),∠ ∠ADC=90°(等量代换).∠ CD∠AB(垂直的定义).19.DE∠AC.理由如下:∠AD∠BC,FG∠BC,∠∠ADG=∠FGC=90°,∠AD∠FG,∠∠1=∠CAD,∠∠1=∠2,∠∠CAD=∠2,∠DE∠AC.20.(1)如图1,过P作PE∠AB,∠AB∠CD,∠PE∠AB∠CD,∠∠A=∠APE,∠C=∠CPE,∠∠A=38°,∠C=50°,∠∠APE=38°,∠CPE=50°,∠∠APC=∠APE+∠CPE=38°+50°=88°;(2)∠APC=∠α+∠β,理由是:如图2,过P作PE∠AB,交AC于E,∠AB∠CD,∠AB∠PE∠CD,∠∠APE=∠PAB=∠α,∠CPE=∠PCD=∠β,∠∠APC=∠APE+∠CPE=∠α+∠β;(3)如图3,过P作PE∠AB,交AC于E,∠AB∠CD,∠AB∠PE∠CD,∠∠PAB=∠APE=∠α,∠PCD=∠CPE=∠β,∠∠APC=∠CPE-∠APE,∠∠APC=∠β-∠α.故答案为:∠APC=∠β-∠α.。
专题02 平行线的证明题中档大题20题(解析版)七年级数学下册重难点题型分类高分必刷题(人教版)
专题02平行线的证明题中档大题20题(解析版)专题简介:本份资料专攻《相交线与平行线》这一章中的中档大题,所选题目源自各名校月考、期末试题中的典型考题,具体分成两类题型:完善证明题中的推导过程(10道题)、证明题+角度计算(10道题),适合于培训机构的老师给学生作专题培训时使用或者学生考前刷题时使用。
题型一:完善证明题中推导过程1.(2022春·北京)完成下面的证明.已知:如图,∠1+∠2=180°,∠3+∠4=180°.求证:AB∥EF.证明:∵∠1+∠2=180°,∴AB∥().∵∠3+∠4=180°,∴∥.∴AB∥EF().【详解】证明:如图所示:∵∠1+∠2=180°(已知),∴AB∥CD(同旁内角互补,两直线平行),∵∠3+∠4=180°(已知),∴CD∥EF(同旁内角互补,两直线平行),∴AB∥EF(若两直线同时平行于第三直线,则这两直线也相互平行).2.(2022春·湖北咸宁)在下列解题过程的空白处填上恰当的内容(推理的理由或数学表达式)已知:如图,∠1+∠2=180°,∠3=∠4.求证:EF∥GH.证明:∵∠1+∠2=180°(已知),∠AEG=∠1(______)∴∠AEG+∠______=180°,∴AB∥CD(______),∴∠AEG=∠EGD(______),∵∠3=∠4(已知),∴∠3+∠AEG=∠4+∠______(等式的性质),即∠FEG=∠______,∴EF∥GH(______).【详解】证明:∵∠1+∠2=180°(已知),∠AEG=∠1(对顶角相等)∴∠AEG+∠2=180°,∴AB∥CD(同旁内角互补,两直线平行),∴∠AEG=∠EGD(两直线平行,内错角相等),∵∠3=∠4(已知),∴∠3+∠AEG =∠4+∠EGD (等式性质),即∠FEG =∠EGH∴EF ∥GH (内错角相等,两直线平行).3.(2022春·广东汕尾)填写下列推理中的空格:已知:如图,∠BAD =∠DCB ,∠1=∠3.求证:AD∥BC .证明:∵∠BAD =∠DCB ,∠1=∠3(),∴∠BAD -∠1=∠DCB -∠(),即∠=∠.∴AD∥BC ().【详解】证明: BAD DCB ∠=∠,13∠=∠(已知),∴13BAD DCB ∠-∠=∠-∠(等式的性质),即24∠∠=.∴AD∥BC (内错角相等,两直线平行).4.(2022春·上海松江)如图,已知CDA CBA ∠=∠,DE 平分CDA ∠,BF 平分CBA ∠,且12∠=∠,请填写说明DE ∥BF 的理由的依据.解:因为DE 平分CDA ∠,BF 平分CBA ∠(已知)所以112CDA ∠=∠,132CBA ∠=∠()因为CDA CBA ∠=∠(已知)所以13∠=∠()因为12∠=∠()所以23∠∠=()所以DE ∥BF ()。
平行线的判定专项练习60题(有答案)
平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,已知∠1=∠2求证:a∥b.33.如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD?说明理由.39.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗?如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于F,∠GEF=25°,∠1=65°,则AB与CD平行吗?请说明理由.43.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线?说说你的理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB和CD平行吗?为什么?45.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.49.如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,DG∥BC吗?为什么?51.如图,已知:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.55.如图,已知∠1=∠2,∠DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗?(2)AB∥CD吗?为什么?56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗?AB与CD呢?若平行请说明理由,反之则不用说明理由.57.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,已知∠1=∠2,∠3=∠4,可以判定哪两条直线平行?平行线的判定60题参考答案:1.∵BE平分∠ABC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BC∥DE2.∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).3.∵AB⊥BC(已知),∴∠ABC=90°(垂直定义);∵BC⊥CD(已知),∴∠BCD=90°(垂直定义),∴∠ABC=∠DCB;∵∠1=∠2(已知),∴∠ABC﹣∠2=∠DCB﹣∠1,即∠FBC=∠ECB,∴BF∥CE(内错角相等,两直线平行)4.∵AB⊥BC,∴∠3+∠4=90°.∵∠2=∠3,∠1+∠2=90°,∴∠1=∠4,∴BE∥DF.5.AB平行于ON.证明:∵OP平分∠MON,∴∠BOA=∠NOA,∵∠BOA=∠BAO,∴∠BAO=∠NOA,∴AB∥ON6.∵∠1=∠2,∴DC∥AB,∴∠A+∠ADC=180°.又∵∠A=∠C,∴∠ADC+∠C=180°,∴AE∥BC.7.∵BC是∠ABE的平分线,∴∠ABC=∠CBE(角平分线定义),∵∠ABE=∠D+∠E=∠ABC+∠CBE,∠D=∠E,∴∠ABC=∠D,∴DE∥BC8.过点E作EF∥AB.∵EF∥AB,∴∠A=∠AEF;又∵∠AEC=∠A+∠C,∴∠AEC=∠AEF+∠C;而∠AEC=∠AEF+∠CEF,∴∠CEF=∠C,∴EF∥CD,∴AB∥CD.9.∵AC∥ED,∴∠1=∠4;∵∠1=∠2,∴∠2=∠4;又∵EB平分∠AED,∴∠3=∠4;∴∠2=∠3,∴AE∥BD10.∵∠1+∠BEF=180°,∠1=105°,∴∠BEF=75°,∵∠2=75°,∴∠BEF=∠2,∴AB∥CD.11.∵∠D=∠A,∴ED∥AB;∵∠B=∠BCF,∴AB∥CF;∴ED∥CF.12.∵AB⊥BC,CD⊥BC(已知),∴∠ABC=∠BCD=90°(垂直定义);又∵∠1=∠2(已知),∴∠ABC﹣∠1=∠BCD﹣∠2(等量减等量,差相等),∴∠EBC=∠FCB,∴EB∥FC(内错角相等,两直线平行)13.∵BE是∠B的平分线,∴∠1=∠CBE,∵∠1=∠2,∴∠2=∠CBE,∴DE∥BC.14.AC与DF平行,理由如下:∵BD∥EC,∴∠DBC+∠C=180°,又∠C=∠D,∴∠DBC+∠D=180°,∴AC∥DF.15.∵AC⊥AE,BD⊥BF,∴∠1+∠3=∠2+∠4=90°,∵∠1=35°,∠2=35°,∴∠3=∠4,∴AE∥BF.16.∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等);∵∠1=∠2,∴∠ABC﹣∠1=∠BCD﹣∠2,即∠EBC=∠BCF,∴BE∥CF(内错角相等,两直线平行).17.∵∠BAD=DCB,∠1=∠3(已知),∴∠BAD﹣∠1=∠DCB﹣∠3(等式性质),即∠2=∠4,∴AD∥BC(内错角相等,两直线平行)18.DF∥AB.理由:∵DE∥CA,∴∠1=∠CAD,∵AD是三角形ABC的角平分线,∴∠BAD=∠CAD,∵∠1=∠2,∴∠2=∠BAD,∴DF∥AB19.AB∥DF(2分)理由:∵∠C=∠DAE,(已知)∴AD∥BC,(内错角相等,两直线平行)(2分)∴∠D=∠DFC,(两直线平行,内错角相等)∴∠B=∠D,(已知)∴∠B=∠DFC,(2分)∴AB∥DF(同位角相等,两直线平行)20.CF∥BD.理由如下:∵BD⊥BE,∴∠1+∠2=90°;∵∠1+∠C=90°,∴∠2=∠C.∴CF∥BD.21.AB∥CD.(1分)理由如下:∵∠1+∠MNC=180°,∠MNC=∠1,∴∠1=135°.(2分)又∵∠AMN=∠2=45°,(3分)∴∠1+∠AMN=180°.(4分)∴AB∥CD22.∵BF平分∠ABD,DG平分∠CDE,∴∠1=∠ABD,∠2=∠CDE,又∵∠ABD=∠CDE,∴∠1=∠2,∴BF∥DG(同位角相等,两直线平行).23.ED∥BF;证明如下:∵四边形ABCD中,∠A=∠C=90°,∴∠ADC+∠ABC=180°,∵BF、DE分别平分∠ABC、∠ADC,∴∠ADC+∠ABC=2∠ADE+2∠ABF=180°,∴∠ADE+∠ABF=90°,又∵∠A=90°,∠ADE+∠AED=90°,∴∠AED=∠ABF,∴ED∥BF(同位角相等,两直线平行).24.在△ECD中∵∠C+∠CED+∠CDE=180°(三角形内角和定理),又∵∠CAB=∠CED+∠CDE(已知),∴∠C+∠CAB=180°(等量代换),∴AB∥CD(同旁内角互补,两直线平行)25.∵CD⊥AB,GF⊥AB,∴CD∥FG,∴∠2=∠DCG;又∵∠1=∠2,∴∠DCG=∠1,∴DE∥BC26.∵∠CAD=∠ACB,∴AD∥BC,∵EF⊥CD,∴∠EFC=90°∵∠D=90°,∴∠EFC=∠D,∴AD∥EF,∴BC∥EF,∴∠AEB=∠B.27.∵∠E=∠F,∴AE∥FP,∴∠PAE=∠APF;又∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC,即∠2+∠PAE=∠1+∠APF;∴∠2=∠128.∵DC⊥EC,∴∠1+∠2=90°,又∠D=∠1,∠E=∠2,∴∠D+∠1+∠E+∠2=180°.根据三角形的内角和定理,得∠A+∠B=180°,∴AD∥BE29.∵∠A+∠ABC+∠C+∠CDA=360°而∠A=∠C,BE平分∠ABC,DF平分∠CDA∴2∠A+2∠ABE+2∠ADF=360°即∠A+∠ABE+∠ADF=180°又∠A+∠ABE+∠AEB=180°∴∠AEB=∠ADF∴BE∥DF30.