数学上册《勾股定理的应用》教学案
北师大版八年级数学上册:1.3《勾股定理的应用》教案
![北师大版八年级数学上册:1.3《勾股定理的应用》教案](https://img.taocdn.com/s3/m/9f0e895303020740be1e650e52ea551810a6c92e.png)
北师大版八年级数学上册:1.3《勾股定理的应用》教案一. 教材分析《勾股定理的应用》是北师大版八年级数学上册第一章第三节的内容。
本节课主要让学生掌握勾股定理在实际问题中的应用,培养学生的解决问题的能力。
教材通过引入古希腊数学家毕达哥拉斯的故事,引导学生探索直角三角形斜边与两直角边的关系,从而引入勾股定理。
学生通过观察、实验、猜想、验证等过程,体验数学的探索乐趣,提高解决问题的能力。
二. 学情分析学生在七年级已经学习了直角三角形的性质,对直角三角形的边长关系有一定了解。
但勾股定理的应用涉及实际问题,对学生来说是一个新的挑战。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生将理论知识与实际问题相结合,提高解决问题的能力。
三. 教学目标1.理解勾股定理的含义,掌握勾股定理在直角三角形中的应用。
2.能够运用勾股定理解决实际问题,提高解决问题的能力。
3.培养学生的合作、交流、探究能力,体验数学探索的乐趣。
四. 教学重难点1.重难点:勾股定理的应用。
2.难点:如何将实际问题转化为勾股定理的形式,求解问题。
五. 教学方法1.采用问题驱动法,引导学生探究勾股定理的应用。
2.运用合作学习法,让学生在小组内讨论、交流,共同解决问题。
3.采用启发式教学法,教师提问、学生回答,激发学生的思维。
4.利用多媒体辅助教学,展示勾股定理的应用实例。
六. 教学准备1.准备相关课件、教学素材。
2.设计好教学问题,准备好答案。
3.安排好教学过程中的各个环节。
七. 教学过程1.导入(5分钟)利用多媒体展示勾股定理的动画故事,引导学生了解勾股定理的背景。
同时,提问学生:“你们认为直角三角形的斜边与两直角边有什么关系?”2.呈现(10分钟)教师提出一组实际问题,如:“一个直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。
”让学生尝试解决。
学生在解决过程中,发现无法直接运用已知的直角三角形性质解决问题,从而引出勾股定理。
3.操练(10分钟)教师提出多个关于勾股定理的应用问题,让学生在小组内讨论、交流,共同解决。
《勾股定理的应用》教案 (公开课)2022年人教版数学
![《勾股定理的应用》教案 (公开课)2022年人教版数学](https://img.taocdn.com/s3/m/ea3a5fe014791711cd79171a.png)
第2课时勾股定理的应用1.熟练运用勾股定理解决实际问题;(重点)2.掌握勾股定理的简单应用,探究最短距离问题.(难点)一、情境导入如图,在一个圆柱石凳上,假设小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?二、合作探究探究点一:勾股定理的实际应用【类型一】勾股定理在实际问题中的应用如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子始终是直的,结果保存根号)解析:开始时,AC=5米,BC=13米,即可求得AB的值,6秒后根据BC,AC长度即可求得AB的值,然后解答即可.解:在Rt△ABC中,BC=13米,AC =5米,那么AB=BC2-AC2=12米.6秒后,B′C×6=10米,那么AB′=B′C2-AC2=53(米),那么船向岸边移动的距离为(12-53)米.方法总结:此题直接考查勾股定理在实际生活中的运用,可建立合理的数学模型,将条件转化到同一直角三角形中求解.【类型二】利用勾股定理解决方位角问题如下列图,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了1003km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.解析:根据所走的方向可判断出△ABC 是直角三角形,根据勾股定理可求出解.解:∵AD∥BE,∴∠ABE=∠DAB=60°.∵∠CBF=30°,∴∠ABC=180°-∠ABE-∠CBF=180°-60°-30°=90°.在Rt△ABC中,AB=1003km,BC=100km,∴AC=AB2+BC2=202103〕2+1002=200(km),∴A、C两点之间的距离为200km.方法总结:先确定△ABC是直角三角形,再根据各边长,用勾股定理可求出AC 的长.【类型三】利用勾股定理解决立体图形最短距离问题如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的外表从点A爬到点M,需要爬行的最短距离是多少?解:分两种情况比较最短距离:如图①所示,蚂蚁爬行最短路线为AM,AM =102+〔20+5〕2=529(cm),如图②所示,蚂蚁爬行最短路线为AM,AM=202+2021+5〕2=25(cm).