信号与系统零状态响应求解及系统全响应分析

合集下载

信号与系统实验——零输入响应、零状态响应和全响应实验

信号与系统实验——零输入响应、零状态响应和全响应实验

实验三信号与系统实验
1. 零输入响应、零状态响应和全响应实验
1.1实验目的
(1)掌握零输入相应、零状态响应和全响应的意义。

(2)了解零输入响应、零状态响应和全响应三者之前的关系。

1.2实验步骤和结果
(1)零状态响应:在零输入、零状态及全响应单元格,将IN端接地,按下按钮S给电容放电以保证系统没有初始状态。

将直流信号源的开关拨到直流档,调节电位器使其输出+4V的直流信号。

将此信号接入IN端,按下按钮S,用示波器测量OUT端波形,大概画出所测量波形并记录表中各时刻对应的幅值。

图一零状态响应Array
(2)零输入响应:保持直流信号接入到IN端,按下按钮S,用示波器观察输出信号,待系统稳定后断开按钮。

此时电容充满电,系统拥有初态。

将直流信号从IN端断开,接IN端接地,这样系统便没有激励,按下按钮S,用示波器测量OUT端波形,大概画出所测的波形,
并记录表中各时刻对应的幅值。

图二零输入响应
(3)全响应:利用上述方法重新对电容充电,充电后保持直流信号接入到IN端,按下按钮S,用示波器测量OUT端波形,大概画出对应时刻的波形并记录表中各时刻对应的幅值。

图三全响应
3.总结
结合上面三个表格,对应每个表格各时刻的值,虽然读数有一定的偏差,但是基本上满足关系式:全响应=零输入响应+零状态响应。

从这个关系式可以得出零状态响应加上零输入响应得到的就是全响应。

零输入响应是一种系统的初态,零状态响应是没有初态的系统加入激励后产生的响应后的系统。

即拥有初态的系统,再给予其一个激励,产生的响应就
是全响应。

信号与系统第三章

信号与系统第三章
例3.1-2 描述一阶LTI系统的常系数微分方程如 式(3.1-3)所示
设 f (t) 2 a 2, b 1 则有
dy(t) 2 y(t) 2 dt
已知初始值 y(0) 4 求 t 0时系统的响应 y(t)
解:第一步,由方程可知系统的特征方程为 2 0
2 由此可得系统的齐次解为
2
处理教研室
第三章 连续信号与系统的时域分析
教学重点:
1、常微分方程的建立及其解的基本特点; 2、阶跃响应和冲激响应的概念; 3、卷积及其在系统分析中的应用。
2020/6/7
信号
3
处理教研室
应用实例:汽车点火系统
汽车点火系统主要由电源(蓄电池和发电机)、电阻、 点火开关、点火线圈、分压器等组成。
系数 a,b都是常量。系统的阶数就是其数学模型——
微分方程的阶数。
而 n 阶常系数线性微分方程的一般形式为
an
dn y(t) dt n
an1
dn1 y(t) dt n1
L
a1
dy(t) dt
a0
y (t )
bm
dm f (t) dt m
bm1
dm1 f (t) dt m1
L
b1
df (t) dt
b0
即yf’(0+) = yf’(0-) = 0,yf(0+) = yf(0-) = 0
对t>0时,有 yf”(t) + 3yf’(t) + 2yf(t) = 6
不难求得其齐次解为Cf1e-t + Cf2e-2t,其特解为常数3,
于是有
yf(t)=Cf1e-t + Cf2e-2t + 3
代入初始值求得

§2.4 零输入响应和零状态响应

§2.4 零输入响应和零状态响应

各种响应用初始值确定待定系数的区别: (2)各种响应用初始值确定待定系数的区别:
在经典法求全响应的待定系数时, 在经典法求全响应的待定系数时,用的是 状初始值。 0+状初始值。 在求系统零输入响应时,用的是0-状态初始值。 在求系统零输入响应时,用的是0 状态初始值。 在求系统零状态响应时, 状态初始值, 在求系统零状态响应时,用的是 0+ 状态初始值, 这时的零状态是指0 状态为零。 这时的零状态是指0-状态为零。
(4)0+状态的确定
已知0 状态求0 状态的值, 已知0-状态求0+状态的值,可用冲激函数匹 配法。见有关参考资料。 配法。见有关参考资料。 状态的值还可以用拉普拉斯变换中的初值 求0+状态的值还可以用拉普拉斯变换中的初值 定理求出 求出。 定理求出。
三.对系统线性的进一步认识
由常系数微分方程描述的系统在下述意义上是线性的, 由常系数微分方程描述的系统在下述意义上是线性的, 响应可分解为:零输入响应+零状态响应。 (1)响应可分解为:零输入响应+零状态响应。 零状态线性: 当起始状态为零时, (2) 零状态线性 : 当起始状态为零时 , 系统的零状态响 应对于各激励信号呈线性。 应对于各激励信号呈线性。 (3)零输入线性 当激励为零时, 零输入线性: (3)零输入线性:当激励为零时,系统的零输入响应对 于各起始状态呈线性
信号与系统
Signals and Systems
§时域分析双零法——
零输入响应+ 零输入响应+零状态响应
一.起始状态与激励源的等效转换
在一定条件下,激励源与起始状态之间可以等效转换。 在一定条件下,激励源与起始状态之间可以等效转换。 即可以将原始储能看作是激励源。 即可以将原始储能看作是激励源。
外加激励源 系统的完全响应 共同作用的结果 可以看作 起始状态等效激励源 零状态响应” 系统的完全响应 = 零输入响应 + “零状态响应 零状态响应 线性系统具有叠加性) (线性系统具有叠加性)