∠C=∠D.理由如下:∵∠A=∠F,∴DF∥AC,∴∠D=∠DBA.∵∠1=∠DGF,又∵∠1=∠2,∴∠2=∠DGF,∴DB∥EC,∴∠DBA=∠C,∴∠C=∠D31.∵四边形ABCD中,∠A=∠C=90°,∴∠ABC+∠CDA=180°,∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∵∠A=90°,∴∠1+∠AEB=90°,∵∠1=∠2,∴∠AEB=∠3,∴BE∥FD.32.∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴a∥b.33.CF∥OD.理由:∵DE⊥AO,BO⊥AO,∴DE∥BO,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴CF∥OD34.∵∠DOB是△COD的外角,∴∠C+∠CDO=∠DOB,又∵∠DOB=∠1+∠2,而∠1=∠2,∠C=∠CDO,∴∠2=∠C,∴CD∥OP35.(1)∵DE平分∠BDF,AF平分∠BAC,∴∠BDF=2∠1,∠BAC=2∠2,又∵∠1=∠2,∴∠BDF=∠BAC,∴DF∥AC;(2)∵AF平分∠BAC,∴∠BAF=∠2.又∵∠1=∠2,∴∠1=∠BAF,∴DE∥AF.36.DE∥AB,∵AD平分∠BAC,∴∠BAC=2∠1,∵EF平分∠DEC,∴∠DEC=2∠2,∵∠1=∠2,∴∠BAC=∠DEC,∴DE∥AB.37.∵∠BDE+∠CDE=∠A+∠ACD,又DE是∠BDC的平分线,∠ACD=∠A,∴∠A=∠BDE,∴DE∥AC.38.∠2与∠B相等时,AC∥BD.理由如下:∵∠A=∠1,∠1=∠2,∴∠A=∠2,∵∠2=∠B,∴∠A=∠B,∴AC∥BD.39.MN与EF平行.理由如下:∵∠1=∠A,∴MN∥AB,∵∠2=∠B,∴EF∥AB,∴MN∥EF.40.∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4,∴AB∥CD.41.∵∠E=∠F,∴BE∥CF,∴∠EBC=∠BCF,∵∠1=∠2,∴∠CBA=∠DCB,∴AB∥CD.42.∵EF⊥CD于F,∴∠EFG=90°,∵∠GEF=25°,∴∠EGF=65°,∵∠1=65°,∴∠1=∠EGF,∴AB∥CD.43.图中共有2对平行线.①AB∥CD.理由如下:∵∠1=∠2=90°,∴AB∥CD(在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行);②∵∠2=90°,∴∠4+∠5=90°,又∵∠3=30°,∠4=60°,∴∠3=∠5,∴EF∥HG(同位角相等,两直线平行).综上所述,图中共有2对平行线,它们是:AB∥CD、EF∥HG44.AB∥CD,理由:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴AB∥CD.45.∵AD⊥BC,EF⊥BC(已知),∴∠ADB=∠EFC=90°(垂直的定义),∴∠B=90°﹣∠1(直角三角形两锐角互余),∠GFC=90°﹣∠2(互余的定义),∵∠1=∠2(已知),∴∠B=∠GFC(等角的余角相等),∴AB∥GF(同位角相等,两直线平行)46.∵∠B=∠1,∴AB∥DE(同位角相等,两直线平行),∴∠2=∠ADE(两直线平行,内错角相等)∵∠2=∠E,∴∠E=∠ADE,∴AD∥CE(内错角相等,两直线平行).47.∵EM平分∠BEF,FN平分∠DFH,∴∠BEF=2∠MEF,∠DFH=2∠NFH,∵∠BEF=∠DFH,∴∠MEF=∠NFH,∴EM∥FN48.BE∥CF,理由是:∵BE,CF分别平分∠ABC和∠BCD,∴∠1=∠ABC,∠2=∠BCD,∵∠ABC=∠BCD,∴∠1=∠2,∴BE∥CF.49.DB与EC的位置关系是平行,理由:∵∠1=∠3,∠2=∠4(对顶角相等),又∵∠1=∠2,∴∠3=∠4,∴BD∥EC.50.(1)CD∥EF,理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF.(2)DG∥BC,理由是:∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC.51.GH∥MN.理由如下:∵HG平分∠AHM,MN平分∠DNH(已知),∴∠GHM∠AHM,∠NMH=∠DMH(角平分线定义),而∠AHM=∠DMH(已知)∴∠GHM=∠NMH(等量代换),∴GH∥MN.(内错角相等,两直线平行) 52.∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD53.∵EG⊥FG,∴∠G=90°,∴∠1+∠3=90°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴AB∥CD.54.:∵∠1+∠2=180°,∠1=130°,∴∠2=50°,∵∠A=50°,∴∠A=∠2,∴AB∥CD.55.(1)∵DE⊥AC,BF⊥AC,∴∠AED=∠CFB=90°,∴∠DAE+∠1=90°,∠BCF+∠2=90°,∵∠1=∠2,∴∠DAE=∠BCF,∴AD∥BC;(2)AB∥CD.理由如下:∵∠DAE=∠BCF,∠DAB=∠DCB,∴∠DAB﹣∠DAE=∠DCB﹣∠BCF,即∠CAB=∠ACD,∴AB∥CD.56.(1)AD与BC一定平行.理由如下:∵AB⊥AC,∴∠BAC=90°,∵∠1=30°,∠B=60°,∴∠1+∠BAC+∠B=180°,即∠BAD+∠B=180°,∴AD∥BC.(2)AB与CD不一定平行.57.∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.58.EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=2(已知),∴EF∥AD(内错角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC于点D(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,所以EF与BC的位置关系是垂直.59.∵CE平分∠ACD,∴∠1=∠2,∵∠1=∠B,∴∠2=∠B,∴AB∥CE.60.∵∠1=∠2,∴AB∥CD,∵∠3=∠4,∴AD∥BC,故可以判定AB∥CD,AD∥BC.。
中考数学模拟题汇总《平行线的证明》专项练习(附答案解析)
中考数学模拟题汇总《平行线的证明》专项练习(附答案解析)一、综合题1.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.2.如图,在矩形ABCD中,E是BC边上的点,AE=BC ,DF⊥AE,垂足为F,连接DE。
(1)求证:AB=DF;(2)若CE=1,AF=3,求DF的长。
3.如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D在同一直线上,且AB∥DE,连接AE.(1)求证:△ABC≌△DCE.(2)当BC=5,AC=12时,求AE的长.4.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE//AB交BC于点E(如图4).若在射线BA上存在点F,使SΔDCF=SΔFDE,请直接写出相应的BF的长.5.如图, ∠1+∠2=180° , ∠DEF=∠A , ∠BED=70° .(1)求证: EF//AB :(2)求∠ACB的度数.6.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.7.在△ABC中,点D在直线AB上,在直线BC上取一点E,连接AE,DE,使得 AE=DE,DE交AC于点G,过点D作DF∥AC,交直线BC于点F,∠EAC=∠DEF.(1)当点E在BC的延长线上,D为AB的中点时,如图1所示.①求证:∠EGC=∠AEC;②若DF=3,求BE的长度;(2)当点E在BC上,点D在AB的延长线上时,如图2所示,若CE=10,5EG=2DE,求AG的长度.8.如图1,在Rt△ABC中,∠C=90°,AC=BC=2√2,点D、E分别在边AC、AB上,AD=DE=12AB,连接DE .将△ADE绕点A顺时针方向旋转,记旋转角为θ .(1)(问题发现)①当θ=0°时,BECD =;②当θ=180°时,BECD=;(2)(拓展研究)试判断:当0°≤θ<360°时,BECD的大小有无变化?请仅就图2的情形给出证明;(3)(问题解决)在旋转过程中,求出BE的最大值.9.如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,的值;①求BCAEEG最小值.②若点G为AE上一点,求OG+ 1210.如图,已知在菱形ABCD中,AB=5,cosB=3,点E、F分别在边BC、CD上,AF的延长5∠BAD.线交BC的延长线于点G,且∠EAF=12(1)求证:AE2=EC⋅EG;(2)如果点F是边CD的中点,求S△ABE的值;(3)延长AE、DC交于点H,联结GH、AC,如果△AGH与△ABC相似,求线段BE的长.11.如图,四边形ABCD中,AB∥CD,点O在BD上,以O为圆心的圆恰好经过A、B、C三点,⌢=CE⌢,连接OA、OF.⊙O交BD于E,交AD于F,且AE(1)求证:四边形ABCD是菱形;(2)若∠AOF=3∠FOE,求∠ABC的度数.,过点C作CD∥AB,点E在边AC上,AE=CD,联结12.在△ABC中,AB=AC=10,sin∠BAC= 35AD,BE的延长线与射线CD、射线AD分别交于点F、G.设CD=x,△CEF的面积为y.(1)求证:∠ABE=∠CAD.(2)如图,当点G在线段AD上时,求y关于x的函数解析式及定义域.(3)若△DFG是直角三角形,求△CEF的面积.13.在ΔABC中,∠A=90°,AB=8cm,AC=6cm,点M,点N同时从点A出发,点M沿边AB以4cm/s的速度向点B运动,点N从点A出发,沿边AC以3cm/s 的速度向点C运动(点M不与A,B重合,点N不与A,C重合),设运动时间为xs .(1)求证:ΔAMN∽ΔABC;(2)当x为何值时,以MN为直径的⊙O与直线BC相切?(3)把ΔAMN沿直线MN折叠得到ΔMNP,若ΔMNP与梯形BCNM重叠部分的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?14.如图,以AB为直径的半圆中,点O为圆心,点C在圆上,过点C作CD∥AB,且CD=OB .连接AD,分别交OC,BC于点E,F,与⊙O交于点G,若∠ABC=45∘ .(1)求证:①△ABF∽△DCF;②CD是⊙O的切线.(2)求EF的值.FG15.小东在做九上课本123页习题:“1:√2也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:√2.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.①如图3,当点D运动到点A时,求∠CPE的度数.②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.16.