∵529>25,∴第二种短些,此时最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【类型四】运用勾股定理解决折叠中的有关计算如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3,那么AM的长是()解析:连接BM,MB′.设AM=x,在Rt△ABM中,AB2+AM2=BM2.在Rt△MDB′中,MD2+DB′2.∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x=2,即AM=2.应选B.方法总结:解题的关键是设出适当的线段的长度为x,然后用含有x的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型五】勾股定理与方程思想、数形结合思想的应用如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D处向上爬到树顶A 处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,两猴子所经过的路程都是15m,求树高AB.解析:在Rt△ABC中,∠B=90°,那么满足AB2+BC2=AC2.设BC=a m,AC=b m,AD=x m,根据两只猴子经过的路程一样可列方程组,从而求出x的值,即可计算树高.解:在Rt△ABC中,∠B=90°,设BC =a m,AC=b m,AD=x m.∵两猴子所经过的路程都是15m,那么10+a=x+b=15m.∴a=5,b=15-x.又∵在Rt△ABC中,由勾股定理得(10+x)2+a2=b2,∴(10+x)2+52=(15-x)2,解得x=2,即AD=2米.∴AB=AD+DB=2+10=12(米).答:树高AB为12米.方法总结:勾股定理表达式中有三个量,如果条件中只有一个己知量,通常需要巧设未知数,灵活地寻找题中的等量关系,然后利用勾股定理列方程求解.探究点二:勾股定理与数轴如下列图,数轴上点A所表示的数为a,那么a的值是()A.5+1 B .-5+1C.5-1D. 5解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A 点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A的距离是 5.那么点A所表示的数为5-1.应选C.方法总结:此题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A的位置,再根据A的位置来确定a 的值.三、板书设计1.勾股定理的应用方位角问题;路程最短问题;折叠问题;数形结合思想.2.勾股定理与数轴本节课充分锻炼了学生动手操作能力、分类比较能力、讨论交流能力和空间想象能力,让学生充分体验到了数学思想的魅力和知识创新的乐趣,突现教学过程中的师生互动,使学生真正成为主动学习者.第2课时平行四边形的判定定理11.掌握“一组对边平行且相等的四边形是平行四边形〞的判定方法;(重点) 2.平行四边形性质定理与判定定理的综合应用.(难点)一、情境导入我们已经知道,如果一个四边形是平行四边形,那么它就具有如下的一些性质:1.两组对边分别平行且相等;2.两组对角分别相等;3.两条对角线互相平分.那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法呢?二、合作探究探究点一:一组对边平行且相等的四边形是平行四边形,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.解析:首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF =∠BCE,可证出AD∥CB,根据一组对边平行且相等的四边形是平行四边形可证出结论.解:四边形ABCD是平行四边形,证明:∵DF∥BE,∴∠AFD=∠CEB,又∵AF=CE、DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出三角形全等.探究点二:平行四边形的判定定理与性质的综合应用【类型一】利用性质与判定证明如图,四边形ABCD是平行四边形,BE⊥AC于点E,DF⊥AC于点F.(1)求证:△ABE≌△CDF;(2)连接BF、DE,试判断四边形BFDE 是什么样的四边形?写出你的结论并予以证明.解析:(1)根据“AAS〞可证出△ABE≌△CDF;(2)首先根据△ABE≌△CDF得出AE=FC,BE=DF,再利用得出△ADE≌△BCF,进而得出DE =BF,即可得出四边形BFDE是平行四边形.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠BAC=∠DCA.∵BE⊥AC于E,DF⊥AC于F,∴∠AEB=∠DFC=90°.