信号与系统第三版郑君里课后习题答案

信号与系统第三版郑君里课后习题答案

信号与系统第三版郑君里课后习题答案第一章习题参考解1,判刑下列信号的类型解:()sin[()];y t A x t = 连续、模拟、周期、功率型信号 。

()()tt y t x e d τττ--∞=⎰ 连续、模拟、非周期、功率型信号。

()(2y n x n =) 离散、模拟、非周期、功率型信号。

()()y n nx n = 离散、模拟、非周期、功率型信号。

1-6,示意画出下列各信号的波形,并判断其类型。

(1) 0()sin()x t A t ωθ=+ 连续、模拟、周期、功率型(2) ()tx t Ae -= 连续、模拟、非周期、只是一个函数,不是物理量。

(3) ()cos 0t x t e t t -=≥ 连续、模拟、非周期、能量型 (4) ()2112,x t t t =+-≤≤ 连续、模拟、非周期、能量型(5) 4()(),0.5kx k k =≥ 离散、模拟、非周期、能量型 (6) 0().j kx k eΩ= 离散、模拟、周期、功率型()sin[()];()()()(2);()()tt y t A x t y t x ed y n x n y n nx n τττ--∞====⎰1-6题,1-4图。

t=-pi:1/200:pi;y1=1.5*sin(2*t+pi/6);subplot(4,1,1),plot(t,y1),title('1.5sin(2*t+pi/6)'),gridy2=2*exp(-t);subplot(4,1,2),plot(t,y2),title('2exp(-t)'),gridt1=0:1/200:2*pi;y3=10*exp(-t1).*cos(2*pi*t1);subplot(4,1,3),plot(t1,y3),title('10exp(-t1)cos(2*pi*t1)'),grid t2=-1:1/200:2;y4=2*t2+1;subplot(4,1,4),plot(t2,y4),title('2x+1'),grid习题1-6 5-6题 n=0:pi/10:2*pi; y=(0.8).^n;subplot(4,1,1),stem(n,y,'fill '),title('(0.8)^n'),grid n1=0:pi/24:2*pi;y1=cos(2*pi*n1);y2=sin(2*pi*n1);subplot(4,1,2),stem3(y1,y2,n1,'fill '),title('exp[2*pi*n1'),grid subplot(4,1,4),stem(n1,sin(2*pi*n1),'fill '),title('sin2pin1'),grid subplot(4,1,3),stem(n1,cos(2*pi*n1),'fill'),title('cos2pin1)'),grid1-8,判断下列系统的类型。

信号与系统 响应

信号与系统 响应

第2章 连续时间系统的时域分析
y(0 ) y(0 ) 1 y (0 ) y (0 ) 0

代入起始条件,得初始条件:
y(0 ) 1 y(0 ) 0
考虑 函数的影响后,方程变为:
y" (t ) 5 y' (t ) 6 y(t ) 2et u(t )
零输入响应是输入信号为零时仅由系统的初始条件所产
生的响应,零状态响应是初始状态为零时仅由系统的输
入信号所产生的响应。
暂态响应随着时间的增长而消失,稳态响应则趋于一个
常数或稳定变化
第2章 连续时间系统的时域分析
(1) 自由响应和零输入响应 都满足齐次方程之解, 然而它们的系数不同。 零输入响应的 Azik仅由起始储能情况决定 ,而自由响应的 Ak 要同时由起 始状态和激励信号决定 。 (2) 自由响应由两部分组成 ,一部分由起始状态决 定,另一部分由激 励信号决定,二者都与 系统自身参数有关。
b.求冲激序列的响应h(t ) (LTI系统) (t ) h(t )

x( ) (t )d
t1
bh(t t1 )
t2
ch(t t 2 )
ah(t )
0
(t ) h(t ) x( ) (t )d x( )h(t )d
2
第2章 连续时间系统的时域分析
作业 P70 2.4(a)
第2章 连续时间系统的时域分析
§2.4 卷积积分
一.任意函数表示为冲激函数的积分
*.基本思想:
e(t)
0
t
1.用一系列脉冲代替激励.
2.又用一系列冲激代替脉冲.
3.求一系列冲激在系统中引起的响应之0 和.

信号与系统课后答案第三章作业答案

信号与系统课后答案第三章作业答案

初始为 0, C2 -4
y f (t) -4e3tu(t) 4e2tu(t)
全响应= yx (t)+y f (t) 4e2tu(t)-2e3tu(t)
3-2 描述某 LTI 系统的微分方程为
d2 y(t) dt 2

3dy(t) dt来自2y(t)

df (t) dt

6
1
1
(2e1 e1 et ) u(t)
e1(2 et ) u(t)
(2)
f
(t)

a[u(t
s) 2

u(t
2)]
h(t) b[u(t 2) u(t 3)]
f
(t)

h(t)

ab[(t

1 2
)
u(t
1 2
)

(t

1 2
)
u(t
1) 2

tu(t)

1 4
(et

e3t
)u(t)

1 2
t
e3tu(t)