在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF//BC,交射线CA于点F.请解答下列问题:(1)当点E在线段AB上,CD是△ACB的角平分线时,如图①,求证:AE+BC=CF;(提示:延长CD,FE交于点M.)(2)当点E在线段BA的延长线上,CD是△ACB的角平分线时,如图②;当点E在线段BA的延长线上,CD是△ACB的外角平分线时,如图③,请直接写出线段AE,BC,CF之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若DE=2AE=6,则CF=.参考答案与解析1.【答案】(1)证明:∵MN∥BC,CE平分∠ACB,CF平分∠ACD,∴∠BCE=∠ACE=∠OEC,∠OCF=∠FCD=∠OFC,∴OE=OC,OC=OF,∴OE=OF(2)解:当O运动到AC中点时,四边形AECF是矩形,∵AO=CO,OE=OF,∴四边形AECF是平行四边形,∵∠ECA+∠ACF= 12∠BCD,∴∠ECF=90°,∴四边形AECF是矩形2.【答案】(1)证明:在矩形ABCD中∴BC=AD AD∥BC,∠B=∠C=90°∴∠DAF=∠AEB∵DF⊥AE,AE=BC,∴∠AFD=90°=∠B,AE=AD∴△ABE≌△DFA,∴AB=DF(2)解:由(1)可得△ABE≌△DFA,∴AF=BE=3,DF=AB=CD∴∠DFE=∠DCE∴△DFE≌△DCE,∴CE=EF=1,AE=4在Rt△ABE中,AB= √42−32 = √73.【答案】(1)证明:∵AB∥DE,∴∠BAC=∠D.在△ABC和△DCE中,{∠B=∠DCE∠BAC=∠DAC=DE∴△ABC≌△DCE(AAS)(2)解:由(1)可得△ABC≌△DCE,∴CE=BC=5,在Rt△ACE中,AE=√AC2+CE2=√122+52=13.4.【答案】(1)DE∥AC;S1=S2(2)解:如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,{∠ACN=∠DCM∠CMD=∠N=90°AC=CD,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2(3)解:如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD= 12∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB= 12×60°=30°,∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,{DF1=DF2∠CDF1=∠CDF2CD=CD,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD= 12×60°=30°,又∵BD=4,∴BE= 12×4÷cos30°=2÷√32= 4√33,∴BF1= 4√33,BF2=BF1+F1F2= 4√33+ 4√33= 8√33,故BF的长为4√33或8√33.5.【答案】(1)解:∵∠1+∠DFE=180°,∴∠1+∠2=180°.∴∠DFE=∠2,∴EF//AB;(2)解:∵EF//AB , ∴∠DEF=∠BDE. 又∵∠DEF=∠A , ∴∠BDE=∠A , ∴DE//AC , ∴∠ACB=∠DEB. 又∵∠DEB=70°, ∴∠ACB=70°.6.【答案】(1)解:连接OF ;根据切线长定理得:BE=BF ,CF=CG ,∠OBF=∠OBE ,∠OCF=∠OCG ; ∵AB ∥CD ,∴∠ABC+∠BCD=180°, ∴∠OBE+∠OCF=90°, ∴∠BOC=90°(2)解:由(1)知,∠BOC=90°.∵OB=6cm ,OC=8cm ,∴由勾股定理得到:BC= √OB 2+OC 2 =10cm ,∴BE+CG=BC=10cm(3)解:∵OF ⊥BC ,∴∠BFO=∠OFC=90°∵∠BOC=90°∴∠BOF+∠COF=90°,∠COF+∠FCO=90°。
证明线线平行的六种方法
证明线线平行的六种方法
线线平行是几何学中的基本概念之一,可以通过多种方法来证明线线平行,本文将介绍六种常用的证明方法。
方法一:同位角定理法
同位角定理指的是:如果两条直线被一条截线分成两对同位角相等的角,那么这两条直线是平行的。
因此,要证明两条直线平行,只需证明它们的同位角相等即可。
方法二:平行线性质法
如果一条直线与两条平行直线相交,那么它所对应的两个内角互为补角。
因此,要证明两条直线平行,只需证明它们的内角互为补角即可。
方法三:转折法
转折法是通过反证法来证明线线平行的方法。
假设两条直线不平行,那么它们一定会相交,那么在相交点处一定存在一对同位角不相等的角,这与同位角定理相矛盾,因此假设不成立,两条直线必须平行。
方法四:等夹角法
如果两条直线被一条截线分成一对相等的内角,则这两条直线是平行的。
因此,要证明两条直线平行,只需证明它们被一条截线分成的内角相等即可。
方法五:延长线法
如果两条直线的一对相邻内角互为补角,那么这两条直线是平行的。
因此,要证明两条直线平行,只需找到这两条直线上的相邻内角,将它们延长成一条直线,然后证明这条直线与另一条直线是垂直的即可。
方法六:反向证明法
反向证明法是证明两条直线不平行的方法,只需证明这两条直线的内角不互为补角即可。
因为如果两条直线不平行,它们在相交处的内角一定不互为补角。
通过同位角定理法、平行线性质法、转折法、等夹角法、延长线法、反向证明法这六种方法,我们可以轻松地证明线线平行的问题。
对于几何学的学习来说,掌握这些方法是非常重要的。
浙教版七年级数学下册专题1.3平行线的判定(知识解读)(原卷版+解析)
专题1.3 平行线的判定(知识解读)【学习目标】1.理解和掌握平行线的判定公理及3个判定定理.2.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力.3.掌握应用数学语言表示平行线的判定公理及定理,逐步掌握规范的推理论证格式,通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想.【知识点梳理】知识点1:平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.记作:如果a∥b,a∥c,那么a∥c注意:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)“平行公理的推论”也叫平行线的传递性知识点2:平行线判定判定方法(1):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等,两直线平行。
几何语言:∵∠1=∠2∴AB∥CD(同位角相等,两直线平行)判定方法(2):两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行。
∵∠2=∠3∴AB∥CD(内错角相等,两直线平行)判定方法(3):两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行简单说成:同旁内角互补,两直线平行。
∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)【典例分析】【考点1:平行线公理及推论】【典例1】(2023秋•鼓楼区校级期末)下列说法正确的是()A.不相交的两条直线叫做平行线B.同一平面内,过一点有且仅有一条直线与已知直线垂直C.平角是一条直线D.过同一平面内三点中任意两点,只能画出3条直线【变式1】(2023秋•奉化区校级期末)下列说法正确的是()A.两点之间,直线最短B.永不相交的两条直线叫做平行线C.若AC=BC,则点C为线段AB的中点D.两点确定一条直线【典例2】(2023春•麒麟区期末)下列说法正确的是()A.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a∥cB.在同一平面内,a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥cD.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a⊥c【变式2-1】(2023春•阳春市校级月考)下列说法中,正确的个数为()(1)过一点有无数条直线与已知直线平行(2)如果a∥b,a∥c,那么b∥c(3)如果两线段不相交,那么它们就平行(4)如果两直线不相交,那么它们就平行A.1个A B.2个C.3个D.4个【变式2-2】(2023春•饶平县校级期中)若AB∥CD,AB∥EF,则∥,理由是.【考点2:平行线判定】【典例3】(2023秋•香坊区校级期中)如图,下列各组条件中,能得到AB∥CD 的是()A.∠1=∠3B.∠2=∠4C.∠B=∠D D.∠1+∠2+∠B=180°【变式3-1】(2023春•台江区校级期中)如图,过直线外一点作已知直线的平行线,其依据是()A.两直线平行,同位角相等B.内错角相等,两直线平行C.同位角相等,两直线平行D.两直线平行,内错角相等【变式3-2】(2023•德保县二模)如图,能判定AD∥BC的条件是()A.∠1=∠3B.∠1=∠2C.∠2=∠3D.∠2=∠4【变式3-3】(2023春•宾阳县期中)如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③B.②④C.①②③④D.①③④【典例4】(2023春•重庆月考)如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.请填空.证明:∵AF⊥CE(已知)∴∠AOE=90°()又∵∠1=∠B()∴()∴∠AFB=∠AOE()∴∠AFB=90°()又∵∠AFC+∠AFB+∠2=(平角的定义)∴∠AFC+∠2=()°又∵∠A+∠2=90°(已知)∴∠A=∠AFC()∴(内错角相等,两直线平行)【变式4-1】(2023秋•社旗县期末)〖我阅读〗“推理”是数学的一种基本思想,包括归纳推理和演绎推理.演绎推理是一种从一般到特殊的推理,它借助于一些公认的基本事实及由此推导得到的结论,通过推断,说明最后结论的正确.〖我会做〗填空(理由或数学式)已知:如图,∠1=∠E,∠B=∠D.求证:AB∥CD.证明:∵∠1=∠E()∴()∴+∠2=180° ()∵∠B=∴+=180°∴AB∥CD()【变式4-2】(2023春•岳池县期末)把下面的说理过程补充完整:已知,如图,直线AB,CD被直线EF所截,点H为CD与EF的交点,GH ⊥CD于点H,∠2=30°,∠1=60°.试说明:AB∥CD.解:∵GH⊥CD(),∴∠CHG=90°()又∵∠2=30°(),∴∠3=()∴∠4=60°()又∵∠1=60°()∴∠1=∠4()∴AB∥CD()【变式4-3】(2023春•宁远县期末)完成下面的证明如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.完成推理过程BE平分∠ABD(已知),∴∠ABD=2∠α().∵DE平分∠BDC(已知),∴∠BDC=2∠β ()∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)()∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°().∴AB∥CD().【典例5】(2023春•大埔县期末)如图,已知∠A=∠C,AD⊥BE,BC⊥BE,点D在线段EC上,求证:AB∥CD.【变式5-1】(2023秋•西乡县期末)如图,已知∠A=∠ADE,∠C=∠E.求证:BE∥CD.【变式5-2】(2023春•宣恩县期末)如图,AD⊥BC于D,EF⊥BC于F,∠1=∠2,AB与DG平行吗?为什么?专题1.3 平行线的判定(知识解读)【学习目标】1.理解和掌握平行线的判定公理及两个判定定理.2.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力.3.掌握应用数学语言表示平行线的判定公理及定理,逐步掌握规范的推理论证格式,通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想.【知识点梳理】知识点1:平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.记作:如果a∥b,a∥c,那么a∥c注意:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)“平行公理的推论”也叫平行线的传递性知识点2:平行线判定判定方法(1):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等,两直线平行。