在△ABE和△CDF中,⎩⎪⎨⎪⎧∠DFC=∠BEA,∠FCD=∠EAB,AB=CD,∴△ABE≌△CDF(AAS);(2)解:四边形BFDE是平行四边形,理由如下:∵△ABE≌△CDF,∴AE=FC,BE=DF,∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB.∴∠DAC=∠BCA.在△ADE和△CBF中,⎩⎪⎨⎪⎧AD=BC,∠DAE=∠BCF,AE=FC,∴△ADE≌△CBF,∴DE=BF,∴四边形BFDE是平行四边形.方法总结:平行四边形对边相等,对角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,假设要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形到达上述目的.【类型二】利用性质与判定计算如图,六边形ABCDEF的六个内角均为120°,且CD=2cm,BC=8cm,AB =8cm,AF=5cm.试求此六边形的周长.解析:由∠A=∠B=∠C=∠D=∠E =∠F=120°,联想到它们的邻补角(即外角)均为60°,如果能够组成三角形的话,那么必为等边三角形.事实上,设BC、ED的延长线交于点N,那么△DCN为等边三角形.由∠E=120°,∠N=60°,可知EF∥BN.同理可知ED∥AB,于是从平行四边形入手,找出解题思路.解:延长ED、BC交于点N,延长EF、BA交于点M.∵∠EDC=∠BCD=120°,∴∠NDC=∠NCD=60°.∴∠N=60°.同理,∠M=60°.∴△DCN、△FMA 均为等边三角形.∴∠E+∠N=180°.同理∠E+∠M=180°.∴EM∥BN,EN∥MB.∴四边形EMBN是平行四边形.∴BN=EM,MB=EN.∵CD=2cm,BC=8cm,AB=8cm,AF=5cm,∴CN=DN=2cm,AM=FM=5cm.∴BN=EM=8+2=10(cm),MB=EN =8+5=13(cm).∴EF+F A+AB+BC+CD +DE=EF+FM+AB+BC+DN+DE=EM +AB+BC+EN=10+8+8+13=39(cm),∴此六边形的周长为39cm.方法总结:解此题的关键是作辅助线,将“不规那么〞的六边形变成“规那么〞的平行四边形,从而利用平行四边形的知识来解决.三、板书设计一组对边平行且相等的四边形是平行四边形本节课,学习了平行四边形的两种判定方法,对整个课堂的学习过程进行反思,能够促进理解,提高认识水平,从而促进数学观点的形成和开展,更好地进行知识建构,实现良性循环.。
勾股定理教案范本 勾股定理教案教学方法优秀7篇
![勾股定理教案范本 勾股定理教案教学方法优秀7篇](https://img.taocdn.com/s3/m/47118d19580102020740be1e650e52ea5418ce5f.png)
勾股定理教案范本勾股定理教案教学方法优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理教案范本勾股定理教案教学方法优秀7篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
勾股定理的应用教学设计5篇
![勾股定理的应用教学设计5篇](https://img.taocdn.com/s3/m/f0e1c8483a3567ec102de2bd960590c69ec3d8ee.png)
勾股定理的应用教学设计5篇第一篇:《勾股定理的应用》教学设计《勾股定理的应用》教学设计——解决立体图形外表上最短路线的问题__县第_中学李政法一、内容及内容解析1、内容勾股定理的应用——解决立体图形外表上最短路线的问题。
2、内容解析本节课是勾股定理在立体图形中的一个拓展,在初中阶段,勾股定理在求两点间的距离时,沟通了几何图形和数量关系,发挥了重要的作用,在中考中有席之地。
启发学生对空间的认知,为将来学习空间几何奠定根底。
二、教学目标1、能把立体图形依据需要局部展开成平面图形,再建立直角三角形,利用两点间线段最短勾股定理求最短路径径问题。
2、学会观看图形,勇于探究图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,培养学生的合作交流能力,体验数学学习的有用性,增强自信心,呈现成功感。
三、教学重难点【重点】:探究、发觉立体图形展开成平面图形,利用两点间线段最短勾股定理求最短路径径问题。
【难点】:查找长方体中最短路线。
四、教学方法本课采纳学生自主探究归纳教学法。
教学中,学生充分运用多媒体资源及大量的实物教具和学具,通过观看、思考、操作,归纳。
五、教学过程【复习回忆】右图是湿地公园长方形草坪一角,有人避开拐角在草坪内走出了一条小路,问这么走的理论依据是什么?若两步为1m,他们仅仅少走了几步?目的:1、复习两点之间线段最短及勾股定理,为新课做预备;2、激起学生爱护环境意识和对核心价值观“文明、友善”的践行。
思考:如图,立体图形中从点A到点B处,怎样找到最短路线呢?目的:引出课题。
【台阶中的最值问题】三级台阶示意图如图,每级台阶的长、宽、高分别为5dm、3dm和1dm,请你想一想,一只蚂蚁从点A动身,沿着台阶面爬行到点B,爬行的最短路线是多少?老师活动:假如A、B两点在同一个平面上,直接连接两点即可求出最短路。