[
1 4
et

(
1 2
t

1 4
)e3t
]u
(t)
3-19 一 个 LTI 系 统 , 初 始 状 态 不 祥 。 当 激 励 为 f (t) 时 其 全 响 应 为
(2e3t sin 2t)u(t) ;当激励为 2 f (t) 时其全响应为 (e3t 2sin 2t)u(t) 。求
(1) 初始状态不变,当激励为 f (t 1) 时的全响应,并求出零输入相应、
零状态响应; (2) 初始状态是原来的两倍、激励为 2 f (t) 时系统的全响应。

信号与系统参考答案(第二版)电子工程出版 徐亚宁 苏启常

信号与系统参考答案(第二版)电子工程出版 徐亚宁 苏启常

第一章1.8 系统的数学模型如下,试判断其线性、时不变性和因果性。

其中()0X -为系统的初始状态。

(2)()()2f t y t e= (5)()()cos 2y t f t t = (8)()()2y t f t =解:(2)()()2f t y t e =① 线性: 设 ()()()()1122,f t y t f t y t →→,则 ()()()()122212,f t f t y t ey t e==那么 ()()()()()()()112211222221122a f t a f t a f t a f t a f t a f t y t eee +⎡⎤⎣⎦+→==,显然,()()()1122y t a y t a y t ≠+,所以系统是非线性的。

② 时不变性设()()11,f t y t →则 ()()()()10122110,f t t f ty t e y t t e-=-=设()()102,f t t y t -→则()()()102210f t t y t e y t t -==-,所以系统是时不变的。

③ 因果性因为对任意时刻 1t ,()()121f ty t e =,即输出由当前时刻的输入决定,所以系统是因果的。

(5)()()cos 2y t f t t = ① 线性: 设 ()()()()1122,f t y t f t y t →→,则 ()()()()1122cos 2,cos 2y t f t t y t f t t ==那么()()()()()()()112211221122cos 2cos 2cos 2a f t a f t y t a f t a f t t a f t t a f t t +→=+=+⎡⎤⎣⎦,显然()()()1122y t a y t a y t =+,所以系统是线性的。

② 时不变性设()()11,f t y t →则 ()()()()()1110100cos 2,cos 2y t f t t y t t f t t t t =-=--设()()102,f t t y t -→则()()()21010cos 2y t f t t t y t t =-≠-,所以系统是时变的。

《信号与系统教学课件》§2.3零输入响应与零状态响应

《信号与系统教学课件》§2.3零输入响应与零状态响应

下章预告
THANKS
感谢您的观看。
《信号与系统教学课件》
目录
引言 零输入响应 零状态响应 零输入响应与零状态响应的比较 总结
01
CHAPTER
引言
01
02
课程背景
随着信息技术的发展,信号与系统在现实生活和工程应用中的重要性日益凸显。
信号与系统是通信、电子、控制等领域的重要基础课程,为后续专业课程提供必要的知识储备。
零输入响应与零状态响应的定义
信号的运算与变换
信号的运算包括加减、乘除、翻转等基本运算,信号的变换包括傅里叶变换、拉普拉斯变换和Z变换等。这些运算和变换对于信号的分析和处理具有重要意义。
系统的稳定性分析
系统的稳定性是系统的重要特性之一,对于系统的分析和设计具有重要意义。稳定性分析的方法包括代数方法和几何方法,其中几何方法又包括极坐标和波德图等。
零输入响应
体现输入信号对系统的作用效果,是系统对输入信号的响应。
零状态响应
在系统中的作用
用于分析系统内部储能元件的动态特性,如电路中的电感、电容等。
用于分析系统对特定输入信号的响应,如控制系统中的输入信号对输出信号的影响等。
在实际应用中的选择
零状态响应
零输入响应
05
CHAPTER
总结
信号与系统的基本概念
线性时不变系统是信号与系统中最为常见的一类系统,其分析方法包括时域分析和频域分析。时域分析主要通过差分方程和卷积运算进行,频域分析主要通过傅里叶变换进行。
信号的分类与表示方法
信号可以根据不同的特性进行分类,如连续信号和离散信号、确定性信号和随机信号等。信号的表示方法包括时域表示法和频域表示法。
本章重点回顾
零输入响应与零状态响应的比较

信号与系统零输入响应和零状态响应

信号与系统零输入响应和零状态响应

列出零状态等效电路的微分方程为
is (t)
3A 1F 10V
1H uC (t) 2
u(t)
d dt2uz(st)2d d tuz(st)uz(it)2is(t)
其中,
uzs(0)
0
,d dt
uzs(0)
0
,is(t)3u(t)
根据微分方程经典解法易求得零状态响应中的特解为常数6
u z s ( t ) u z s _ h ( t ) u z s _ p ( t ) C z s 1 e t C z s 2 t e t 6(t 0 )
t 0 较方便,它绕过了求
时刻的初始条件的步骤。
➢第5章还将介绍系统的复频域分析法,利用复频域分析法求解系统响应,可以
t 0 自动代入
时刻的起始条件,从而更方便地求得零输入响应、零状态响应
和完全响应。
零状态响应
求解非齐次微分方程是比较烦琐的工作,所以引出卷积积分法。
(t)
h(t)
线性时不变系统
§2.2.3 零输入响应和 零状态响应
起始状态与激励源的等效转换
在一定条件下,激励源与起始状态之间可以等效转换。即可以将原始 储能看作是激励源。
系统的完全响应 可以看作
外加激励源 起始状态等效激励源
共同作用的结果
系统的完全响应 = 零输入响应 + 零状态响应 ( 线性系统具有叠加性 )
各种系统响应定义
中的各项系数 C i
而作为工程技术问题,一般激励都是从时刻 t 0 加入,系统的响应时 间范围是 0 t ,则系统的初始条件要根据系统的原始内部储能和激
励接入瞬时的情况来确定。
如具体电路系统,根据如下条件从 起始条件求初始条件