平行线的判定与性质(重点题专项讲练)(人教版)(解析版)
专题5.4 平行线的判定与性质【典例1】如图,已知点A在EF上,点P,Q在BC上,∠E=∠EMA,∠BQM=∠BMQ.(1)求证:EF∠BC;(2)若FP∠AC,∠2+∠C=90°,求证:∠1=∠B;(3)若∠3+∠4=180°,∠BAF=3∠F﹣20°,求∠B的度数.【思路点拨】E=∠EMA,∠BQM=∠BMQ,结合对顶角相等可得∠E=∠BQM,利用内错角相等两直线平行可证明结论;(2)根据垂直的定义可得∠PGC=90°,由两直线平行同旁内角互补可得∠EAC+∠C=180°,结合∠2+∠C=90°,可求得∠BAC=90°,利用同位角相等两直线平行可得AB∠FP,进而可证明结论;(3)根据同旁内角互补可判定AB∠FP,结合∠BAF=3∠F﹣20°可求解∠F的度数,根据平行线的性质可得∠B=∠F,即可求解.【解题过程】E=∠EMA,∠BQM=∠BMQ,∠EMA=∠BMQ,∠∠E=∠BQM,∠EF∠BC;(2)证明:∠FP∠AC,∠∠PGC=90°,∠EF∠BC,∠∠EAC+∠C=180°,∠∠2+∠C=90°,∠∠BAC=∠PGC=90°,∠AB∠FP,∠∠1=∠B;(3)解:∠∠3+∠4=180°,∠4=∠MNF,∠∠3+∠MNF=180°,∠AB∠FP,∠∠F+∠BAF=180°,∠∠BAF=3∠F﹣20°,∠∠F+3∠F﹣20°=180°,解得∠F=50°,∠AB∠FP,EF∠BC,∠∠B=∠1,∠1=∠F,∠∠B=∠F=50°.1.(2021•鞍山一模)如图,∠1=∠2=∠3=56°,则∠4的度数是()A.56°B.114°C.124°D.146°【思路点拨】根据对顶角相等得到∠2=∠5,结合∠1=∠2,得到∠1=∠5,即可判定l1∠l2,根据平行线的性质得出∠6=56°,再根据邻补角的定义求解即可.【解题过程】解:如图,∠∠1=∠2,∠2=∠5,∠∠1=∠5,∠l1∠l2,∠∠3=∠6,∠∠3=56°,∠∠6=56°,∠∠4+∠6=180°,∠∠4=180°﹣56°=124°,故选:C.2.(2021•雁塔区校级模拟)如图,在三角形ABC中,CD平分∠ACB,∠1=∠2=36°,则∠3=()A.36°B.52°C.72°D.80°【思路点拨】由平行线的判定定理可得AC∠DE,由平行线的性质可得∠ACB=∠3,由平分线的定义可得∠ACB=2∠1=72°,即得∠3的度数.【解题过程】解:∠∠1=∠2=36°,∠AC∠DE,∠∠ACB=∠3,∠CD平分∠ACB,∠∠ACB=2∠1=72°,∠∠3=72°.故选:C.3.(2021春•单县期末)如图,AB∠BC于点B,DC∠BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF,则下列结论正确的有()∠∠BAD+∠ADC=180°;∠AF∠DE;∠∠DAF=∠F.A.3个B.2个C.1个D.0个【思路点拨】∠证明AB∠CD,可做判断;∠根据平行线的判定和性质可做判断;∠根据AF∠ED得内错角相等和同位角相等,再由角平分线的定义得∠ADE=∠CDE,从而可做判断.【解题过程】解:∠∠AB∠BC,DC∠BC,∠AB∠CD,∠∠BAD+∠ADC=180°,故∠正确;∠∠AB∠CD,∠∠AFD+∠BAF=180°,∠∠BAF=∠EDF,∠∠AFD+∠EDF=180°,∠AF∠DE,故∠正确;∠∠AF∠ED,∠∠DAF=∠ADE,∠F=∠CDE,∠DE平分∠ADC,∠∠ADE=∠CDE,∠∠DAF=∠F,故∠正确;故选:A.4.(2021春•德宏州期末)如图所示,AC∠BC,DC∠EC,则下列结论:∠∠1=∠3;∠∠ACE+∠2=180°;∠若∠A=∠2,则有AB∠CE;∠若∠2=∠E,则有∠4=∠A.其中正确的有()A.∠∠∠B.∠∠∠C.∠∠D.∠∠∠∠【思路点拨】由已知可得∠1+∠2=90°,∠3+∠2=90°,等量代换即可得出∠结论;延长EC,如图1,由已知条件可得∠1+∠5=90°,∠1+∠2=90°,可得∠2=∠5,根据平角的性质可得∠ACE+∠5=180°,等量代换即可得出∠结论;由已知条件可得∠A=∠2,∠ACE+∠2=180°,等量代换可得∠A+∠ACE=180°,根据平行线的判定即可得出∠结论;由平行线的性质可得∠E=∠4,由已知条件∠2=∠E,∠2=∠A,等量代换可得∠4=∠A.即可得出∠结论.【解题过程】证明:∠AC∠BC,DC∠EC,∠∠1+∠2=90°,∠3+∠2=90°,∠∠1=∠3.故结论∠正确;延长EC,如图1,∠DC∠CE,AC∠BC,∠∠1+∠5=90°,∠1+∠2=90°,∠∠2=∠5,∠∠ACE+∠5=180°,∠∠ACE+∠2=180°.故结论∠正确;∠∠A=∠2,∠ACE+∠2=180°,∠∠A+∠ACE=180°,∠AB∠CE.故结论∠正确;∠AB∠CE,∠∠E=∠4,∠∠2=∠E,∠2=∠A,∠∠4=∠A.故结论∠正确.所以结论正确的有∠∠∠∠.故选:D.5.(2021春•汉川市期末)如图,AD∠BC,∠B=∠D,延长BA至点E,连接CE,∠EAD∠EAD+∠ECD;∠若和∠ECD的角平分线交于点P.下列三个结论:∠AB∠CD;∠∠AOC=12∠E=60°,∠APC=70°,则∠D=80°.其中结论正确的个数有()A.0B.1C.2D.3【思路点拨】∠EAD,∠E=∠根据平行线的性质与判定即可判断;∠∠AOC=∠EAP+∠E,而∠EAP==12∠ECD,即可判断;∠利用平行线的性质和角平分线定义即可判断.【解题过程】解:∠AD∠BC,∠∠BAD+∠B=180o,∠∠B=∠D,∠∠BAD+∠D=180o,∠AB∠CD,故∠正确;∠AB∠CD,∠∠ECD=∠E,∠AP平分∠EAD,∠EAD∠∠EAP=12∠∠AOC=∠EAP+∠E,∠∠AOC=1∠EAD+∠ECD,故∠正确;2∠∠ECD=∠E=60o,∠CP平分∠ECD,∠ECD=30°,∠∠ECP=12∠∠APC=70°,∠AOE=∠COP,∠∠EAP=40°,∠AP平分∠EAD,∠∠EAD=2∠EAP=80°,∠AB∠CD,∠∠D=∠EAD=80°,故∠正确;故选:D.6.(2021春•夏津县期末)如图,CB平分∠ACD,∠2=∠3,若∠4=60°,则∠5的度数是.【思路点拨】由∠2与∠3间关系,可得到AB与CD的位置关系,利用角平分线的性质和平行线的性质可求得∠5度数.【解题过程】解:∠CB平分∠ACD,∠ACD..∠∠1=∠2=12∠∠2=∠3,∠AB∠CD.∠∠5=∠2,∠4=∠ACD=60°.∠∠5=∠2=30°.故答案为:30°.7.(2021秋•嵩县期末)如图,AE∠CF,∠ACF的平分线交AE于点B,G是CF上的一点,∠GBE的平分线交CF于点D,且BD∠BC,下列结论:∠BC平分∠ABG;∠AC∠BG;∠与∠DBE互余的角有2个;∠若∠A=α,则∠BDF=180°−α.其中正确的是.(请把正确结论的序号都填上)8【思路点拨】根据平行线的性质得出∠A和∠ACB的关系,再根据角平分线的性质找出图中相等的角,由等角的余角相等即可得出结论.【解题过程】解:∠CBD=90°,∠∠ABC+∠EBD=90°,又∠∠DBG=∠EBD,∠∠ABC=∠CBG,∠BC平分∠ABG,∠∠正确,∠∠GBC=∠ABC=∠ACB,∠AC∠BG,∠∠正确,∠∠DBE=∠DBG,∠与∠DBE互余的角有∠ABC,∠GBC,∠ACB,∠GCB,有4个,∠∠错误,∠∠BDF=180°﹣∠BDG,∠BDG=90°﹣∠CBG=90°﹣∠ACB,又∠∠ACB=12×(180°﹣α)=90°−α2,∠∠BDF=180°﹣[90°﹣(90°−α2)]=180°−α2,∠∠错误,故答案为:∠∠.8.(2021春•凤山县期末)如图,已知∠1=∠2,∠C=∠F.请指出∠A与∠D的数量关系,并说明理由.【思路点拨】根据∠1=∠2,∠3=∠2,可得∠1=∠3,得BF∠CE,根据平行线的性质得∠ABF=∠C,由∠C =∠F,得∠ABF=∠F,即可得出AC∠DF,得∠A和∠D的数量关系是相等.【解题过程】解:∠A和∠D的数量关系是相等.理由是:如图,∠∠1=∠2,∠3=∠2,∠∠1=∠3,∠BF∠CE,∠∠ABF=∠C,∠∠C=∠F,∠∠ABF=∠F,∠AC∠DF,∠∠A=∠D.9.(2021春•陇县期末)如图,∠AEM+∠CDN=180°,EC平分∠AEF.若∠EFC=62°,求∠C的度数.【思路点拨】根据同角的补角相等可得出∠AEM=∠CDM,利用“同位角相等,两直线平行”可得出AB∠CD,由“两直线平行,同旁内角互补”及∠EFC=62°可求出∠AEF=118°,结合角平分线的定义可求出∠AEC的度数,再利用“两直线平行,内错角相等”即可求出∠C的度数.【解题过程】解:∠∠CDM+∠CDN=180°,又∠∠AEM+∠CDN=180°,∠∠AEM=∠CDM,∠AB∠CD,∠∠AEF+∠EFC=180°,∠∠EFC=62°,∠∠AEF=118°,∠EC平分∠AEF,∠∠AEC=59°,∠AB∠CD,∠∠C=∠AEC=59°.10.(2021春•江都区校级期中)已知:如图,CD∠AB,FG∠AB,垂足分别为D、G,点E 在AC上,且∠1=∠2.(1)那么DE与BC平行吗?为什么?(2)如果∠B=40°,且∠A比∠ACB小10°,求∠DEC的度数.【思路点拨】(1)根据CD∠AB,FG∠AB,可判定CD∠FG,利用平行线的性质可知∠2=∠BCD,已知∠1=∠2,等量代换得∠1=∠BCD,故可证DE与BC平行;(2)根据三角形内角和求出∠ACB=75°,再根据平行线的性质即可求解.【解题过程】解:(1)DE∠BC,理由如下:∠CD∠AB,FG∠AB,∠CD∠FG.∠∠2=∠BCD,又∠∠1=∠2,∠∠1=∠BCD,∠DE∠BC;(2)∠∠B=40°,∠ACB﹣10°=∠A,∠∠ACB+(∠ACB﹣10°)+40°=180°,∠∠ACB=75°,由(1)知,DE∠BC,∠∠DEC+∠ACB=180°,∠∠DEC=105°.11.