八年级数学上册《勾股定理》教案、教学设计
![八年级数学上册《勾股定理》教案、教学设计](https://img.taocdn.com/s3/m/8962d34d876fb84ae45c3b3567ec102de2bddf23.png)
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对勾股定理的证明和应用进行讨论。鼓励学生发表自己的观点,分享解题思路。
2.交流展示:每个小组选派代表进行成果展示,其他小组成员认真倾听,互相学习,共同进步。
-通过实际操作,如拼图、构造三角形等,让学生直观感受逆定理的应用。
-设计开放性问题,如“如何确定一个三角形是直角三角形?”鼓励学生多角度思考问题。
5.情感态度与价值观的培养:在教学过程中,注重渗透数学文化,介绍勾股定理的历史背景和我国古代数学家的贡献。
-增强学生的民族自豪感,激发学生对数学文化的兴趣。
5.能够运用勾股定理推导出相似直角三角形的边长比例关系。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法引导学生学习:
1.通过实际问题引入勾股定理,激发学生的学习兴趣,培养学生的观察力和思考能力。
2.采用探究式教学方法,引导学生通过观察、实验、归纳等方法发现勾股定理,并理解其内涵。
3.运用数形结合的方法,将勾股定理与图形相结合,培养学生的空间想象能力和几何直观。
(五)总结归纳
1.学生总结:让学生回顾本节课所学内容,分享自己的收获和感悟。
2.教师总结:强调勾股定理的重要性,概括本节课的重点和难点,提醒学生课后巩固。
3.情感态度与价值观的渗透:引导学生认识到勾股定理在几何学中的重要地位,激发学生对数学的热爱和探索精神。
五、作业布置
为了巩固学生对勾股定理的理解和应用,以及培养学生的独立思考和解决问题的能力,特布置以下作业:
-培养学生严谨、踏实的科学态度,认识到数学知识在实际生活中的广泛应用。
勾股定理教学设计(优秀3篇)
![勾股定理教学设计(优秀3篇)](https://img.taocdn.com/s3/m/eeec75387f21af45b307e87101f69e314332faaa.png)
勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
华东师大版八年级数学上册14.2勾股定理的应用教学设计
![华东师大版八年级数学上册14.2勾股定理的应用教学设计](https://img.taocdn.com/s3/m/a893d737ae1ffc4ffe4733687e21af45b207fe59.png)
-通过动态演示或实物模型,引导学生发现直角三角形三边之间的关系,从而引出勾股定理。
-结合图形,详细讲解勾股定理的公式及其推导过程,让学生深刻理解定理的内涵。
-通过例题,展示勾股定理在实际问题中的应用,如计算斜边长度、确定直角三角形的形状等。
3.课堂练习:
-设计不同难度的练习题,让学生独立完成,巩固勾股定理的知识。
2.实践应用题:设计一道与实际生活相关的勾股定理应用题,要求同学们运用所学知识解决问题。例如,假设学校旗杆的高度不易直接测量,但我们可以测得旗杆底端到地面的水平距离以及旗杆顶端到视线的垂直距离,请计算旗杆的大致高度。
3.创新思维题:请同学们思考并尝试证明勾股定理的逆定理,即在一个三角形中,如果一边的平方等于另外两边平方和,那么这个三角形是直角三角形。鼓励同学们运用多种方法进行证明,如几何法、代数法等。
2.学生在解决实际问题时,可能难以将勾股定理与问题情境有效结合。教师应通过丰富的实例,引导学生学会运用勾股定理分析问题、解决问题。
3.学生的几何直观能力和逻辑思维能力发展不平衡,部分学生可能在学习过程中感到困难。教师应关注学生的个体差异,提供不同难度的学习任务,使每个学生都能在原有基础上得到提高。
4.学生在合作学习过程中,可能存在交流不畅、分工不明确等问题。教师应引导学生学会倾听、表达和协作,提高学生的团队协作能力。
-针对学生的错误,及时进行讲解和指导,帮助学生克服难点。
4.小组合作:
-将学生分成小组,针对实际问题进行讨论和合作,培养学生的团队协作能力和解决问题的能力。
-引导学生运用勾股定理解决实际问题,如设计建筑物的高度、测量河流宽度等。
5.课堂小结:
-通过提问、总结等方式,帮助学生梳理本节课的知识点,形成知识结构。
勾股定理的应用教学设计教案
![勾股定理的应用教学设计教案](https://img.taocdn.com/s3/m/412682f0de80d4d8d05a4f6d.png)
《勾股定理的应用》教学设计
华师大版八年级(上)
江阴长泾中学费瑞芳
教学目标:1、知识与方法目标:通过对一些典型题目的思考、练习,能正确、熟练的进行勾股定理有关计算,深入对勾股定理的理解。
并能运用勾股定理解决简单的实际问题。
2、过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的。
培养学生分析问题和解决问题的能力。
3、情感与态度目标:感受数学在生活中的应用,感受数学定理的美。