信号与系统(郑君里)复习要点

信号与系统(郑君里)复习要点

信号与系统复习书中最重要的三大变换几乎都有。

第一章 信号与系统 1、信号的分类 ①连续信号和离散信号 ②周期信号和非周期信号 连续周期信号f (t )满足f (t ) = f (t + m T ), 离散周期信号f(k )满足f (k ) = f (k + m N ),m = 0,±1,±2,…两个周期信号x(t),y(t)的周期分别为T 1和T 2,若其周期之比T 1/T 2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T 1和T 2的最小公倍数。

③能量信号和功率信号 ④因果信号和反因果信号 2、信号的基本运算(+ - × ÷) 2.1信号的(+ - × ÷)2.2信号的时间变换运算 (反转、平移和尺度变换) 3、奇异信号3.1 单位冲激函数的性质f (t ) δ(t ) = f (0) δ(t ) , f (t ) δ(t –a) = f (a) δ(t –a)例: 3.2序列δ(k )和ε(k )f (k )δ(k ) = f (0)δ(k ) f (k )δ(k –k 0) = f (k 0)δ(k –k 0)4、系统的分类与性质?d )()4sin(91=-⎰-t t t δπ)0()()(f k k f k =∑∞-∞=δ4.1连续系统和离散系统4.2 动态系统与即时系统4.3 线性系统与非线性系统①线性性质T[a f (·)] = a T[ f (·)](齐次性)T[ f1(·)+ f2(·)] = T[ f1(·)]+T[ f2(·)] (可加性)②当动态系统满足下列三个条件时该系统为线性系统:y(·) = y f(·) + y x(·) = T[{ f(·) }, {0}]+ T[ {0},{x(0)}] (可分解性)T[{a f(·) }, {0}] = a T[{ f(·) }, {0}]T[{f1(t) + f2(t) }, {0}] = T[{ f1(·) }, {0}] + T[{ f2(·) }, {0}](零状态线性) T[{0},{a x1(0) +b x2(0)} ]= aT[{0},{x1(0)}] +bT[{0},{x2(0)}](零输入线性) 4.4时不变系统与时变系统T[{0},f(t -t d)] = y f(t -t d)(时不变性质)直观判断方法:若f (·)前出现变系数,或有反转、展缩变换,则系统为时变系统。

连续时间系统的时域分析——求零输入响应和零状态响应

连续时间系统的时域分析——求零输入响应和零状态响应

连续时间系统的时域分析——求零输入响应和零状态响应(总13页)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March成绩评定表课程设计任务书目录1. 引言 (1)2 Matlab入门 (2)介绍 (2)利用编程完成习题设计 (3)3 实现连续时间系统的时域分析常用连续时间信号的类别及原理 (4)编程设计及实现 (4)运行结果及其分析 (7)结论 (20)参考文献 (21)1.引言人们之间的交流是通过消息的传播来实现的,信号则是消息的表现形式,消息是信号的具体内容。

本文概述了信号仿真系统的需求、总体结构、基本功能。

重点介绍了利用Matlab 软件设计实现信号仿真系统的基本原理及功能,以及利用Matlab软件提供的图形用户界面(Graphical User Interfaces ,GUI)设计具有人机交互、界面友好的用户界面。

本文采用Matlab的图形用户界面设计功能, 开发出了各个实验界面。

在该实验软件中, 集成了信号处理中的多个实验, 应用效果良好。

本系统是一种演示型软件,用可视化的仿真工具,以图形和动态仿真的方式演示部分基本信号的传输波形和变换,使学习人员直观、感性地了解和掌握信号与系统的基本知识。

近年来,计算机多媒体教育手段的运用逐步普及,大量优秀的科学计算和系统仿真软件不断涌现,为我们实现计算机辅助教学和学生上机实验提供了很好的平台。

通过对这些软件的分析和对比,我们选择MATLAB语言作为辅助教学工具,借助MATLAB 强大的计算能力和图形表现能力,将《信号与系统》中的概念、方法和相应的结果,以图形的形式直观地展现给我们,大大的方便我们迅速掌握和理解老师上课教的有关信号与系统的知识。