(2021春•老河口市期末)如图,已知∠1=∠BDC,∠2+∠3=180°.(1)求证:AD∠CE;(2)若DA平分∠BDC,CE∠AE于E,∠F AB=55°,求∠1的度数.【思路点拨】(1)根据同位角相等,两直线平行可判定AB∠CD,得到∠2=∠ADC,等量代换得出∠ADC+∠3=180°,即可根据同旁内角互补,两直线平行得解;(2)由CE∠AE,AD∠CE得出∠DAF=∠CEF=90°,再根据平行线的性质即可求出∠ADC =∠2=35°,再根据角平分线的定义即可得解.【解题过程】(1)证明:∠∠1=∠BDC,∠AB∠CD,∠∠2=∠ADC,∠∠2+∠3=180°,∠∠ADC+∠3=180°,∠AD∠CE;(2)解:∠CE∠AE于E,∠∠CEF=90°,由(1)知AD∠CE,∠∠DAF=∠CEF=90°,∠∠ADC=∠2=∠DAF﹣∠F AB,∠∠F AB=55°,∠∠ADC=35°,∠DA平分∠BDC,∠1=∠BDC,∠∠1=∠BDC=2∠ADC=70°.12.(2021春•镇江期中)已知:如图所示,∠BAC和∠ACD的平分线交于E,AE交CD于点F,∠1+∠2=90°.(1)求证:AB∠CD;(2)试探究∠2与∠3的数量关系,并说明理由.【思路点拨】(1)根据角平分线定义得出∠BAC=2∠1,∠ACD=2∠2,根据∠1+∠2=90°得出∠BAC+∠ACD =180°,根据平行线的判定得出即可;(2)根据平行线的性质和角平分线定义得出∠1=∠3,即可求出答案.【解题过程】(1)证明:∠∠BAC和∠ACD的平分线交于E,∠∠BAC=2∠1,∠ACD=2∠2,∠∠1+∠2=90°,∠∠BAC+∠ACD=180°,∠AB∠CD;(2)解:∠2+∠3=90°,理由如下:∠AF平分∠BAC,∠∠BAF=∠1,∠AB∠CD,∠∠BAF=∠3,∠∠1=∠3,∠∠1+∠2=90°,∠∠2+∠3=90°.13.(2021秋•禅城区期末)已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C=∠DGC.(1)求证:AB∠CD;(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.【思路点拨】(1)由对顶角相等可得∠AGE=∠DGC,从而可得∠AEG=∠C,则可判定AB∠CD;(2)由平角的定义可得∠AGE+∠EGH=180°,从而可求得∠EGH=∠AHF,则可判定EC∠BF,则有∠B=∠AEG,从而可求证;(3)由(2)得BF∠EC,则有∠C+∠BFC=180°,从而可求∠C的度数,利用三角形的内角和即可求∠D的度数.【解题过程】(1)证明:∠∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC,∠∠AEG=∠C,∠AB∠CD;(2)证明:∠∠AGE+∠EGH=180°,∠AGE+∠AHF=180°,∠∠EGH=∠AHF,∠EC∠BF,∠∠B=∠AEG,∠AB∠CD,∠∠C=∠AEG,∠∠B=∠C;(3)解:∠BF∠EC,∠∠C+∠BFC=180°,∠∠BFC=4∠C,∠∠C+4∠C=180°,解得∠C=36°,∠∠C=∠DGC,∠∠DGC=36°,∠∠D=180°﹣∠C﹣∠DGC=108°.14.(2021秋•南岗区期末)已知:在四边形ABCD中,∠B=∠D,点E在边BC的延长线上,连接AE交CD于点F,若∠BAF+∠AFC=180°.(1)如图1,求证:AD∠BC;(2)如图2,过点D作DG∠AE交BE的延长线于点C,若∠G=∠B,在不添加任何辅助线的情况下,请直接写出图2中除∠B以外的四个与∠G相等的角.【思路点拨】(1)由已知条件可得AB∠CD,从而有∠B=∠ECD,则可求得∠D=∠ECD,即可得AD∠BC;(2)利用平行线的性质进行求解即可.【解题过程】(1)证明:∠∠BAF+∠AFC=180°,∠AB∠CD,∠∠B=∠ECD,∠∠D=∠ECD,∠AD∠BC;(2)∠DG∠AE,∠∠G=∠AEB,由(1)得AD∠BC,∠∠AEB=∠DAE,∠ADC=∠DCG,∠∠G=∠DAE,∠∠B=∠ADC,∠G=∠B,∠∠G=∠ADC=∠DCG,综上所述,所∠G相等的角有:∠AEB,∠DAE,∠ADC,∠DCG.15.(2021秋•安居区期末)如图,∠ADE+∠BCF=180°,AF平分∠BAD,∠BAD=2∠F.(1)AD与BC平行吗?请说明理由.(2)AB与EF的位置关系如何?为什么?(3)若BE平分∠ABC.试说明:∠∠ABC=2∠E;∠∠E+∠F=90°.【思路点拨】(1)由∠ADE+∠BCF=180°结合邻补角互补,可得出∠BCF=∠ADC,再利用“同位角相等,两直线平行”可得出AD∠BC;(2)根据角平分线的定义及∠BAD=2∠F,可得出∠BAF=∠F,再利用“内错角相等,两直线平行”可得出AB∠EF;(3)∠由AB∠EF,利用“两直线平行,内错角相等”可得出∠ABE=∠E,结合角平分线的定义可得出∠ABC=2∠E;∠由AD∠BC,利用“两直线平行,同旁内角互补”可得出∠BAD+∠ABC=180°,再结合∠BAD =2∠F,∠ABC=2∠E可得出∠E+∠F=90°.【解题过程】解:(1)AD∠BC,理由如下:∠∠ADE+∠BCF=180°,∠ADE+∠ADC=180°,∠∠BCF=∠ADC,(2)AB∠EF,理由如下:∠AF平分∠BAD,∠BAD=2∠F,∠BAD=∠F,∠∠BAF=12∠AB∠EF.(3)∠∠ABC=2∠E,理由如下:∠AB∠EF,∠∠ABE=∠E.∠BE平分∠ABC,∠∠ABC=2∠ABE=2∠E.∠∠E+∠F=90°,理由如下:∠AD∠BC,∠∠BAD+∠ABC=180°.∠∠BAD=2∠F,∠ABC=2∠E,∠2∠E+2∠F=180°,∠∠E+∠F=90°.16.(2021春•铁西区期末)如图,直线MN分别与直线AC、DG交于点B、F,且∠1=∠2.∠ABF 的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C.(1)请直接写出直线AC与DG的位置关系;(2)求证:BE∠CF;(3)若∠C=35°,求∠BED的度数.【思路点拨】(1)由对顶角相等可得∠ABF=∠1,从而有∠ABF=∠2,即可得AC∠DG;(2)求出∠1=∠BFG,根据平行线的判定得出AC∠DG,求出∠EBF=∠BFC,根据平行线的判定得出即可;(3)根据平行线的性质得出∠C=∠CFG=∠BEF=35°,再求出答案即可.【解题过程】解:(1)AC∠DG,理由如下:∠∠ABF=∠1,∠1=∠2,∠∠ABF=∠2,∠AC∠DG;(2)由(1)知AC∠DG,∠∠ABF=∠BFG,∠∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C,∠∠EBF=12∠ABF,∠CFB=12∠BFG,∠∠EBF=∠CFB,∠BE∠CF.(3)∠AC∠DG,∠C=35°,∠∠C=∠CFG=35°,∠BE∠CF,∠∠CFG=∠BEG=35°,∠∠BED=180°﹣∠BEG=145°.17.(2021春•广陵区校级期中)如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠AEF与∠EFC的角平分线交于点P,EP延长线与CD交于点G,点H是MN 上一点,且PF∠GH,试判断直GH与EG的位置关系,并说明理由.【思路点拨】(1)利用邻补角的定义及已知得出∠1=∠CFE,即可判定AB∠CD;(2)利用(1)中平行线的性质推知∠AEF+∠EFC=180°,然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG∠PF,故结合已知条件PF∠GH,易证GH∠EG;【解题过程】解:(1)AB∠CD,理由如下:∠∠1与∠2互补,∠∠1+∠2=180°,又∠∠2+∠CFE=180°,∠∠1=∠CFE,∠AB∠CD;(2)GH∠EG,理由如下:由(1)知,AB∠CD,∠∠AEF+∠EFC=180°.又∠∠AEF与∠EFC的角平分线交于点P,∠∠FEP+∠EFP=1(∠BEF+∠EFD)=90°,2∠∠EPF=90°,即EG∠PF,∠PF∠GH,∠GH∠EG.18.(2021秋•嵩县期末)图1展示了光线反射定律:EF是镜面AB的垂线,一束光线m射到平面镜AB上,被AB反射后的光线为n,则入射光线m,反射光线n与垂线EF所夹的锐角θ1=θ2.(1)在图1中,证明:∠1=∠2.(2)图2中,AB,BC是平面镜,入射光线m经过两次反射后得到反射光线n,已知∠1=30°,∠4=60°,判断直线m与直线n的位置关系,并说明理由.(3)图3是潜望镜工作原理示意图,AB,CD是平行放置的两面平面镜.请解释进入潜望镜的光线m为什么和离开潜望镜的光线n是平行的?【思路点拨】(1)根据角的关系解答即可;(2)求出∠5+∠6=180°,根据平行线的判定得出即可;(3)根据平行线的性质和平均的定义得到∠5=∠6,根据平行线的判定得出即可.【解题过程】(1)证明:∠∠AFE=∠BFE=90°,∠θ1=θ2.(2)解:直线m∠直线n,理由:如图2,∠∠1=∠2=30°,∠3=∠4=60°,∠∠5=180°﹣∠1﹣∠2=120°,∠6=180°﹣∠3﹣∠4=60°,∠∠5+∠6=180°,∠直线m∠直线n;(3)解:∠AB∠CD,∠∠2=∠3,∠∠1=∠2,∠3=∠4,∠∠1=∠2=∠3=∠4,∠180°﹣∠1﹣∠2=180°﹣∠3﹣∠4,即:∠5=∠6,∠m∠n.19.(2021秋•上蔡县期末)已知:如图,AB∠CD∠GH,GH过点P.(1)如图1,若∠BAP=40°,∠DCP=30°,则∠APC=(直接写出结果);(2)如图2,直线MN分别交AB于点E,交CD于点F,点P在线段EF上,点Q在射线FC上.若∠MEB=110°,∠PQF=50°,求∠EPQ的度数;(3)如图3,点P在射线FN上,点Q在射线FD上,∠AEF的平分线交CD于点O.若∠PQF= 1∠MEB,试判断OE与PQ是否平行?并说明理由.2(1)依据平行线的性质,即可得到∠APG =∠BAP =40°,∠CPG =∠DCP =30,再根据∠APC =∠APG +∠CPG 进行计算即可;(2)利用邻补角的定义可得∠BEP =180°﹣110°=70°,利用(1)的结论即可得∠EPQ 的度数; (3)根据对顶角相等以及角平分线的定义可得∠PQF =12∠MEB =12∠AEF =∠AEO ,再根据平行线的性质∠AEO =∠EOF ,可得∠PQF =∠EOF ,根据内错角相等两直线平行即可得OE ∠PQ .【解题过程】解:(1)∠AB ∠CD ∠GH ,∠∠APG =∠BAP =40°,∠CPG =∠DCP =30,∠∠APC =∠APG +∠CPG =40°+30°=70°,故答案为:70°;(2)∠∠MEB =110°,∠∠BEP =180°﹣110°=70°,由(1)可得:∠EPQ =∠EPG +∠QPG =∠BEP +∠PQF =70°+50°=120°;(3)OE ∠PQ .理由:∠∠PQF =12∠MEB ,∠MEB =∠AEF ,∠∠PQF =12∠MEB =12∠AEF ,∠EO 平分∠AEF .∠∠PQF =12∠AEF =∠AEO , ∠AB ∠CD ,∠∠AEO =∠EOF ,∠∠PQF =∠EOF ,∠OE ∠PQ .20.