教学重点:勾股定理的应用
教学内容:华师大版八年级(上)第14章第2节勾股定理的应用(1)
教学难点:勾股定理的灵活应用。
转化的思想。
教学方法:观察、比较、合作、交流、探索
教学过程:
教学反思
在数学教学过程中,知识的传授不应是教师单纯的讲解与学生简单的模仿,而应通过数学活动,让学生经历知识的探索过程,从而使学生更好地理解知识,发展应用数学的能力。
介于这个原因,我在本节课中设计的问题,都较吸引学生,让学生经历观察、分析、合作、交流、应用等一系列活动,这样,既注意课内知识的吸收和体验探索的艰辛,也领略到成功的愉悦,从而较好的体现了新课程的基本理念。
同时,关注学生的心理需求,拓展学生的学习空间,教师在语言上力求多激励学生,多引导学生,使学生在课堂活动中感悟学习知识的重要性,展示一个平等、互动的民主课堂。
勾股定理教案范本 勾股定理教案教学方法优秀6篇
![勾股定理教案范本 勾股定理教案教学方法优秀6篇](https://img.taocdn.com/s3/m/c7843d6d3d1ec5da50e2524de518964bcf84d298.png)
勾股定理教案范本勾股定理教案教学方法优秀6篇初中数学《勾股定理》教学设计篇一一、学生知识状况分析本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。
学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。
二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。
具体内容是运用勾股定理及其逆定理解决简单的实际问题。
当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。
三、本节课的教学目标是:1.通过观察图形,探索图形间的关系,发展学生的空间观念。
2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的`重点也是难点。
四、教法学法1.教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程。
2.课前准备教具:教材、电脑、多媒体课件。
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具五、教学过程分析本节课设计了七个环节。
第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。
八年级数学上册《勾股定理的应用》教案、教学设计
![八年级数学上册《勾股定理的应用》教案、教学设计](https://img.taocdn.com/s3/m/7b7f1df0d0f34693daef5ef7ba0d4a7302766cba.png)
八年级的学生已经具备了一定的数学基础,掌握了基本的几何知识和代数运算。在此基础上,他们对勾股定理的学习将更加深入,对数学问题的分析和解决能力也将得到提升。然而,由于学生的认知水平和思维能力存在差异,部分学生可能在理解勾股定理的本质和灵活运用方面存在困难。因此,在教学过程中,教师应关注以下几点:
-详细讲解勾股定理的推导过程。
2.教学方法:
-采用直观演示法,让学生对勾股定理有更深刻的理解;
-结合实际例子,解释勾股定理在生活中的应用;
-通过讲解和推导,使学生掌握勾股定理的原理。
(三)学生小组讨论
1.教学活动设计:
-将学生分成若干小组,每组讨论以下问题:
a.勾股定理的推导方法有哪些?
b.勾股定理在生活中的应用实例;
-教师进行点评,总结学生在课堂上的表现;
-鼓励学生提出问题,激发他们进一步探索勾股定理的兴趣。
五、作业布置
为了巩固本节课所学内容,培养学生的独立思考能力和解决问题的能力,特布置以下作业:
1.基础巩固题:
-根据课堂练习,完成课后习题第1-10题,要求学生独立完成,家长签字确认;
-通过勾股定理计算以下直角三角形的斜边长度:3,4,5;5,12,13;8,15,17等,并简要说明计算过程。
5.培养学生热爱科学、追求真理的价值观,树立正确的人生观和价值观。
在具体的教学过程中,教师应关注学生的个体差异,充分调动学生的积极性,引导他们主动参与课堂活动,提高教学效果。同时,注重课后辅导,帮助学生巩固所学知识,提高数学素养。总之,本章节教学设计旨在使学生在掌握勾股定理的基础上,提高数学应用能力,培养良好的情感态度和价值观。
3.精讲精练,巩固提高:
-对勾股定理进行详细讲解,强调关键点,帮助学生建立清晰的知识结构;
北师大版八年级数学上册《勾股定理的应用》示范课教学设计
![北师大版八年级数学上册《勾股定理的应用》示范课教学设计](https://img.taocdn.com/s3/m/d928a4dc846a561252d380eb6294dd88d0d23d15.png)