MATLAB 是一个包含大量计算算法的集合。

其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。

函数中所使用的算法都是科研和工程计算中的最新研究成果,而前经过了各种优化和容错处理。

零输入、零状态、全响应

零输入、零状态、全响应
重置
在系统运行过程中,通过重置操作将系统的状态清零,达到 零状态的效果。
零状态优势分析
简化系统分析
零状态可以简化系统的分析和设 计过程,因为在无输入信号作用 时,系统的输出仅与初始状态有 关,使得问题变得更加简单。
提高系统稳定性
零状态有助于提高系统的稳定性。 当系统处于零状态时,其内部不 存在任何振荡或不稳定因素,从 而降低了系统出现故障或失稳的 风险。
全响应满足线性性质,即系统对输入的响应可以 分解为各个输入单独作用时产生的响应之和。
3
时不变性质
全响应具有时不变性质,即系统参数不随时间变 化,输出响应仅与输入和系统函数有关。
全响应实现方式
卷积积分法
通过求解系统函数与输入的卷积积分,可以得到全响应的表达式。
频域分析法
利用傅里叶变换将时域信号转换为频域信号,通过分析系统函数在 频域的特性,可以得到全响应的频域表达式。
PART 03
零状态原理及特点
零状态定义与性质
零状态定义
零状态是指系统在某一时刻无任何输入信号作用时的状态,即系统的初始状态 为零。
零状态性质
零状态是线性时不变系统的一个重要性质,它表明系统在无输入信号作用时, 其输出仅与系统的初始状态有关,而与输入信号无关。
零状态实现方式
初始化
在系统设计时,通过初始化操作将系统的状态设置为零,从 而实现零状态。
效果评估及经验教训总结
效果评估
经过数字化转型,企业运营效率得到显著提升,客户满意度大幅提 高,市场竞争力得到增强。
成功经验
制定科学合理的数字化转型战略、搭建稳定可靠的数字化平台、注 重数据迁移与整合的质量、加强员工培训和市场推广等。
教训总结

信号与系统连续时间LTI系统的几种响应求解方法及例题

信号与系统连续时间LTI系统的几种响应求解方法及例题
1) 直接求解初始状态为零的微分方程。 2) 卷积法:
利用信号分解和线性时不变系统的特性求解。
卷积法求解系统零状态响应yf (t)的思路
1) 将任意信号分解为单位冲激信号的线性组合 2) 求出单位冲激信号作用在系统上的响应
—— 冲激响应 3) 利用线性时不变系统的特性,即可求出任意
信号f(t)激励下系统的零状态响应yf (t) 。
解:y f (t) f (t) h(t) f ( ) h(t )d = 3u( ) 2e3(t )u(t )d
= 0t 3 2e 3(t )d
0 2(1 e3t ) = 0 = 2(1 e3t )u(t)
初始条件y(0)=1, y '(0)=2, 输入信号f (t)=et u(t),求 系统的完全响应y(t)。
解:
(3) 求方程的全解
y(t)

yh (t)
yp (t)
Ae 2t

Be 4t

1 et 3
y(0) A B 1 1
y' (0)

2A
3 4B

1

2
解得 A=5/2,B= 11/6
解得 K1= 6,K2= 5
yx (t) 6e2t 5e3t , t 0
[例2] 已知某线性时不变系统的动态方程式为:
y" (t)+4y ' (t) +4y (t) = 2f ' (t )+3f(t), t>0 系统的初始状态为y(0) = 2,y'(0) = 1, 求系统的零输入响应yx(t)。
系统的初始状态为y(0) = 1,y' (0) = 3, 求系统的零输入响应yx(t)。

信号与系统零输入和零状态响应问题和解答

信号与系统零输入和零状态响应问题和解答

信号与系统零输入和零状态响应问题和解答该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

信号与系统零输入和零状态响应问题和解答该文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注。

文档下载说明Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document 信号与系统零输入和零状态响应问题和解答can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!信号与系统零输入和零状态响应问题和解答。

信号与系统§3.3 离散系统的零输入响应与零状态响应

信号与系统§3.3 离散系统的零输入响应与零状态响应
号与系统 信
§3.3 离散系统的零输入响应 与零状态响应
1. 零输入响应
2. 零状态响应
离散时间系统的全响应
与连续时间系统的情况类似,差分方程的 完全解也可称为离散时间系统的全响应,其可 表示为自由响应分量和强迫响应分量的和,或 零收入响应分量与零状态响应分量之和。自由 响应对应差分方程的齐次解,其形式根据没有 激励时的齐次方程或特征方程的特征根情况来 确定,待定系数依据差分方程的通解,即齐次 解+特解,由系统的初始状态求解;强迫响应对 应差分方程的特解,此时不考虑系统的初始状 态,其形式及待定系数依据差分方程由自由项 形式来确定和求解。
串联
iC (t ) C
vC (t)
vC(0 )
等效电路中的电容 器的起始状态为零
电感的等效电路
iL(t) L
vL(t)

iL (0 ) 0, t 0
1
iL (t) L
t
vL ( )d
1
L
iL
0vL ( )d
(0 )

1 L
1 L t
起始状态与激励源的等效转换
在一定条件下,激励源与起始状态之间可以等 效转换。即可以将原始储能看作是激励源。 电容的等效电路 电感的等效电路
系统可的以完看全做响应 起 外始加状激态 励激源励源 共 的 同 结作 果用
系统的完全响应 = 零输入响应 零状态响应
的齐次解,由非零的系统状态值决定的初始值 求出待定系数。
零状态响应
定义:不考虑原始时刻系统储能的作用(起 始状态等于零),由系统的外加激励信号产 生的响应。
系统零状态响应:是在激励作用下求系统方
程的非齐次解,由状态值Vc (0和)

《信号与系统教学课件》§2.3零输入响应与零状态响应

《信号与系统教学课件》§2.3零输入响应与零状态响应
解析表达式。
卷积法
利用输入信号和系统的冲击响 应求得它的零状态响应。
设置初态与给予输入 如何计算完整响应
设置初态
将系统的初始状态先设置,再给予 一个输入信号,求出此条件下的输 出结果。
给予输入
将一部分的初始状态和输入信号叠 加在一起,求出此条件下的输出结 果。
其他相关概念和扩展阅读
拉普拉斯变换
拉普拉斯变换是一种非常重要的 数学工具,它可以将时域函数转 化为复平面上的解析函数,从而 方便地分析系统的稳定性、因果 性、纵向稳定性等问题。
傅里叶变换
傅里叶变换是一种重要的信号处 理工具,它将连续时间域的信号 转换为连续频率域信号,方便对 信号特性的分析。
差分方程
差分方程是离散时间系统中的一 种描写方式,用于求解从各种输 入得到的输出响应,是离散信号 处理领域的基本工具之一。
总结和要点
1 理解零状态响应和零输入响应的区别 3 了解如何计算系统的完整响应
2 掌握零状态响应和零输入响应的计算方