(2021春•汉阳区期中)如图1,已知两条直线AB ,CD 被直线EF 所截,分别交于点E ,F ,EM 平分∠AEF 交CD 于点M ,且∠FEM =∠FME .(1)直线AB 与直线CD 的位置关系是 ;(2)如图2,点G 是射线FD 上一动点(不与点F 重合),EH 平分∠FEG 交CD 于点H ,过点H 作HN ∠EM 于点N ,设∠EHN =α,∠EGF =β.∠当点G 在运动过程中,若β=56°,求α的度数;∠当点G 在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.【思路点拨】(1)根据角平分线的性质可得∠AEM=∠FEM,由已知条件∠FEM=∠FME,等量代换可得∠AEM=∠FME,由平行线的判定即可得出答案;(2)由平行线的性质可得β=∠GEB,由平角的性质可得∠AED=180°﹣∠GEB,根据角平分线的性质可得∠CEF=12∠AEF,∠FEH=12∠FEG,由∠CEH=∠CEF+∠FEH可计算出度数,根据垂线的性质可得α+∠CEH=90°,代入计算即可得出答案;(3)证明方法同(2).【解题过程】证明:(1)∠EM平分∠AEF,∠∠AEM=∠FEM,∠∠FEM=∠FME,∠∠AEM=∠FME,∠AB∠CD.故答案为:AB∠CD;(2)∠∠AB∠CD,∠β=∠GEB=56°,∠∠AEG=180°﹣∠GEB=180°﹣56°=124°,∠EH平分∠FEG,EM平分∠AEF,∠∠CEF=12∠AEF,∠FEH=12∠FEG,∠∠CEH=∠CEF+∠FEH=12∠AEF+12∠FEG=12(∠AEF+∠FEG)=12∠AED=12×124°=62°,∠HN∠EM,∠α+∠CEH=90°,∠α=90°﹣∠CEH=90°﹣62°=28°;∠a=12β.理由如下:∠AB∠CD,∠β=∠GEB,∠∠AED=180°﹣∠GEB=180°﹣β,∠EH平分∠FEG,EM平分∠AEF,∠∠CEF=12∠AEF,∠FEH=12∠FEG,∠∠CEH=∠CEF+∠FEH=12∠AEF+12∠FEG=12(∠AEF+∠FEG)=12∠AEG=12(180°−β),∠HN∠EM,∠α+∠CEH=90°,∠α+12(180°−β)=90°,即a=12β.21.(2021秋•南岗区校级期中)已知,直线EF分别与直线AB、CD相交于点G、H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∠CD.(2)如图2,点M在直线AB、CD之间,连接MG、HM,当∠AGM=32°,∠MHC=68°时,求∠GMH的度数.(3)只保持(2)中所求∠GMH的度数不变,如图3,GP是∠AGM的平分线,HQ是∠MHD 的平分线,作HN∠PG,则∠QHN的度数是否改变?若不发生改变,请求出它的度数.若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角)【思路点拨】(1)先由邻补角得到∠AGE+∠BGE=180°,然后结合∠AGE+∠DHE=180°得到∠BGE=∠DHE,最后得证AB∠CD;(2)先由AB∠CD得到∠AGH+∠CHG=180°,即∠AGM+∠MGH+∠MHG+∠MHC=180°,再结合∠MGH+∠MHG+∠GMH=180°得到∠GMH=∠AGM+∠MHC,最后结合已知条件得到∠GMH的大小;(3)先由(2)得到∠AGM+∠MHC=∠GMH=100°,∠MGH+∠MHG=80°,然后结合角平分线的定义得到∠MGP和∠MHQ,再结合HN∠PG得到∠GHN=∠PGH,最后由∠QHN=∠GHN﹣∠GHQ求得∠QHN的大小.【解题过程】(1)证明:∠∠AGE +∠BGE =180°,∠AGE +∠DHE =180°,∠∠BGE =∠DHE ,∠AB ∠CD .(2)解:∠AB ∠CD ,∠∠AGH +∠CHG =180°,即∠AGM +∠MGH +∠MHG +∠MHC =180°,∠∠MGH +∠MHG +∠GMH =180°,∠∠GMH =∠AGM +∠MHC ,∠∠AGM =32°,∠MHC =68°,∠∠GMH =100°.(3)解:∠QHN 的度数不发生改变,理由如下,由(2)得,∠AGM +∠MHC =∠GMH =100°,∠∠MGH +∠MHG =80°,∠GP 、HQ 分别平分∠MGA 和∠MHD ,∠∠MGP =12∠MGA ,∠MHQ =12∠MHD =12(180°﹣∠MHC )=90°−12∠MHC , ∠∠PGH =∠MGP +∠MGH =12∠MGA +∠MGH , ∠HN ∠PG , ∠∠GHN =∠PGH =12∠MGA +∠MGH ,∠∠QHN =∠GHN ﹣∠GHQ =(12∠MGA +∠MGH )﹣(∠MHQ ﹣∠MHG )=12∠MGA +∠MGH ﹣∠MHQ +∠MHG =12∠MGA +80°﹣∠MHQ ,∠∠QHN =12∠MGA +80°﹣(90°−12∠MHC )=﹣10°+12(∠MGA +∠MHC )=﹣10°+12×100°=40°.22.(2021秋•香坊区校级期中)点E 在射线DA 上,点F 、G 为射线BC 上两个动点,满足∠DBF =∠DEF ,∠BDG =∠BGD ,DG 平分∠BDE .(1)如图1,当点G 在F 右侧时,求证:BD ∠EF ;(2)如图2,当点G 在BF 左侧时,求证:∠DGE =∠BDG +∠FEG ;(3)如图3,在(2)的条件下,P 为BD 延长线上一点,DM 平分∠BDG ,交BC 于点M ,DN 平分∠PDM ,交EF 于点N ,连接NG ,若DG ∠NG ,∠B ﹣∠DNG =∠EDN ,求∠B 的度数.【思路点拨】(1)通过证明∠DBF=∠EFG,利用同位角相等,两直线平行即可得出结论;(2)过点E作GH∠BD,交AD于点H,利用(1)的结论和平行线的性质即可得出结论;(3)设∠BDM=∠MDG=α,则∠BDG=∠EDG=∠DGB=2α,∠PDE=180°﹣4α,∠PDM =180°﹣α;利用已知条件用含α的式子表示∠PDN,∠EDN,∠GDN,∠DNG,再利用∠B ﹣∠DNG=∠EDN,得到关于α的方程,解方程求得α的值,则∠B=180°﹣4α,结论可求.【解题过程】证明:(1)∠DG平分∠BDE,∠∠BDG=∠ADG.又∠∠BDG=∠BGD,∠∠ADG=∠DGB.∠AD∠BC.∠∠DEF=∠EFG.∠∠DBF=∠DEF,∠∠DBF=∠EFG.∠BD∠EF.(2)过点G作GH∠BD,交AD于点H,如图,∠BD∠EF,∠GH∠EF.∠∠BDG=∠DGH,∠GEF=∠HGE,∠∠DGE=∠DGH+∠HGE,∠∠DGE=∠BDG+∠FEG.(3)设∠BDM=∠MDG=α,则∠BDG=∠EDG=∠DGB=2α,∠PDE=180°﹣4α.∠∠PDM=180°﹣α.∠DN平分∠PDM∠∠PDN=∠MDN=90°−α2.∠∠EDN=∠PDN−∠PDE=90°−α2−(180°−4α)=72α−90°.∠∠GDN=∠MDN﹣∠MDG=90°−α2−α=90°−32α.∠DG∠ON,∠∠DNG=90°.∠∠DNG=90°−(90°−32α)=32α.∠DE∠BF,∠∠B=∠PDE=180°﹣4α.∠∠B﹣∠DNG=∠EDN,∠180°−4α−32α=72α−90°,解得:α=30°.∠∠B=180°﹣4α=60°.。
初中数学平行线证明专题训练含答案
平行线证明专题训练一.选择题(共16小题)1.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O.若∠BOC=130°,则∠A的度数为()A.100°B.90°C.80°D.70°2.下列命题为假命题的是()A.直角都相等B.对顶角相等C.同位角相等D.同角的余角相等3.下列命题中:正确的说法有()①成轴对称的两个图形一定全等;②直线l经过线段AB的中点,则l是线段AB的垂直平分线;③一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形;④等腰三角形是轴对称图形,对称轴是顶角的角平分线.A.1个B.2个C.3个D.4个4.下列命题是真命题的是()A.如果a>b,a>c,那么b=cB.相等的角是对顶角C.一个角的补角大于这个角D.一个三角形中至少有两个锐角5.如图,在△ABC中,D、E、F分别在AB、BC、AC上,且EF∥AB,要使DF∥BC,只需再有下列条件中的()即可.A.∠1=∠2B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD 6.如图,已知∠1=∠2,则有()A.AD∥BC B.AB∥CD C.∠ABC=∠ADC D.AB⊥CD7.如图,在△ABC中,∠C=36°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.36°B.72°C.50°D.46°8.在△ABC中,∠A=35°,∠B=80°,则∠C=()A.85°B.75°C.65°D.55°9.如图,将木条a,b与c钉在一起,∠1=85°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.15°B.25°C.35°D.50°10.图中,∠2的度数是()A.110°B.70°C.60°D.40°11.如图,在△ABC中,AD平分∠BAC,AE是高,若∠B=40°,∠C=60°,则∠EAD 的度数为()A.30°B.10°C.40°D.20°12.如图,BD是∠ABC的角平分线,CD是∠ACB的角平分线,∠BDC=120°,则∠A的度数为()A.40°B.50°C.60°D.75°13.如图,△ABC中,∠A=75°,∠B=65°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为()A.40°B.45°C.50°D.60°14.对于命题“若a>b,则a2>b2”,能说明它属于假命题的反例是()A.a=2,b=1B.a=﹣1,b=﹣2C.a=﹣2,b=﹣1D.a=﹣1,b=1 15.能说明命题“若a2=b2,则a=b”是假命题的一个反例可以是()A.a=2,b=﹣2B.a=2,b=3C.a=﹣2,b=﹣2D.a=﹣2,b=﹣3 16.如图,下列条件中能得到AB∥CD的是()A.∠1=∠2B.∠3=∠4C.∠1=∠4D.∠2=∠3二.填空题(共3小题)17.如图,△ABC中,∠A=80°,△ABC的两条角平分线交于点P,∠BPD的度数是_____.18.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠AOB=_____.19.如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DE∥BC,若∠B=75°,则∠BDF的度数为_____.三.解答题(共8小题)20.已知:如图∠B=40°,∠B=∠BAD,∠C=∠ADC,求∠DAC的度数.21.如图,在下列解答中,填写适当的理由或数学式:(1)∵AD∥BE,(已知)∴∠B=∠_____.(_____)(2)∵∠E+∠_____=180°,(已知)∴AC∥DE.(_____)(3)∵_____∥_____,(已知)∴∠ACB=∠DAC.(_____)22.如图,在△ABC中,∠B=60°,∠C=40°,AD是∠BAC的角平分线,AE是高,求∠EAD的度数.23.