第一章勾股定理3 勾股定理的应用一、教学目标1.会灵活运用勾股定理求解立体图形上两点之间路线最短的问题.体会勾股定理在代数问题和几何问题中的应用.2.能正确运用勾股定理及直角三角形的判别方法解决简单的实际问题.3.能够运用勾股定理解决实际生活中的问题,熟练运用勾股定理进行计算,增强数学知识的应用意识.4.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.二、教学重难点重点:会用勾股定理求解立体图形上两点之间路线最短的问题.难点:能正确运用勾股定理及直角三角形的判别方法解决简单的实际问题.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【复习回顾】教师活动:教师引导学生回顾勾股定理,并通过简单的提问,回顾勾股定理逆定理以及勾股数的内容,接着通过小情境引入本节课要讲解的内容.勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a²+b²=c².如果三角形的三边长a、b、c满足a²+b²=c²,那么这个三角形是.预设答案:直角三角形.满足a²+b²=c²的三个正整数,称为.预设答案:勾股数.观察思考:小明要去野外郊游,走哪条路最近呢?为什么呢?教师活动:教师提出问题,观察学生如何思考,再让学生说明理由.关注学生能否都认真看题积极思考,能否立刻利用两点之间线段最短确定最短路径.答案:线路③.【问题探究】有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm.在圆柱下底面的点A有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物,沿圆柱侧面蚂蚁怎么爬行的路程最短呢?做一做自己做一个圆柱,尝试从A点到B点沿圆柱侧面画出几条路线,你觉得哪条路线最短呢?教师活动:让学生说出自己规划的蚂蚁的路线,然后用课件展示.③A→B的路线长为:AA′+A′B ;③A→B的路线长为:AA′+曲线A′B;③A→B的路线长为:曲线AP +曲线PB;③A→B的路线长:曲线AB.将圆柱侧面剪开展成一个长方形,从点A到点B的最短路线是什么?你画对了吗?教师活动:对照圆柱上的线路,用课件展示侧面剪开图,让学生观察并说出哪条线路最近.教师活动:将圆柱的侧面展开,把曲线分别转化为对应线段,然后结合两点之间线段最短,得出结论:第(4)种方案路程最短.追问:蚂蚁从点A出发,想吃到点B上的食物,它沿圆柱侧面爬行的最短路程是多少?该如何计算呢?答案:在Rt③A′AB中,利用勾股定理,得AB²=AA′²+A′B².其中AA′是圆柱体的高,A′B是底面圆周长的一半(πr) .已知圆柱体高为12 cm,底面周长为18 cm,则AB=15cm.做一做如图,在棱长为10 cm的正方体的一个顶点A处有一只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是1 cm/s,且速度保持不变,问蚂蚁能否在20 s内从A爬到B?教师活动:先由学生独立完成,教师及时给予指导,在此活动中,教师应重点关注学生能否进一步理解蚂蚁最近线路该如何走.多媒体展示答题过程解:将正方体展开得到如下图形,由勾股定理得,22AB2.=10+20=50020×1=20(cm).③202<500.③蚂蚁不能在20 s内从A爬到B.【思考探究】教师活动:多媒体演示课件,引导学生观察并思考:李叔叔想要检测雕塑底座正面的边AD和边BC是否分别垂于底边AB,但他随身只带了卷尺.你能替他想办法完成任务吗?提示:连接BD,如果能算出AD2+AB2=BD2 ,就可以说明边AD和边BC分别垂于底边AB.提示:连接AC,如果能算出AB2+BC2=AC2 ,就可以说明边BC垂于底边AB.问题:李叔叔想要检测雕塑底座正面的边AD 和边BC是否分别垂直于底边AB,但他随身只带了卷尺.李叔叔量得边AD长是30 cm,边AB长是40 cm,边BD长是50 cm.边AD垂直于边AB 吗?教师活动:引导学生通过勾股定理证得BC垂直于AB得出结论.巡视同学做题过程,对于有困难的学生给予指导,然后用多媒体展示答题过程.解:连接BD③AD=30,AB=40,BD=50又③AD2+AB2=302+402=502=BD2③ΔABD为直角三角形,③A=90°③AD⊥AB同理可证得:BC⊥AB.问题:小明随身只有一个长度为20cm的刻度尺,他能有办法检验边AD是否垂直于边AB吗?解:在AD上取点M,使AM=9,在AB上取点N,使AN=12,92+122=152【典型例题】教师提出问题,学生先独立思考,解答.然后再在小组内交流探讨,教师巡视,如遇到有困难的学生适当点拨,最终教师展示答题过程.典型例题【例1】如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3 m,CD=1 m,试求滑道AC的长.分析:根据题意可的AC=AB,可设AC为x m,从而AE是(x-1)m,而③AEC是直角三角形,由勾股定理可得AC的值.解:设滑道AC的长度为x m,则AB的长度为x m,AE的长度为(x-1)m.在Rt③AEC中,③AEC=90°,由勾股定理得AE2+CE2=AC2,即(x-1)2+32= x 2,解得x =5.故滑道AC的长度为5 m.