4 了解实际问题中零状态响应和零输入响
应的应用
零输入响应的计算方法
1
寻找系统的零输入响应
将系统输入为0,求出此条件下的输出。
2
插值法
由于信号的初始状态对零输入响应有影响,需要对初始状态进行插值,再求出相 应的零输入响应结果。
3
卷积法
利用被激励系统的冲击响应求得它的零输入响应。
零状态响应的计算方法
寻找系统的零状态响应
将系统初始状态设定为0,求出 对于任意输入条件下的输出。
深入探究《信号与系统教 学课件》§2.3
了解零输入响应与零状态响应的定义、区别以及应用场景。
零输入响应与零状态响应的区别

郑君里信号与系统习题解答第二章

郑君里信号与系统习题解答第二章

第二章 连续时间系统的时域分析经典法:双零法卷积积分法:求零状态响应求解系统响应→定初始条件满足换路定则起始点有跳变:求跳变量零输入响应:用经典法求解零状态响应:卷积积分法求解()()()()⎩⎨⎧==-+-+0000L L c c i i u u例题•例题1:连续时间系统求解(经典法,双零法) •例题2:求冲激响应(n >m ) •例题3:求冲激响应(n <m ) •例题4:求系统的零状态响应 •例题5:卷积 •例题6:系统互联例2-1分析在求解系统的完全响应时,要用到有关的三个量是: :起始状态,它决定零输入响应;()()()()()()()()()强迫响应。

状态响应,自由响应,并指出零输入响应,零,求系统的全响应,已知 系统的微分方程为描述某t u t e r r t e t t e t r t t r t t r =='=+=++--,00,206d d 22d d 3d d LTI 22()-0)(k r ⎩⎨⎧状态变量描述法输出描述法—输入建立系统的数学模型:跳变量,它决定零状态响应; :初始条件,它决定完全响应;这三个量之间的关系是 分别利用 求零状态响应和完全响应,需先确定微分方程的特解。

解:方法一:利用 先来求完全响应,再求零输入响应,零状态响应等于完全响应减去零输入响应。

方法二:用方法一求零输入响应后,利用跳变量 来求零状态响应,零状态响应加上零输入响应等于完全响应。

本题也可以用卷积积分求系统的零状态响应。

方法一1. 完全响应 该完全响应是方程 (1)方程(1)的特征方程为 特征根为 方程(1)的齐次解为因为方程(1)在t >0时,可写为 (2)显然,方程(1)的特解可设为常数D ,把D 代入方程(2)求得 所以方程(1)的解为下面由冲激函数匹配法定初始条件 由冲激函数匹配法定初始条件 据方程(1)可设代入方程(1),得匹配方程两端的 ,及其各阶导数项,得 所以,所以系统的完全响应为()+0)(k zsr ()+0)(k r ()()()+-+=-000)()()(k zs k k r r r ()()++00)()(k k zs r r ,()()代入原方程有将t u t e =()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()++'0,0r r ()()++''0,0zs zs r r ()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()的解且满足00,20='=--r r 0232=++αα2121-=-=αα,()t t e A e A t r 221--+=()()()()t u t r t t r tt r 62d d 3d d 22=++3=D ()3221++=--tt e A e A t r ()()()t u b t a t t r ∆+=δ22d d ()()t u a t t r ∆=d d ()无跳变t r ()()()()()()t u t t r t u a t u b t a 6223+=+∆+∆+δδ2=a ()t δ()()22000=+=+'='-+a r r ()()200==-+r r ()()代入把20,20=='++r r ()3221++=--t t e A e A t r 1,021-==A A 得()0 32≥+-=-t e t r t ()t r zi 再求零输入响应2.求零输入响应 (3)(3)式的特征根为 方程(3)的齐次解即系统的零输入响应为所以,系统的零输入响应为 下面求零状态响应零状态响应=完全响应—零输入响应,即 因为特解为3,所以强迫响应是3,自由响应是方法二(5)以上分析可用下面的数学过程描述 代入(5)式 根据在t =0时刻,微分方程两端的 及其各阶导数应该平衡相等,得 于是t >0时,方程为 齐次解为 ,特解为3,于是有所以,系统的零状态响应为方法一求出系统的零输入响应为()是方程响应因为激励为零,零输入t r zi ()()()02d 3d d 22=++t r dt t r t t r ()()()()()()的解.,且满足 0000 2000='='='===--+--+r r r r r r zi zi zi zi 2121-=-=αα,()t t zi e B e B t r 221--+=()()式解得,代入,由)4(0020='=++zi zi r r 2,421-==B B ()0 242≥-=--t e e t r t t zi ()0 342≥++-=--t e e t r t t zs t t e e 24--+-()是方程零状态响应t r zs ()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()的解且满足000='=--zs zs r r ()项由于上式等号右边有t δ()应含有冲激函数,,故t r zs "()将发生跳变,即从而t r zs '()()-+'≠'00zs zs r r ()处是连续的.在而0=t t r zs ()()()()()t u a t r t t u b t a t r tzs zs∆=+∆+=+d d ,d d 22δ()()()()()()t u t t r t u a t u b t a 6223+=+∆+∆+δδ()t δ2=a ()()()()002000===+'='-+-+zs zs zs zs r r a r r ()()()()t u t r t t r t t r 62d d 3d d 22=++ 221t t e D e D --+()3221++=--t t zi e D e D t r ()()得由初始条件0,200=='++zs zs r r 1,421=-=D D ()0) ( 342≥++-=--t e e t r t t zs ()0 242≥-=--t e e t r t t zi完全响应=零状态响应+零输入响应,即例2-2冲激响应是系统对单位冲激信号激励时的零状态响应。