如图,∠1=∠2,∠A=∠F,求证:∠C=∠D.请阅读下面的解答过程,并填空(理由或数学式)证明:∵∠1=∠2(已知)∠1=∠3(_____)∴∠2=∠3(等量代换)∴BD∥_____(_____)∴∠4=_____(_____)又∵∠A=∠F(已知)∴AC∥_____(_____)∴∠4=_____(_____)∴∠C=∠D(等量代换)24.如图,在△ABC中,BO,CO分别平分∠ABC和∠ACB.(Ⅰ)若∠A=60°,则∠BOC的度数为_____;(Ⅱ)若∠A=100°,则∠BOC的度数_____;(Ⅲ)若∠A=α,求∠BOC的度数,并说明理由.25.已知:如图,∠1+∠2=180°,∠A=∠D.求证:AB∥CD.(在每步证明过程后面注明理由)26.(1)如图,在三角形纸片ABC中.∠A=64°,∠B=76°,将纸片的一角折叠,使点C落在△ABC内部,折痕为MN.如果∠1=17°,求∠2的度数;(2)小明在(1)的解题过程中发现∠1+∠2=2∠C,小明的这个发现对任意的三角形都成立吗?请说明理由.27.如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.试说明:∠A=∠F.请同学们补充下面的解答过程,并填空(理由或数学式).解:∵∠AGB=∠DGF(_____)∠AGB=∠EHF(已知)∴∠DGF=∠EHF(_____)∴_____∥_____(_____)∴∠D=_____(_____)∵∠D=∠C(已知)∴_____=∠C(_____)∴_____∥_____(_____)∴∠A=∠F(_____)平行线证明专题训练参考答案与试题解析一.选择题(共16小题)1.解:在△OBC中,∠OBC+∠OCB=180﹣∠BOC=180﹣130=50°,又∵∠ABC、∠ACB的平分线交于点O.∴∠ABC+∠ACB=2∠OBC+2∠OCB=2(∠OBC+∠OCB)=100°∴∠A=180﹣(∠ABC+∠ACB)=180﹣100=80°故选:C.2.解:A、直角都相等,是真命题;B、对顶角相等,是真命题;C、两直线平行,同位角相等,则同位角相等是假命题;D、同角的余角相等,是真命题;故选:C.3.解:①成轴对称的两个图形一定全等,故符合题意;②直线l经过线段AB的中点且垂直线段,则l是线段AB的垂直平分线,故不符合题意;③一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形,故符合题意;④等腰三角形是轴对称图形,对称轴是顶角的角平分线所在的直线.故不符合题意故选:B.4.解:A、如果a>b,a>c,不能判断b,c的大小,原命题是假命题;B、相等的角不一定是对顶角,原命题是假命题;C、一个角的补角不一定大于这个角,原命题是假命题;D、个三角形中至少有两个锐角,原命题是真命题;故选:D.5.解:∵EF∥AB,∴∠1=∠2,∵∠1=∠DFE,∴∠2=∠DFE,∴DF∥BC,故选:B.6.解:∵∠1=∠2,∴AB∥CD,故选:B.7.解:由折叠的性质得:∠D=∠C=36°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+72°,则∠1﹣∠2=72°.故选:B.8.解:∵∠A=35°,∠B=80°,∴∠C=180°﹣∠A﹣∠B=180°﹣35°﹣80°=65°,故选:C.9.解:∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是85°﹣50°=35°.故选:C.10.解:∵∠1=60°+20°=80°,∴∠2=180°﹣60°﹣80°=40°,故选:D.11.解:∵∠B=40°,∠C=60°,∠B+∠C+∠BAC=180°∴∠BAC=80°又∵AD平分∠BAC∴∠CAD=40°∵AE⊥BC,∠C=60°∴∠AEC=90°,∠CAE=30°∴∠EAD=10°,故选:B.12.解:∵BD、CD是∠ABC和∠ACB的角平分线,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠D=180°﹣(∠DBC+∠DCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=120°,∴∠A=60°;故选:C.13.解:∵∠A=75°,∠B=65°,∴∠C=180°﹣(65°+75°)=40°,∴∠CDE+∠CED=180°﹣∠C=140°,∴∠2=360°﹣(∠A+∠B+∠1+∠CED+∠CDE)=360°﹣300°=60°.故选:D.14.解:对于命题“若a>b,则a2>b2”,能说明它属于假命题的反例是a=﹣1,b=﹣2,a>b,但(﹣1)2<(﹣2)2,故选:B.15.解:能说明命题“若a2=b2,则a=b”是假命题的一个反例是a=2,b=﹣2,a2=b2,但a=﹣b,故选:A.16.解:A,∠1=∠2不能判定两条直线平行;不符合题意;B,∠3=∠4不能判定两条直线平行,不符合题意;C,∠1=∠4可以判定AD∥BC,不符合题意;D,∠2=∠3可以判定AB∥CD,根据内错角相等,两条直线平行,符合题意.故选:D.二.填空题(共3小题)17.解:∵△ABC中,∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∵△ABC的两条角平分线交于点P,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠PBC+∠PCB=(∠ABC+ACB)=×100°=50°,∴∠BPD=∠PBC+∠PCB=50°;故答案为:50°.18.解:∵AD平分∠BAC,CE平分∠ACB,∠DAC=30°,∠ECA=35°,∴∠BAC=2∠DAC=60°,∠ACB=2∠ECA=70°,∴∠ABC=180°﹣∠BAC﹣∠ACB=50°.∵△ABC的三条角平分线交于一点,∴BO平分∠ABC,∴∠ABO=∠ABC=25°,∴∠AOB=180°﹣25°﹣30°=125°故答案为125°19.解:∵DE∥BC,∴∠ADE=∠B=75°,又∵∠ADE=∠EDF=75°,∴∠BDF=180°﹣75°﹣75°=30°,故答案为30°.三.解答题(共8小题)20.解:∵∠B=40°,∴∠B=∠BAD=40°,∴∠ADC=80°,∴∠C=∠ADC=80°,∴∠DAC=180°﹣80°﹣80°=20°.21.解:(1)∵AD∥BE,(已知)∴∠B=∠F AD.(两直线平行,同位角相等)(2)∵∠E+∠ACE=180°,(已知)∴AC∥DE.(同旁内角互补,两直线平行)(3)∵AD∥BE,(已知)∴∠ACB=∠DAC.(两直线平行,内错角相等)故答案为:(1)F AD;两直线平行,同位角相等;(2)ACE;同旁内角互补,两直线平行;AD;BE;两直线平行,内错角相等.22.解:∵∠B=60°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,∵AD是角平分线,∴∠BAD=∠BAC=×80°=40°,∵AE是高,∴∠BEA=90°,∴∠BAE=90°﹣∠B=90°﹣60°=30°,∴∠EAD=∠BAD﹣∠BAE=40°﹣30°=10°.23.解:∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴∠2=∠3(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠4=∠C(两直线平行,同位角相等)又∵∠A=∠F(已知)∴AC∥DF(内错角相等,两直线平行)∴∠4=∠D(两直线平行,内错角相等)∴∠C=∠D(等量代换);故答案为:对顶角相等;CE;同位角相等,两直线平行;∠C;两直线平行,同位角相等;DF;内错角相等,两直线平行;∠D;两直线平行,内错角相等.24.解:(Ⅰ)∵BO、CO分别平分∠ABC和∠ACB,∠A=60°,∴∠CBO+∠BCO=(180°﹣∠A)=(180°﹣60°)=60°,∴∠BOC=180°﹣(∠CBO+∠BCO)=180°﹣60°=120°;故答案为:120°;(Ⅱ)同理,若∠A=100°,则∠BOC=180°﹣(180°﹣∠A)=90°+∠A=140°,故答案为140°;(Ⅲ)同理,若∠A=α,则∠BOC=180°﹣(180°﹣∠A)=90°+.25.证明:∵∠1与∠CGD是对顶角,∴∠1=∠CGD(对顶角相等),∵∠1+∠2=180°(已知),∴∠CGD+∠2=180°(等量代换),∴AE∥FD(同旁内角互补,两直线平行),∴∠A=∠BFD(两直线平行,同位角相等),又∵∠A=∠D(已知),∴∠BFD=∠D(等量代换),∴AB∥CD(内错角相等,两直线平行).26.解:(1)∵△ABC中,∠A=64°,∠B=76°,∴∠C=180°﹣∠A﹣∠B=180°﹣64°﹣76°=40°,∵∠1=17°,∴∠CNM=,在△CMN中,∠CMN=180°﹣∠C﹣∠CNM=180°﹣40°﹣81.5°=58.5°,∴∠2=180°﹣2∠CMN=180°﹣2×58.5°=63°.(2)由题意可知:2∠CNM+∠1=180°,2∠CMN+∠2=180°,∴2(∠CNM+∠CMN)+∠1+∠2=360°,∵∠C+∠CNM+∠CMN=180°,∴∠CMN+∠CMN=180°﹣∠C,∴2(180°﹣∠C)=360°﹣(∠1+∠2),∴∠1+∠2=2∠C.27.解:∵∠AGB=∠DGF(对顶角相等)∠AGB=∠EHF(已知)∴∠DGF=∠EHF(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠D=∠CEF(两直线平行,同位角相等)∵∠D=∠C(已知)∴∠CEF=∠C(等量代换)∴DF∥AC(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等)故答案为:对顶角相等;等量代换;BD;CE;同位角相等,两直线平行;∠CEF;两直线平行,同位角相等;∠CEF;等量代换;DF;AC;内错角相等,两直线平行;两直线平行,内错角相等.。
专题训练中考数学总复习《平行线的证明》专题复习练习及答案