【例2】在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂,树的顶部落在离树根底部8米处.你能告诉小明这棵树折断之前有多高吗?教师根据题干分析题中提供的已知条件,并画出图形.解:根据题意可以构建一直角三角形模型,如图.在Rt③ABC中,AC=6米,BC=8米,由勾股定理得AB=10米.③这棵树在折断之前的高度是10+6=16(米).教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.小华和小刚兄弟两个同时从家去同一所学校上学,速度都是每分钟走50米.小华从家到学校走直线用了10分钟,而小刚从家出发先去找小明再到学校(均走直线),小刚到小明家用了6分钟,小明家到学校用了8分钟,小刚上学走了个()A.锐角弯B.钝角弯C.直角弯D.不能确定教师画示意图:222⨯+⨯=⨯(650)(850)(1050)∴所以小刚上学走了个直角弯.答案:C2.如图是一张直角三角形的纸片,两直角边AC=6 cm,BC=8 cm,将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长是.教师提示:因为DE是折痕,所以E为AB的中点,AE=BE=12AB,只要根据勾股定理求出Rt△ABC斜边AB的长,就可求出BE的长.答案:5 cm.3.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,2h后同时停下来,这时A、B两组相距30km.此时,A,B两组行进的方向成直角吗?请说明理由.解:2小时后,A组行驶的路程为:12×2=24(km);B组行驶的路程为:9×2=18(km);又因为A,B两组相距30 km,且有242+182=302所以A,B两组行进的方向成直角.。
北师大版八年级上册数学1.3勾股定理的应用(教案)
![北师大版八年级上册数学1.3勾股定理的应用(教案)](https://img.taocdn.com/s3/m/6d56942d00f69e3143323968011ca300a6c3f6ff.png)
在今天的课程中,我们探讨了勾股定理的应用。回顾整个教学过程,我觉得有几个方面值得反思和总结。
首先,关于导入新课环节,我通过提出一个与生活密切相关的问题来激发学生的兴趣,效果还是不错的。大部分同学都能够积极参与,表达自己的想法。但我也注意到,有些学生对这个问题还不够敏感,可能是因为他们对勾股定理还不够熟悉。在今后的教学中,我需要更加关注这部分学生,尽量用简单易懂的语言和例子来引导他们。
-学生需掌握勾股定理的表述和证明,即直角三角形两直角边的平方和等于斜边的平方。
-学生需学会运用勾股定理解决实际问题,如计算直角三角形的斜边长度或确定直角三角形的形状。
-学生应能运用勾股定理推导出直角三角形的其他性质,如面积公式和周长计算。
-举例解释:例如,在解决实际问题中,学生需要能够识别直角三角形的结构,并应用勾股定理来计算斜边的长度。重点在于让学生理解勾股定理是解决这类问题的基本工具。
北师大版八年级上册数学1.3勾股定理的应用(教案)
一、教学内容
本节课选自北师大版八年级上册数学第1章第3节“勾股定理的应用”。教学内容主要包括以下方面:
1.理解勾股定理的应用范围,掌握勾股定理在直角三角形中的运用;
2.学会运用勾股定理解决实际问题,如计算直角三角形的斜边长度、确定直角三角形的形状等;
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
《勾股定理的应用---怎样走最近?》的教学设计
![《勾股定理的应用---怎样走最近?》的教学设计](https://img.taocdn.com/s3/m/191e2a9a8ad63186bceb19e8b8f67c1cfbd6ee6b.png)
《勾股定理的应用 ---怎样走最近?》的教学设计一、提出问题由“大自然中, 沙漠蚂蚁擅长寻找最近路径回家”的视频提问:思考1: 如果觅食点和家分别为同一平面内的点A.B, 怎样的路径是最短路径?为什么?思考2: 如果觅食点和家为不在同一平面内的点A、B, 怎样的路径是最短路径?从而引出课题“勾股定理的应用---怎样走最近?”。
设计意图:从“大自然的沙漠蚂蚁”入手, 通过自然界中的现象, 让学生从数学的角度尝试去解决, 让学生产生强烈的问题意识, 激发学生学习的兴趣.二、探究新知探究1正方体的最短路线问题问题1.点A和点B分别是棱长为10cm的正方体盒子上相对的两点,一只蚂蚁在盒子表面由A处向B处爬行,所走最短路程的平方是多少?引问: 相对的点如何理解?思考1: 蚂蚁从点A爬行到点B可能有哪些路线?请在导学案上画出来。
思考2: 怎样才能找到最短路径?如何判断?预设: 1.测量, 2.计算, 如何计算?追问1:这是立体图形, 如何转化为平面图形?预设: 展开图追问2: 可能的最短路径涉及几个面?是否需要完整的展开图?预设: 2个面即可追问3:可能的展开图共有几种情况?能否优化?预设:6种, 可优化为3种师生共同归纳总结方法。