求解零状态响应的方法

求解零状态响应的方法

求解零状态响应的方法一、背景介绍在信号与系统的学习中,零状态响应是一个重要的概念。

它指的是系统在初始时刻没有任何输入时的响应。

求解零状态响应是解决很多问题的关键步骤,因此我们需要掌握一些方法来求解它。

二、定义与公式零状态响应可以用下面这个公式来表示:y(t) = h(t) * x(t)其中,h(t)表示系统的单位冲击响应,x(t)表示输入信号。

*表示卷积运算符。

三、方法一:直接求解1. 根据系统的差分方程列出递推公式。

2. 将递推公式变形为z变换形式。

3. 求出系统函数H(z)。

4. 对于一个给定的输入信号x(n),求出其z变换X(z)。

5. 将H(z)和X(z)相乘得到Y(z),即系统输出信号的z变换。

6. 对Y(z)进行反变换,得到y(n),即为零状态响应。

四、方法二:分离法1. 对于一个给定的输入信号x(n),将其分解为两部分:初始值和余值。

初始值指的是在n=0时x(n)的值,余值指的是n>0时x(n)的值。

2. 求出初始值的响应y0(n)。

由于此时没有输入信号,因此y0(n)等于系统的零状态响应。

3. 求出余值的响应yn(n)。

由于余值只在n>0时有值,因此可以将其看作是一个新的输入信号。

根据方法一求出其响应。

4. 将y0(n)和yn(n)相加得到总响应y(n),即为所求的零状态响应。

五、方法三:拉普拉斯变换法1. 对于一个给定的输入信号x(t),将其进行拉普拉斯变换得到X(s)。

2. 根据系统的差分方程列出微分方程,并进行拉普拉斯变换得到H(s)。

3. 将H(s)和X(s)相乘得到Y(s),即系统输出信号的拉普拉斯变换。

4. 对Y(s)进行反变换,得到y(t),即为所求的零状态响应。

六、注意事项1. 在使用方法一和方法二时,需要注意系统函数H(z)是否存在极点或零点,以及它们对结果的影响。

2. 在使用方法三时,需要注意系统是否稳定,并且需要对Y(s)进行部分分式分解。

七、总结求解零状态响应是信号与系统学习中重要而基础的内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⏹经典法⏹双零法☐零输入响应☐零状态响应⏹变换域法特征方程→特征根→含待定系数的齐次解→由初始条件(0-)→零输入响应方法①:先求解冲激响应h(t),再计算零状态响应h(t)*f(t) 。

方法②:将输入信号等效为某虚拟系统的冲激响应,然后求解系统和虚拟系统的总响应,得到零状态响应。

单位冲激响应(复习)()()n n m m n m m p a p a p a h t b p b p b p b t −−−−++++=++++11110110()()δ h(t ) 的表达式:①与特征根有关当为无重根单根形式时有:①与n,m相对大小有关●当n > m 时,h (t )中不含δ(t )及其各阶导数●当n=m 时,h (t )中应包含δ(t )●当n < m 时,h (t )中应包含δ(t )及其各阶导数1(?)()k nt k k h A e u t t λ=⎡⎤=⎢⎥⎣⎦+∑零输入/零状态的求解方法;全响应分析零输入/零状态的求解方法;全响应分析1.掌握零输入/零状态响应的求解方法2.掌握系统的全响应模式方法一(掌握):卷积法求解,在求解冲激响应的基础上,利用卷积求解。

双零法零输入特征方程→特征根→含待定系数的齐次解→由0-时刻的初始条件计算系数求解冲激响应,通过卷积计算任意输入信号的响应零状态零状态()f t()()*()fy t f t h t=零状态响应5、零状态响应的求解初始状态为零时,输出y(t)完全由输入f(t)决定,此时y(t)=yf(t)。

零状态响应可以由三种方法得到。

()i h t τ−()i t δτ−时不变()()i i i f t ττδτΔ−(())i i i h t f τττΔ−线性()()i i i i f t ττδτ∞=−∞Δ−∑可加性()()i i i i h t f τττ∞=−∞−Δ∑i i i idt τττττΔ→Δ连续变化(0),用代替,并用替换()()f t d τδττ∞−∞−⎰)(()f d h t τττ∞−∞−⎰线性时不变()()()f t d f t τδττ∞≡−=⎰()()()==h t f t y t ∗零状态卷积法的由来:LTI系统的性质5、零状态响应的求解卷积法求解零状态响应:线性时不变系统的性质若系统为因果系统, 即h (信号,则有0(()(tf t f h τ⎰方法二(熟练掌握):将输入信号f (t )看做某个系统的冲激响应的,此时f (t )通过系统的响应等于:①冲激信号经过h 1(t )=f (t )的系统②再通过冲激响应为h (t )的系统的响应③列写h all (t )=f (t )*h (t )的算子方程④利用2.6中冲激响应求解法得h all (t ),即有y f (t )=h all (t )()f t ()()*()f y t f t h t =零状态()f t all ()()*()h t f t h t =5、零状态响应的求解零状态()f t ()()*f y t f t =零状态响应非常重要:①系统分析的大问题;②概念容易混淆。