中考数学复习平行线的证明专题复习练习1. 下列说法正确的是( D )A.经验、观察或试验完全可以判断一个数学结论的正确与否B.推理是科学家的事,与我们没有多大的关系C.对于自然数n,n2+n+37一定是质数D.有10个苹果,将它放进9个筐中,则至少有一个筐中的苹果不少于2个2. “两条平行直线被第三条直线所截,同位角相等”这句话是( C )A.定义 B.假命题 C.公理 D.定理3. 下列语句中,是命题的是( C )A.直线AB和CD垂直吗B.过线段AB的中点C画AB的垂线C.同旁内角不互补,两直线不平行D.连接A,B两点4.如图,AB∥CD,CB⊥DB,∠D=65°,则∠ABC的大小是( A ) A.25°B.35°C.50°D.65°5.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2等于( B )A.90°B.100°C.130°D.180°6.如图,已知△ABC中,点D在AC上,延长BC至E,连接DE,则下列结论不成立的是( A )A .∠DCE>∠ADB B .∠ADB>∠DBCC .∠ADB>∠ACBD .∠ADB>∠DEC7.如图,AB ∥CD ,直线EF 交AB 于点E ,交CD 于点F ,EG 平分∠BEF ,交CD 于点G ,∠1=50°,则∠2等于( C )A .50°B .60°C .65°D .90°8.如图,已知直线AB ∥CD ,BE 平分∠ABC ,且BE 交CD 于点D ,∠CDE =150°,则∠C 的度数为( C )A .150°B .130°C .120°D .100°9.如图,直线a ∥b ,∠A =38°,∠1=46°,则∠ACB 的度数是( C )A .84°B .106°C .96°D .104°10.适合条件∠A =12∠B =13∠C 的三角形ABC 是( B )A .锐角三角形 B. 直角三角形 C .钝角三角形 D .都有可能11.如图,在折纸活动中,小明制作了一张△ABC 纸片,点D ,E 分别在边AB ,AC 上,将△ABC 沿着DE 折叠压平,A 与A ′重合.若∠A =75°,则∠1+∠2等于( A )A.150° B. 210°C.105°D.75°12.已知直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于( B )A.30° B. 35°C.40°D.45°13.如图,DAE是一条直线,DE∥BC,则x=__64°__.14.如图,已知AB∥CD,∠DEF=50°,∠D=80°,∠B的度数是__50°__.15.如图,已知∠A=∠F=40°,∠C=∠D=70°,则∠ABD=__70°__,∠CED=__110°__.16.已知如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠DAC =100°,则∠BAC=__120°__.17.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为__22°__.18.已知等腰三角形的一腰上的高与另一腰的夹角为40°,则这个等腰三角形的顶角为__50°或130°__.19.如图所示,AB=BC=CD=DE=EF=FG,∠1=130°,则∠A=__10__度.20.如图,∠C=∠1,∠2和∠D互余,BE⊥FD,求证:AB∥CD.解:∵∠C=∠1,∴CF∥BE,又BE⊥FD,∴CF⊥FD,∴∠CFD=90°,则∠2+∠BFD=90°,又∠2+∠D=90°,∴∠D=∠BFD,则AB∥CD21.一天,爸爸带着小刚到建筑工地去玩,看见有如图所示的人字架,爸爸说:“小刚,我考考你,这个人字架的夹角∠1等于130°,你能求出∠3比∠2大多少吗?”小刚马上得到了正确答案,他的答案是多少?请说明理由.解:50°,因为∠1=130°,所以与∠1相邻的内角为50°,所以∠3-∠2=50°。
初一下数学平行线的判定与性质复习专题(最新整理)
5.已知:如图∠1=∠2,∠C=∠D,问∠A 与∠F 相等吗?试说明理由.
6.已知:如图⑿,CE 平分∠ACD,∠1=∠B,
5
求证:AB∥CE
7.如图:∠1= 53 ,∠2=127 ,∠3= 53 , 试说明直线 AB 与 CD,BC 与 DE 的位置关系。
8.如图:已知∠A=∠D,∠B=∠FCB,能否确定 ED 与 CF 的位置关系,请说明理由。
);
(2)∵∠2 =∠ (已知),
∴AC∥ED(
);
(3)∵∠A +∠ = 180°(已知),
∴AB∥FD(
);
(4)∵∠2 +∠ = 180°(已知),
∴AC∥ED(
);
5.如图 7,AB∥DE,试问∠B、∠E、∠BCE 有什么关系.
解:∠B+∠E=∠BCE
过点 C 作 CF∥AB,
则 B ____(
A B
1
G
D
2
C F
E
13.如图,已知 AB∥CD,试再添上一个条件,使∠1 =∠2 成立.(要求给出两个以上答案,并选择 其中一个加以证明)
A
1
F
C
2
B E
D
A
B
1
16.如图,∠ABD 和∠BDC 的平分线交于 E,BE 交 CD 于点 F,∠1 +∠2 = 90°. 3
求证:(1)AB∥CD; (2)∠2 +∠3 = 90°. CF
又∵∠1=∠2,
∴∠MEB-∠1=∠MFD-∠2,
即 ∠MEP=∠______
∴EP∥_____.( )
专题二:求角度大小
A
E 12 3
B
D
图6
平行线证明试题总集含答案
《平行线的证明》单元测试题一、填空题1.在△ABC 中,∠C =2(∠A +∠B ),则∠C =________.2.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=72º , 则∠2= ;3.在△ABC 中,∠BAC =90º,AD ⊥BC 于D ,则∠B 与∠DAC 的大小关系是________ 4.写出“同位角相等,两直线平行”的题设为_______,结论为_______. 5.如图,已知AB ∥CD ,BC ∥DE ,那么∠B +∠D =__________.6.如图,∠1=27º,∠2=95º,∠3=38º,则∠4=_______7.如图,写出两个能推出直线AB ∥CD 的条件________________________. 8.满足一个外角等于和它相邻的一个内角的△ABC 是_____________ 二、选择题9.下列语句是命题的是 【 】 (A)延长线段AB (B)你吃过午饭了吗? (C)直角都相等 (D)连接A ,B 两点 10.如图,已知∠1+∠2=180º,∠3=75º,那么∠4的度数是 【 】(A)75º (B)45º (C)105º(D)135º11.以下四个例子中,不能作为反例说明“一个角的余角大于这个角”是假命题是 【 】(A)设这个角是30º,它的余角是60°,但30°<60°(B)设这个角是45°,它的余角是45°,但45°=45°(C)设这个角是60°,它的余角是30°,但30°<60° (D)设这个角是50°,它的余角是40°,但40°<50°12.若三角形的一个内角等于另外两个内角之差,则这个三角形是 【 】 (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)不能确定 13.如图,△ABC 中,∠B =55°,∠C =63°,DE ∥AB , 则∠DEC 等于【 】(A )63° (B) 118° (C) 55°(D )62°14.三角形的一个外角是锐角,则此三角形的形状是 【 】 (A )锐角三角形(B)钝角三角形 (C)直角三角形(D )无法确定CA B DE E CD BA1 324 第5题第6题第7题ABCDEFG12DABCE第10题三、解答证明题15.如图,AD=CD ,AC 平分∠DAB ,求证DC ∥AB .16.如图,已知∠1=20°,∠2=25°,∠A =55°,求∠BDC 的度数.17.如图,BE ,CD 相交于点A ,∠DEA 、∠BCA 的平分线相交于F .(1)探求:∠F 与∠B 、∠D 有何等量关系? (2)当∠B ︰∠D ︰∠F =2︰4︰x 时,x 为多少?CABD1 218.如图,已知点A在直线l外,点B、C在直线l上.(1)点P是△ABC内一点,求证:∠P>∠A;(2)试判断:在△ABC外又和点A在直线l同侧,是否存在一点Q,使∠BQC>∠A?试证明你的结论.19、如图,已知∠B=142°,∠BFE=38°,∠EFD=40°,∠D=140°,求证:AB∥C D.20、已知:如图,∠BAF、∠CBD、∠ACE是△ABC的三个外角.求证:∠BAF+∠CBD+∠ACE=360°.21、如图,已知BE 、CE 分别是△ABC 的内角、外角的平分线,∠A =40°,求∠E 的度数.22、已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点一:判断命题的真假
1.下列命题哪些是真命题?哪些是假命题?是假命题的说明理由。
(1)等角(或同角)的补角相等;
(2)平行于同一条直线的两条直线互相平行;
(3)如果ab=0,那么a=0;
(4)两条直线相交,只有一个交点;
(5)如果a2=b2,那么a=b;
(6)如果两个角的两边分别平行,那么这两个角一定相等。
考点二:平行线的判定与性质
1.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,求证:EP⊥FP.
2.如图,试求∠A+∠B+∠C+∠D+∠E的度数.
3.已知:如图所示,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.
4.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.
5.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.
6.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.
7.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.
8.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.
(1)求证:AB∥CD;
(2)试探究∠2与∠3的数量关系.
9.MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.
10.如图,已知∠P=∠Q,∠1=∠2,AB与ED平行吗?为什么?
11.如图,点P在CD上,已知∠BAP+∠APD=180°,∠1=∠2,证明:AE∥PF
12.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?
(2)BE与DF有什么关系?请说明理由.
13.已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.
14.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.15.已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.
16.如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.
考点三:三角形内外角的计算与证明
1.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于点D,则∠B=∠,∠C=∠.
2.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为度.
3.如图,∠α=.
4.如图,直线a∥b,则∠A=,若作BH⊥AC于H,则∠ABH=.
5.计算∠1+∠2+∠3+∠4+∠5+∠6的度数为.
6.直角三角形的两个锐角的平分线所交成的角的度数是.
7.如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠ACD=度.
8.如图,在△ABC中,∠B=30°,∠C=66°,AE⊥BC于E,AD平分∠BAC,求∠DAE的度数.
9.如图,已知AB∥DE,点C是BE上的一点,∠A=∠BCA,∠D=∠DCE.求证:AC⊥CD.
10.如图1,直线a∥b,则∠ACB=__________.
11.已知:如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=120°,求∠DAC的度数.。