设计意图: 体会转化的思想, 采用局部展开或整体展开的方法, 从三种不同的图形变换中得到答案, 并在直角三角形中利用勾股定理得到答案。
探究2长方体的最短路线问题问题2.如图, 有一个长方体, 它的长、宽、高分别为7cm、 3cm 、 4cm 。
在顶点A处有一只小蚂蚁, 它想吃到点B处的火腿肠粒。
已知蚂蚁沿长方体表面爬行的速度是1cm/s, 且速度保持不变, 那么蚂蚁能否在10秒内获取食物?思考1: 决定蚂蚁能否在10秒内获取食物的关键是什么?思考2: 怎样才能找到最短路径?有几种不同的展开方式得到可能的最短路径?确定3条路线, 完成学案, 计算得出最短路径。
最短。
因为130>116>98, 所以AB1因为102 >98, 所以蚂蚁能在10秒内获取食物.设计意图:类比正方体上的路径最短问题的研究方法, 展开找到最优方案。
北师大版数学八年级上册第一章勾股定理第3节勾股定理的应用优秀教学案例
![北师大版数学八年级上册第一章勾股定理第3节勾股定理的应用优秀教学案例](https://img.taocdn.com/s3/m/fee61681534de518964bcf84b9d528ea81c72fce.png)
(三)学生小组讨论
1.教师给出具体的合作任务,如共同探究勾股定理的证明方法,分享解题心得等。
2.学生分组进行讨论,相互交流,共同解决问题。
3.教师巡回指导,关注学生的个体差异,给予有针对性的帮助。
(四)总结归纳
1.教师引导学生对所学内容进行总结,如勾股定理的定义、证明方法及其应用等。
北师大版数学八年级上册第一章勾股定理第3节勾股定理的应用优秀教学案例
一、案例背景
北师大版数学八年级上册第一章勾股定理第3节勾股定理的应用,旨在让学生通过探究、实践,掌握勾股定理在实际问题中的应用。本节内容与日常生活紧密相连,旨在培养学生运用数学知识解决实际问题的能力。
本节课的内容包括:理解勾股定理的应用场景,如直角三角形、矩形、正方形等;学会运用勾股定理解决实际问题,如计算直角三角形的斜边长度、判断一个四边形是否为矩形等;培养学生的合作交流能力,通过小组讨论、分享解题方法,提高学生对勾股定理应用的掌握程度。
三、教学策略
(一)情景创设
1.生活情境:以实际生活中的实例引入,如测量房屋面积、计算登机桥的长度等,让学生感受到勾股定理的实际应用。
2.媒体素材:运用多媒体课件、视频等素材,展示勾股定理的历史背景、发现过程,让学生深入了解勾股定理的来历。
3.问题情境:设计一些具有启发性的问题,如“为什么勾股定理适用于所有直角三角形?”“如何判断一个四边形是否为矩形?”等,激发学生的思考兴趣。
4.教师在小组合作过程中进行巡视指导,关注学生的个体差异,给予有针对性的帮助。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,如“在学习勾股定理的过程中,你遇到了哪些困难?是如何克服的?”“你在解决问题时采用了哪些方法?效果如何?”等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.7勾股定理的应用(1)
预习自学:
阅读课本p65—p66页内容,完成:
(复习)
1.勾股定理的内容是什么?
2.直角三角形的判定条件是什么?
3.如何判断两条直线垂直?
4.两点之间怎样的路径最短?
(预习自测)
1.下列三角形中,是直角三角形的是()
A.三边关系满足:a+b=c
B.三边之比为4:5:6
C.其中一边等于另一边的一半
D.三边为9,40,41
2.如图,甲、乙两位探险者到沙漠地区进行探险,某日
早晨8:00,甲先出发,他以6千米/时的速度向东行进,
1小时后乙出发,他以5千米/时的速度向北行进,上午
10:00甲、乙两人相距多远?
修改栏:
导学过程:
一、情境导入:
李叔叔想要检测雕塑底座正面的AD边和BC边是否分别
垂直于底边AB,但他随身只带了卷尺,应该怎么办?
二、探究:
问题1:李叔叔量的AD长是30厘米,AB长是40厘米,
BD长是50厘米,那么AD边垂直于AB边吗?
问题2:小明随身只有一个长度为20厘米的刻度尺,他
能检验AD边是否垂直于AB吗?BC边与AB边呢?
三、知识综合应用探究:
例1:如图,长为10m的梯子AB斜靠在墙上,梯子的顶
端距地面的垂直距离为8m,如果梯子的顶端下滑1m,
那么它的底端是否也滑动1m?
例2:如图,有一个圆柱,它的高等于12厘米,底面半
径等于3厘米,在圆柱下底面的A点有一只蚂蚁,它想
吃到上底面上与A点相对的B点处的食物,
(1)尝试从A点到B点沿圆柱侧面画出几条路线。
(2)将圆柱侧面剪开展成一个长方形,从A点到B点
的最短路线是什么?最短是多少?(π取3)
修改栏:
修改栏:
修改栏:
四、学生小结教师补充
本节课同学们有什么收获?
修改栏:课堂练习:
课本66页练习1、2
分层巩固:
(必做题)小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度
(选做题)如图,将一根25㎝长的细木棒放入长、宽、 高分别为8㎝、6㎝和10㎝的长方体无盖盒子中,则细木 棒露在盒外面的最短长度是㎝.
修改栏:
教后反思:
学生错题摘录:
A B
C
5。