系统全响应系统全响应= 零输入响应+ 零状态响应(Zero-input)(Zero-state)= 自然响应+ 强迫响应(Natural)(Forced)= 瞬态响应+ 稳态响应(Transient-state)(Steady-state)()()11110110()()()()()()nn mm n m m pa pa p ab p b py t f t D p y t N p f t b p b −−−−++++=++++= 根据全响应的特点,在分析系统时,常用三种划分方法。

零输入响应:y x (t )完全由D (p )=0的特征根对应的响应模式得到。

零状态响应:y f (t )由与初始状态无关。

()()()x f y t y t y t =+1、系统全响应= 零输入响应+ 零状态响应()()11110110()()()()()()nn mm n m m pa pa p ab p b py t f t D p y t N p f t b p b −−−−++++=++++=)t (i 12F 列写微分方程12λλ=。

由KVL))]−−=223()()()5552015零输入响应零状态响应tttttzi zs i t i t i t e e e e e −−−−−=+=−+−+−()()()n y t y t y t ϕ=+223()()()5552015()t t t t tx y i t i t i t e e e e e u t −−−−−⎡⎤=+=−+−+−⎢⎥⎢⎥⎣⎦零输入响应零状态响应上例中,系统的特征根为:23()3()2()10()tp i t pi t i t p e u t −⎡⎤++=⎣⎦1212=−=−λλ,全响应中的e -t 和e -2t 项与激励信号e -3t 项无关,只与系统本身的特性,即微分方程的特征模式有关。

这种有系统特征模式决定的响应被被称为自然响应或自由响应,通常表示为y n (t )(对应经典法中的齐次解)。

全响应中的e -3t 项完全由激励信号决定,通常被称为强迫响应,表示为y ϕ(t ) 。

(对应经典法中的特解)2、系统全响应= 自然响应+ 强迫响应223()55520150t t t t ty t e e e e e t −−−−−=−+−+−≥零状态响应零输入响应自然响应强迫响应零输入响应= 一部分自然响应零状态响应= 另一部分自然响应+ 强迫响应注意:系统全响应中,零输入响应和零状态响应共同作用,有可能会产生系统齐次解中不存在的特解,也有可能抵消掉一些自然响应项。

()y t ϕ()n y t 2、系统全响应= 自然响应+ 强迫响应223()55520150t t t t t y t e e e e e t −−−−−=−+−+−≥零状态响应零输入响应自然响应强迫响应全响应中的e -t 、e -2t 与e -3t 项随着时间的增加而衰减,并最终会消失。

这种响应被称为瞬态响应。

瞬态响应系统全响应中那些随着时间的增加一直保留的分量称为稳态响应。

本例的全响应中,无稳态响应分量。

系统全响应= 瞬态响应+ 稳态响应3、系统全响应= 瞬态响应+ 稳态响应3()2()(),(0)t py t y t e u t y a−+==例2:设系统输入输出关系和初始条件分别为容易得到:223()()()()5()5()x f t t ty t y t y t ae u t e u t e u t −−=+=−+稳态响应瞬态响应3、系统全响应= 瞬态响应+ 稳态响应∞−∞<∞ττ()h d稳态响应与稳定系统①稳定系统的自然响应是瞬态响应;②输入信号随时间增长而衰减,强迫响应是瞬态的;③不稳定系统的自然响应中有稳态响应;④输入信号不随时间增长而衰减,强迫响应是稳态响应。

稳定系统自然响应全部是瞬态响应,即自然响应没有稳态响应充要条件稳态响应与稳定系统223()55520150t t tt ty t e e e e e t −−−−−=−+−+−≥ 零状态响应零输入响应 自然响应强迫响应瞬态响应2()(2)()t t h t e e u t −−=−+该系统为稳定系统数学模型:用常系数微分方程来描述系统全响应= 零输入响应+ 零状态响应系统特征模式的线性组合零状态响应:()()()()zs f t y t f t h t →=∗零输入响应:系统全响应= 零输入响应+ 零状态响应= 自然响应+ 强迫响应= 瞬态响应+ 稳态响应系统稳定性:自然响应全部为瞬态响应,或系统单位冲激响应是绝对可积。

连续LTI系统的时域分析法小结本章作业补充知识阶跃响应()()u t g t → 系统在单位阶跃信号作用下的零状态响应,称为单位阶跃响应,简称阶跃响应。

()t δ()h t ()u t ()g t 我们可以根据线性时不变系统特性,利用冲激响应与阶跃响应关系求阶跃响应。

线性时不变系统满足微、积分特性()()d ,()()d t tu t g t h δττττ−∞−∞=∴=⎰⎰【例1】全响应的三种解法3()(),(0)1,(0)1t f t e u t y y −−−′===求系统()3()2()2()()y t y t y t f t f t ′′′′++=+已知:的全响应,【解】:方法三:变换法(以后学习)。

相关文档
最新文档